Properties

Label 675.5.c.h.26.2
Level $675$
Weight $5$
Character 675.26
Analytic conductor $69.775$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,5,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.7747250816\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.5.c.h.26.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000i q^{2} +7.00000 q^{4} +19.0000 q^{7} +69.0000i q^{8} +123.000i q^{11} -302.000 q^{13} +57.0000i q^{14} -95.0000 q^{16} -414.000i q^{17} -304.000 q^{19} -369.000 q^{22} -300.000i q^{23} -906.000i q^{26} +133.000 q^{28} -678.000i q^{29} +239.000 q^{31} +819.000i q^{32} +1242.00 q^{34} -740.000 q^{37} -912.000i q^{38} +228.000i q^{41} +982.000 q^{43} +861.000i q^{44} +900.000 q^{46} -2166.00i q^{47} -2040.00 q^{49} -2114.00 q^{52} +1593.00i q^{53} +1311.00i q^{56} +2034.00 q^{58} -2922.00i q^{59} -316.000 q^{61} +717.000i q^{62} -3977.00 q^{64} -4622.00 q^{67} -2898.00i q^{68} +1818.00i q^{71} +3031.00 q^{73} -2220.00i q^{74} -2128.00 q^{76} +2337.00i q^{77} -10450.0 q^{79} -684.000 q^{82} -12633.0i q^{83} +2946.00i q^{86} -8487.00 q^{88} -7002.00i q^{89} -5738.00 q^{91} -2100.00i q^{92} +6498.00 q^{94} +6517.00 q^{97} -6120.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 38 q^{7} - 604 q^{13} - 190 q^{16} - 608 q^{19} - 738 q^{22} + 266 q^{28} + 478 q^{31} + 2484 q^{34} - 1480 q^{37} + 1964 q^{43} + 1800 q^{46} - 4080 q^{49} - 4228 q^{52} + 4068 q^{58}+ \cdots + 13034 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000i 0.750000i 0.927025 + 0.375000i \(0.122357\pi\)
−0.927025 + 0.375000i \(0.877643\pi\)
\(3\) 0 0
\(4\) 7.00000 0.437500
\(5\) 0 0
\(6\) 0 0
\(7\) 19.0000 0.387755 0.193878 0.981026i \(-0.437894\pi\)
0.193878 + 0.981026i \(0.437894\pi\)
\(8\) 69.0000i 1.07812i
\(9\) 0 0
\(10\) 0 0
\(11\) 123.000i 1.01653i 0.861201 + 0.508264i \(0.169713\pi\)
−0.861201 + 0.508264i \(0.830287\pi\)
\(12\) 0 0
\(13\) −302.000 −1.78698 −0.893491 0.449081i \(-0.851752\pi\)
−0.893491 + 0.449081i \(0.851752\pi\)
\(14\) 57.0000i 0.290816i
\(15\) 0 0
\(16\) −95.0000 −0.371094
\(17\) − 414.000i − 1.43253i −0.697830 0.716263i \(-0.745851\pi\)
0.697830 0.716263i \(-0.254149\pi\)
\(18\) 0 0
\(19\) −304.000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −369.000 −0.762397
\(23\) − 300.000i − 0.567108i −0.958956 0.283554i \(-0.908487\pi\)
0.958956 0.283554i \(-0.0915135\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) − 906.000i − 1.34024i
\(27\) 0 0
\(28\) 133.000 0.169643
\(29\) − 678.000i − 0.806183i −0.915160 0.403092i \(-0.867936\pi\)
0.915160 0.403092i \(-0.132064\pi\)
\(30\) 0 0
\(31\) 239.000 0.248699 0.124350 0.992238i \(-0.460316\pi\)
0.124350 + 0.992238i \(0.460316\pi\)
\(32\) 819.000i 0.799805i
\(33\) 0 0
\(34\) 1242.00 1.07439
\(35\) 0 0
\(36\) 0 0
\(37\) −740.000 −0.540541 −0.270270 0.962784i \(-0.587113\pi\)
−0.270270 + 0.962784i \(0.587113\pi\)
\(38\) − 912.000i − 0.631579i
\(39\) 0 0
\(40\) 0 0
\(41\) 228.000i 0.135634i 0.997698 + 0.0678168i \(0.0216033\pi\)
−0.997698 + 0.0678168i \(0.978397\pi\)
\(42\) 0 0
\(43\) 982.000 0.531098 0.265549 0.964097i \(-0.414447\pi\)
0.265549 + 0.964097i \(0.414447\pi\)
\(44\) 861.000i 0.444731i
\(45\) 0 0
\(46\) 900.000 0.425331
\(47\) − 2166.00i − 0.980534i −0.871572 0.490267i \(-0.836899\pi\)
0.871572 0.490267i \(-0.163101\pi\)
\(48\) 0 0
\(49\) −2040.00 −0.849646
\(50\) 0 0
\(51\) 0 0
\(52\) −2114.00 −0.781805
\(53\) 1593.00i 0.567106i 0.958957 + 0.283553i \(0.0915131\pi\)
−0.958957 + 0.283553i \(0.908487\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 1311.00i 0.418048i
\(57\) 0 0
\(58\) 2034.00 0.604637
\(59\) − 2922.00i − 0.839414i −0.907660 0.419707i \(-0.862133\pi\)
0.907660 0.419707i \(-0.137867\pi\)
\(60\) 0 0
\(61\) −316.000 −0.0849234 −0.0424617 0.999098i \(-0.513520\pi\)
−0.0424617 + 0.999098i \(0.513520\pi\)
\(62\) 717.000i 0.186524i
\(63\) 0 0
\(64\) −3977.00 −0.970947
\(65\) 0 0
\(66\) 0 0
\(67\) −4622.00 −1.02963 −0.514814 0.857302i \(-0.672139\pi\)
−0.514814 + 0.857302i \(0.672139\pi\)
\(68\) − 2898.00i − 0.626730i
\(69\) 0 0
\(70\) 0 0
\(71\) 1818.00i 0.360643i 0.983608 + 0.180321i \(0.0577138\pi\)
−0.983608 + 0.180321i \(0.942286\pi\)
\(72\) 0 0
\(73\) 3031.00 0.568775 0.284387 0.958709i \(-0.408210\pi\)
0.284387 + 0.958709i \(0.408210\pi\)
\(74\) − 2220.00i − 0.405405i
\(75\) 0 0
\(76\) −2128.00 −0.368421
\(77\) 2337.00i 0.394164i
\(78\) 0 0
\(79\) −10450.0 −1.67441 −0.837206 0.546888i \(-0.815812\pi\)
