Defining parameters
| Level: | \( N \) | \(=\) | \( 676 = 2^{2} \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 676.e (of order \(3\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q(\zeta_{3})\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(182\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(676, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 224 | 24 | 200 |
| Cusp forms | 140 | 24 | 116 |
| Eisenstein series | 84 | 0 | 84 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(676, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(676, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(676, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)