Newspace parameters
Level: | \( N \) | \(=\) | \( 676 = 2^{2} \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 676.c (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(0.337367948540\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 52) |
Projective image: | \(D_{3}\) |
Projective field: | Galois closure of 3.1.676.1 |
Artin image: | $S_3$ |
Artin field: | Galois closure of 3.1.676.1 |
$q$-expansion
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(509\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
339.1 |
|
1.00000 | 0 | 1.00000 | −1.00000 | 0 | 0 | 1.00000 | 1.00000 | −1.00000 | |||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
4.b | odd | 2 | 1 | CM by \(\Q(\sqrt{-1}) \) |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 676.1.c.b | 1 | |
4.b | odd | 2 | 1 | CM | 676.1.c.b | 1 | |
13.b | even | 2 | 1 | 676.1.c.a | 1 | ||
13.c | even | 3 | 2 | 52.1.j.a | ✓ | 2 | |
13.d | odd | 4 | 2 | 676.1.b.a | 2 | ||
13.e | even | 6 | 2 | 676.1.j.a | 2 | ||
13.f | odd | 12 | 4 | 676.1.i.a | 4 | ||
39.i | odd | 6 | 2 | 468.1.br.a | 2 | ||
52.b | odd | 2 | 1 | 676.1.c.a | 1 | ||
52.f | even | 4 | 2 | 676.1.b.a | 2 | ||
52.i | odd | 6 | 2 | 676.1.j.a | 2 | ||
52.j | odd | 6 | 2 | 52.1.j.a | ✓ | 2 | |
52.l | even | 12 | 4 | 676.1.i.a | 4 | ||
65.n | even | 6 | 2 | 1300.1.bc.a | 2 | ||
65.q | odd | 12 | 4 | 1300.1.w.a | 4 | ||
91.g | even | 3 | 2 | 2548.1.q.b | 2 | ||
91.h | even | 3 | 2 | 2548.1.bi.b | 2 | ||
91.m | odd | 6 | 2 | 2548.1.q.a | 2 | ||
91.n | odd | 6 | 2 | 2548.1.bn.a | 2 | ||
91.v | odd | 6 | 2 | 2548.1.bi.a | 2 | ||
104.n | odd | 6 | 2 | 832.1.bb.a | 2 | ||
104.r | even | 6 | 2 | 832.1.bb.a | 2 | ||
156.p | even | 6 | 2 | 468.1.br.a | 2 | ||
208.bg | odd | 12 | 4 | 3328.1.v.b | 4 | ||
208.bj | even | 12 | 4 | 3328.1.v.b | 4 | ||
260.v | odd | 6 | 2 | 1300.1.bc.a | 2 | ||
260.bj | even | 12 | 4 | 1300.1.w.a | 4 | ||
364.q | odd | 6 | 2 | 2548.1.q.b | 2 | ||
364.v | even | 6 | 2 | 2548.1.bn.a | 2 | ||
364.ba | even | 6 | 2 | 2548.1.bi.a | 2 | ||
364.bi | odd | 6 | 2 | 2548.1.bi.b | 2 | ||
364.br | even | 6 | 2 | 2548.1.q.a | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
52.1.j.a | ✓ | 2 | 13.c | even | 3 | 2 | |
52.1.j.a | ✓ | 2 | 52.j | odd | 6 | 2 | |
468.1.br.a | 2 | 39.i | odd | 6 | 2 | ||
468.1.br.a | 2 | 156.p | even | 6 | 2 | ||
676.1.b.a | 2 | 13.d | odd | 4 | 2 | ||
676.1.b.a | 2 | 52.f | even | 4 | 2 | ||
676.1.c.a | 1 | 13.b | even | 2 | 1 | ||
676.1.c.a | 1 | 52.b | odd | 2 | 1 | ||
676.1.c.b | 1 | 1.a | even | 1 | 1 | trivial | |
676.1.c.b | 1 | 4.b | odd | 2 | 1 | CM | |
676.1.i.a | 4 | 13.f | odd | 12 | 4 | ||
676.1.i.a | 4 | 52.l | even | 12 | 4 | ||
676.1.j.a | 2 | 13.e | even | 6 | 2 | ||
676.1.j.a | 2 | 52.i | odd | 6 | 2 | ||
832.1.bb.a | 2 | 104.n | odd | 6 | 2 | ||
832.1.bb.a | 2 | 104.r | even | 6 | 2 | ||
1300.1.w.a | 4 | 65.q | odd | 12 | 4 | ||
1300.1.w.a | 4 | 260.bj | even | 12 | 4 | ||
1300.1.bc.a | 2 | 65.n | even | 6 | 2 | ||
1300.1.bc.a | 2 | 260.v | odd | 6 | 2 | ||
2548.1.q.a | 2 | 91.m | odd | 6 | 2 | ||
2548.1.q.a | 2 | 364.br | even | 6 | 2 | ||
2548.1.q.b | 2 | 91.g | even | 3 | 2 | ||
2548.1.q.b | 2 | 364.q | odd | 6 | 2 | ||
2548.1.bi.a | 2 | 91.v | odd | 6 | 2 | ||
2548.1.bi.a | 2 | 364.ba | even | 6 | 2 | ||
2548.1.bi.b | 2 | 91.h | even | 3 | 2 | ||
2548.1.bi.b | 2 | 364.bi | odd | 6 | 2 | ||
2548.1.bn.a | 2 | 91.n | odd | 6 | 2 | ||
2548.1.bn.a | 2 | 364.v | even | 6 | 2 | ||
3328.1.v.b | 4 | 208.bg | odd | 12 | 4 | ||
3328.1.v.b | 4 | 208.bj | even | 12 | 4 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5} + 1 \)
acting on \(S_{1}^{\mathrm{new}}(676, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T - 1 \)
$3$
\( T \)
$5$
\( T + 1 \)
$7$
\( T \)
$11$
\( T \)
$13$
\( T \)
$17$
\( T + 1 \)
$19$
\( T \)
$23$
\( T \)
$29$
\( T + 1 \)
$31$
\( T \)
$37$
\( T + 1 \)
$41$
\( T + 1 \)
$43$
\( T \)
$47$
\( T \)
$53$
\( T + 1 \)
$59$
\( T \)
$61$
\( T + 1 \)
$67$
\( T \)
$71$
\( T \)
$73$
\( T + 1 \)
$79$
\( T \)
$83$
\( T \)
$89$
\( T - 2 \)
$97$
\( T - 2 \)
show more
show less