Properties

Label 6762.2.a.bc
Level $6762$
Weight $2$
Character orbit 6762.a
Self dual yes
Analytic conductor $53.995$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 6762 = 2 \cdot 3 \cdot 7^{2} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6762.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(53.9948418468\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 966)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + q^{8} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - q^{3} + q^{4} + 2 q^{5} - q^{6} + q^{8} + q^{9} + 2 q^{10} + 4 q^{11} - q^{12} - 2 q^{13} - 2 q^{15} + q^{16} - 6 q^{17} + q^{18} + 2 q^{20} + 4 q^{22} + q^{23} - q^{24} - q^{25} - 2 q^{26} - q^{27} - 2 q^{29} - 2 q^{30} - 4 q^{31} + q^{32} - 4 q^{33} - 6 q^{34} + q^{36} + 6 q^{37} + 2 q^{39} + 2 q^{40} + 6 q^{41} + 12 q^{43} + 4 q^{44} + 2 q^{45} + q^{46} + 12 q^{47} - q^{48} - q^{50} + 6 q^{51} - 2 q^{52} + 6 q^{53} - q^{54} + 8 q^{55} - 2 q^{58} + 4 q^{59} - 2 q^{60} + 10 q^{61} - 4 q^{62} + q^{64} - 4 q^{65} - 4 q^{66} + 4 q^{67} - 6 q^{68} - q^{69} - 16 q^{71} + q^{72} - 2 q^{73} + 6 q^{74} + q^{75} + 2 q^{78} + 8 q^{79} + 2 q^{80} + q^{81} + 6 q^{82} + 16 q^{83} - 12 q^{85} + 12 q^{86} + 2 q^{87} + 4 q^{88} - 6 q^{89} + 2 q^{90} + q^{92} + 4 q^{93} + 12 q^{94} - q^{96} + 2 q^{97} + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 −1.00000 1.00000 2.00000 −1.00000 0 1.00000 1.00000 2.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(1\)
\(7\) \(-1\)
\(23\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 6762.2.a.bc 1
7.b odd 2 1 966.2.a.j 1
21.c even 2 1 2898.2.a.f 1
28.d even 2 1 7728.2.a.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
966.2.a.j 1 7.b odd 2 1
2898.2.a.f 1 21.c even 2 1
6762.2.a.bc 1 1.a even 1 1 trivial
7728.2.a.b 1 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(6762))\):

\( T_{5} - 2 \) Copy content Toggle raw display
\( T_{11} - 4 \) Copy content Toggle raw display
\( T_{13} + 2 \) Copy content Toggle raw display
\( T_{17} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T - 2 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 4 \) Copy content Toggle raw display
$13$ \( T + 2 \) Copy content Toggle raw display
$17$ \( T + 6 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T - 1 \) Copy content Toggle raw display
$29$ \( T + 2 \) Copy content Toggle raw display
$31$ \( T + 4 \) Copy content Toggle raw display
$37$ \( T - 6 \) Copy content Toggle raw display
$41$ \( T - 6 \) Copy content Toggle raw display
$43$ \( T - 12 \) Copy content Toggle raw display
$47$ \( T - 12 \) Copy content Toggle raw display
$53$ \( T - 6 \) Copy content Toggle raw display
$59$ \( T - 4 \) Copy content Toggle raw display
$61$ \( T - 10 \) Copy content Toggle raw display
$67$ \( T - 4 \) Copy content Toggle raw display
$71$ \( T + 16 \) Copy content Toggle raw display
$73$ \( T + 2 \) Copy content Toggle raw display
$79$ \( T - 8 \) Copy content Toggle raw display
$83$ \( T - 16 \) Copy content Toggle raw display
$89$ \( T + 6 \) Copy content Toggle raw display
$97$ \( T - 2 \) Copy content Toggle raw display
show more
show less