Properties

Label 675.4.b.n.649.5
Level $675$
Weight $4$
Character 675.649
Analytic conductor $39.826$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(649,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.12559936.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 6x^{3} + 49x^{2} - 42x + 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.5
Root \(0.455589 + 0.455589i\) of defining polynomial
Character \(\chi\) \(=\) 675.649
Dual form 675.4.b.n.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.58488i q^{2} +1.31841 q^{4} +22.8935i q^{7} +24.0869i q^{8} +11.0828 q^{11} -11.6368i q^{13} -59.1769 q^{14} -51.7145 q^{16} -10.0643i q^{17} -117.865 q^{19} +28.6477i q^{22} +172.441i q^{23} +30.0798 q^{26} +30.1831i q^{28} -178.321 q^{29} +140.528 q^{31} +59.0200i q^{32} +26.0149 q^{34} -250.074i q^{37} -304.666i q^{38} +361.569 q^{41} -360.707i q^{43} +14.6117 q^{44} -445.738 q^{46} +600.121i q^{47} -181.114 q^{49} -15.3421i q^{52} +201.312i q^{53} -551.435 q^{56} -460.937i q^{58} -415.772 q^{59} -54.6270 q^{61} +363.248i q^{62} -566.275 q^{64} +531.079i q^{67} -13.2689i q^{68} -933.534 q^{71} -560.199i q^{73} +646.409 q^{74} -155.394 q^{76} +253.725i q^{77} -810.781 q^{79} +934.611i q^{82} +538.210i q^{83} +932.384 q^{86} +266.951i q^{88} -686.173 q^{89} +266.408 q^{91} +227.348i q^{92} -1551.24 q^{94} -714.655i q^{97} -468.156i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 34 q^{4} + 10 q^{11} - 120 q^{14} + 322 q^{16} + 100 q^{19} + 370 q^{26} - 230 q^{29} - 230 q^{31} - 826 q^{34} + 1160 q^{41} + 2830 q^{44} - 570 q^{46} - 1154 q^{49} - 4380 q^{56} - 760 q^{59} - 304 q^{61}+ \cdots - 7666 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.58488i 0.913892i 0.889494 + 0.456946i \(0.151057\pi\)
−0.889494 + 0.456946i \(0.848943\pi\)
\(3\) 0 0
\(4\) 1.31841 0.164802
\(5\) 0 0
\(6\) 0 0
\(7\) 22.8935i 1.23613i 0.786125 + 0.618067i \(0.212084\pi\)
−0.786125 + 0.618067i \(0.787916\pi\)
\(8\) 24.0869i 1.06450i
\(9\) 0 0
\(10\) 0 0
\(11\) 11.0828 0.303781 0.151891 0.988397i \(-0.451464\pi\)
0.151891 + 0.988397i \(0.451464\pi\)
\(12\) 0 0
\(13\) − 11.6368i − 0.248267i −0.992266 0.124134i \(-0.960385\pi\)
0.992266 0.124134i \(-0.0396152\pi\)
\(14\) −59.1769 −1.12969
\(15\) 0 0
\(16\) −51.7145 −0.808039
\(17\) − 10.0643i − 0.143585i −0.997420 0.0717926i \(-0.977128\pi\)
0.997420 0.0717926i \(-0.0228720\pi\)
\(18\) 0 0
\(19\) −117.865 −1.42316 −0.711579 0.702606i \(-0.752020\pi\)
−0.711579 + 0.702606i \(0.752020\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 28.6477i 0.277623i
\(23\) 172.441i 1.56332i 0.623704 + 0.781661i \(0.285627\pi\)
−0.623704 + 0.781661i \(0.714373\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 30.0798 0.226889
\(27\) 0 0
\(28\) 30.1831i 0.203717i
\(29\) −178.321 −1.14184 −0.570919 0.821006i \(-0.693413\pi\)
−0.570919 + 0.821006i \(0.693413\pi\)
\(30\) 0 0
\(31\) 140.528 0.814182 0.407091 0.913388i \(-0.366543\pi\)
0.407091 + 0.913388i \(0.366543\pi\)
\(32\) 59.0200i 0.326043i
\(33\) 0 0
\(34\) 26.0149 0.131221
\(35\) 0 0
\(36\) 0 0
\(37\) − 250.074i − 1.11113i −0.831473 0.555566i \(-0.812502\pi\)
0.831473 0.555566i \(-0.187498\pi\)
\(38\) − 304.666i − 1.30061i
\(39\) 0 0
\(40\) 0 0
\(41\) 361.569 1.37726 0.688629 0.725114i \(-0.258213\pi\)
0.688629 + 0.725114i \(0.258213\pi\)
\(42\) 0 0
\(43\) − 360.707i − 1.27924i −0.768691 0.639620i \(-0.779092\pi\)
0.768691 0.639620i \(-0.220908\pi\)
\(44\) 14.6117 0.0500636
\(45\) 0 0
\(46\) −445.738 −1.42871
\(47\) 600.121i 1.86248i 0.364405 + 0.931241i \(0.381273\pi\)
−0.364405 + 0.931241i \(0.618727\pi\)
\(48\) 0 0
\(49\) −181.114 −0.528028
\(50\) 0 0
\(51\) 0 0
\(52\) − 15.3421i − 0.0409149i
\(53\) 201.312i 0.521742i 0.965374 + 0.260871i \(0.0840097\pi\)
−0.965374 + 0.260871i \(0.915990\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −551.435 −1.31587
\(57\) 0 0
\(58\) − 460.937i − 1.04352i
\(59\) −415.772 −0.917438 −0.458719 0.888581i \(-0.651692\pi\)
−0.458719 + 0.888581i \(0.651692\pi\)
\(60\) 0 0
\(61\) −54.6270 −0.114660 −0.0573301 0.998355i \(-0.518259\pi\)
−0.0573301 + 0.998355i \(0.518259\pi\)
\(62\) 363.248i 0.744074i
\(63\) 0 0
\(64\) −566.275 −1.10601
\(65\) 0 0
\(66\) 0 0
\(67\) 531.079i 0.968382i 0.874962 + 0.484191i \(0.160886\pi\)
−0.874962 + 0.484191i \(0.839114\pi\)
\(68\) − 13.2689i − 0.0236631i
\(69\) 0 0
\(70\) 0 0
\(71\) −933.534 −1.56042 −0.780212 0.625515i \(-0.784889\pi\)
−0.780212 + 0.625515i \(0.784889\pi\)
\(72\) 0 0
