Properties

Label 675.5.c.h.26.1
Level $675$
Weight $5$
Character 675.26
Analytic conductor $69.775$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,5,Mod(26,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.26");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 675.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(69.7747250816\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 26.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 675.26
Dual form 675.5.c.h.26.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.00000i q^{2} +7.00000 q^{4} +19.0000 q^{7} -69.0000i q^{8} -123.000i q^{11} -302.000 q^{13} -57.0000i q^{14} -95.0000 q^{16} +414.000i q^{17} -304.000 q^{19} -369.000 q^{22} +300.000i q^{23} +906.000i q^{26} +133.000 q^{28} +678.000i q^{29} +239.000 q^{31} -819.000i q^{32} +1242.00 q^{34} -740.000 q^{37} +912.000i q^{38} -228.000i q^{41} +982.000 q^{43} -861.000i q^{44} +900.000 q^{46} +2166.00i q^{47} -2040.00 q^{49} -2114.00 q^{52} -1593.00i q^{53} -1311.00i q^{56} +2034.00 q^{58} +2922.00i q^{59} -316.000 q^{61} -717.000i q^{62} -3977.00 q^{64} -4622.00 q^{67} +2898.00i q^{68} -1818.00i q^{71} +3031.00 q^{73} +2220.00i q^{74} -2128.00 q^{76} -2337.00i q^{77} -10450.0 q^{79} -684.000 q^{82} +12633.0i q^{83} -2946.00i q^{86} -8487.00 q^{88} +7002.00i q^{89} -5738.00 q^{91} +2100.00i q^{92} +6498.00 q^{94} +6517.00 q^{97} +6120.00i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} + 38 q^{7} - 604 q^{13} - 190 q^{16} - 608 q^{19} - 738 q^{22} + 266 q^{28} + 478 q^{31} + 2484 q^{34} - 1480 q^{37} + 1964 q^{43} + 1800 q^{46} - 4080 q^{49} - 4228 q^{52} + 4068 q^{58}+ \cdots + 13034 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 3.00000i − 0.750000i −0.927025 0.375000i \(-0.877643\pi\)
0.927025 0.375000i \(-0.122357\pi\)
\(3\) 0 0
\(4\) 7.00000 0.437500
\(5\) 0 0
\(6\) 0 0
\(7\) 19.0000 0.387755 0.193878 0.981026i \(-0.437894\pi\)
0.193878 + 0.981026i \(0.437894\pi\)
\(8\) − 69.0000i − 1.07812i
\(9\) 0 0
\(10\) 0 0
\(11\) − 123.000i − 1.01653i −0.861201 0.508264i \(-0.830287\pi\)
0.861201 0.508264i \(-0.169713\pi\)
\(12\) 0 0
\(13\) −302.000 −1.78698 −0.893491 0.449081i \(-0.851752\pi\)
−0.893491 + 0.449081i \(0.851752\pi\)
\(14\) − 57.0000i − 0.290816i
\(15\) 0 0
\(16\) −95.0000 −0.371094
\(17\) 414.000i 1.43253i 0.697830 + 0.716263i \(0.254149\pi\)
−0.697830 + 0.716263i \(0.745851\pi\)
\(18\) 0 0
\(19\) −304.000 −0.842105 −0.421053 0.907036i \(-0.638339\pi\)
−0.421053 + 0.907036i \(0.638339\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −369.000 −0.762397
\(23\) 300.000i 0.567108i 0.958956 + 0.283554i \(0.0915135\pi\)
−0.958956 + 0.283554i \(0.908487\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 906.000i 1.34024i
\(27\) 0 0
\(28\) 133.000 0.169643
\(29\) 678.000i 0.806183i 0.915160 + 0.403092i \(0.132064\pi\)
−0.915160 + 0.403092i \(0.867936\pi\)
\(30\) 0 0
\(31\) 239.000 0.248699 0.124350 0.992238i \(-0.460316\pi\)
0.124350 + 0.992238i \(0.460316\pi\)
\(32\) − 819.000i − 0.799805i
\(33\) 0 0
\(34\) 1242.00 1.07439
\(35\) 0 0
\(36\) 0 0
\(37\) −740.000 −0.540541 −0.270270 0.962784i \(-0.587113\pi\)
−0.270270 + 0.962784i \(0.587113\pi\)
\(38\) 912.000i 0.631579i
\(39\) 0 0
\(40\) 0 0
\(41\) − 228.000i − 0.135634i −0.997698 0.0678168i \(-0.978397\pi\)
0.997698 0.0678168i \(-0.0216033\pi\)
\(42\) 0 0
\(43\) 982.000 0.531098 0.265549 0.964097i \(-0.414447\pi\)
0.265549 + 0.964097i \(0.414447\pi\)
\(44\) − 861.000i − 0.444731i
\(45\) 0 0
\(46\) 900.000 0.425331
\(47\) 2166.00i 0.980534i 0.871572 + 0.490267i \(0.163101\pi\)
−0.871572 + 0.490267i \(0.836899\pi\)
\(48\) 0 0
\(49\) −2040.00 −0.849646
\(50\) 0 0
\(51\) 0 0
\(52\) −2114.00 −0.781805
\(53\) − 1593.00i − 0.567106i −0.958957 0.283553i \(-0.908487\pi\)
0.958957 0.283553i \(-0.0915131\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) − 1311.00i − 0.418048i
\(57\) 0 0
\(58\) 2034.00 0.604637
\(59\) 2922.00i 0.839414i 0.907660 + 0.419707i \(0.137867\pi\)
−0.907660 + 0.419707i \(0.862133\pi\)
\(60\) 0 0
\(61\) −316.000 −0.0849234 −0.0424617 0.999098i \(-0.513520\pi\)
−0.0424617 + 0.999098i \(0.513520\pi\)
\(62\) − 717.000i − 0.186524i
\(63\) 0 0
\(64\) −3977.00 −0.970947
\(65\) 0 0
\(66\) 0 0
\(67\) −4622.00 −1.02963 −0.514814 0.857302i \(-0.672139\pi\)
−0.514814 + 0.857302i \(0.672139\pi\)
\(68\) 2898.00i 0.626730i
\(69\) 0 0
\(70\) 0 0
\(71\) − 1818.00i − 0.360643i −0.983608 0.180321i \(-0.942286\pi\)
0.983608 0.180321i \(-0.0577138\pi\)
\(72\) 0 0
