Properties

Label 6762.2.a.br
Level $6762$
Weight $2$
Character orbit 6762.a
Self dual yes
Analytic conductor $53.995$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6762 = 2 \cdot 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6762.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(53.9948418468\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{17}) \)
Defining polynomial: \(x^{2} - x - 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{17})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + \beta q^{5} + q^{6} - q^{8} + q^{9} +O(q^{10})\) \( q - q^{2} - q^{3} + q^{4} + \beta q^{5} + q^{6} - q^{8} + q^{9} -\beta q^{10} + 3 q^{11} - q^{12} + ( -2 + 2 \beta ) q^{13} -\beta q^{15} + q^{16} + ( -3 + 3 \beta ) q^{17} - q^{18} + ( -2 + 2 \beta ) q^{19} + \beta q^{20} -3 q^{22} - q^{23} + q^{24} + ( -1 + \beta ) q^{25} + ( 2 - 2 \beta ) q^{26} - q^{27} + ( -5 + 2 \beta ) q^{29} + \beta q^{30} + ( -6 + 3 \beta ) q^{31} - q^{32} -3 q^{33} + ( 3 - 3 \beta ) q^{34} + q^{36} + ( 6 - 2 \beta ) q^{37} + ( 2 - 2 \beta ) q^{38} + ( 2 - 2 \beta ) q^{39} -\beta q^{40} + ( 2 + 2 \beta ) q^{41} + ( 2 + 4 \beta ) q^{43} + 3 q^{44} + \beta q^{45} + q^{46} + ( 3 - \beta ) q^{47} - q^{48} + ( 1 - \beta ) q^{50} + ( 3 - 3 \beta ) q^{51} + ( -2 + 2 \beta ) q^{52} + ( 2 - \beta ) q^{53} + q^{54} + 3 \beta q^{55} + ( 2 - 2 \beta ) q^{57} + ( 5 - 2 \beta ) q^{58} + ( -4 + \beta ) q^{59} -\beta q^{60} + 2 q^{61} + ( 6 - 3 \beta ) q^{62} + q^{64} + 8 q^{65} + 3 q^{66} -2 q^{67} + ( -3 + 3 \beta ) q^{68} + q^{69} + ( 3 - \beta ) q^{71} - q^{72} + ( 1 - 7 \beta ) q^{73} + ( -6 + 2 \beta ) q^{74} + ( 1 - \beta ) q^{75} + ( -2 + 2 \beta ) q^{76} + ( -2 + 2 \beta ) q^{78} + ( -3 + 6 \beta ) q^{79} + \beta q^{80} + q^{81} + ( -2 - 2 \beta ) q^{82} + ( 4 + \beta ) q^{83} + 12 q^{85} + ( -2 - 4 \beta ) q^{86} + ( 5 - 2 \beta ) q^{87} -3 q^{88} + ( 2 - 4 \beta ) q^{89} -\beta q^{90} - q^{92} + ( 6 - 3 \beta ) q^{93} + ( -3 + \beta ) q^{94} + 8 q^{95} + q^{96} + ( -4 - 3 \beta ) q^{97} + 3 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q - 2q^{2} - 2q^{3} + 2q^{4} + q^{5} + 2q^{6} - 2q^{8} + 2q^{9} + O(q^{10}) \) \( 2q - 2q^{2} - 2q^{3} + 2q^{4} + q^{5} + 2q^{6} - 2q^{8} + 2q^{9} - q^{10} + 6q^{11} - 2q^{12} - 2q^{13} - q^{15} + 2q^{16} - 3q^{17} - 2q^{18} - 2q^{19} + q^{20} - 6q^{22} - 2q^{23} + 2q^{24} - q^{25} + 2q^{26} - 2q^{27} - 8q^{29} + q^{30} - 9q^{31} - 2q^{32} - 6q^{33} + 3q^{34} + 2q^{36} + 10q^{37} + 2q^{38} + 2q^{39} - q^{40} + 6q^{41} + 8q^{43} + 6q^{44} + q^{45} + 2q^{46} + 5q^{47} - 2q^{48} + q^{50} + 3q^{51} - 2q^{52} + 3q^{53} + 2q^{54} + 3q^{55} + 2q^{57} + 8q^{58} - 7q^{59} - q^{60} + 4q^{61} + 9q^{62} + 2q^{64} + 16q^{65} + 6q^{66} - 4q^{67} - 3q^{68} + 2q^{69} + 5q^{71} - 2q^{72} - 5q^{73} - 10q^{74} + q^{75} - 2q^{76} - 2q^{78} + q^{80} + 2q^{81} - 6q^{82} + 9q^{83} + 24q^{85} - 8q^{86} + 8q^{87} - 6q^{88} - q^{90} - 2q^{92} + 9q^{93} - 5q^{94} + 16q^{95} + 2q^{96} - 11q^{97} + 6q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.56155
2.56155
−1.00000 −1.00000 1.00000 −1.56155 1.00000 0 −1.00000 1.00000 1.56155
1.2 −1.00000 −1.00000 1.00000 2.56155 1.00000 0 −1.00000 1.00000 −2.56155
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(7\) \(-1\)
\(23\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6762.2.a.br 2
7.b odd 2 1 6762.2.a.bx 2
7.d odd 6 2 966.2.i.i 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.i.i 4 7.d odd 6 2
6762.2.a.br 2 1.a even 1 1 trivial
6762.2.a.bx 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6762))\):

\( T_{5}^{2} - T_{5} - 4 \)
\( T_{11} - 3 \)
\( T_{13}^{2} + 2 T_{13} - 16 \)
\( T_{17}^{2} + 3 T_{17} - 36 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( ( 1 + T )^{2} \)
$3$ \( ( 1 + T )^{2} \)
$5$ \( -4 - T + T^{2} \)
$7$ \( T^{2} \)
$11$ \( ( -3 + T )^{2} \)
$13$ \( -16 + 2 T + T^{2} \)
$17$ \( -36 + 3 T + T^{2} \)
$19$ \( -16 + 2 T + T^{2} \)
$23$ \( ( 1 + T )^{2} \)
$29$ \( -1 + 8 T + T^{2} \)
$31$ \( -18 + 9 T + T^{2} \)
$37$ \( 8 - 10 T + T^{2} \)
$41$ \( -8 - 6 T + T^{2} \)
$43$ \( -52 - 8 T + T^{2} \)
$47$ \( 2 - 5 T + T^{2} \)
$53$ \( -2 - 3 T + T^{2} \)
$59$ \( 8 + 7 T + T^{2} \)
$61$ \( ( -2 + T )^{2} \)
$67$ \( ( 2 + T )^{2} \)
$71$ \( 2 - 5 T + T^{2} \)
$73$ \( -202 + 5 T + T^{2} \)
$79$ \( -153 + T^{2} \)
$83$ \( 16 - 9 T + T^{2} \)
$89$ \( -68 + T^{2} \)
$97$ \( -8 + 11 T + T^{2} \)
show more
show less