\(73\) − 560.199i − 0.898169i −0.893489 0.449085i \(-0.851750\pi\)
0.893489 0.449085i \(-0.148250\pi\)
\(74\) 646.409 1.01545
\(75\) 0 0
\(76\) −155.394 −0.234539
\(77\) 253.725i 0.375514i
\(78\) 0 0
\(79\) −810.781 −1.15468 −0.577342 0.816503i \(-0.695910\pi\)
−0.577342 + 0.816503i \(0.695910\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 934.611i 1.25867i
\(83\) 538.210i 0.711762i 0.934531 + 0.355881i \(0.115819\pi\)
−0.934531 + 0.355881i \(0.884181\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 932.384 1.16909
\(87\) 0 0
\(88\) 266.951i 0.323376i
\(89\) −686.173 −0.817238 −0.408619 0.912705i \(-0.633990\pi\)
−0.408619 + 0.912705i \(0.633990\pi\)
\(90\) 0 0
\(91\) 266.408 0.306892
\(92\) 227.348i 0.257638i
\(93\) 0 0
\(94\) −1551.24 −1.70211
\(95\) 0 0
\(96\) 0 0
\(97\) − 714.655i − 0.748064i −0.927416 0.374032i \(-0.877975\pi\)
0.927416 0.374032i \(-0.122025\pi\)
\(98\) − 468.156i − 0.482560i
\(99\) 0 0
\(100\) 0 0
\(101\) 973.907 0.959479 0.479739 0.877411i \(-0.340731\pi\)
0.479739 + 0.877411i \(0.340731\pi\)
\(102\) 0 0
\(103\) − 759.229i − 0.726301i −0.931730 0.363151i \(-0.881701\pi\)
0.931730 0.363151i \(-0.118299\pi\)
\(104\) 280.296 0.264281
\(105\) 0 0
\(106\) −520.366 −0.476815
\(107\) − 1832.06i − 1.65525i −0.561282 0.827625i \(-0.689692\pi\)
0.561282 0.827625i \(-0.310308\pi\)
\(108\) 0 0
\(109\) −1370.91 −1.20467 −0.602335 0.798244i \(-0.705763\pi\)
−0.602335 + 0.798244i \(0.705763\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 1183.93i − 0.998844i
\(113\) 583.567i 0.485817i 0.970049 + 0.242909i \(0.0781015\pi\)
−0.970049 + 0.242909i \(0.921898\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −235.100 −0.188177
\(117\) 0 0
\(118\) − 1074.72i − 0.838439i
\(119\) 230.407 0.177491
\(120\) 0 0
\(121\) −1208.17 −0.907717
\(122\) − 141.204i − 0.104787i
\(123\) 0 0
\(124\) 185.274 0.134178
\(125\) 0 0
\(126\) 0 0
\(127\) 2432.76i 1.69978i 0.526958 + 0.849891i \(0.323333\pi\)
−0.526958 + 0.849891i \(0.676667\pi\)
\(128\) − 991.592i − 0.684728i
\(129\) 0 0
\(130\) 0 0
\(131\) 501.073 0.334191 0.167095 0.985941i \(-0.446561\pi\)
0.167095 + 0.985941i \(0.446561\pi\)
\(132\) 0 0
\(133\) − 2698.34i − 1.75922i
\(134\) −1372.77 −0.884996
\(135\) 0 0
\(136\) 242.418 0.152847
\(137\) − 2523.07i − 1.57343i −0.617316 0.786716i \(-0.711780\pi\)
0.617316 0.786716i \(-0.288220\pi\)
\(138\) 0 0
\(139\) 638.842 0.389826 0.194913 0.980821i \(-0.437558\pi\)
0.194913 + 0.980821i \(0.437558\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) − 2413.07i − 1.42606i
\(143\) − 128.969i − 0.0754189i
\(144\) 0 0
\(145\) 0 0
\(146\) 1448.05 0.820829
\(147\) 0 0
\(148\) − 329.700i − 0.183116i
\(149\) 2674.13 1.47029 0.735146 0.677909i \(-0.237114\pi\)
0.735146 + 0.677909i \(0.237114\pi\)
\(150\) 0 0
\(151\) −1036.68 −0.558700 −0.279350 0.960189i \(-0.590119\pi\)
−0.279350 + 0.960189i \(0.590119\pi\)
\(152\) − 2839.00i − 1.51496i
\(153\) 0 0
\(154\) −655.847 −0.343179
\(155\) 0 0
\(156\) 0 0
\(157\) 381.858i 0.194112i 0.995279 + 0.0970560i \(0.0309426\pi\)
−0.995279 + 0.0970560i \(0.969057\pi\)
\(158\) − 2095.77i − 1.05526i
\(159\) 0 0
\(160\) 0 0
\(161\) −3947.78 −1.93248
\(162\) 0 0
\(163\) 2421.17i 1.16344i 0.813390 + 0.581719i \(0.197620\pi\)
−0.813390 + 0.581719i \(0.802380\pi\)
\(164\) 476.697 0.226974
\(165\) 0 0
\(166\) −1391.21 −0.650473
\(167\) 3535.76i 1.63836i 0.573540 + 0.819178i \(0.305570\pi\)
−0.573540 + 0.819178i \(0.694430\pi\)
\(168\) 0 0
\(169\) 2061.58 0.938363
\(170\) 0 0
\(171\) 0 0
\(172\) − 475.561i − 0.210821i
\(173\) 3143.88i 1.38165i 0.723023 + 0.690824i \(0.242752\pi\)
−0.723023 + 0.690824i \(0.757248\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −573.142 −0.245467
\(177\) 0 0
\(178\) − 1773.67i − 0.746867i
\(179\) 3299.06 1.37756 0.688780 0.724970i \(-0.258147\pi\)
0.688780 + 0.724970i \(0.258147\pi\)
\(180\) 0 0
\(181\) 1875.10 0.770026 0.385013 0.922911i \(-0.374197\pi\)
0.385013 + 0.922911i \(0.374197\pi\)
\(182\) 688.632i 0.280466i
\(183\) 0 0
\(184\) −4153.57 −1.66416
\(185\) 0 0
\(186\) 0 0
\(187\) − 111.541i − 0.0436185i
\(188\) 791.207i 0.306940i
\(189\) 0 0
\(190\) 0 0
\(191\) −1361.62 −0.515829 −0.257915 0.966168i \(-0.583035\pi\)
−0.257915 + 0.966168i \(0.583035\pi\)
\(192\) 0 0
\(193\) 2234.20i 0.833271i 0.909074 + 0.416636i \(0.136791\pi\)
−0.909074 + 0.416636i \(0.863209\pi\)
\(194\) 1847.29 0.683650
\(195\) 0 0
\(196\) −238.782 −0.0870199
\(197\) 346.625i 0.125360i 0.998034 + 0.0626801i \(0.0199648\pi\)
−0.998034 + 0.0626801i \(0.980035\pi\)