\(73\) 3031.00 0.568775 0.284387 0.958709i \(-0.408210\pi\)
0.284387 + 0.958709i \(0.408210\pi\)
\(74\) 2220.00i 0.405405i
\(75\) 0 0
\(76\) −2128.00 −0.368421
\(77\) − 2337.00i − 0.394164i
\(78\) 0 0
\(79\) −10450.0 −1.67441 −0.837206 0.546888i \(-0.815812\pi\)
−0.837206 + 0.546888i \(0.815812\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −684.000 −0.101725
\(83\) 12633.0i 1.83379i 0.399125 + 0.916897i \(0.369314\pi\)
−0.399125 + 0.916897i \(0.630686\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 2946.00i − 0.398323i
\(87\) 0 0
\(88\) −8487.00 −1.09595
\(89\) 7002.00i 0.883979i 0.897020 + 0.441990i \(0.145727\pi\)
−0.897020 + 0.441990i \(0.854273\pi\)
\(90\) 0 0
\(91\) −5738.00 −0.692911
\(92\) 2100.00i 0.248110i
\(93\) 0 0
\(94\) 6498.00 0.735401
\(95\) 0 0
\(96\) 0 0
\(97\) 6517.00 0.692635 0.346317 0.938117i \(-0.387432\pi\)
0.346317 + 0.938117i \(0.387432\pi\)
\(98\) 6120.00i 0.637234i
\(99\) 0 0
\(100\) 0 0
\(101\) − 5919.00i − 0.580237i −0.956991 0.290119i \(-0.906305\pi\)
0.956991 0.290119i \(-0.0936948\pi\)
\(102\) 0 0
\(103\) 7654.00 0.721463 0.360731 0.932670i \(-0.382527\pi\)
0.360731 + 0.932670i \(0.382527\pi\)
\(104\) 20838.0i 1.92659i
\(105\) 0 0
\(106\) −4779.00 −0.425329
\(107\) − 513.000i − 0.0448074i −0.999749 0.0224037i \(-0.992868\pi\)
0.999749 0.0224037i \(-0.00713192\pi\)
\(108\) 0 0
\(109\) 2324.00 0.195606 0.0978032 0.995206i \(-0.468818\pi\)
0.0978032 + 0.995206i \(0.468818\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −1805.00 −0.143893
\(113\) − 4920.00i − 0.385308i −0.981267 0.192654i \(-0.938290\pi\)
0.981267 0.192654i \(-0.0617095\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 4746.00i 0.352705i
\(117\) 0 0
\(118\) 8766.00 0.629560
\(119\) 7866.00i 0.555469i
\(120\) 0 0
\(121\) −488.000 −0.0333311
\(122\) 948.000i 0.0636926i
\(123\) 0 0
\(124\) 1673.00 0.108806
\(125\) 0 0
\(126\) 0 0
\(127\) −24995.0 −1.54969 −0.774847 0.632149i \(-0.782173\pi\)
−0.774847 + 0.632149i \(0.782173\pi\)
\(128\) − 1173.00i − 0.0715942i
\(129\) 0 0
\(130\) 0 0
\(131\) − 28461.0i − 1.65847i −0.558900 0.829235i \(-0.688777\pi\)
0.558900 0.829235i \(-0.311223\pi\)
\(132\) 0 0
\(133\) −5776.00 −0.326531
\(134\) 13866.0i 0.772221i
\(135\) 0 0
\(136\) 28566.0 1.54444
\(137\) 2454.00i 0.130748i 0.997861 + 0.0653738i \(0.0208240\pi\)
−0.997861 + 0.0653738i \(0.979176\pi\)
\(138\) 0 0
\(139\) −11884.0 −0.615082 −0.307541 0.951535i \(-0.599506\pi\)
−0.307541 + 0.951535i \(0.599506\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −5454.00 −0.270482
\(143\) 37146.0i 1.81652i
\(144\) 0 0
\(145\) 0 0
\(146\) − 9093.00i − 0.426581i
\(147\) 0 0
\(148\) −5180.00 −0.236486
\(149\) 21993.0i 0.990631i 0.868713 + 0.495316i \(0.164948\pi\)
−0.868713 + 0.495316i \(0.835052\pi\)
\(150\) 0 0
\(151\) −2683.00 −0.117670 −0.0588351 0.998268i \(-0.518739\pi\)
−0.0588351 + 0.998268i \(0.518739\pi\)
\(152\) 20976.0i 0.907895i
\(153\) 0 0
\(154\) −7011.00 −0.295623
\(155\) 0 0
\(156\) 0 0
\(157\) 32116.0 1.30293 0.651467 0.758677i \(-0.274154\pi\)
0.651467 + 0.758677i \(0.274154\pi\)
\(158\) 31350.0i 1.25581i
\(159\) 0 0
\(160\) 0 0
\(161\) 5700.00i 0.219899i
\(162\) 0 0
\(163\) −22790.0 −0.857767 −0.428883 0.903360i \(-0.641093\pi\)
−0.428883 + 0.903360i \(0.641093\pi\)
\(164\) − 1596.00i − 0.0593397i
\(165\) 0 0
\(166\) 37899.0 1.37534
\(167\) − 36078.0i − 1.29363i −0.762648 0.646814i \(-0.776101\pi\)
0.762648 0.646814i \(-0.223899\pi\)
\(168\) 0 0
\(169\) 62643.0 2.19331
\(170\) 0 0
\(171\) 0 0
\(172\) 6874.00 0.232355
\(173\) 19725.0i 0.659060i 0.944145 + 0.329530i \(0.106890\pi\)
−0.944145 + 0.329530i \(0.893110\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 11685.0i 0.377228i
\(177\) 0 0
\(178\) 21006.0 0.662984
\(179\) 48915.0i 1.52664i 0.646022 + 0.763319i \(0.276431\pi\)
−0.646022 + 0.763319i \(0.723569\pi\)
\(180\) 0 0
\(181\) −49552.0 −1.51253 −0.756265 0.654265i \(-0.772978\pi\)
−0.756265 + 0.654265i \(0.772978\pi\)
\(182\) 17214.0i 0.519684i
\(183\) 0 0
\(184\) 20700.0 0.611413
\(185\) 0 0
\(186\) 0 0
\(187\) 50922.0 1.45620
\(188\) 15162.0i 0.428984i
\(189\) 0 0
\(190\) 0 0
\(191\) 45390.0i 1.24421i 0.782934 + 0.622105i \(0.213722\pi\)
−0.782934 + 0.622105i \(0.786278\pi\)
\(192\) 0 0
\(193\) −35447.0 −0.951623 −0.475811 0.879547i \(-0.657846\pi\)
−0.475811 + 0.879547i \(0.657846\pi\)
\(194\) − 19551.0i − 0.519476i
\(195\) 0 0
\(196\) −14280.0 −0.371720
\(197\) 35739.0i 0.920895i 0.887687 + 0.460447i \(0.152311\pi\)
−0.887687 + 0.460447i \(0.847689\pi\)
\(198\) 0 0
