Properties

Label 675.4.b.j
Level $675$
Weight $4$
Character orbit 675.b
Analytic conductor $39.826$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(649,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.649");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{13})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 7x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{2} q^{2} - 5 q^{4} + 9 \beta_1 q^{7} + 3 \beta_{2} q^{8} - 4 \beta_{3} q^{11} + 34 \beta_1 q^{13} - 9 \beta_{3} q^{14} - 79 q^{16} - 2 \beta_{2} q^{17} + 101 q^{19} - 52 \beta_1 q^{22} + 30 \beta_{2} q^{23}+ \cdots + 262 \beta_{2} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{4} - 316 q^{16} + 404 q^{19} - 12 q^{31} + 104 q^{34} - 1560 q^{46} + 1048 q^{49} - 2252 q^{61} + 332 q^{64} - 2020 q^{76} - 2460 q^{79} - 1224 q^{91} + 1664 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 7x^{2} + 9 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} + 4\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 10\nu ) / 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( 2\nu^{2} + 7 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} - 7 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( -2\beta_{2} + 5\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
1.30278i
2.30278i
2.30278i
1.30278i
3.60555i 0 −5.00000 0 0 9.00000i 10.8167i 0 0
649.2 3.60555i 0 −5.00000 0 0 9.00000i 10.8167i 0 0
649.3 3.60555i 0 −5.00000 0 0 9.00000i 10.8167i 0 0
649.4 3.60555i 0 −5.00000 0 0 9.00000i 10.8167i 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
5.b even 2 1 inner
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.4.b.j 4
3.b odd 2 1 inner 675.4.b.j 4
5.b even 2 1 inner 675.4.b.j 4
5.c odd 4 1 675.4.a.l 2
5.c odd 4 1 675.4.a.m yes 2
15.d odd 2 1 inner 675.4.b.j 4
15.e even 4 1 675.4.a.l 2
15.e even 4 1 675.4.a.m yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
675.4.a.l 2 5.c odd 4 1
675.4.a.l 2 15.e even 4 1
675.4.a.m yes 2 5.c odd 4 1
675.4.a.m yes 2 15.e even 4 1
675.4.b.j 4 1.a even 1 1 trivial
675.4.b.j 4 3.b odd 2 1 inner
675.4.b.j 4 5.b even 2 1 inner
675.4.b.j 4 15.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(675, [\chi])\):

\( T_{2}^{2} + 13 \) Copy content Toggle raw display
\( T_{7}^{2} + 81 \) Copy content Toggle raw display
\( T_{11}^{2} - 208 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 13)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 81)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} - 208)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1156)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 52)^{2} \) Copy content Toggle raw display
$19$ \( (T - 101)^{4} \) Copy content Toggle raw display
$23$ \( (T^{2} + 11700)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} - 27508)^{2} \) Copy content Toggle raw display
$31$ \( (T + 3)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} + 4489)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 40768)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 18769)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 13312)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 459472)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 761332)^{2} \) Copy content Toggle raw display
$61$ \( (T + 563)^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 1089936)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 617812)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + 253009)^{2} \) Copy content Toggle raw display
$79$ \( (T + 615)^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} + 56628)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} - 947700)^{2} \) Copy content Toggle raw display
$97$ \( (T^{2} + 361)^{2} \) Copy content Toggle raw display
show more
show less