\(198\) 0 0
\(199\) −4198.77 −1.49569 −0.747846 0.663872i \(-0.768912\pi\)
−0.747846 + 0.663872i \(0.768912\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2517.43i 0.876860i
\(203\) − 4082.39i − 1.41146i
\(204\) 0 0
\(205\) 0 0
\(206\) 1962.51 0.663761
\(207\) 0 0
\(208\) 601.792i 0.200610i
\(209\) −1306.27 −0.432329
\(210\) 0 0
\(211\) 4728.46 1.54275 0.771375 0.636380i \(-0.219569\pi\)
0.771375 + 0.636380i \(0.219569\pi\)
\(212\) 265.412i 0.0859839i
\(213\) 0 0
\(214\) 4735.64 1.51272
\(215\) 0 0
\(216\) 0 0
\(217\) 3217.19i 1.00644i
\(218\) − 3543.62i − 1.10094i
\(219\) 0 0
\(220\) 0 0
\(221\) −117.116 −0.0356475
\(222\) 0 0
\(223\) 2430.16i 0.729756i 0.931055 + 0.364878i \(0.118889\pi\)
−0.931055 + 0.364878i \(0.881111\pi\)
\(224\) −1351.18 −0.403032
\(225\) 0 0
\(226\) −1508.45 −0.443985
\(227\) 584.687i 0.170956i 0.996340 + 0.0854780i \(0.0272417\pi\)
−0.996340 + 0.0854780i \(0.972758\pi\)
\(228\) 0 0
\(229\) 4731.77 1.36543 0.682717 0.730683i \(-0.260798\pi\)
0.682717 + 0.730683i \(0.260798\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) − 4295.20i − 1.21549i
\(233\) 1228.45i 0.345401i 0.984974 + 0.172701i \(0.0552494\pi\)
−0.984974 + 0.172701i \(0.944751\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −548.159 −0.151195
\(237\) 0 0
\(238\) 595.574i 0.162207i
\(239\) 120.545 0.0326253 0.0163126 0.999867i \(-0.494807\pi\)
0.0163126 + 0.999867i \(0.494807\pi\)
\(240\) 0 0
\(241\) 1732.56 0.463086 0.231543 0.972825i \(-0.425623\pi\)
0.231543 + 0.972825i \(0.425623\pi\)
\(242\) − 3122.97i − 0.829555i
\(243\) 0 0
\(244\) −72.0209 −0.0188962
\(245\) 0 0
\(246\) 0 0
\(247\) 1371.57i 0.353324i
\(248\) 3384.90i 0.866699i
\(249\) 0 0
\(250\) 0 0
\(251\) −3287.82 −0.826793 −0.413397 0.910551i \(-0.635658\pi\)
−0.413397 + 0.910551i \(0.635658\pi\)
\(252\) 0 0
\(253\) 1911.13i 0.474908i
\(254\) −6288.38 −1.55342
\(255\) 0 0
\(256\) −1967.06 −0.480239
\(257\) 1489.82i 0.361605i 0.983519 + 0.180803i \(0.0578696\pi\)
−0.983519 + 0.180803i \(0.942130\pi\)
\(258\) 0 0
\(259\) 5725.07 1.37351
\(260\) 0 0
\(261\) 0 0
\(262\) 1295.21i 0.305414i
\(263\) 710.144i 0.166499i 0.996529 + 0.0832497i \(0.0265299\pi\)
−0.996529 + 0.0832497i \(0.973470\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 6974.87 1.60773
\(267\) 0 0
\(268\) 700.181i 0.159591i
\(269\) −3667.61 −0.831294 −0.415647 0.909526i \(-0.636445\pi\)
−0.415647 + 0.909526i \(0.636445\pi\)
\(270\) 0 0
\(271\) −1990.45 −0.446166 −0.223083 0.974799i \(-0.571612\pi\)
−0.223083 + 0.974799i \(0.571612\pi\)
\(272\) 520.469i 0.116022i
\(273\) 0 0
\(274\) 6521.81 1.43795
\(275\) 0 0
\(276\) 0 0
\(277\) − 8314.68i − 1.80354i −0.432215 0.901770i \(-0.642268\pi\)
0.432215 0.901770i \(-0.357732\pi\)
\(278\) 1651.33i 0.356259i
\(279\) 0 0
\(280\) 0 0
\(281\) 5765.13 1.22391 0.611955 0.790892i \(-0.290383\pi\)
0.611955 + 0.790892i \(0.290383\pi\)
\(282\) 0 0
\(283\) 457.561i 0.0961102i 0.998845 + 0.0480551i \(0.0153023\pi\)
−0.998845 + 0.0480551i \(0.984698\pi\)
\(284\) −1230.78 −0.257160
\(285\) 0 0
\(286\) 333.368 0.0689247
\(287\) 8277.59i 1.70248i
\(288\) 0 0
\(289\) 4811.71 0.979383
\(290\) 0 0
\(291\) 0 0
\(292\) − 738.574i − 0.148020i
\(293\) 5302.82i 1.05732i 0.848834 + 0.528659i \(0.177305\pi\)
−0.848834 + 0.528659i \(0.822695\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 6023.51 1.18280
\(297\) 0 0
\(298\) 6912.30i 1.34369i
\(299\) 2006.66 0.388122
\(300\) 0 0
\(301\) 8257.86 1.58131
\(302\) − 2679.68i − 0.510591i
\(303\) 0 0
\(304\) 6095.31 1.14997
\(305\) 0 0
\(306\) 0 0
\(307\) 6583.54i 1.22392i 0.790890 + 0.611959i \(0.209618\pi\)
−0.790890 + 0.611959i \(0.790382\pi\)
\(308\) 334.514i 0.0618853i
\(309\) 0 0
\(310\) 0 0
\(311\) −8128.05 −1.48199 −0.740996 0.671510i \(-0.765646\pi\)
−0.740996 + 0.671510i \(0.765646\pi\)
\(312\) 0 0
\(313\) − 5207.63i − 0.940424i −0.882554 0.470212i \(-0.844177\pi\)
0.882554 0.470212i \(-0.155823\pi\)
\(314\) −987.056 −0.177397
\(315\) 0 0
\(316\) −1068.94 −0.190294
\(317\) 3262.34i 0.578016i 0.957327 + 0.289008i \(0.0933254\pi\)
−0.957327 + 0.289008i \(0.906675\pi\)
\(318\) 0 0
\(319\) −1976.29 −0.346869
\(320\) 0 0
\(321\) 0 0
\(322\) − 10204.5i − 1.76607i
\(323\) 1186.22i 0.204345i
\(324\) 0 0
\(325\) 0 0
\(326\) −6258.41 −1.06326
\(327\) 0 0
\(328\) 8709.09i 1.46610i
\(329\) −13738.9 −2.30228
\(330\) 0 0
\(331\) 10360.5 1.72043 0.860216 0.509930i \(-0.170329\pi\)
0.860216 + 0.509930i \(0.170329\pi\)
\(332\) 709.583i 0.117299i
\(333\) 0 0
\(334\) −9139.51 −1.49728