\(199\) −31255.0 −0.789248 −0.394624 0.918843i \(-0.629125\pi\)
−0.394624 + 0.918843i \(0.629125\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −17757.0 −0.435178
\(203\) 12882.0i 0.312602i
\(204\) 0 0
\(205\) 0 0
\(206\) − 22962.0i − 0.541097i
\(207\) 0 0
\(208\) 28690.0 0.663138
\(209\) 37392.0i 0.856024i
\(210\) 0 0
\(211\) −15052.0 −0.338088 −0.169044 0.985609i \(-0.554068\pi\)
−0.169044 + 0.985609i \(0.554068\pi\)
\(212\) − 11151.0i − 0.248109i
\(213\) 0 0
\(214\) −1539.00 −0.0336056
\(215\) 0 0
\(216\) 0 0
\(217\) 4541.00 0.0964344
\(218\) − 6972.00i − 0.146705i
\(219\) 0 0
\(220\) 0 0
\(221\) − 125028.i − 2.55990i
\(222\) 0 0
\(223\) −50174.0 −1.00895 −0.504474 0.863427i \(-0.668314\pi\)
−0.504474 + 0.863427i \(0.668314\pi\)
\(224\) − 15561.0i − 0.310128i
\(225\) 0 0
\(226\) −14760.0 −0.288981
\(227\) 19266.0i 0.373887i 0.982371 + 0.186943i \(0.0598581\pi\)
−0.982371 + 0.186943i \(0.940142\pi\)
\(228\) 0 0
\(229\) 34214.0 0.652428 0.326214 0.945296i \(-0.394227\pi\)
0.326214 + 0.945296i \(0.394227\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 46782.0 0.869166
\(233\) − 37386.0i − 0.688648i −0.938851 0.344324i \(-0.888108\pi\)
0.938851 0.344324i \(-0.111892\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 20454.0i 0.367244i
\(237\) 0 0
\(238\) 23598.0 0.416602
\(239\) 61800.0i 1.08191i 0.841050 + 0.540957i \(0.181938\pi\)
−0.841050 + 0.540957i \(0.818062\pi\)
\(240\) 0 0
\(241\) 41390.0 0.712625 0.356313 0.934367i \(-0.384034\pi\)
0.356313 + 0.934367i \(0.384034\pi\)
\(242\) 1464.00i 0.0249983i
\(243\) 0 0
\(244\) −2212.00 −0.0371540
\(245\) 0 0
\(246\) 0 0
\(247\) 91808.0 1.50483
\(248\) − 16491.0i − 0.268129i
\(249\) 0 0
\(250\) 0 0
\(251\) 82818.0i 1.31455i 0.753651 + 0.657275i \(0.228291\pi\)
−0.753651 + 0.657275i \(0.771709\pi\)
\(252\) 0 0
\(253\) 36900.0 0.576481
\(254\) 74985.0i 1.16227i
\(255\) 0 0
\(256\) −67151.0 −1.02464
\(257\) − 19590.0i − 0.296598i −0.988943 0.148299i \(-0.952620\pi\)
0.988943 0.148299i \(-0.0473798\pi\)
\(258\) 0 0
\(259\) −14060.0 −0.209597
\(260\) 0 0
\(261\) 0 0
\(262\) −85383.0 −1.24385
\(263\) 16692.0i 0.241322i 0.992694 + 0.120661i \(0.0385014\pi\)
−0.992694 + 0.120661i \(0.961499\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 17328.0i 0.244898i
\(267\) 0 0
\(268\) −32354.0 −0.450462
\(269\) − 120906.i − 1.67087i −0.549587 0.835436i \(-0.685215\pi\)
0.549587 0.835436i \(-0.314785\pi\)
\(270\) 0 0
\(271\) 73739.0 1.00406 0.502029 0.864851i \(-0.332587\pi\)
0.502029 + 0.864851i \(0.332587\pi\)
\(272\) − 39330.0i − 0.531601i
\(273\) 0 0
\(274\) 7362.00 0.0980606
\(275\) 0 0
\(276\) 0 0
\(277\) −11996.0 −0.156342 −0.0781712 0.996940i \(-0.524908\pi\)
−0.0781712 + 0.996940i \(0.524908\pi\)
\(278\) 35652.0i 0.461312i
\(279\) 0 0
\(280\) 0 0
\(281\) − 51126.0i − 0.647484i −0.946145 0.323742i \(-0.895059\pi\)
0.946145 0.323742i \(-0.104941\pi\)
\(282\) 0 0
\(283\) 1048.00 0.0130854 0.00654272 0.999979i \(-0.497917\pi\)
0.00654272 + 0.999979i \(0.497917\pi\)
\(284\) − 12726.0i − 0.157781i
\(285\) 0 0
\(286\) 111438. 1.36239
\(287\) − 4332.00i − 0.0525926i
\(288\) 0 0
\(289\) −87875.0 −1.05213
\(290\) 0 0
\(291\) 0 0
\(292\) 21217.0 0.248839
\(293\) 64182.0i 0.747615i 0.927506 + 0.373807i \(0.121948\pi\)
−0.927506 + 0.373807i \(0.878052\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 51060.0i 0.582770i
\(297\) 0 0
\(298\) 65979.0 0.742973
\(299\) − 90600.0i − 1.01341i
\(300\) 0 0
\(301\) 18658.0 0.205936
\(302\) 8049.00i 0.0882527i
\(303\) 0 0
\(304\) 28880.0 0.312500
\(305\) 0 0
\(306\) 0 0
\(307\) −154154. −1.63560 −0.817802 0.575500i \(-0.804807\pi\)
−0.817802 + 0.575500i \(0.804807\pi\)
\(308\) − 16359.0i − 0.172447i
\(309\) 0 0
\(310\) 0 0
\(311\) − 94080.0i − 0.972695i −0.873766 0.486347i \(-0.838329\pi\)
0.873766 0.486347i \(-0.161671\pi\)
\(312\) 0 0
\(313\) 25903.0 0.264400 0.132200 0.991223i \(-0.457796\pi\)
0.132200 + 0.991223i \(0.457796\pi\)
\(314\) − 96348.0i − 0.977200i
\(315\) 0 0
\(316\) −73150.0 −0.732555
\(317\) − 96843.0i − 0.963717i −0.876249 0.481859i \(-0.839962\pi\)
0.876249 0.481859i \(-0.160038\pi\)
\(318\) 0 0
\(319\) 83394.0 0.819508
\(320\) 0 0
\(321\) 0 0
\(322\) 17100.0 0.164924
\(323\) − 125856.i − 1.20634i
\(324\) 0 0
\(325\) 0 0
\(326\) 68370.0i 0.643325i
\(327\) 0 0
\(328\) −15732.0 −0.146230
\(329\) 41154.0i 0.380207i
\(330\) 0 0
\(331\) −164854. −1.50468 −0.752339 0.658776i \(-0.771074\pi\)
−0.752339 + 0.658776i \(0.771074\pi\)
\(332\) 88431.0i 0.802284i
\(333\) 0 0
