Properties

Label 676.2.f
Level 676676
Weight 22
Character orbit 676.f
Rep. character χ676(99,)\chi_{676}(99,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 134134
Newform subspaces 1010
Sturm bound 182182
Trace bound 55

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 676=22132 676 = 2^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 676.f (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 52 52
Character field: Q(i)\Q(i)
Newform subspaces: 10 10
Sturm bound: 182182
Trace bound: 55
Distinguishing TpT_p: 33, 55, 77

Dimensions

The following table gives the dimensions of various subspaces of M2(676,[χ])M_{2}(676, [\chi]).

Total New Old
Modular forms 210 174 36
Cusp forms 154 134 20
Eisenstein series 56 40 16

Trace form

134q+2q2+6q58q6+8q886q94q14+20q166q184q2016q2132q2232q2412q28+8q29+12q328q338q34+22q37++2q98+O(q100) 134 q + 2 q^{2} + 6 q^{5} - 8 q^{6} + 8 q^{8} - 86 q^{9} - 4 q^{14} + 20 q^{16} - 6 q^{18} - 4 q^{20} - 16 q^{21} - 32 q^{22} - 32 q^{24} - 12 q^{28} + 8 q^{29} + 12 q^{32} - 8 q^{33} - 8 q^{34} + 22 q^{37}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(676,[χ])S_{2}^{\mathrm{new}}(676, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
676.2.f.a 676.f 52.f 22 5.3985.398 Q(1)\Q(\sqrt{-1}) Q(13)\Q(\sqrt{-13}) 676.2.f.a 2-2 00 00 2-2 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i1)q22iq4+(i1)q7+q+(i-1)q^{2}-2 i q^{4}+(-i-1)q^{7}+\cdots
676.2.f.b 676.f 52.f 22 5.3985.398 Q(1)\Q(\sqrt{-1}) Q(1)\Q(\sqrt{-1}) 52.2.f.a 2-2 00 66 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i1)q2+2iq4+(3i+3)q5+q+(-i-1)q^{2}+2 i q^{4}+(3 i+3)q^{5}+\cdots
676.2.f.c 676.f 52.f 22 5.3985.398 Q(1)\Q(\sqrt{-1}) Q(13)\Q(\sqrt{-13}) 676.2.f.a 22 00 00 22 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(i+1)q22iq4+(i+1)q7+q+(-i+1)q^{2}-2 i q^{4}+(i+1)q^{7}+\cdots
676.2.f.d 676.f 52.f 44 5.3985.398 Q(ζ12)\Q(\zeta_{12}) Q(1)\Q(\sqrt{-1}) 52.2.l.a 4-4 00 6-6 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(β21)q22β2q4+(β3+β21)q5+q+(\beta_{2}-1)q^{2}-2\beta_{2} q^{4}+(\beta_{3}+\beta_{2}-1)q^{5}+\cdots
676.2.f.e 676.f 52.f 44 5.3985.398 Q(ζ12)\Q(\zeta_{12}) Q(1)\Q(\sqrt{-1}) 52.2.l.a 44 00 66 00 U(1)[D4]\mathrm{U}(1)[D_{4}] q+(β2+1)q22β2q4+(β3β2+1)q5+q+(-\beta_{2}+1)q^{2}-2\beta_{2} q^{4}+(-\beta_{3}-\beta_{2}+1)q^{5}+\cdots
676.2.f.f 676.f 52.f 88 5.3985.398 8.0.157351936.1 None 676.2.f.f 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β6β7)q2+(12β1)q3+(2β3+)q4+q+(\beta _{6}-\beta _{7})q^{2}+(1-2\beta _{1})q^{3}+(-2\beta _{3}+\cdots)q^{4}+\cdots
676.2.f.g 676.f 52.f 88 5.3985.398 8.0.18939904.2 None 52.2.f.b 44 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+(β3+β6+β7)q2+(1+2β1+)q3+q+(-\beta _{3}+\beta _{6}+\beta _{7})q^{2}+(-1+2\beta _{1}+\cdots)q^{3}+\cdots
676.2.f.h 676.f 52.f 1616 5.3985.398 16.0.\cdots.1 None 52.2.l.b 2-2 00 12-12 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] qβ2q2+(β3β6)q3+(β5β8+)q4+q-\beta _{2}q^{2}+(-\beta _{3}-\beta _{6})q^{3}+(-\beta _{5}-\beta _{8}+\cdots)q^{4}+\cdots
676.2.f.i 676.f 52.f 1616 5.3985.398 16.0.\cdots.1 None 52.2.l.b 22 00 1212 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β2q2+(β3β6)q3+(β5β8+)q4+q+\beta _{2}q^{2}+(-\beta _{3}-\beta _{6})q^{3}+(-\beta _{5}-\beta _{8}+\cdots)q^{4}+\cdots
676.2.f.j 676.f 52.f 7272 5.3985.398 None 676.2.f.j 00 00 00 00 SU(2)[C4]\mathrm{SU}(2)[C_{4}]

Decomposition of S2old(676,[χ])S_{2}^{\mathrm{old}}(676, [\chi]) into lower level spaces

S2old(676,[χ]) S_{2}^{\mathrm{old}}(676, [\chi]) \simeq S2new(52,[χ])S_{2}^{\mathrm{new}}(52, [\chi])2^{\oplus 2}