\(335\) 0 0
\(336\) 0 0
\(337\) 3735.26i 0.603777i 0.953343 + 0.301888i \(0.0976170\pi\)
−0.953343 + 0.301888i \(0.902383\pi\)
\(338\) 5328.94i 0.857563i
\(339\) 0 0
\(340\) 0 0
\(341\) 1557.45 0.247333
\(342\) 0 0
\(343\) 3706.15i 0.583421i
\(344\) 8688.34 1.36176
\(345\) 0 0
\(346\) −8126.55 −1.26268
\(347\) − 197.010i − 0.0304785i −0.999884 0.0152393i \(-0.995149\pi\)
0.999884 0.0152393i \(-0.00485100\pi\)
\(348\) 0 0
\(349\) 7334.20 1.12490 0.562451 0.826831i \(-0.309859\pi\)
0.562451 + 0.826831i \(0.309859\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 654.107i 0.0990456i
\(353\) 4616.28i 0.696034i 0.937488 + 0.348017i \(0.113145\pi\)
−0.937488 + 0.348017i \(0.886855\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −904.659 −0.134682
\(357\) 0 0
\(358\) 8527.66i 1.25894i
\(359\) 1153.79 0.169623 0.0848115 0.996397i \(-0.472971\pi\)
0.0848115 + 0.996397i \(0.472971\pi\)
\(360\) 0 0
\(361\) 7033.09 1.02538
\(362\) 4846.89i 0.703721i
\(363\) 0 0
\(364\) 351.236 0.0505763
\(365\) 0 0
\(366\) 0 0
\(367\) 3449.05i 0.490569i 0.969451 + 0.245285i \(0.0788814\pi\)
−0.969451 + 0.245285i \(0.921119\pi\)
\(368\) − 8917.69i − 1.26322i
\(369\) 0 0
\(370\) 0 0
\(371\) −4608.74 −0.644943
\(372\) 0 0
\(373\) 362.880i 0.0503732i 0.999683 + 0.0251866i \(0.00801799\pi\)
−0.999683 + 0.0251866i \(0.991982\pi\)
\(374\) 288.319 0.0398626
\(375\) 0 0
\(376\) −14455.1 −1.98262
\(377\) 2075.09i 0.283481i
\(378\) 0 0
\(379\) 7719.79 1.04628 0.523139 0.852248i \(-0.324761\pi\)
0.523139 + 0.852248i \(0.324761\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 3519.62i − 0.471412i
\(383\) − 5673.66i − 0.756946i −0.925612 0.378473i \(-0.876449\pi\)
0.925612 0.378473i \(-0.123551\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −5775.13 −0.761520
\(387\) 0 0
\(388\) − 942.210i − 0.123282i
\(389\) 8180.45 1.06623 0.533117 0.846041i \(-0.321020\pi\)
0.533117 + 0.846041i \(0.321020\pi\)
\(390\) 0 0
\(391\) 1735.49 0.224470
\(392\) − 4362.47i − 0.562087i
\(393\) 0 0
\(394\) −895.982 −0.114566
\(395\) 0 0
\(396\) 0 0
\(397\) 12940.5i 1.63594i 0.575263 + 0.817968i \(0.304900\pi\)
−0.575263 + 0.817968i \(0.695100\pi\)
\(398\) − 10853.3i − 1.36690i
\(399\) 0 0
\(400\) 0 0
\(401\) 6581.29 0.819586 0.409793 0.912179i \(-0.365601\pi\)
0.409793 + 0.912179i \(0.365601\pi\)
\(402\) 0 0
\(403\) − 1635.30i − 0.202135i
\(404\) 1284.01 0.158124
\(405\) 0 0
\(406\) 10552.5 1.28993
\(407\) − 2771.52i − 0.337541i
\(408\) 0 0
\(409\) −4921.85 −0.595036 −0.297518 0.954716i \(-0.596159\pi\)
−0.297518 + 0.954716i \(0.596159\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 1000.98i − 0.119696i
\(413\) − 9518.48i − 1.13408i
\(414\) 0 0
\(415\) 0 0
\(416\) 686.806 0.0809457
\(417\) 0 0
\(418\) − 3376.55i − 0.395102i
\(419\) 3914.29 0.456385 0.228193 0.973616i \(-0.426718\pi\)
0.228193 + 0.973616i \(0.426718\pi\)
\(420\) 0 0
\(421\) −5258.76 −0.608780 −0.304390 0.952547i \(-0.598453\pi\)
−0.304390 + 0.952547i \(0.598453\pi\)
\(422\) 12222.5i 1.40991i
\(423\) 0 0
\(424\) −4848.99 −0.555395
\(425\) 0 0
\(426\) 0 0
\(427\) − 1250.60i − 0.141735i
\(428\) − 2415.41i − 0.272788i
\(429\) 0 0
\(430\) 0 0
\(431\) 14350.1 1.60376 0.801881 0.597484i \(-0.203833\pi\)
0.801881 + 0.597484i \(0.203833\pi\)
\(432\) 0 0
\(433\) 863.149i 0.0957974i 0.998852 + 0.0478987i \(0.0152525\pi\)
−0.998852 + 0.0478987i \(0.984748\pi\)
\(434\) −8316.04 −0.919776
\(435\) 0 0
\(436\) −1807.42 −0.198532
\(437\) − 20324.7i − 2.22486i
\(438\) 0 0
\(439\) 16142.1 1.75494 0.877470 0.479632i \(-0.159230\pi\)
0.877470 + 0.479632i \(0.159230\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) − 302.731i − 0.0325780i
\(443\) 5884.09i 0.631065i 0.948915 + 0.315532i \(0.102183\pi\)
−0.948915 + 0.315532i \(0.897817\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −6281.67 −0.666918
\(447\) 0 0
\(448\) − 12964.0i − 1.36717i
\(449\) 16858.4 1.77193 0.885965 0.463753i \(-0.153497\pi\)
0.885965 + 0.463753i \(0.153497\pi\)
\(450\) 0 0
\(451\) 4007.20 0.418385
\(452\) 769.382i 0.0800635i
\(453\) 0 0
\(454\) −1511.34 −0.156235
\(455\) 0 0
\(456\) 0 0
\(457\) − 7623.04i − 0.780286i −0.920754 0.390143i \(-0.872426\pi\)
0.920754 0.390143i \(-0.127574\pi\)
\(458\) 12231.1i 1.24786i
\(459\) 0 0
\(460\) 0 0
\(461\) −4079.39 −0.412139 −0.206070 0.978537i \(-0.566067\pi\)
−0.206070 + 0.978537i \(0.566067\pi\)
\(462\) 0 0
\(463\) − 5499.22i − 0.551988i −0.961159 0.275994i \(-0.910993\pi\)
0.961159 0.275994i \(-0.0890069\pi\)
\(464\) 9221.75 0.922649