\(334\) −108234. −0.970221
\(335\) 0 0
\(336\) 0 0
\(337\) −148694. −1.30928 −0.654642 0.755939i \(-0.727180\pi\)
−0.654642 + 0.755939i \(0.727180\pi\)
\(338\) − 187929.i − 1.64498i
\(339\) 0 0
\(340\) 0 0
\(341\) − 29397.0i − 0.252810i
\(342\) 0 0
\(343\) −84379.0 −0.717210
\(344\) − 67758.0i − 0.572590i
\(345\) 0 0
\(346\) 59175.0 0.494295
\(347\) − 107673.i − 0.894227i −0.894477 0.447114i \(-0.852452\pi\)
0.894477 0.447114i \(-0.147548\pi\)
\(348\) 0 0
\(349\) 127520. 1.04695 0.523477 0.852040i \(-0.324635\pi\)
0.523477 + 0.852040i \(0.324635\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −100737. −0.813025
\(353\) − 142104.i − 1.14040i −0.821506 0.570200i \(-0.806866\pi\)
0.821506 0.570200i \(-0.193134\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 49014.0i 0.386741i
\(357\) 0 0
\(358\) 146745. 1.14498
\(359\) 19422.0i 0.150697i 0.997157 + 0.0753486i \(0.0240069\pi\)
−0.997157 + 0.0753486i \(0.975993\pi\)
\(360\) 0 0
\(361\) −37905.0 −0.290859
\(362\) 148656.i 1.13440i
\(363\) 0 0
\(364\) −40166.0 −0.303149
\(365\) 0 0
\(366\) 0 0
\(367\) 151345. 1.12366 0.561831 0.827252i \(-0.310097\pi\)
0.561831 + 0.827252i \(0.310097\pi\)
\(368\) − 28500.0i − 0.210450i
\(369\) 0 0
\(370\) 0 0
\(371\) − 30267.0i − 0.219898i
\(372\) 0 0
\(373\) −237506. −1.70709 −0.853546 0.521018i \(-0.825553\pi\)
−0.853546 + 0.521018i \(0.825553\pi\)
\(374\) − 152766.i − 1.09215i
\(375\) 0 0
\(376\) 149454. 1.05714
\(377\) − 204756.i − 1.44063i
\(378\) 0 0
\(379\) −261952. −1.82366 −0.911829 0.410571i \(-0.865330\pi\)
−0.911829 + 0.410571i \(0.865330\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 136170. 0.933157
\(383\) − 87162.0i − 0.594196i −0.954847 0.297098i \(-0.903981\pi\)
0.954847 0.297098i \(-0.0960188\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 106341.i 0.713717i
\(387\) 0 0
\(388\) 45619.0 0.303028
\(389\) − 239343.i − 1.58169i −0.612016 0.790845i \(-0.709641\pi\)
0.612016 0.790845i \(-0.290359\pi\)
\(390\) 0 0
\(391\) −124200. −0.812397
\(392\) 140760.i 0.916025i
\(393\) 0 0
\(394\) 107217. 0.690671
\(395\) 0 0
\(396\) 0 0
\(397\) −217154. −1.37780 −0.688901 0.724855i \(-0.741907\pi\)
−0.688901 + 0.724855i \(0.741907\pi\)
\(398\) 93765.0i 0.591936i
\(399\) 0 0
\(400\) 0 0
\(401\) 256200.i 1.59327i 0.604458 + 0.796637i \(0.293390\pi\)
−0.604458 + 0.796637i \(0.706610\pi\)
\(402\) 0 0
\(403\) −72178.0 −0.444421
\(404\) − 41433.0i − 0.253854i
\(405\) 0 0
\(406\) 38646.0 0.234451
\(407\) 91020.0i 0.549475i
\(408\) 0 0
\(409\) −199291. −1.19135 −0.595677 0.803224i \(-0.703116\pi\)
−0.595677 + 0.803224i \(0.703116\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 53578.0 0.315640
\(413\) 55518.0i 0.325487i
\(414\) 0 0
\(415\) 0 0
\(416\) 247338.i 1.42924i
\(417\) 0 0
\(418\) 112176. 0.642018
\(419\) − 251274.i − 1.43126i −0.698478 0.715632i \(-0.746139\pi\)
0.698478 0.715632i \(-0.253861\pi\)
\(420\) 0 0
\(421\) −30412.0 −0.171586 −0.0857928 0.996313i \(-0.527342\pi\)
−0.0857928 + 0.996313i \(0.527342\pi\)
\(422\) 45156.0i 0.253566i
\(423\) 0 0
\(424\) −109917. −0.611411
\(425\) 0 0
\(426\) 0 0
\(427\) −6004.00 −0.0329295
\(428\) − 3591.00i − 0.0196032i
\(429\) 0 0
\(430\) 0 0
\(431\) − 161730.i − 0.870635i −0.900277 0.435317i \(-0.856636\pi\)
0.900277 0.435317i \(-0.143364\pi\)
\(432\) 0 0
\(433\) 213541. 1.13895 0.569476 0.822008i \(-0.307146\pi\)
0.569476 + 0.822008i \(0.307146\pi\)
\(434\) − 13623.0i − 0.0723258i
\(435\) 0 0
\(436\) 16268.0 0.0855778
\(437\) − 91200.0i − 0.477564i
\(438\) 0 0
\(439\) 66725.0 0.346226 0.173113 0.984902i \(-0.444617\pi\)
0.173113 + 0.984902i \(0.444617\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −375084. −1.91992
\(443\) − 274170.i − 1.39705i −0.715585 0.698526i \(-0.753840\pi\)
0.715585 0.698526i \(-0.246160\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 150522.i 0.756711i
\(447\) 0 0
\(448\) −75563.0 −0.376490
\(449\) 233784.i 1.15964i 0.814746 + 0.579819i \(0.196877\pi\)
−0.814746 + 0.579819i \(0.803123\pi\)
\(450\) 0 0
\(451\) −28044.0 −0.137875
\(452\) − 34440.0i − 0.168572i
\(453\) 0 0
\(454\) 57798.0 0.280415
\(455\) 0 0
\(456\) 0 0
\(457\) 90667.0 0.434127 0.217064 0.976157i \(-0.430352\pi\)
0.217064 + 0.976157i \(0.430352\pi\)
\(458\) − 102642.i − 0.489321i
\(459\) 0 0
\(460\) 0 0
\(461\) − 201957.i − 0.950292i −0.879907 0.475146i \(-0.842395\pi\)
0.879907 0.475146i \(-0.157605\pi\)
\(462\) 0 0
\(463\) 323977. 1.51131 0.755653 0.654973i \(-0.227320\pi\)
0.755653 + 0.654973i \(0.227320\pi\)