−0.837206 + 0.546888i \(0.815812\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −684.000 −0.101725
\(83\) − 12633.0i − 1.83379i −0.399125 0.916897i \(-0.630686\pi\)
0.399125 0.916897i \(-0.369314\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2946.00i 0.398323i
\(87\) 0 0
\(88\) −8487.00 −1.09595
\(89\) − 7002.00i − 0.883979i −0.897020 0.441990i \(-0.854273\pi\)
0.897020 0.441990i \(-0.145727\pi\)
\(90\) 0 0
\(91\) −5738.00 −0.692911
\(92\) − 2100.00i − 0.248110i
\(93\) 0 0
\(94\) 6498.00 0.735401
\(95\) 0 0
\(96\) 0 0
\(97\) 6517.00 0.692635 0.346317 0.938117i \(-0.387432\pi\)
0.346317 + 0.938117i \(0.387432\pi\)
\(98\) − 6120.00i − 0.637234i
\(99\) 0 0
\(100\) 0 0
\(101\) 5919.00i 0.580237i 0.956991 + 0.290119i \(0.0936948\pi\)
−0.956991 + 0.290119i \(0.906305\pi\)
\(102\) 0 0
\(103\) 7654.00 0.721463 0.360731 0.932670i \(-0.382527\pi\)
0.360731 + 0.932670i \(0.382527\pi\)
\(104\) − 20838.0i − 1.92659i
\(105\) 0 0
\(106\) −4779.00 −0.425329
\(107\) 513.000i 0.0448074i 0.999749 + 0.0224037i \(0.00713192\pi\)
−0.999749 + 0.0224037i \(0.992868\pi\)
\(108\) 0 0
\(109\) 2324.00 0.195606 0.0978032 0.995206i \(-0.468818\pi\)
0.0978032 + 0.995206i \(0.468818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1805.00 −0.143893
\(113\) 4920.00i 0.385308i 0.981267 + 0.192654i \(0.0617095\pi\)
−0.981267 + 0.192654i \(0.938290\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 4746.00i − 0.352705i
\(117\) 0 0
\(118\) 8766.00 0.629560
\(119\) − 7866.00i − 0.555469i
\(120\) 0 0
\(121\) −488.000 −0.0333311
\(122\) − 948.000i − 0.0636926i
\(123\) 0 0
\(124\) 1673.00 0.108806
\(125\) 0 0
\(126\) 0 0
\(127\) −24995.0 −1.54969 −0.774847 0.632149i \(-0.782173\pi\)
−0.774847 + 0.632149i \(0.782173\pi\)
\(128\) 1173.00i 0.0715942i
\(129\) 0 0
\(130\) 0 0
\(131\) 28461.0i 1.65847i 0.558900 + 0.829235i \(0.311223\pi\)
−0.558900 + 0.829235i \(0.688777\pi\)
\(132\) 0 0
\(133\) −5776.00 −0.326531
\(134\) − 13866.0i − 0.772221i
\(135\) 0 0
\(136\) 28566.0 1.54444
\(137\) − 2454.00i − 0.130748i −0.997861 0.0653738i \(-0.979176\pi\)
0.997861 0.0653738i \(-0.0208240\pi\)
\(138\) 0 0
\(139\) −11884.0 −0.615082 −0.307541 0.951535i \(-0.599506\pi\)
−0.307541 + 0.951535i \(0.599506\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5454.00 −0.270482
\(143\) − 37146.0i − 1.81652i
\(144\) 0 0
\(145\) 0 0
\(146\) 9093.00i 0.426581i
\(147\) 0 0
\(148\) −5180.00 −0.236486
\(149\) − 21993.0i − 0.990631i −0.868713 0.495316i \(-0.835052\pi\)
0.868713 0.495316i \(-0.164948\pi\)
\(150\) 0 0
\(151\) −2683.00 −0.117670 −0.0588351 0.998268i \(-0.518739\pi\)
−0.0588351 + 0.998268i \(0.518739\pi\)
\(152\) − 20976.0i − 0.907895i
\(153\) 0 0
\(154\) −7011.00 −0.295623
\(155\) 0 0
\(156\) 0 0
\(157\) 32116.0 1.30293 0.651467 0.758677i \(-0.274154\pi\)
0.651467 + 0.758677i \(0.274154\pi\)
\(158\) − 31350.0i − 1.25581i
\(159\) 0 0
\(160\) 0 0
\(161\) − 5700.00i − 0.219899i
\(162\) 0 0
\(163\) −22790.0 −0.857767 −0.428883 0.903360i \(-0.641093\pi\)
−0.428883 + 0.903360i \(0.641093\pi\)
\(164\) 1596.00i 0.0593397i
\(165\) 0 0
\(166\) 37899.0 1.37534
\(167\) 36078.0i 1.29363i 0.762648 + 0.646814i \(0.223899\pi\)
−0.762648 + 0.646814i \(0.776101\pi\)
\(168\) 0 0
\(169\) 62643.0 2.19331
\(170\) 0 0
\(171\) 0 0
\(172\) 6874.00 0.232355
\(173\) − 19725.0i − 0.659060i −0.944145 0.329530i \(-0.893110\pi\)
0.944145 0.329530i \(-0.106890\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 11685.0i − 0.377228i
\(177\) 0 0
\(178\) 21006.0 0.662984
\(179\) − 48915.0i − 1.52664i −0.646022 0.763319i \(-0.723569\pi\)
0.646022 0.763319i \(-0.276431\pi\)
\(180\) 0 0
\(181\) −49552.0 −1.51253 −0.756265 0.654265i \(-0.772978\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(182\) − 17214.0i − 0.519684i
\(183\) 0 0
\(184\) 20700.0 0.611413
\(185\) 0 0
\(186\) 0 0
\(187\) 50922.0 1.45620
\(188\) − 15162.0i − 0.428984i
\(189\) 0 0
\(190\) 0 0
\(191\) − 45390.0i − 1.24421i −0.782934 0.622105i \(-0.786278\pi\)
0.782934 0.622105i \(-0.213722\pi\)
\(192\) 0 0
\(193\) −35447.0 −0.951623 −0.475811 0.879547i \(-0.657846\pi\)
−0.475811 + 0.879547i \(0.657846\pi\)
\(194\) 19551.0i 0.519476i
\(195\) 0 0
\(196\) −14280.0 −0.371720
\(197\) − 35739.0i − 0.920895i −0.887687 0.460447i \(-0.847689\pi\)
0.887687 0.460447i \(-0.152311\pi\)
\(198\) 0 0
\(199\) −31255.0 −0.789248 −0.394624 0.918843i \(-0.629125\pi\)
−0.394624 + 0.918843i \(0.629125\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −17757.0 −0.435178