\(465\) 0 0
\(466\) −3175.40 −0.315660
\(467\) − 6422.51i − 0.636399i −0.948024 0.318199i \(-0.896922\pi\)
0.948024 0.318199i \(-0.103078\pi\)
\(468\) 0 0
\(469\) −12158.3 −1.19705
\(470\) 0 0
\(471\) 0 0
\(472\) − 10014.7i − 0.976615i
\(473\) − 3997.65i − 0.388609i
\(474\) 0 0
\(475\) 0 0
\(476\) 303.772 0.0292507
\(477\) 0 0
\(478\) 311.595i 0.0298160i
\(479\) −198.760 −0.0189595 −0.00947973 0.999955i \(-0.503018\pi\)
−0.00947973 + 0.999955i \(0.503018\pi\)
\(480\) 0 0
\(481\) −2910.06 −0.275858
\(482\) 4478.44i 0.423211i
\(483\) 0 0
\(484\) −1592.87 −0.149593
\(485\) 0 0
\(486\) 0 0
\(487\) 1308.73i 0.121774i 0.998145 + 0.0608871i \(0.0193930\pi\)
−0.998145 + 0.0608871i \(0.980607\pi\)
\(488\) − 1315.80i − 0.122056i
\(489\) 0 0
\(490\) 0 0
\(491\) −12474.8 −1.14660 −0.573300 0.819346i \(-0.694337\pi\)
−0.573300 + 0.819346i \(0.694337\pi\)
\(492\) 0 0
\(493\) 1794.67i 0.163951i
\(494\) −3545.34 −0.322900
\(495\) 0 0
\(496\) −7267.35 −0.657890
\(497\) − 21371.9i − 1.92889i
\(498\) 0 0
\(499\) −3146.82 −0.282307 −0.141153 0.989988i \(-0.545081\pi\)
−0.141153 + 0.989988i \(0.545081\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 8498.60i − 0.755600i
\(503\) 5419.35i 0.480391i 0.970725 + 0.240196i \(0.0772116\pi\)
−0.970725 + 0.240196i \(0.922788\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −4940.03 −0.434014
\(507\) 0 0
\(508\) 3207.38i 0.280127i
\(509\) −17194.6 −1.49732 −0.748660 0.662954i \(-0.769302\pi\)
−0.748660 + 0.662954i \(0.769302\pi\)
\(510\) 0 0
\(511\) 12824.9 1.11026
\(512\) − 13017.3i − 1.12361i
\(513\) 0 0
\(514\) −3851.01 −0.330468
\(515\) 0 0
\(516\) 0 0
\(517\) 6651.02i 0.565787i
\(518\) 14798.6i 1.25524i
\(519\) 0 0
\(520\) 0 0
\(521\) 19829.5 1.66746 0.833730 0.552172i \(-0.186201\pi\)
0.833730 + 0.552172i \(0.186201\pi\)
\(522\) 0 0
\(523\) 5392.82i 0.450882i 0.974257 + 0.225441i \(0.0723824\pi\)
−0.974257 + 0.225441i \(0.927618\pi\)
\(524\) 660.621 0.0550752
\(525\) 0 0
\(526\) −1835.63 −0.152162
\(527\) − 1414.32i − 0.116904i
\(528\) 0 0
\(529\) −17568.8 −1.44397
\(530\) 0 0
\(531\) 0 0
\(532\) − 3557.53i − 0.289922i
\(533\) − 4207.52i − 0.341928i
\(534\) 0 0
\(535\) 0 0
\(536\) −12792.1 −1.03085
\(537\) 0 0
\(538\) − 9480.32i − 0.759713i
\(539\) −2007.25 −0.160405
\(540\) 0 0
\(541\) −11475.8 −0.911984 −0.455992 0.889984i \(-0.650715\pi\)
−0.455992 + 0.889984i \(0.650715\pi\)
\(542\) − 5145.06i − 0.407747i
\(543\) 0 0
\(544\) 593.994 0.0468149
\(545\) 0 0
\(546\) 0 0
\(547\) 7929.09i 0.619787i 0.950771 + 0.309893i \(0.100293\pi\)
−0.950771 + 0.309893i \(0.899707\pi\)
\(548\) − 3326.44i − 0.259304i
\(549\) 0 0
\(550\) 0 0
\(551\) 21017.7 1.62502
\(552\) 0 0
\(553\) − 18561.6i − 1.42734i
\(554\) 21492.4 1.64824
\(555\) 0 0
\(556\) 842.257 0.0642440
\(557\) 9519.36i 0.724144i 0.932150 + 0.362072i \(0.117931\pi\)
−0.932150 + 0.362072i \(0.882069\pi\)
\(558\) 0 0
\(559\) −4197.49 −0.317594
\(560\) 0 0
\(561\) 0 0
\(562\) 14902.1i 1.11852i
\(563\) − 11922.3i − 0.892476i −0.894914 0.446238i \(-0.852763\pi\)
0.894914 0.446238i \(-0.147237\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1182.74 −0.0878343
\(567\) 0 0
\(568\) − 22486.0i − 1.66108i
\(569\) −17591.4 −1.29608 −0.648042 0.761605i \(-0.724412\pi\)
−0.648042 + 0.761605i \(0.724412\pi\)
\(570\) 0 0
\(571\) 8250.73 0.604698 0.302349 0.953197i \(-0.402229\pi\)
0.302349 + 0.953197i \(0.402229\pi\)
\(572\) − 170.034i − 0.0124292i
\(573\) 0 0
\(574\) −21396.5 −1.55588
\(575\) 0 0
\(576\) 0 0
\(577\) 15922.4i 1.14880i 0.818574 + 0.574401i \(0.194765\pi\)
−0.818574 + 0.574401i \(0.805235\pi\)
\(578\) 12437.7i 0.895050i
\(579\) 0 0
\(580\) 0 0
\(581\) −12321.5 −0.879833
\(582\) 0 0
\(583\) 2231.10i 0.158495i
\(584\) 13493.5 0.956103
\(585\) 0 0
\(586\) −13707.1 −0.966274
\(587\) 9589.65i 0.674288i 0.941453 + 0.337144i \(0.109461\pi\)
−0.941453 + 0.337144i \(0.890539\pi\)
\(588\) 0 0
\(589\) −16563.3 −1.15871
\(590\) 0 0
\(591\) 0 0
\(592\) 12932.4i 0.897837i
\(593\) 5311.77i 0.367838i 0.982941 + 0.183919i \(0.0588785\pi\)
−0.982941 + 0.183919i \(0.941122\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3525.61 0.242307
\(597\) 0 0
\(598\) 5186.98i 0.354701i
\(599\) 6346.04 0.432875 0.216437 0.976296i \(-0.430556\pi\)
0.216437 + 0.976296i \(0.430556\pi\)
\(600\) 0 0
\(601\) −9813.33 −0.666047 −0.333023 0.942919i \(-0.608069\pi\)
−0.333023 + 0.942919i \(0.608069\pi\)
\(602\) 21345.6i 1.44515i
\(603\) 0 0
\(604\) −1366.77 −0.0920746
\(605\) 0 0
\(606\) 0 0