\(464\) − 64410.0i − 0.299170i
\(465\) 0 0
\(466\) −112158. −0.516486
\(467\) 76941.0i 0.352796i 0.984319 + 0.176398i \(0.0564446\pi\)
−0.984319 + 0.176398i \(0.943555\pi\)
\(468\) 0 0
\(469\) −87818.0 −0.399244
\(470\) 0 0
\(471\) 0 0
\(472\) 201618. 0.904993
\(473\) − 120786.i − 0.539876i
\(474\) 0 0
\(475\) 0 0
\(476\) 55062.0i 0.243018i
\(477\) 0 0
\(478\) 185400. 0.811435
\(479\) − 193218.i − 0.842125i −0.907032 0.421062i \(-0.861657\pi\)
0.907032 0.421062i \(-0.138343\pi\)
\(480\) 0 0
\(481\) 223480. 0.965936
\(482\) − 124170.i − 0.534469i
\(483\) 0 0
\(484\) −3416.00 −0.0145823
\(485\) 0 0
\(486\) 0 0
\(487\) 34882.0 0.147077 0.0735383 0.997292i \(-0.476571\pi\)
0.0735383 + 0.997292i \(0.476571\pi\)
\(488\) 21804.0i 0.0915580i
\(489\) 0 0
\(490\) 0 0
\(491\) − 217047.i − 0.900307i −0.892951 0.450154i \(-0.851369\pi\)
0.892951 0.450154i \(-0.148631\pi\)
\(492\) 0 0
\(493\) −280692. −1.15488
\(494\) − 275424.i − 1.12862i
\(495\) 0 0
\(496\) −22705.0 −0.0922907
\(497\) − 34542.0i − 0.139841i
\(498\) 0 0
\(499\) 464810. 1.86670 0.933350 0.358969i \(-0.116871\pi\)
0.933350 + 0.358969i \(0.116871\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 248454. 0.985913
\(503\) − 167580.i − 0.662348i −0.943570 0.331174i \(-0.892555\pi\)
0.943570 0.331174i \(-0.107445\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) − 110700.i − 0.432361i
\(507\) 0 0
\(508\) −174965. −0.677991
\(509\) − 35697.0i − 0.137783i −0.997624 0.0688916i \(-0.978054\pi\)
0.997624 0.0688916i \(-0.0219463\pi\)
\(510\) 0 0
\(511\) 57589.0 0.220545
\(512\) 182685.i 0.696888i
\(513\) 0 0
\(514\) −58770.0 −0.222448
\(515\) 0 0
\(516\) 0 0
\(517\) 266418. 0.996741
\(518\) 42180.0i 0.157198i
\(519\) 0 0
\(520\) 0 0
\(521\) 42750.0i 0.157493i 0.996895 + 0.0787464i \(0.0250917\pi\)
−0.996895 + 0.0787464i \(0.974908\pi\)
\(522\) 0 0
\(523\) 176434. 0.645028 0.322514 0.946565i \(-0.395472\pi\)
0.322514 + 0.946565i \(0.395472\pi\)
\(524\) − 199227.i − 0.725581i
\(525\) 0 0
\(526\) 50076.0 0.180991
\(527\) 98946.0i 0.356268i
\(528\) 0 0
\(529\) 189841. 0.678389
\(530\) 0 0
\(531\) 0 0
\(532\) −40432.0 −0.142857
\(533\) 68856.0i 0.242375i
\(534\) 0 0
\(535\) 0 0
\(536\) 318918.i 1.11007i
\(537\) 0 0
\(538\) −362718. −1.25315
\(539\) 250920.i 0.863690i
\(540\) 0 0
\(541\) −323836. −1.10645 −0.553223 0.833033i \(-0.686602\pi\)
−0.553223 + 0.833033i \(0.686602\pi\)
\(542\) − 221217.i − 0.753043i
\(543\) 0 0
\(544\) 339066. 1.14574
\(545\) 0 0
\(546\) 0 0
\(547\) 223390. 0.746602 0.373301 0.927710i \(-0.378226\pi\)
0.373301 + 0.927710i \(0.378226\pi\)
\(548\) 17178.0i 0.0572020i
\(549\) 0 0
\(550\) 0 0
\(551\) − 206112.i − 0.678891i
\(552\) 0 0
\(553\) −198550. −0.649261
\(554\) 35988.0i 0.117257i
\(555\) 0 0
\(556\) −83188.0 −0.269098
\(557\) − 585027.i − 1.88567i −0.333261 0.942835i \(-0.608149\pi\)
0.333261 0.942835i \(-0.391851\pi\)
\(558\) 0 0
\(559\) −296564. −0.949063
\(560\) 0 0
\(561\) 0 0
\(562\) −153378. −0.485613
\(563\) − 84075.0i − 0.265247i −0.991167 0.132623i \(-0.957660\pi\)
0.991167 0.132623i \(-0.0423401\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) − 3144.00i − 0.00981408i
\(567\) 0 0
\(568\) −125442. −0.388818
\(569\) 637392.i 1.96871i 0.176192 + 0.984356i \(0.443622\pi\)
−0.176192 + 0.984356i \(0.556378\pi\)
\(570\) 0 0
\(571\) 80726.0 0.247595 0.123797 0.992308i \(-0.460493\pi\)
0.123797 + 0.992308i \(0.460493\pi\)
\(572\) 260022.i 0.794727i
\(573\) 0 0
\(574\) −12996.0 −0.0394445
\(575\) 0 0
\(576\) 0 0
\(577\) −261182. −0.784498 −0.392249 0.919859i \(-0.628303\pi\)
−0.392249 + 0.919859i \(0.628303\pi\)
\(578\) 263625.i 0.789098i
\(579\) 0 0
\(580\) 0 0
\(581\) 240027.i 0.711063i
\(582\) 0 0
\(583\) −195939. −0.576479
\(584\) − 209139.i − 0.613210i
\(585\) 0 0
\(586\) 192546. 0.560711
\(587\) − 391305.i − 1.13564i −0.823154 0.567818i \(-0.807788\pi\)
0.823154 0.567818i \(-0.192212\pi\)
\(588\) 0 0
\(589\) −72656.0 −0.209431
\(590\) 0 0
\(591\) 0 0
\(592\) 70300.0 0.200591
\(593\) 302670.i 0.860716i 0.902658 + 0.430358i \(0.141613\pi\)
−0.902658 + 0.430358i \(0.858387\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 153951.i 0.433401i
\(597\) 0 0
\(598\) −271800. −0.760059
\(599\) 291498.i 0.812422i 0.913779 + 0.406211i \(0.133150\pi\)
−0.913779 + 0.406211i \(0.866850\pi\)
\(600\) 0 0
\(601\) 402173. 1.11343 0.556716 0.830703i \(-0.312061\pi\)
0.556716 + 0.830703i \(0.312061\pi\)
\(602\) − 55974.0i − 0.154452i
\(603\) 0 0
\(604\) −18781.0 −0.0514807
\(605\) 0 0
\(606\) 0 0