\(203\) − 12882.0i − 0.312602i
\(204\) 0 0
\(205\) 0 0
\(206\) 22962.0i 0.541097i
\(207\) 0 0
\(208\) 28690.0 0.663138
\(209\) − 37392.0i − 0.856024i
\(210\) 0 0
\(211\) −15052.0 −0.338088 −0.169044 0.985609i \(-0.554068\pi\)
−0.169044 + 0.985609i \(0.554068\pi\)
\(212\) 11151.0i 0.248109i
\(213\) 0 0
\(214\) −1539.00 −0.0336056
\(215\) 0 0
\(216\) 0 0
\(217\) 4541.00 0.0964344
\(218\) 6972.00i 0.146705i
\(219\) 0 0
\(220\) 0 0
\(221\) 125028.i 2.55990i
\(222\) 0 0
\(223\) −50174.0 −1.00895 −0.504474 0.863427i \(-0.668314\pi\)
−0.504474 + 0.863427i \(0.668314\pi\)
\(224\) 15561.0i 0.310128i
\(225\) 0 0
\(226\) −14760.0 −0.288981
\(227\) − 19266.0i − 0.373887i −0.982371 0.186943i \(-0.940142\pi\)
0.982371 0.186943i \(-0.0598581\pi\)
\(228\) 0 0
\(229\) 34214.0 0.652428 0.326214 0.945296i \(-0.394227\pi\)
0.326214 + 0.945296i \(0.394227\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 46782.0 0.869166
\(233\) 37386.0i 0.688648i 0.938851 + 0.344324i \(0.111892\pi\)
−0.938851 + 0.344324i \(0.888108\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 20454.0i − 0.367244i
\(237\) 0 0
\(238\) 23598.0 0.416602
\(239\) − 61800.0i − 1.08191i −0.841050 0.540957i \(-0.818062\pi\)
0.841050 0.540957i \(-0.181938\pi\)
\(240\) 0 0
\(241\) 41390.0 0.712625 0.356313 0.934367i \(-0.384034\pi\)
0.356313 + 0.934367i \(0.384034\pi\)
\(242\) − 1464.00i − 0.0249983i
\(243\) 0 0
\(244\) −2212.00 −0.0371540
\(245\) 0 0
\(246\) 0 0
\(247\) 91808.0 1.50483
\(248\) 16491.0i 0.268129i
\(249\) 0 0
\(250\) 0 0
\(251\) − 82818.0i − 1.31455i −0.753651 0.657275i \(-0.771709\pi\)
0.753651 0.657275i \(-0.228291\pi\)
\(252\) 0 0
\(253\) 36900.0 0.576481
\(254\) − 74985.0i − 1.16227i
\(255\) 0 0
\(256\) −67151.0 −1.02464
\(257\) 19590.0i 0.296598i 0.988943 + 0.148299i \(0.0473798\pi\)
−0.988943 + 0.148299i \(0.952620\pi\)
\(258\) 0 0
\(259\) −14060.0 −0.209597
\(260\) 0 0
\(261\) 0 0
\(262\) −85383.0 −1.24385
\(263\) − 16692.0i − 0.241322i −0.992694 0.120661i \(-0.961499\pi\)
0.992694 0.120661i \(-0.0385014\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) − 17328.0i − 0.244898i
\(267\) 0 0
\(268\) −32354.0 −0.450462
\(269\) 120906.i 1.67087i 0.549587 + 0.835436i \(0.314785\pi\)
−0.549587 + 0.835436i \(0.685215\pi\)
\(270\) 0 0
\(271\) 73739.0 1.00406 0.502029 0.864851i \(-0.332587\pi\)
0.502029 + 0.864851i \(0.332587\pi\)
\(272\) 39330.0i 0.531601i
\(273\) 0 0
\(274\) 7362.00 0.0980606
\(275\) 0 0
\(276\) 0 0
\(277\) −11996.0 −0.156342 −0.0781712 0.996940i \(-0.524908\pi\)
−0.0781712 + 0.996940i \(0.524908\pi\)
\(278\) − 35652.0i − 0.461312i
\(279\) 0 0
\(280\) 0 0
\(281\) 51126.0i 0.647484i 0.946145 + 0.323742i \(0.104941\pi\)
−0.946145 + 0.323742i \(0.895059\pi\)
\(282\) 0 0
\(283\) 1048.00 0.0130854 0.00654272 0.999979i \(-0.497917\pi\)
0.00654272 + 0.999979i \(0.497917\pi\)
\(284\) 12726.0i 0.157781i
\(285\) 0 0
\(286\) 111438. 1.36239
\(287\) 4332.00i 0.0525926i
\(288\) 0 0
\(289\) −87875.0 −1.05213
\(290\) 0 0
\(291\) 0 0
\(292\) 21217.0 0.248839
\(293\) − 64182.0i − 0.747615i −0.927506 0.373807i \(-0.878052\pi\)
0.927506 0.373807i \(-0.121948\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) − 51060.0i − 0.582770i
\(297\) 0 0
\(298\) 65979.0 0.742973
\(299\) 90600.0i 1.01341i
\(300\) 0 0
\(301\) 18658.0 0.205936
\(302\) − 8049.00i − 0.0882527i
\(303\) 0 0
\(304\) 28880.0 0.312500
\(305\) 0 0
\(306\) 0 0
\(307\) −154154. −1.63560 −0.817802 0.575500i \(-0.804807\pi\)
−0.817802 + 0.575500i \(0.804807\pi\)
\(308\) 16359.0i 0.172447i
\(309\) 0 0
\(310\) 0 0
\(311\) 94080.0i 0.972695i 0.873766 + 0.486347i \(0.161671\pi\)
−0.873766 + 0.486347i \(0.838329\pi\)
\(312\) 0 0
\(313\) 25903.0 0.264400 0.132200 0.991223i \(-0.457796\pi\)
0.132200 + 0.991223i \(0.457796\pi\)
\(314\) 96348.0i 0.977200i
\(315\) 0 0
\(316\) −73150.0 −0.732555
\(317\) 96843.0i 0.963717i 0.876249 + 0.481859i \(0.160038\pi\)
−0.876249 + 0.481859i \(0.839962\pi\)
\(318\) 0 0
\(319\) 83394.0 0.819508
\(320\) 0 0
\(321\) 0 0
\(322\) 17100.0 0.164924
\(323\) 125856.i 1.20634i
\(324\) 0 0
\(325\) 0 0
\(326\) − 68370.0i − 0.643325i
\(327\) 0 0
\(328\) −15732.0 −0.146230
\(329\) − 41154.0i − 0.380207i
\(330\) 0 0
\(331\) −164854. −1.50468 −0.752339 0.658776i \(-0.771074\pi\)
−0.752339 + 0.658776i \(0.771074\pi\)
\(332\) − 88431.0i − 0.802284i
\(333\) 0 0
\(334\) −108234. −0.970221
\(335\) 0 0
\(336\) 0 0
\(337\) −148694. −1.30928 −0.654642 0.755939i \(-0.727180\pi\)
−0.654642 + 0.755939i \(0.727180\pi\)
