Properties

Label 676.2.e
Level $676$
Weight $2$
Character orbit 676.e
Rep. character $\chi_{676}(529,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $24$
Newform subspaces $7$
Sturm bound $182$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 7 \)
Sturm bound: \(182\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(676, [\chi])\).

Total New Old
Modular forms 224 24 200
Cusp forms 140 24 116
Eisenstein series 84 0 84

Trace form

\( 24 q + q^{3} + 2 q^{5} - 3 q^{7} - 7 q^{9} - 5 q^{11} + 12 q^{15} + 8 q^{17} - q^{19} - 22 q^{21} - 9 q^{23} + 26 q^{25} - 38 q^{27} + 8 q^{29} + 12 q^{31} - 15 q^{33} + 18 q^{35} - 4 q^{37} + 6 q^{41}+ \cdots + 60 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(676, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
676.2.e.a 676.e 13.c $2$ $5.398$ \(\Q(\sqrt{-3}) \) None 52.2.e.a \(0\) \(-3\) \(-4\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-3+3\zeta_{6})q^{3}-2q^{5}+\zeta_{6}q^{7}-6\zeta_{6}q^{9}+\cdots\)
676.2.e.b 676.e 13.c $2$ $5.398$ \(\Q(\sqrt{-3}) \) None 52.2.a.a \(0\) \(0\) \(-4\) \(-2\) $\mathrm{SU}(2)[C_{3}]$ \(q-2q^{5}-2\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(-2+2\zeta_{6})q^{11}+\cdots\)
676.2.e.c 676.e 13.c $2$ $5.398$ \(\Q(\sqrt{-3}) \) None 52.2.a.a \(0\) \(0\) \(4\) \(2\) $\mathrm{SU}(2)[C_{3}]$ \(q+2q^{5}+2\zeta_{6}q^{7}+3\zeta_{6}q^{9}+(2-2\zeta_{6})q^{11}+\cdots\)
676.2.e.d 676.e 13.c $2$ $5.398$ \(\Q(\sqrt{-3}) \) None 52.2.e.b \(0\) \(2\) \(6\) \(-4\) $\mathrm{SU}(2)[C_{3}]$ \(q+(2-2\zeta_{6})q^{3}+3q^{5}-4\zeta_{6}q^{7}-\zeta_{6}q^{9}+\cdots\)
676.2.e.e 676.e 13.c $4$ $5.398$ \(\Q(\zeta_{12})\) None 52.2.h.a \(0\) \(2\) \(0\) \(0\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta_1+1)q^{3}-\beta_{2} q^{7}+2\beta_1 q^{9}+\cdots\)
676.2.e.f 676.e 13.c $6$ $5.398$ 6.0.64827.1 None 676.2.a.g \(0\) \(0\) \(-16\) \(-1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2}-\beta _{3}-\beta _{4})q^{3}+(-2-\beta _{2}+\cdots)q^{5}+\cdots\)
676.2.e.g 676.e 13.c $6$ $5.398$ 6.0.64827.1 None 676.2.a.g \(0\) \(0\) \(16\) \(1\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{2}-\beta _{3}-\beta _{4})q^{3}+(2+\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(676, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(676, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(52, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)