\(607\) 378670. 1.02774 0.513870 0.857868i \(-0.328211\pi\)
0.513870 + 0.857868i \(0.328211\pi\)
\(608\) 248976.i 0.673520i
\(609\) 0 0
\(610\) 0 0
\(611\) − 654132.i − 1.75220i
\(612\) 0 0
\(613\) −287570. −0.765284 −0.382642 0.923897i \(-0.624986\pi\)
−0.382642 + 0.923897i \(0.624986\pi\)
\(614\) 462462.i 1.22670i
\(615\) 0 0
\(616\) −161253. −0.424958
\(617\) 576264.i 1.51374i 0.653566 + 0.756870i \(0.273272\pi\)
−0.653566 + 0.756870i \(0.726728\pi\)
\(618\) 0 0
\(619\) 223262. 0.582685 0.291342 0.956619i \(-0.405898\pi\)
0.291342 + 0.956619i \(0.405898\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −282240. −0.729521
\(623\) 133038.i 0.342767i
\(624\) 0 0
\(625\) 0 0
\(626\) − 77709.0i − 0.198300i
\(627\) 0 0
\(628\) 224812. 0.570033
\(629\) − 306360.i − 0.774338i
\(630\) 0 0
\(631\) 43373.0 0.108933 0.0544667 0.998516i \(-0.482654\pi\)
0.0544667 + 0.998516i \(0.482654\pi\)
\(632\) 721050.i 1.80522i
\(633\) 0 0
\(634\) −290529. −0.722788
\(635\) 0 0
\(636\) 0 0
\(637\) 616080. 1.51830
\(638\) − 250182.i − 0.614631i
\(639\) 0 0
\(640\) 0 0
\(641\) − 423420.i − 1.03052i −0.857035 0.515259i \(-0.827696\pi\)
0.857035 0.515259i \(-0.172304\pi\)
\(642\) 0 0
\(643\) 546088. 1.32081 0.660406 0.750909i \(-0.270384\pi\)
0.660406 + 0.750909i \(0.270384\pi\)
\(644\) 39900.0i 0.0962058i
\(645\) 0 0
\(646\) −377568. −0.904753
\(647\) − 418932.i − 1.00077i −0.865803 0.500386i \(-0.833192\pi\)
0.865803 0.500386i \(-0.166808\pi\)
\(648\) 0 0
\(649\) 359406. 0.853289
\(650\) 0 0
\(651\) 0 0
\(652\) −159530. −0.375273
\(653\) 703209.i 1.64914i 0.565758 + 0.824571i \(0.308583\pi\)
−0.565758 + 0.824571i \(0.691417\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 21660.0i 0.0503328i
\(657\) 0 0
\(658\) 123462. 0.285155
\(659\) − 102021.i − 0.234919i −0.993078 0.117460i \(-0.962525\pi\)
0.993078 0.117460i \(-0.0374751\pi\)
\(660\) 0 0
\(661\) 230720. 0.528059 0.264029 0.964515i \(-0.414948\pi\)
0.264029 + 0.964515i \(0.414948\pi\)
\(662\) 494562.i 1.12851i
\(663\) 0 0
\(664\) 871677. 1.97706
\(665\) 0 0
\(666\) 0 0
\(667\) −203400. −0.457193
\(668\) − 252546.i − 0.565962i
\(669\) 0 0
\(670\) 0 0
\(671\) 38868.0i 0.0863271i
\(672\) 0 0
\(673\) 469369. 1.03630 0.518149 0.855291i \(-0.326621\pi\)
0.518149 + 0.855291i \(0.326621\pi\)
\(674\) 446082.i 0.981963i
\(675\) 0 0
\(676\) 438501. 0.959571
\(677\) − 343146.i − 0.748689i −0.927290 0.374345i \(-0.877868\pi\)
0.927290 0.374345i \(-0.122132\pi\)
\(678\) 0 0
\(679\) 123823. 0.268573
\(680\) 0 0
\(681\) 0 0
\(682\) −88191.0 −0.189608
\(683\) 24642.0i 0.0528244i 0.999651 + 0.0264122i \(0.00840824\pi\)
−0.999651 + 0.0264122i \(0.991592\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 253137.i 0.537907i
\(687\) 0 0
\(688\) −93290.0 −0.197087
\(689\) 481086.i 1.01341i
\(690\) 0 0
\(691\) −266500. −0.558137 −0.279069 0.960271i \(-0.590026\pi\)
−0.279069 + 0.960271i \(0.590026\pi\)
\(692\) 138075.i 0.288339i
\(693\) 0 0
\(694\) −323019. −0.670670
\(695\) 0 0
\(696\) 0 0
\(697\) 94392.0 0.194299
\(698\) − 382560.i − 0.785215i
\(699\) 0 0
\(700\) 0 0
\(701\) − 690309.i − 1.40478i −0.711794 0.702389i \(-0.752117\pi\)
0.711794 0.702389i \(-0.247883\pi\)
\(702\) 0 0
\(703\) 224960. 0.455192
\(704\) 489171.i 0.986996i
\(705\) 0 0
\(706\) −426312. −0.855299
\(707\) − 112461.i − 0.224990i
\(708\) 0 0
\(709\) −105184. −0.209246 −0.104623 0.994512i \(-0.533364\pi\)
−0.104623 + 0.994512i \(0.533364\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 483138. 0.953040
\(713\) 71700.0i 0.141039i
\(714\) 0 0
\(715\) 0 0
\(716\) 342405.i 0.667904i
\(717\) 0 0
\(718\) 58266.0 0.113023
\(719\) 704988.i 1.36372i 0.731485 + 0.681858i \(0.238828\pi\)
−0.731485 + 0.681858i \(0.761172\pi\)
\(720\) 0 0
\(721\) 145426. 0.279751
\(722\) 113715.i 0.218144i
\(723\) 0 0
\(724\) −346864. −0.661732
\(725\) 0 0
\(726\) 0 0
\(727\) −126089. −0.238566 −0.119283 0.992860i \(-0.538060\pi\)
−0.119283 + 0.992860i \(0.538060\pi\)
\(728\) 395922.i 0.747045i
\(729\) 0 0
\(730\) 0 0
\(731\) 406548.i 0.760812i
\(732\) 0 0
\(733\) −97736.0 −0.181906 −0.0909529 0.995855i \(-0.528991\pi\)
−0.0909529 + 0.995855i \(0.528991\pi\)
\(734\) − 454035.i − 0.842747i
\(735\) 0 0
\(736\) 245700. 0.453575
\(737\) 568506.i 1.04665i
\(738\) 0 0
\(739\) −857158. −1.56954 −0.784769 0.619788i \(-0.787219\pi\)
−0.784769 + 0.619788i \(0.787219\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −90801.0 −0.164924
\(743\) 909966.i 1.64834i 0.566340 + 0.824171i \(0.308359\pi\)