\(338\) 187929.i 1.64498i
\(339\) 0 0
\(340\) 0 0
\(341\) 29397.0i 0.252810i
\(342\) 0 0
\(343\) −84379.0 −0.717210
\(344\) 67758.0i 0.572590i
\(345\) 0 0
\(346\) 59175.0 0.494295
\(347\) 107673.i 0.894227i 0.894477 + 0.447114i \(0.147548\pi\)
−0.894477 + 0.447114i \(0.852452\pi\)
\(348\) 0 0
\(349\) 127520. 1.04695 0.523477 0.852040i \(-0.324635\pi\)
0.523477 + 0.852040i \(0.324635\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −100737. −0.813025
\(353\) 142104.i 1.14040i 0.821506 + 0.570200i \(0.193134\pi\)
−0.821506 + 0.570200i \(0.806866\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 49014.0i − 0.386741i
\(357\) 0 0
\(358\) 146745. 1.14498
\(359\) − 19422.0i − 0.150697i −0.997157 0.0753486i \(-0.975993\pi\)
0.997157 0.0753486i \(-0.0240069\pi\)
\(360\) 0 0
\(361\) −37905.0 −0.290859
\(362\) − 148656.i − 1.13440i
\(363\) 0 0
\(364\) −40166.0 −0.303149
\(365\) 0 0
\(366\) 0 0
\(367\) 151345. 1.12366 0.561831 0.827252i \(-0.310097\pi\)
0.561831 + 0.827252i \(0.310097\pi\)
\(368\) 28500.0i 0.210450i
\(369\) 0 0
\(370\) 0 0
\(371\) 30267.0i 0.219898i
\(372\) 0 0
\(373\) −237506. −1.70709 −0.853546 0.521018i \(-0.825553\pi\)
−0.853546 + 0.521018i \(0.825553\pi\)
\(374\) 152766.i 1.09215i
\(375\) 0 0
\(376\) 149454. 1.05714
\(377\) 204756.i 1.44063i
\(378\) 0 0
\(379\) −261952. −1.82366 −0.911829 0.410571i \(-0.865330\pi\)
−0.911829 + 0.410571i \(0.865330\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 136170. 0.933157
\(383\) 87162.0i 0.594196i 0.954847 + 0.297098i \(0.0960188\pi\)
−0.954847 + 0.297098i \(0.903981\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 106341.i − 0.713717i
\(387\) 0 0
\(388\) 45619.0 0.303028
\(389\) 239343.i 1.58169i 0.612016 + 0.790845i \(0.290359\pi\)
−0.612016 + 0.790845i \(0.709641\pi\)
\(390\) 0 0
\(391\) −124200. −0.812397
\(392\) − 140760.i − 0.916025i
\(393\) 0 0
\(394\) 107217. 0.690671
\(395\) 0 0
\(396\) 0 0
\(397\) −217154. −1.37780 −0.688901 0.724855i \(-0.741907\pi\)
−0.688901 + 0.724855i \(0.741907\pi\)
\(398\) − 93765.0i − 0.591936i
\(399\) 0 0
\(400\) 0 0
\(401\) − 256200.i − 1.59327i −0.604458 0.796637i \(-0.706610\pi\)
0.604458 0.796637i \(-0.293390\pi\)
\(402\) 0 0
\(403\) −72178.0 −0.444421
\(404\) 41433.0i 0.253854i
\(405\) 0 0
\(406\) 38646.0 0.234451
\(407\) − 91020.0i − 0.549475i
\(408\) 0 0
\(409\) −199291. −1.19135 −0.595677 0.803224i \(-0.703116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 53578.0 0.315640
\(413\) − 55518.0i − 0.325487i
\(414\) 0 0
\(415\) 0 0
\(416\) − 247338.i − 1.42924i
\(417\) 0 0
\(418\) 112176. 0.642018
\(419\) 251274.i 1.43126i 0.698478 + 0.715632i \(0.253861\pi\)
−0.698478 + 0.715632i \(0.746139\pi\)
\(420\) 0 0
\(421\) −30412.0 −0.171586 −0.0857928 0.996313i \(-0.527342\pi\)
−0.0857928 + 0.996313i \(0.527342\pi\)
\(422\) − 45156.0i − 0.253566i
\(423\) 0 0
\(424\) −109917. −0.611411
\(425\) 0 0
\(426\) 0 0
\(427\) −6004.00 −0.0329295
\(428\) 3591.00i 0.0196032i
\(429\) 0 0
\(430\) 0 0
\(431\) 161730.i 0.870635i 0.900277 + 0.435317i \(0.143364\pi\)
−0.900277 + 0.435317i \(0.856636\pi\)
\(432\) 0 0
\(433\) 213541. 1.13895 0.569476 0.822008i \(-0.307146\pi\)
0.569476 + 0.822008i \(0.307146\pi\)
\(434\) 13623.0i 0.0723258i
\(435\) 0 0
\(436\) 16268.0 0.0855778
\(437\) 91200.0i 0.477564i
\(438\) 0 0
\(439\) 66725.0 0.346226 0.173113 0.984902i \(-0.444617\pi\)
0.173113 + 0.984902i \(0.444617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −375084. −1.91992
\(443\) 274170.i 1.39705i 0.715585 + 0.698526i \(0.246160\pi\)
−0.715585 + 0.698526i \(0.753840\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) − 150522.i − 0.756711i
\(447\) 0 0
\(448\) −75563.0 −0.376490
\(449\) − 233784.i − 1.15964i −0.814746 0.579819i \(-0.803123\pi\)
0.814746 0.579819i \(-0.196877\pi\)
\(450\) 0 0
\(451\) −28044.0 −0.137875
\(452\) 34440.0i 0.168572i
\(453\) 0 0
\(454\) 57798.0 0.280415
\(455\) 0 0
\(456\) 0 0
\(457\) 90667.0 0.434127 0.217064 0.976157i \(-0.430352\pi\)
0.217064 + 0.976157i \(0.430352\pi\)
\(458\) 102642.i 0.489321i
\(459\) 0 0
\(460\) 0 0
\(461\) 201957.i 0.950292i 0.879907 + 0.475146i \(0.157605\pi\)
−0.879907 + 0.475146i \(0.842395\pi\)
\(462\) 0 0
\(463\) 323977. 1.51131 0.755653 0.654973i \(-0.227320\pi\)
0.755653 + 0.654973i \(0.227320\pi\)
\(464\) 64410.0i 0.299170i
\(465\) 0 0
\(466\) −112158. −0.516486
\(467\) − 76941.0i − 0.352796i −0.984319 0.176398i \(-0.943555\pi\)
0.984319 0.176398i \(-0.0564446\pi\)