\(607\) 4170.95i 0.278902i 0.990229 + 0.139451i \(0.0445338\pi\)
−0.990229 + 0.139451i \(0.955466\pi\)
\(608\) − 6956.38i − 0.464011i
\(609\) 0 0
\(610\) 0 0
\(611\) 6983.50 0.462393
\(612\) 0 0
\(613\) − 3157.32i − 0.208031i −0.994576 0.104016i \(-0.966831\pi\)
0.994576 0.104016i \(-0.0331692\pi\)
\(614\) −17017.6 −1.11853
\(615\) 0 0
\(616\) −6111.45 −0.399736
\(617\) 2962.95i 0.193329i 0.995317 + 0.0966643i \(0.0308173\pi\)
−0.995317 + 0.0966643i \(0.969183\pi\)
\(618\) 0 0
\(619\) −4695.72 −0.304906 −0.152453 0.988311i \(-0.548717\pi\)
−0.152453 + 0.988311i \(0.548717\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 21010.0i − 1.35438i
\(623\) − 15708.9i − 1.01022i
\(624\) 0 0
\(625\) 0 0
\(626\) 13461.1 0.859446
\(627\) 0 0
\(628\) 503.447i 0.0319900i
\(629\) −2516.81 −0.159542
\(630\) 0 0
\(631\) −17397.6 −1.09760 −0.548800 0.835954i \(-0.684915\pi\)
−0.548800 + 0.835954i \(0.684915\pi\)
\(632\) − 19529.2i − 1.22916i
\(633\) 0 0
\(634\) −8432.74 −0.528244
\(635\) 0 0
\(636\) 0 0
\(637\) 2107.59i 0.131092i
\(638\) − 5108.47i − 0.317000i
\(639\) 0 0
\(640\) 0 0
\(641\) −6903.46 −0.425383 −0.212691 0.977119i \(-0.568223\pi\)
−0.212691 + 0.977119i \(0.568223\pi\)
\(642\) 0 0
\(643\) − 12132.1i − 0.744079i −0.928217 0.372039i \(-0.878659\pi\)
0.928217 0.372039i \(-0.121341\pi\)
\(644\) −5204.80 −0.318475
\(645\) 0 0
\(646\) −3066.24 −0.186749
\(647\) − 16784.3i − 1.01988i −0.860211 0.509939i \(-0.829668\pi\)
0.860211 0.509939i \(-0.170332\pi\)
\(648\) 0 0
\(649\) −4607.92 −0.278700
\(650\) 0 0
\(651\) 0 0
\(652\) 3192.10i 0.191736i
\(653\) − 15711.5i − 0.941561i −0.882250 0.470781i \(-0.843972\pi\)
0.882250 0.470781i \(-0.156028\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −18698.4 −1.11288
\(657\) 0 0
\(658\) − 35513.3i − 2.10403i
\(659\) 20227.0 1.19565 0.597825 0.801626i \(-0.296032\pi\)
0.597825 + 0.801626i \(0.296032\pi\)
\(660\) 0 0
\(661\) 14986.8 0.881875 0.440938 0.897538i \(-0.354646\pi\)
0.440938 + 0.897538i \(0.354646\pi\)
\(662\) 26780.5i 1.57229i
\(663\) 0 0
\(664\) −12963.8 −0.757672
\(665\) 0 0
\(666\) 0 0
\(667\) − 30749.7i − 1.78506i
\(668\) 4661.59i 0.270004i
\(669\) 0 0
\(670\) 0 0
\(671\) −605.420 −0.0348316
\(672\) 0 0
\(673\) 6833.74i 0.391414i 0.980662 + 0.195707i \(0.0627001\pi\)
−0.980662 + 0.195707i \(0.937300\pi\)
\(674\) −9655.19 −0.551787
\(675\) 0 0
\(676\) 2718.02 0.154644
\(677\) 30439.3i 1.72803i 0.503467 + 0.864015i \(0.332058\pi\)
−0.503467 + 0.864015i \(0.667942\pi\)
\(678\) 0 0
\(679\) 16361.0 0.924707
\(680\) 0 0
\(681\) 0 0
\(682\) 4025.81i 0.226036i
\(683\) − 9675.88i − 0.542075i −0.962569 0.271038i \(-0.912633\pi\)
0.962569 0.271038i \(-0.0873667\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −9579.94 −0.533184
\(687\) 0 0
\(688\) 18653.8i 1.03368i
\(689\) 2342.63 0.129531
\(690\) 0 0
\(691\) 13410.6 0.738295 0.369147 0.929371i \(-0.379650\pi\)
0.369147 + 0.929371i \(0.379650\pi\)
\(692\) 4144.94i 0.227698i
\(693\) 0 0
\(694\) 509.247 0.0278541
\(695\) 0 0
\(696\) 0 0
\(697\) − 3638.93i − 0.197754i
\(698\) 18958.0i 1.02804i
\(699\) 0 0
\(700\) 0 0
\(701\) −12796.5 −0.689466 −0.344733 0.938701i \(-0.612031\pi\)
−0.344733 + 0.938701i \(0.612031\pi\)
\(702\) 0 0
\(703\) 29474.9i 1.58132i
\(704\) −6275.92 −0.335984
\(705\) 0 0
\(706\) −11932.5 −0.636100
\(707\) 22296.2i 1.18604i
\(708\) 0 0
\(709\) −4849.33 −0.256869 −0.128435 0.991718i \(-0.540995\pi\)
−0.128435 + 0.991718i \(0.540995\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) − 16527.8i − 0.869952i
\(713\) 24232.8i 1.27283i
\(714\) 0 0
\(715\) 0 0
\(716\) 4349.52 0.227024
\(717\) 0 0
\(718\) 2982.40i 0.155017i
\(719\) −33988.7 −1.76296 −0.881479 0.472224i \(-0.843451\pi\)
−0.881479 + 0.472224i \(0.843451\pi\)
\(720\) 0 0
\(721\) 17381.4 0.897806
\(722\) 18179.7i 0.937088i
\(723\) 0 0
\(724\) 2472.15 0.126902
\(725\) 0 0
\(726\) 0 0
\(727\) 16312.3i 0.832170i 0.909326 + 0.416085i \(0.136598\pi\)
−0.909326 + 0.416085i \(0.863402\pi\)
\(728\) 6416.96i 0.326687i
\(729\) 0 0
\(730\) 0 0
\(731\) −3630.26 −0.183680
\(732\) 0 0
\(733\) − 37831.8i − 1.90634i −0.302430 0.953172i \(-0.597798\pi\)
0.302430 0.953172i \(-0.402202\pi\)
\(734\) −8915.36 −0.448327
\(735\) 0 0
\(736\) −10177.5 −0.509710
\(737\) 5885.84i 0.294176i
\(738\) 0 0
\(739\) 16860.9 0.839295 0.419647 0.907687i \(-0.362154\pi\)
0.419647 + 0.907687i \(0.362154\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 11913.0i − 0.589408i
\(743\) 406.077i 0.0200505i 0.999950 + 0.0100253i \(0.00319119\pi\)