−0.566340 + 0.824171i \(0.691641\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 712518.i 1.28032i
\(747\) 0 0
\(748\) 356454. 0.637089
\(749\) − 9747.00i − 0.0173743i
\(750\) 0 0
\(751\) 61223.0 0.108551 0.0542756 0.998526i \(-0.482715\pi\)
0.0542756 + 0.998526i \(0.482715\pi\)
\(752\) − 205770.i − 0.363870i
\(753\) 0 0
\(754\) −614268. −1.08048
\(755\) 0 0
\(756\) 0 0
\(757\) −782570. −1.36562 −0.682812 0.730594i \(-0.739243\pi\)
−0.682812 + 0.730594i \(0.739243\pi\)
\(758\) 785856.i 1.36774i
\(759\) 0 0
\(760\) 0 0
\(761\) − 701400.i − 1.21115i −0.795790 0.605573i \(-0.792944\pi\)
0.795790 0.605573i \(-0.207056\pi\)
\(762\) 0 0
\(763\) 44156.0 0.0758474
\(764\) 317730.i 0.544342i
\(765\) 0 0
\(766\) −261486. −0.445647
\(767\) − 882444.i − 1.50002i
\(768\) 0 0
\(769\) −85045.0 −0.143812 −0.0719062 0.997411i \(-0.522908\pi\)
−0.0719062 + 0.997411i \(0.522908\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −248129. −0.416335
\(773\) 643122.i 1.07630i 0.842848 + 0.538151i \(0.180877\pi\)
−0.842848 + 0.538151i \(0.819123\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 449673.i − 0.746747i
\(777\) 0 0
\(778\) −718029. −1.18627
\(779\) 69312.0i 0.114218i
\(780\) 0 0
\(781\) −223614. −0.366604
\(782\) 372600.i 0.609297i
\(783\) 0 0
\(784\) 193800. 0.315298
\(785\) 0 0
\(786\) 0 0
\(787\) −1.06855e6 −1.72522 −0.862610 0.505869i \(-0.831172\pi\)
−0.862610 + 0.505869i \(0.831172\pi\)
\(788\) 250173.i 0.402891i
\(789\) 0 0
\(790\) 0 0
\(791\) − 93480.0i − 0.149405i
\(792\) 0 0
\(793\) 95432.0 0.151757
\(794\) 651462.i 1.03335i
\(795\) 0 0
\(796\) −218785. −0.345296
\(797\) − 538935.i − 0.848437i −0.905560 0.424219i \(-0.860549\pi\)
0.905560 0.424219i \(-0.139451\pi\)
\(798\) 0 0
\(799\) −896724. −1.40464
\(800\) 0 0
\(801\) 0 0
\(802\) 768600. 1.19496
\(803\) − 372813.i − 0.578176i
\(804\) 0 0
\(805\) 0 0
\(806\) 216534.i 0.333316i
\(807\) 0 0
\(808\) −408411. −0.625568
\(809\) 459594.i 0.702227i 0.936333 + 0.351113i \(0.114197\pi\)
−0.936333 + 0.351113i \(0.885803\pi\)
\(810\) 0 0
\(811\) −961360. −1.46165 −0.730827 0.682563i \(-0.760865\pi\)
−0.730827 + 0.682563i \(0.760865\pi\)
\(812\) 90174.0i 0.136763i
\(813\) 0 0
\(814\) 273060. 0.412106
\(815\) 0 0
\(816\) 0 0
\(817\) −298528. −0.447240
\(818\) 597873.i 0.893516i
\(819\) 0 0
\(820\) 0 0
\(821\) − 105666.i − 0.156765i −0.996923 0.0783825i \(-0.975024\pi\)
0.996923 0.0783825i \(-0.0249755\pi\)
\(822\) 0 0
\(823\) 493555. 0.728678 0.364339 0.931266i \(-0.381295\pi\)
0.364339 + 0.931266i \(0.381295\pi\)
\(824\) − 528126.i − 0.777827i
\(825\) 0 0
\(826\) 166554. 0.244115
\(827\) 192870.i 0.282003i 0.990009 + 0.141001i \(0.0450322\pi\)
−0.990009 + 0.141001i \(0.954968\pi\)
\(828\) 0 0
\(829\) 577226. 0.839918 0.419959 0.907543i \(-0.362044\pi\)
0.419959 + 0.907543i \(0.362044\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 1.20105e6 1.73507
\(833\) − 844560.i − 1.21714i
\(834\) 0 0
\(835\) 0 0
\(836\) 261744.i 0.374511i
\(837\) 0 0
\(838\) −753822. −1.07345
\(839\) 70986.0i 0.100844i 0.998728 + 0.0504219i \(0.0160566\pi\)
−0.998728 + 0.0504219i \(0.983943\pi\)
\(840\) 0 0
\(841\) 247597. 0.350069
\(842\) 91236.0i 0.128689i
\(843\) 0 0
\(844\) −105364. −0.147913
\(845\) 0 0
\(846\) 0 0
\(847\) −9272.00 −0.0129243
\(848\) 151335.i 0.210449i
\(849\) 0 0
\(850\) 0 0
\(851\) − 222000.i − 0.306545i
\(852\) 0 0
\(853\) −81206.0 −0.111607 −0.0558033 0.998442i \(-0.517772\pi\)
−0.0558033 + 0.998442i \(0.517772\pi\)
\(854\) 18012.0i 0.0246971i
\(855\) 0 0
\(856\) −35397.0 −0.0483080
\(857\) 1.08044e6i 1.47109i 0.677478 + 0.735543i \(0.263073\pi\)
−0.677478 + 0.735543i \(0.736927\pi\)
\(858\) 0 0
\(859\) 503348. 0.682153 0.341077 0.940035i \(-0.389208\pi\)
0.341077 + 0.940035i \(0.389208\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −485190. −0.652976
\(863\) − 548100.i − 0.735933i −0.929839 0.367966i \(-0.880054\pi\)
0.929839 0.367966i \(-0.119946\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 640623.i − 0.854214i
\(867\) 0 0
\(868\) 31787.0 0.0421901
\(869\) 1.28535e6i 1.70209i
\(870\) 0 0
\(871\) 1.39584e6 1.83993
\(872\) − 160356.i − 0.210888i
\(873\) 0 0
\(874\) −273600. −0.358173
\(875\) 0 0
\(876\) 0 0
\(877\) −700034. −0.910165 −0.455082 0.890449i \(-0.650390\pi\)
−0.455082 + 0.890449i \(0.650390\pi\)
\(878\) − 200175.i − 0.259669i
\(879\) 0 0
\(880\) 0 0
\(881\) − 806634.i − 1.03926i −0.854391 0.519631i \(-0.826070\pi\)
0.854391 0.519631i \(-0.173930\pi\)
\(882\) 0 0
\(883\) −342704. −0.439539 −0.219770 0.975552i \(-0.570531\pi\)