\(468\) 0 0
\(469\) −87818.0 −0.399244
\(470\) 0 0
\(471\) 0 0
\(472\) 201618. 0.904993
\(473\) 120786.i 0.539876i
\(474\) 0 0
\(475\) 0 0
\(476\) − 55062.0i − 0.243018i
\(477\) 0 0
\(478\) 185400. 0.811435
\(479\) 193218.i 0.842125i 0.907032 + 0.421062i \(0.138343\pi\)
−0.907032 + 0.421062i \(0.861657\pi\)
\(480\) 0 0
\(481\) 223480. 0.965936
\(482\) 124170.i 0.534469i
\(483\) 0 0
\(484\) −3416.00 −0.0145823
\(485\) 0 0
\(486\) 0 0
\(487\) 34882.0 0.147077 0.0735383 0.997292i \(-0.476571\pi\)
0.0735383 + 0.997292i \(0.476571\pi\)
\(488\) − 21804.0i − 0.0915580i
\(489\) 0 0
\(490\) 0 0
\(491\) 217047.i 0.900307i 0.892951 + 0.450154i \(0.148631\pi\)
−0.892951 + 0.450154i \(0.851369\pi\)
\(492\) 0 0
\(493\) −280692. −1.15488
\(494\) 275424.i 1.12862i
\(495\) 0 0
\(496\) −22705.0 −0.0922907
\(497\) 34542.0i 0.139841i
\(498\) 0 0
\(499\) 464810. 1.86670 0.933350 0.358969i \(-0.116871\pi\)
0.933350 + 0.358969i \(0.116871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 248454. 0.985913
\(503\) 167580.i 0.662348i 0.943570 + 0.331174i \(0.107445\pi\)
−0.943570 + 0.331174i \(0.892555\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 110700.i 0.432361i
\(507\) 0 0
\(508\) −174965. −0.677991
\(509\) 35697.0i 0.137783i 0.997624 + 0.0688916i \(0.0219463\pi\)
−0.997624 + 0.0688916i \(0.978054\pi\)
\(510\) 0 0
\(511\) 57589.0 0.220545
\(512\) − 182685.i − 0.696888i
\(513\) 0 0
\(514\) −58770.0 −0.222448
\(515\) 0 0
\(516\) 0 0
\(517\) 266418. 0.996741
\(518\) − 42180.0i − 0.157198i
\(519\) 0 0
\(520\) 0 0
\(521\) − 42750.0i − 0.157493i −0.996895 0.0787464i \(-0.974908\pi\)
0.996895 0.0787464i \(-0.0250917\pi\)
\(522\) 0 0
\(523\) 176434. 0.645028 0.322514 0.946565i \(-0.395472\pi\)
0.322514 + 0.946565i \(0.395472\pi\)
\(524\) 199227.i 0.725581i
\(525\) 0 0
\(526\) 50076.0 0.180991
\(527\) − 98946.0i − 0.356268i
\(528\) 0 0
\(529\) 189841. 0.678389
\(530\) 0 0
\(531\) 0 0
\(532\) −40432.0 −0.142857
\(533\) − 68856.0i − 0.242375i
\(534\) 0 0
\(535\) 0 0
\(536\) − 318918.i − 1.11007i
\(537\) 0 0
\(538\) −362718. −1.25315
\(539\) − 250920.i − 0.863690i
\(540\) 0 0
\(541\) −323836. −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(542\) 221217.i 0.753043i
\(543\) 0 0
\(544\) 339066. 1.14574
\(545\) 0 0
\(546\) 0 0
\(547\) 223390. 0.746602 0.373301 0.927710i \(-0.378226\pi\)
0.373301 + 0.927710i \(0.378226\pi\)
\(548\) − 17178.0i − 0.0572020i
\(549\) 0 0
\(550\) 0 0
\(551\) 206112.i 0.678891i
\(552\) 0 0
\(553\) −198550. −0.649261
\(554\) − 35988.0i − 0.117257i
\(555\) 0 0
\(556\) −83188.0 −0.269098
\(557\) 585027.i 1.88567i 0.333261 + 0.942835i \(0.391851\pi\)
−0.333261 + 0.942835i \(0.608149\pi\)
\(558\) 0 0
\(559\) −296564. −0.949063
\(560\) 0 0
\(561\) 0 0
\(562\) −153378. −0.485613
\(563\) 84075.0i 0.265247i 0.991167 + 0.132623i \(0.0423401\pi\)
−0.991167 + 0.132623i \(0.957660\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 3144.00i 0.00981408i
\(567\) 0 0
\(568\) −125442. −0.388818
\(569\) − 637392.i − 1.96871i −0.176192 0.984356i \(-0.556378\pi\)
0.176192 0.984356i \(-0.443622\pi\)
\(570\) 0 0
\(571\) 80726.0 0.247595 0.123797 0.992308i \(-0.460493\pi\)
0.123797 + 0.992308i \(0.460493\pi\)
\(572\) − 260022.i − 0.794727i
\(573\) 0 0
\(574\) −12996.0 −0.0394445
\(575\) 0 0
\(576\) 0 0
\(577\) −261182. −0.784498 −0.392249 0.919859i \(-0.628303\pi\)
−0.392249 + 0.919859i \(0.628303\pi\)
\(578\) − 263625.i − 0.789098i
\(579\) 0 0
\(580\) 0 0
\(581\) − 240027.i − 0.711063i
\(582\) 0 0
\(583\) −195939. −0.576479
\(584\) 209139.i 0.613210i
\(585\) 0 0
\(586\) 192546. 0.560711
\(587\) 391305.i 1.13564i 0.823154 + 0.567818i \(0.192212\pi\)
−0.823154 + 0.567818i \(0.807788\pi\)
\(588\) 0 0
\(589\) −72656.0 −0.209431
\(590\) 0 0
\(591\) 0 0
\(592\) 70300.0 0.200591
\(593\) − 302670.i − 0.860716i −0.902658 0.430358i \(-0.858387\pi\)
0.902658 0.430358i \(-0.141613\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 153951.i − 0.433401i
\(597\) 0 0
\(598\) −271800. −0.760059
\(599\) − 291498.i − 0.812422i −0.913779 0.406211i \(-0.866850\pi\)
0.913779 0.406211i \(-0.133150\pi\)
\(600\) 0 0
\(601\) 402173. 1.11343 0.556716 0.830703i \(-0.312061\pi\)
0.556716 + 0.830703i \(0.312061\pi\)
\(602\) 55974.0i 0.154452i
\(603\) 0 0
\(604\) −18781.0 −0.0514807
\(605\) 0 0
\(606\) 0 0
\(607\) 378670. 1.02774 0.513870 0.857868i \(-0.328211\pi\)
0.513870 + 0.857868i \(0.328211\pi\)
\(608\) − 248976.i − 0.673520i
\(609\) 0 0
\(610\) 0 0
\(611\) 654132.i 1.75220i