−0.999950 + 0.0100253i \(0.996809\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −937.999 −0.0460357
\(747\) 0 0
\(748\) − 147.056i − 0.00718839i
\(749\) 41942.3 2.04611
\(750\) 0 0
\(751\) −15106.3 −0.734004 −0.367002 0.930220i \(-0.619616\pi\)
−0.367002 + 0.930220i \(0.619616\pi\)
\(752\) − 31034.9i − 1.50496i
\(753\) 0 0
\(754\) −5363.84 −0.259071
\(755\) 0 0
\(756\) 0 0
\(757\) 14265.4i 0.684919i 0.939533 + 0.342460i \(0.111260\pi\)
−0.939533 + 0.342460i \(0.888740\pi\)
\(758\) 19954.7i 0.956184i
\(759\) 0 0
\(760\) 0 0
\(761\) 23001.3 1.09566 0.547828 0.836591i \(-0.315455\pi\)
0.547828 + 0.836591i \(0.315455\pi\)
\(762\) 0 0
\(763\) − 31384.9i − 1.48913i
\(764\) −1795.18 −0.0850095
\(765\) 0 0
\(766\) 14665.7 0.691767
\(767\) 4838.26i 0.227770i
\(768\) 0 0
\(769\) −12294.6 −0.576535 −0.288267 0.957550i \(-0.593079\pi\)
−0.288267 + 0.957550i \(0.593079\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 2945.60i 0.137324i
\(773\) 5938.46i 0.276315i 0.990410 + 0.138158i \(0.0441181\pi\)
−0.990410 + 0.138158i \(0.955882\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 17213.9 0.796316
\(777\) 0 0
\(778\) 21145.5i 0.974423i
\(779\) −42616.2 −1.96006
\(780\) 0 0
\(781\) −10346.2 −0.474027
\(782\) 4486.04i 0.205141i
\(783\) 0 0
\(784\) 9366.19 0.426667
\(785\) 0 0
\(786\) 0 0
\(787\) − 32425.0i − 1.46865i −0.678798 0.734325i \(-0.737499\pi\)
0.678798 0.734325i \(-0.262501\pi\)
\(788\) 456.994i 0.0206596i
\(789\) 0 0
\(790\) 0 0
\(791\) −13359.9 −0.600535
\(792\) 0 0
\(793\) 635.685i 0.0284664i
\(794\) −33449.7 −1.49507
\(795\) 0 0
\(796\) −5535.71 −0.246492
\(797\) 20990.4i 0.932897i 0.884548 + 0.466449i \(0.154467\pi\)
−0.884548 + 0.466449i \(0.845533\pi\)
\(798\) 0 0
\(799\) 6039.79 0.267425
\(800\) 0 0
\(801\) 0 0
\(802\) 17011.8i 0.749013i
\(803\) − 6208.58i − 0.272847i
\(804\) 0 0
\(805\) 0 0
\(806\) 4227.06 0.184729
\(807\) 0 0
\(808\) 23458.4i 1.02137i
\(809\) 4943.95 0.214858 0.107429 0.994213i \(-0.465738\pi\)
0.107429 + 0.994213i \(0.465738\pi\)
\(810\) 0 0
\(811\) −19844.5 −0.859230 −0.429615 0.903012i \(-0.641351\pi\)
−0.429615 + 0.903012i \(0.641351\pi\)
\(812\) − 5382.27i − 0.232612i
\(813\) 0 0
\(814\) 7164.03 0.308476
\(815\) 0 0
\(816\) 0 0
\(817\) 42514.7i 1.82056i
\(818\) − 12722.4i − 0.543798i
\(819\) 0 0
\(820\) 0 0
\(821\) 12608.2 0.535969 0.267985 0.963423i \(-0.413642\pi\)
0.267985 + 0.963423i \(0.413642\pi\)
\(822\) 0 0
\(823\) 24843.4i 1.05223i 0.850413 + 0.526116i \(0.176352\pi\)
−0.850413 + 0.526116i \(0.823648\pi\)
\(824\) 18287.5 0.773149
\(825\) 0 0
\(826\) 24604.1 1.03642
\(827\) − 33361.1i − 1.40276i −0.712789 0.701379i \(-0.752568\pi\)
0.712789 0.701379i \(-0.247432\pi\)
\(828\) 0 0
\(829\) 5049.62 0.211557 0.105778 0.994390i \(-0.466267\pi\)
0.105778 + 0.994390i \(0.466267\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 6589.65i 0.274585i
\(833\) 1822.78i 0.0758170i
\(834\) 0 0
\(835\) 0 0
\(836\) −1722.21 −0.0712485
\(837\) 0 0
\(838\) 10117.9i 0.417087i
\(839\) 17464.7 0.718650 0.359325 0.933213i \(-0.383007\pi\)
0.359325 + 0.933213i \(0.383007\pi\)
\(840\) 0 0
\(841\) 7409.22 0.303793
\(842\) − 13593.3i − 0.556359i
\(843\) 0 0
\(844\) 6234.06 0.254248
\(845\) 0 0
\(846\) 0 0
\(847\) − 27659.3i − 1.12206i
\(848\) − 10410.7i − 0.421587i
\(849\) 0 0
\(850\) 0 0
\(851\) 43122.9 1.73706
\(852\) 0 0
\(853\) 2746.47i 0.110243i 0.998480 + 0.0551216i \(0.0175546\pi\)
−0.998480 + 0.0551216i \(0.982445\pi\)
\(854\) 3232.66 0.129531
\(855\) 0 0
\(856\) 44128.7 1.76202
\(857\) − 15656.8i − 0.624069i −0.950071 0.312034i \(-0.898990\pi\)
0.950071 0.312034i \(-0.101010\pi\)
\(858\) 0 0
\(859\) 34507.3 1.37063 0.685317 0.728245i \(-0.259664\pi\)
0.685317 + 0.728245i \(0.259664\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 37093.3i 1.46567i
\(863\) 26576.7i 1.04830i 0.851626 + 0.524150i \(0.175617\pi\)
−0.851626 + 0.524150i \(0.824383\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −2231.13 −0.0875485
\(867\) 0 0
\(868\) 4241.58i 0.165863i
\(869\) −8985.73 −0.350771
\(870\) 0 0
\(871\) 6180.07 0.240418
\(872\) − 33020.9i − 1.28237i
\(873\) 0 0
\(874\) 52536.8 2.03328
\(875\) 0 0
\(876\) 0 0
\(877\) 13399.5i 0.515927i 0.966155 + 0.257963i \(0.0830514\pi\)
−0.966155 + 0.257963i \(0.916949\pi\)
\(878\) 41725.2i 1.60383i
\(879\) 0 0
\(880\) 0 0
\(881\) −44435.4 −1.69928 −0.849641 0.527362i \(-0.823181\pi\)
−0.849641 + 0.527362i \(0.823181\pi\)
\(882\) 0 0
\(883\) − 11162.1i − 0.425408i −0.977117 0.212704i \(-0.931773\pi\)