−0.219770 + 0.975552i \(0.570531\pi\)
\(884\) − 875196.i − 1.11996i
\(885\) 0 0
\(886\) −822510. −1.04779
\(887\) 16122.0i 0.0204914i 0.999948 + 0.0102457i \(0.00326137\pi\)
−0.999948 + 0.0102457i \(0.996739\pi\)
\(888\) 0 0
\(889\) −474905. −0.600901
\(890\) 0 0
\(891\) 0 0
\(892\) −351218. −0.441415
\(893\) − 658464.i − 0.825713i
\(894\) 0 0
\(895\) 0 0
\(896\) − 22287.0i − 0.0277610i
\(897\) 0 0
\(898\) 701352. 0.869728
\(899\) 162042.i 0.200497i
\(900\) 0 0
\(901\) 659502. 0.812394
\(902\) 84132.0i 0.103407i
\(903\) 0 0
\(904\) −339480. −0.415410
\(905\) 0 0
\(906\) 0 0
\(907\) −1.56950e6 −1.90786 −0.953931 0.300028i \(-0.903004\pi\)
−0.953931 + 0.300028i \(0.903004\pi\)
\(908\) 134862.i 0.163575i
\(909\) 0 0
\(910\) 0 0
\(911\) 500898.i 0.603549i 0.953379 + 0.301775i \(0.0975790\pi\)
−0.953379 + 0.301775i \(0.902421\pi\)
\(912\) 0 0
\(913\) 1.55386e6 1.86410
\(914\) − 272001.i − 0.325595i
\(915\) 0 0
\(916\) 239498. 0.285437
\(917\) − 540759.i − 0.643080i
\(918\) 0 0
\(919\) 1.03715e6 1.22804 0.614019 0.789291i \(-0.289552\pi\)
0.614019 + 0.789291i \(0.289552\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −605871. −0.712719
\(923\) 549036.i 0.644462i
\(924\) 0 0
\(925\) 0 0
\(926\) − 971931.i − 1.13348i
\(927\) 0 0
\(928\) 555282. 0.644789
\(929\) − 128076.i − 0.148401i −0.997243 0.0742004i \(-0.976360\pi\)
0.997243 0.0742004i \(-0.0236405\pi\)
\(930\) 0 0
\(931\) 620160. 0.715491
\(932\) − 261702.i − 0.301283i
\(933\) 0 0
\(934\) 230823. 0.264597
\(935\) 0 0
\(936\) 0 0
\(937\) 879451. 1.00169 0.500844 0.865538i \(-0.333023\pi\)
0.500844 + 0.865538i \(0.333023\pi\)
\(938\) 263454.i 0.299433i
\(939\) 0 0
\(940\) 0 0
\(941\) − 718257.i − 0.811149i −0.914062 0.405574i \(-0.867071\pi\)
0.914062 0.405574i \(-0.132929\pi\)
\(942\) 0 0
\(943\) 68400.0 0.0769188
\(944\) − 277590.i − 0.311501i
\(945\) 0 0
\(946\) −362358. −0.404907
\(947\) 73005.0i 0.0814053i 0.999171 + 0.0407026i \(0.0129596\pi\)
−0.999171 + 0.0407026i \(0.987040\pi\)
\(948\) 0 0
\(949\) −915362. −1.01639
\(950\) 0 0
\(951\) 0 0
\(952\) 542754. 0.598865
\(953\) 309168.i 0.340415i 0.985408 + 0.170208i \(0.0544438\pi\)
−0.985408 + 0.170208i \(0.945556\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 432600.i 0.473337i
\(957\) 0 0
\(958\) −579654. −0.631594
\(959\) 46626.0i 0.0506980i
\(960\) 0 0
\(961\) −866400. −0.938149
\(962\) − 670440.i − 0.724452i
\(963\) 0 0
\(964\) 289730. 0.311774
\(965\) 0 0
\(966\) 0 0
\(967\) 366187. 0.391607 0.195803 0.980643i \(-0.437269\pi\)
0.195803 + 0.980643i \(0.437269\pi\)
\(968\) 33672.0i 0.0359350i
\(969\) 0 0
\(970\) 0 0
\(971\) 1.43410e6i 1.52105i 0.649311 + 0.760523i \(0.275057\pi\)
−0.649311 + 0.760523i \(0.724943\pi\)
\(972\) 0 0
\(973\) −225796. −0.238501
\(974\) − 104646.i − 0.110307i
\(975\) 0 0
\(976\) 30020.0 0.0315145
\(977\) − 311802.i − 0.326655i −0.986572 0.163328i \(-0.947777\pi\)
0.986572 0.163328i \(-0.0522228\pi\)
\(978\) 0 0
\(979\) 861246. 0.898591
\(980\) 0 0
\(981\) 0 0
\(982\) −651141. −0.675231
\(983\) 690162.i 0.714240i 0.934059 + 0.357120i \(0.116241\pi\)
−0.934059 + 0.357120i \(0.883759\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 842076.i 0.866159i
\(987\) 0 0
\(988\) 642656. 0.658362
\(989\) 294600.i 0.301190i
\(990\) 0 0
\(991\) 981875. 0.999790 0.499895 0.866086i \(-0.333372\pi\)
0.499895 + 0.866086i \(0.333372\pi\)
\(992\) − 195741.i − 0.198911i
\(993\) 0 0
\(994\) −103626. −0.104881
\(995\) 0 0
\(996\) 0 0
\(997\) −241946. −0.243404 −0.121702 0.992567i \(-0.538835\pi\)
−0.121702 + 0.992567i \(0.538835\pi\)
\(998\) − 1.39443e6i − 1.40002i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.5.c.h.26.1 2
3.2 odd 2 inner 675.5.c.h.26.2 2
5.2 odd 4 675.5.d.d.674.2 2
5.3 odd 4 675.5.d.a.674.1 2
5.4 even 2 27.5.b.c.26.2 yes 2
15.2 even 4 675.5.d.a.674.2 2
15.8 even 4 675.5.d.d.674.1 2
15.14 odd 2 27.5.b.c.26.1 2
20.19 odd 2 432.5.e.e.161.2 2
45.4 even 6 81.5.d.b.26.1 4
45.14 odd 6 81.5.d.b.26.2 4
45.29 odd 6 81.5.d.b.53.1 4
45.34 even 6 81.5.d.b.53.2 4
60.59 even 2 432.5.e.e.161.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.5.b.c.26.1 2 15.14 odd 2
27.5.b.c.26.2 yes 2 5.4 even 2
81.5.d.b.26.1 4 45.4 even 6
81.5.d.b.26.2 4 45.14 odd 6
81.5.d.b.53.1 4 45.29 odd 6
81.5.d.b.53.2 4 45.34 even 6
432.5.e.e.161.1 2 60.59 even 2
432.5.e.e.161.2 2 20.19 odd 2
675.5.c.h.26.1 2 1.1 even 1 trivial
675.5.c.h.26.2 2 3.2 odd 2 inner
675.5.d.a.674.1 2 5.3 odd 4
675.5.d.a.674.2 2 15.2 even 4
675.5.d.d.674.1 2 15.8 even 4
675.5.d.d.674.2 2 5.2 odd 4