\(612\) 0 0
\(613\) −287570. −0.765284 −0.382642 0.923897i \(-0.624986\pi\)
−0.382642 + 0.923897i \(0.624986\pi\)
\(614\) − 462462.i − 1.22670i
\(615\) 0 0
\(616\) −161253. −0.424958
\(617\) − 576264.i − 1.51374i −0.653566 0.756870i \(-0.726728\pi\)
0.653566 0.756870i \(-0.273272\pi\)
\(618\) 0 0
\(619\) 223262. 0.582685 0.291342 0.956619i \(-0.405898\pi\)
0.291342 + 0.956619i \(0.405898\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −282240. −0.729521
\(623\) − 133038.i − 0.342767i
\(624\) 0 0
\(625\) 0 0
\(626\) 77709.0i 0.198300i
\(627\) 0 0
\(628\) 224812. 0.570033
\(629\) 306360.i 0.774338i
\(630\) 0 0
\(631\) 43373.0 0.108933 0.0544667 0.998516i \(-0.482654\pi\)
0.0544667 + 0.998516i \(0.482654\pi\)
\(632\) − 721050.i − 1.80522i
\(633\) 0 0
\(634\) −290529. −0.722788
\(635\) 0 0
\(636\) 0 0
\(637\) 616080. 1.51830
\(638\) 250182.i 0.614631i
\(639\) 0 0
\(640\) 0 0
\(641\) 423420.i 1.03052i 0.857035 + 0.515259i \(0.172304\pi\)
−0.857035 + 0.515259i \(0.827696\pi\)
\(642\) 0 0
\(643\) 546088. 1.32081 0.660406 0.750909i \(-0.270384\pi\)
0.660406 + 0.750909i \(0.270384\pi\)
\(644\) − 39900.0i − 0.0962058i
\(645\) 0 0
\(646\) −377568. −0.904753
\(647\) 418932.i 1.00077i 0.865803 + 0.500386i \(0.166808\pi\)
−0.865803 + 0.500386i \(0.833192\pi\)
\(648\) 0 0
\(649\) 359406. 0.853289
\(650\) 0 0
\(651\) 0 0
\(652\) −159530. −0.375273
\(653\) − 703209.i − 1.64914i −0.565758 0.824571i \(-0.691417\pi\)
0.565758 0.824571i \(-0.308583\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 21660.0i − 0.0503328i
\(657\) 0 0
\(658\) 123462. 0.285155
\(659\) 102021.i 0.234919i 0.993078 + 0.117460i \(0.0374751\pi\)
−0.993078 + 0.117460i \(0.962525\pi\)
\(660\) 0 0
\(661\) 230720. 0.528059 0.264029 0.964515i \(-0.414948\pi\)
0.264029 + 0.964515i \(0.414948\pi\)
\(662\) − 494562.i − 1.12851i
\(663\) 0 0
\(664\) 871677. 1.97706
\(665\) 0 0
\(666\) 0 0
\(667\) −203400. −0.457193
\(668\) 252546.i 0.565962i
\(669\) 0 0
\(670\) 0 0
\(671\) − 38868.0i − 0.0863271i
\(672\) 0 0
\(673\) 469369. 1.03630 0.518149 0.855291i \(-0.326621\pi\)
0.518149 + 0.855291i \(0.326621\pi\)
\(674\) − 446082.i − 0.981963i
\(675\) 0 0
\(676\) 438501. 0.959571
\(677\) 343146.i 0.748689i 0.927290 + 0.374345i \(0.122132\pi\)
−0.927290 + 0.374345i \(0.877868\pi\)
\(678\) 0 0
\(679\) 123823. 0.268573
\(680\) 0 0
\(681\) 0 0
\(682\) −88191.0 −0.189608
\(683\) − 24642.0i − 0.0528244i −0.999651 0.0264122i \(-0.991592\pi\)
0.999651 0.0264122i \(-0.00840824\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 253137.i − 0.537907i
\(687\) 0 0
\(688\) −93290.0 −0.197087
\(689\) − 481086.i − 1.01341i
\(690\) 0 0
\(691\) −266500. −0.558137 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(692\) − 138075.i − 0.288339i
\(693\) 0 0
\(694\) −323019. −0.670670
\(695\) 0 0
\(696\) 0 0
\(697\) 94392.0 0.194299
\(698\) 382560.i 0.785215i
\(699\) 0 0
\(700\) 0 0
\(701\) 690309.i 1.40478i 0.711794 + 0.702389i \(0.247883\pi\)
−0.711794 + 0.702389i \(0.752117\pi\)
\(702\) 0 0
\(703\) 224960. 0.455192
\(704\) − 489171.i − 0.986996i
\(705\) 0 0
\(706\) −426312. −0.855299
\(707\) 112461.i 0.224990i
\(708\) 0 0
\(709\) −105184. −0.209246 −0.104623 0.994512i \(-0.533364\pi\)
−0.104623 + 0.994512i \(0.533364\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 483138. 0.953040
\(713\) − 71700.0i − 0.141039i
\(714\) 0 0
\(715\) 0 0
\(716\) − 342405.i − 0.667904i
\(717\) 0 0
\(718\) 58266.0 0.113023
\(719\) − 704988.i − 1.36372i −0.731485 0.681858i \(-0.761172\pi\)
0.731485 0.681858i \(-0.238828\pi\)
\(720\) 0 0
\(721\) 145426. 0.279751
\(722\) − 113715.i − 0.218144i
\(723\) 0 0
\(724\) −346864. −0.661732
\(725\) 0 0
\(726\) 0 0
\(727\) −126089. −0.238566 −0.119283 0.992860i \(-0.538060\pi\)
−0.119283 + 0.992860i \(0.538060\pi\)
\(728\) − 395922.i − 0.747045i
\(729\) 0 0
\(730\) 0 0
\(731\) − 406548.i − 0.760812i
\(732\) 0 0
\(733\) −97736.0 −0.181906 −0.0909529 0.995855i \(-0.528991\pi\)
−0.0909529 + 0.995855i \(0.528991\pi\)
\(734\) 454035.i 0.842747i
\(735\) 0 0
\(736\) 245700. 0.453575
\(737\) − 568506.i − 1.04665i
\(738\) 0 0
\(739\) −857158. −1.56954 −0.784769 0.619788i \(-0.787219\pi\)
−0.784769 + 0.619788i \(0.787219\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −90801.0 −0.164924
\(743\) − 909966.i − 1.64834i −0.566340 0.824171i \(-0.691641\pi\)
0.566340 0.824171i \(-0.308359\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 712518.i − 1.28032i
\(747\) 0 0
\(748\) 356454. 0.637089