0.977117 0.212704i \(-0.0682270\pi\)
\(884\) −154.408 −0.00587477
\(885\) 0 0
\(886\) −15209.7 −0.576725
\(887\) − 11591.2i − 0.438776i −0.975638 0.219388i \(-0.929594\pi\)
0.975638 0.219388i \(-0.0704061\pi\)
\(888\) 0 0
\(889\) −55694.4 −2.10116
\(890\) 0 0
\(891\) 0 0
\(892\) 3203.96i 0.120265i
\(893\) − 70733.1i − 2.65061i
\(894\) 0 0
\(895\) 0 0
\(896\) 22701.0 0.846415
\(897\) 0 0
\(898\) 43576.8i 1.61935i
\(899\) −25059.1 −0.929663
\(900\) 0 0
\(901\) 2026.06 0.0749144
\(902\) 10358.1i 0.382359i
\(903\) 0 0
\(904\) −14056.3 −0.517154
\(905\) 0 0
\(906\) 0 0
\(907\) − 8652.39i − 0.316756i −0.987379 0.158378i \(-0.949374\pi\)
0.987379 0.158378i \(-0.0506265\pi\)
\(908\) 770.859i 0.0281738i
\(909\) 0 0
\(910\) 0 0
\(911\) −36712.4 −1.33517 −0.667583 0.744536i \(-0.732671\pi\)
−0.667583 + 0.744536i \(0.732671\pi\)
\(912\) 0 0
\(913\) 5964.88i 0.216220i
\(914\) 19704.6 0.713097
\(915\) 0 0
\(916\) 6238.43 0.225026
\(917\) 11471.3i 0.413104i
\(918\) 0 0
\(919\) 42003.3 1.50768 0.753841 0.657057i \(-0.228199\pi\)
0.753841 + 0.657057i \(0.228199\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 10544.7i − 0.376651i
\(923\) 10863.4i 0.387402i
\(924\) 0 0
\(925\) 0 0
\(926\) 14214.8 0.504457
\(927\) 0 0
\(928\) − 10524.5i − 0.372288i
\(929\) 13112.6 0.463090 0.231545 0.972824i \(-0.425622\pi\)
0.231545 + 0.972824i \(0.425622\pi\)
\(930\) 0 0
\(931\) 21346.9 0.751468
\(932\) 1619.61i 0.0569227i
\(933\) 0 0
\(934\) 16601.4 0.581600
\(935\) 0 0
\(936\) 0 0
\(937\) − 49863.5i − 1.73849i −0.494378 0.869247i \(-0.664604\pi\)
0.494378 0.869247i \(-0.335396\pi\)
\(938\) − 31427.6i − 1.09397i
\(939\) 0 0
\(940\) 0 0
\(941\) −9352.28 −0.323991 −0.161996 0.986791i \(-0.551793\pi\)
−0.161996 + 0.986791i \(0.551793\pi\)
\(942\) 0 0
\(943\) 62349.3i 2.15310i
\(944\) 21501.4 0.741326
\(945\) 0 0
\(946\) 10333.4 0.355147
\(947\) 4011.39i 0.137648i 0.997629 + 0.0688239i \(0.0219247\pi\)
−0.997629 + 0.0688239i \(0.978075\pi\)
\(948\) 0 0
\(949\) −6518.94 −0.222986
\(950\) 0 0
\(951\) 0 0
\(952\) 5549.80i 0.188939i
\(953\) − 39128.6i − 1.33001i −0.746839 0.665005i \(-0.768429\pi\)
0.746839 0.665005i \(-0.231571\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 158.929 0.00537670
\(957\) 0 0
\(958\) − 513.770i − 0.0173269i
\(959\) 57761.9 1.94497
\(960\) 0 0
\(961\) −10042.8 −0.337108
\(962\) − 7522.15i − 0.252104i
\(963\) 0 0
\(964\) 2284.22 0.0763174
\(965\) 0 0
\(966\) 0 0
\(967\) − 17635.0i − 0.586456i −0.956043 0.293228i \(-0.905271\pi\)
0.956043 0.293228i \(-0.0947294\pi\)
\(968\) − 29101.2i − 0.966267i
\(969\) 0 0
\(970\) 0 0
\(971\) 26827.3 0.886642 0.443321 0.896363i \(-0.353800\pi\)
0.443321 + 0.896363i \(0.353800\pi\)
\(972\) 0 0
\(973\) 14625.3i 0.481877i
\(974\) −3382.90 −0.111288
\(975\) 0 0
\(976\) 2825.01 0.0926498
\(977\) − 8343.63i − 0.273221i −0.990625 0.136610i \(-0.956379\pi\)
0.990625 0.136610i \(-0.0436208\pi\)
\(978\) 0 0
\(979\) −7604.72 −0.248261
\(980\) 0 0
\(981\) 0 0
\(982\) − 32245.8i − 1.04787i
\(983\) 36890.1i 1.19696i 0.801138 + 0.598479i \(0.204228\pi\)
−0.801138 + 0.598479i \(0.795772\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −4639.00 −0.149833
\(987\) 0 0
\(988\) 1808.30i 0.0582283i
\(989\) 62200.7 1.99987
\(990\) 0 0
\(991\) −24259.3 −0.777619 −0.388810 0.921318i \(-0.627114\pi\)
−0.388810 + 0.921318i \(0.627114\pi\)
\(992\) 8293.99i 0.265458i
\(993\) 0 0
\(994\) 55243.7 1.76280
\(995\) 0 0
\(996\) 0 0
\(997\) − 31700.2i − 1.00698i −0.864002 0.503488i \(-0.832050\pi\)
0.864002 0.503488i \(-0.167950\pi\)
\(998\) − 8134.15i − 0.257998i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.b.n.649.5 6
3.2 odd 2 675.4.b.m.649.2 6
5.2 odd 4 135.4.a.h.1.1 yes 3
5.3 odd 4 675.4.a.p.1.3 3
5.4 even 2 inner 675.4.b.n.649.2 6
15.2 even 4 135.4.a.e.1.3 3
15.8 even 4 675.4.a.s.1.1 3
15.14 odd 2 675.4.b.m.649.5 6
20.7 even 4 2160.4.a.bq.1.3 3
45.2 even 12 405.4.e.v.271.1 6
45.7 odd 12 405.4.e.q.271.3 6
45.22 odd 12 405.4.e.q.136.3 6
45.32 even 12 405.4.e.v.136.1 6
60.47 odd 4 2160.4.a.bi.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.3 3 15.2 even 4
135.4.a.h.1.1 yes 3 5.2 odd 4
405.4.e.q.136.3 6 45.22 odd 12
405.4.e.q.271.3 6 45.7 odd 12
405.4.e.v.136.1 6 45.32 even 12
405.4.e.v.271.1 6 45.2 even 12
675.4.a.p.1.3 3 5.3 odd 4
675.4.a.s.1.1 3 15.8 even 4
675.4.b.m.649.2 6 3.2 odd 2
675.4.b.m.649.5 6 15.14 odd 2
675.4.b.n.649.2 6 5.4 even 2 inner
675.4.b.n.649.5 6 1.1 even 1 trivial
2160.4.a.bi.1.3 3 60.47 odd 4
2160.4.a.bq.1.3 3 20.7 even 4