\(749\) 9747.00i 0.0173743i
\(750\) 0 0
\(751\) 61223.0 0.108551 0.0542756 0.998526i \(-0.482715\pi\)
0.0542756 + 0.998526i \(0.482715\pi\)
\(752\) 205770.i 0.363870i
\(753\) 0 0
\(754\) −614268. −1.08048
\(755\) 0 0
\(756\) 0 0
\(757\) −782570. −1.36562 −0.682812 0.730594i \(-0.739243\pi\)
−0.682812 + 0.730594i \(0.739243\pi\)
\(758\) − 785856.i − 1.36774i
\(759\) 0 0
\(760\) 0 0
\(761\) 701400.i 1.21115i 0.795790 + 0.605573i \(0.207056\pi\)
−0.795790 + 0.605573i \(0.792944\pi\)
\(762\) 0 0
\(763\) 44156.0 0.0758474
\(764\) − 317730.i − 0.544342i
\(765\) 0 0
\(766\) −261486. −0.445647
\(767\) 882444.i 1.50002i
\(768\) 0 0
\(769\) −85045.0 −0.143812 −0.0719062 0.997411i \(-0.522908\pi\)
−0.0719062 + 0.997411i \(0.522908\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −248129. −0.416335
\(773\) − 643122.i − 1.07630i −0.842848 0.538151i \(-0.819123\pi\)
0.842848 0.538151i \(-0.180877\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 449673.i 0.746747i
\(777\) 0 0
\(778\) −718029. −1.18627
\(779\) − 69312.0i − 0.114218i
\(780\) 0 0
\(781\) −223614. −0.366604
\(782\) − 372600.i − 0.609297i
\(783\) 0 0
\(784\) 193800. 0.315298
\(785\) 0 0
\(786\) 0 0
\(787\) −1.06855e6 −1.72522 −0.862610 0.505869i \(-0.831172\pi\)
−0.862610 + 0.505869i \(0.831172\pi\)
\(788\) − 250173.i − 0.402891i
\(789\) 0 0
\(790\) 0 0
\(791\) 93480.0i 0.149405i
\(792\) 0 0
\(793\) 95432.0 0.151757
\(794\) − 651462.i − 1.03335i
\(795\) 0 0
\(796\) −218785. −0.345296
\(797\) 538935.i 0.848437i 0.905560 + 0.424219i \(0.139451\pi\)
−0.905560 + 0.424219i \(0.860549\pi\)
\(798\) 0 0
\(799\) −896724. −1.40464
\(800\) 0 0
\(801\) 0 0
\(802\) 768600. 1.19496
\(803\) 372813.i 0.578176i
\(804\) 0 0
\(805\) 0 0
\(806\) − 216534.i − 0.333316i
\(807\) 0 0
\(808\) −408411. −0.625568
\(809\) − 459594.i − 0.702227i −0.936333 0.351113i \(-0.885803\pi\)
0.936333 0.351113i \(-0.114197\pi\)
\(810\) 0 0
\(811\) −961360. −1.46165 −0.730827 0.682563i \(-0.760865\pi\)
−0.730827 + 0.682563i \(0.760865\pi\)
\(812\) − 90174.0i − 0.136763i
\(813\) 0 0
\(814\) 273060. 0.412106
\(815\) 0 0
\(816\) 0 0
\(817\) −298528. −0.447240
\(818\) − 597873.i − 0.893516i
\(819\) 0 0
\(820\) 0 0
\(821\) 105666.i 0.156765i 0.996923 + 0.0783825i \(0.0249755\pi\)
−0.996923 + 0.0783825i \(0.975024\pi\)
\(822\) 0 0
\(823\) 493555. 0.728678 0.364339 0.931266i \(-0.381295\pi\)
0.364339 + 0.931266i \(0.381295\pi\)
\(824\) 528126.i 0.777827i
\(825\) 0 0
\(826\) 166554. 0.244115
\(827\) − 192870.i − 0.282003i −0.990009 0.141001i \(-0.954968\pi\)
0.990009 0.141001i \(-0.0450322\pi\)
\(828\) 0 0
\(829\) 577226. 0.839918 0.419959 0.907543i \(-0.362044\pi\)
0.419959 + 0.907543i \(0.362044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.20105e6 1.73507
\(833\) 844560.i 1.21714i
\(834\) 0 0
\(835\) 0 0
\(836\) − 261744.i − 0.374511i
\(837\) 0 0
\(838\) −753822. −1.07345
\(839\) − 70986.0i − 0.100844i −0.998728 0.0504219i \(-0.983943\pi\)
0.998728 0.0504219i \(-0.0160566\pi\)
\(840\) 0 0
\(841\) 247597. 0.350069
\(842\) − 91236.0i − 0.128689i
\(843\) 0 0
\(844\) −105364. −0.147913
\(845\) 0 0
\(846\) 0 0
\(847\) −9272.00 −0.0129243
\(848\) − 151335.i − 0.210449i
\(849\) 0 0
\(850\) 0 0
\(851\) 222000.i 0.306545i
\(852\) 0 0
\(853\) −81206.0 −0.111607 −0.0558033 0.998442i \(-0.517772\pi\)
−0.0558033 + 0.998442i \(0.517772\pi\)
\(854\) − 18012.0i − 0.0246971i
\(855\) 0 0
\(856\) −35397.0 −0.0483080
\(857\) − 1.08044e6i − 1.47109i −0.677478 0.735543i \(-0.736927\pi\)
0.677478 0.735543i \(-0.263073\pi\)
\(858\) 0 0
\(859\) 503348. 0.682153 0.341077 0.940035i \(-0.389208\pi\)
0.341077 + 0.940035i \(0.389208\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −485190. −0.652976
\(863\) 548100.i 0.735933i 0.929839 + 0.367966i \(0.119946\pi\)
−0.929839 + 0.367966i \(0.880054\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 640623.i 0.854214i
\(867\) 0 0
\(868\) 31787.0 0.0421901
\(869\) − 1.28535e6i − 1.70209i
\(870\) 0 0
\(871\) 1.39584e6 1.83993
\(872\) 160356.i 0.210888i
\(873\) 0 0
\(874\) −273600. −0.358173
\(875\) 0 0
\(876\) 0 0
\(877\) −700034. −0.910165 −0.455082 0.890449i \(-0.650390\pi\)
−0.455082 + 0.890449i \(0.650390\pi\)
\(878\) 200175.i 0.259669i
\(879\) 0 0
\(880\) 0 0
\(881\) 806634.i 1.03926i 0.854391 + 0.519631i \(0.173930\pi\)
−0.854391 + 0.519631i \(0.826070\pi\)
\(882\) 0 0
\(883\) −342704. −0.439539 −0.219770 0.975552i \(-0.570531\pi\)
−0.219770 + 0.975552i \(0.570531\pi\)
\(884\) 875196.i 1.11996i
\(885\) 0 0
\(886\) −822510. −1.04779
\(887\) − 16122.0i − 0.0204914i −0.999948 0.0102457i \(-0.996739\pi\)
0.999948 0.0102457i \(-0.00326137\pi\)
\(888\) 0 0
\(889\) −474905. −0.600901
\(890\) 0 0
\(891\) 0 0
\(892\) −351218. −0.441415
\(893\) 658464.i 0.825713i
\(894\) 0 0
\(895\) 0 0
\(896\) 22287.0i 0.0277610i
\(897\) 0 0
\(898\) 701352. 0.869728
\(899\) − 162042.i − 0.200497i
\(900\) 0 0
\(901\) 659502. 0.812394
\(902\) − 84132.0i − 0.103407i
\(903\) 0 0
\(904\) −339480. −0.415410
\(905\) 0 0
\(906\) 0 0
\(907\) −1.56950e6 −1.90786 −0.953931 0.300028i \(-0.903004\pi\)
−0.953931 + 0.300028i \(0.903004\pi\)
\(908\) − 134862.i − 0.163575i
\(909\) 0 0
\(910\) 0 0
\(911\) − 500898.i − 0.603549i −0.953379 0.301775i \(-0.902421\pi\)
0.953379 0.301775i \(-0.0975790\pi\)
\(912\) 0 0
\(913\) 1.55386e6 1.86410
\(914\) 272001.i 0.325595i
\(915\) 0 0
\(916\) 239498. 0.285437
\(917\) 540759.i 0.643080i
\(918\) 0 0
\(919\) 1.03715e6 1.22804 0.614019 0.789291i \(-0.289552\pi\)
0.614019 + 0.789291i \(0.289552\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −605871. −0.712719
\(923\) − 549036.i − 0.644462i
\(924\) 0 0
\(925\) 0 0
\(926\) 971931.i 1.13348i
\(927\) 0 0
\(928\) 555282. 0.644789
\(929\) 128076.i 0.148401i 0.997243 + 0.0742004i \(0.0236405\pi\)
−0.997243 + 0.0742004i \(0.976360\pi\)
\(930\) 0 0
\(931\) 620160. 0.715491
\(932\) 261702.i 0.301283i
\(933\) 0 0
\(934\) 230823. 0.264597
\(935\) 0 0
\(936\) 0 0
\(937\) 879451. 1.00169 0.500844 0.865538i \(-0.333023\pi\)
0.500844 + 0.865538i \(0.333023\pi\)
\(938\) − 263454.i − 0.299433i
\(939\) 0 0
\(940\) 0 0
\(941\) 718257.i 0.811149i 0.914062 + 0.405574i \(0.132929\pi\)
−0.914062 + 0.405574i \(0.867071\pi\)
\(942\) 0 0
\(943\) 68400.0 0.0769188
\(944\) 277590.i 0.311501i
\(945\) 0 0
\(946\) −362358. −0.404907
\(947\) − 73005.0i − 0.0814053i −0.999171 0.0407026i \(-0.987040\pi\)
0.999171 0.0407026i \(-0.0129596\pi\)
\(948\) 0 0
\(949\) −915362. −1.01639
\(950\) 0 0
\(951\) 0 0
\(952\) 542754. 0.598865
\(953\) − 309168.i − 0.340415i −0.985408 0.170208i \(-0.945556\pi\)
0.985408 0.170208i \(-0.0544438\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 432600.i − 0.473337i
\(957\) 0 0
\(958\) −579654. −0.631594
\(959\) − 46626.0i − 0.0506980i
\(960\) 0 0
\(961\) −866400. −0.938149
\(962\) 670440.i 0.724452i
\(963\) 0 0
\(964\) 289730. 0.311774
\(965\) 0 0
\(966\) 0 0
\(967\) 366187. 0.391607 0.195803 0.980643i \(-0.437269\pi\)
0.195803 + 0.980643i \(0.437269\pi\)
\(968\) − 33672.0i − 0.0359350i
\(969\) 0 0
\(970\) 0 0
\(971\) − 1.43410e6i − 1.52105i −0.649311 0.760523i \(-0.724943\pi\)
0.649311 0.760523i \(-0.275057\pi\)
\(972\) 0 0
\(973\) −225796. −0.238501
\(974\) 104646.i 0.110307i
\(975\) 0 0
\(976\) 30020.0 0.0315145
\(977\) 311802.i 0.326655i 0.986572 + 0.163328i \(0.0522228\pi\)
−0.986572 + 0.163328i \(0.947777\pi\)
\(978\) 0 0
\(979\) 861246. 0.898591
\(980\) 0 0
\(981\) 0 0
\(982\) −651141. −0.675231
\(983\) − 690162.i − 0.714240i −0.934059 0.357120i \(-0.883759\pi\)
0.934059 0.357120i \(-0.116241\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 842076.i − 0.866159i
\(987\) 0 0
\(988\) 642656. 0.658362
\(989\) − 294600.i − 0.301190i
\(990\) 0 0
\(991\) 981875. 0.999790 0.499895 0.866086i \(-0.333372\pi\)
0.499895 + 0.866086i \(0.333372\pi\)
\(992\) 195741.i 0.198911i
\(993\) 0 0
\(994\) −103626. −0.104881
\(995\) 0 0
\(996\) 0 0
\(997\) −241946. −0.243404 −0.121702 0.992567i \(-0.538835\pi\)
−0.121702 + 0.992567i \(0.538835\pi\)
\(998\) 1.39443e6i 1.40002i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.5.c.h.26.2 2
3.2 odd 2 inner 675.5.c.h.26.1 2
5.2 odd 4 675.5.d.a.674.2 2
5.3 odd 4 675.5.d.d.674.1 2
5.4 even 2 27.5.b.c.26.1 2
15.2 even 4 675.5.d.d.674.2 2
15.8 even 4 675.5.d.a.674.1 2
15.14 odd 2 27.5.b.c.26.2 yes 2
20.19 odd 2 432.5.e.e.161.1 2
45.4 even 6 81.5.d.b.26.2 4
45.14 odd 6 81.5.d.b.26.1 4
45.29 odd 6 81.5.d.b.53.2 4
45.34 even 6 81.5.d.b.53.1 4
60.59 even 2 432.5.e.e.161.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.b.c.26.1 2 5.4 even 2
27.5.b.c.26.2 yes 2 15.14 odd 2
81.5.d.b.26.1 4 45.14 odd 6
81.5.d.b.26.2 4 45.4 even 6
81.5.d.b.53.1 4 45.34 even 6
81.5.d.b.53.2 4 45.29 odd 6
432.5.e.e.161.1 2 20.19 odd 2
432.5.e.e.161.2 2 60.59 even 2
675.5.c.h.26.1 2 3.2 odd 2 inner
675.5.c.h.26.2 2 1.1 even 1 trivial
675.5.d.a.674.1 2 15.8 even 4
675.5.d.a.674.2 2 5.2 odd 4
675.5.d.d.674.1 2 5.3 odd 4
675.5.d.d.674.2 2 15.2 even 4