Properties

Label 675.4.b.e.649.2
Level $675$
Weight $4$
Character 675.649
Analytic conductor $39.826$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(649,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.649"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,14,0,0,0,0,0,0,-94,0,0,12,0,82,0,0,112] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 675.649
Dual form 675.4.b.e.649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +7.00000 q^{4} -6.00000i q^{7} +15.0000i q^{8} -47.0000 q^{11} +5.00000i q^{13} +6.00000 q^{14} +41.0000 q^{16} -131.000i q^{17} +56.0000 q^{19} -47.0000i q^{22} -3.00000i q^{23} -5.00000 q^{26} -42.0000i q^{28} +157.000 q^{29} +225.000 q^{31} +161.000i q^{32} +131.000 q^{34} -70.0000i q^{37} +56.0000i q^{38} +140.000 q^{41} -397.000i q^{43} -329.000 q^{44} +3.00000 q^{46} -347.000i q^{47} +307.000 q^{49} +35.0000i q^{52} -4.00000i q^{53} +90.0000 q^{56} +157.000i q^{58} -748.000 q^{59} -338.000 q^{61} +225.000i q^{62} +167.000 q^{64} +492.000i q^{67} -917.000i q^{68} +32.0000 q^{71} -970.000i q^{73} +70.0000 q^{74} +392.000 q^{76} +282.000i q^{77} +1257.00 q^{79} +140.000i q^{82} +102.000i q^{83} +397.000 q^{86} -705.000i q^{88} +1488.00 q^{89} +30.0000 q^{91} -21.0000i q^{92} +347.000 q^{94} +974.000i q^{97} +307.000i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14 q^{4} - 94 q^{11} + 12 q^{14} + 82 q^{16} + 112 q^{19} - 10 q^{26} + 314 q^{29} + 450 q^{31} + 262 q^{34} + 280 q^{41} - 658 q^{44} + 6 q^{46} + 614 q^{49} + 180 q^{56} - 1496 q^{59} - 676 q^{61}+ \cdots + 694 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.353553i 0.984251 + 0.176777i \(0.0565670\pi\)
−0.984251 + 0.176777i \(0.943433\pi\)
\(3\) 0 0
\(4\) 7.00000 0.875000
\(5\) 0 0
\(6\) 0 0
\(7\) − 6.00000i − 0.323970i −0.986793 0.161985i \(-0.948210\pi\)
0.986793 0.161985i \(-0.0517895\pi\)
\(8\) 15.0000i 0.662913i
\(9\) 0 0
\(10\) 0 0
\(11\) −47.0000 −1.28828 −0.644138 0.764909i \(-0.722784\pi\)
−0.644138 + 0.764909i \(0.722784\pi\)
\(12\) 0 0
\(13\) 5.00000i 0.106673i 0.998577 + 0.0533366i \(0.0169856\pi\)
−0.998577 + 0.0533366i \(0.983014\pi\)
\(14\) 6.00000 0.114541
\(15\) 0 0
\(16\) 41.0000 0.640625
\(17\) − 131.000i − 1.86895i −0.356027 0.934475i \(-0.615869\pi\)
0.356027 0.934475i \(-0.384131\pi\)
\(18\) 0 0
\(19\) 56.0000 0.676173 0.338086 0.941115i \(-0.390220\pi\)
0.338086 + 0.941115i \(0.390220\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 47.0000i − 0.455474i
\(23\) − 3.00000i − 0.0271975i −0.999908 0.0135988i \(-0.995671\pi\)
0.999908 0.0135988i \(-0.00432876\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −5.00000 −0.0377146
\(27\) 0 0
\(28\) − 42.0000i − 0.283473i
\(29\) 157.000 1.00532 0.502658 0.864485i \(-0.332355\pi\)
0.502658 + 0.864485i \(0.332355\pi\)
\(30\) 0 0
\(31\) 225.000 1.30359 0.651793 0.758397i \(-0.274017\pi\)
0.651793 + 0.758397i \(0.274017\pi\)
\(32\) 161.000i 0.889408i
\(33\) 0 0
\(34\) 131.000 0.660774
\(35\) 0 0
\(36\) 0 0
\(37\) − 70.0000i − 0.311025i −0.987834 0.155513i \(-0.950297\pi\)
0.987834 0.155513i \(-0.0497029\pi\)
\(38\) 56.0000i 0.239063i
\(39\) 0 0
\(40\) 0 0
\(41\) 140.000 0.533276 0.266638 0.963797i \(-0.414087\pi\)
0.266638 + 0.963797i \(0.414087\pi\)
\(42\) 0 0
\(43\) − 397.000i − 1.40795i −0.710224 0.703976i \(-0.751406\pi\)
0.710224 0.703976i \(-0.248594\pi\)
\(44\) −329.000 −1.12724
\(45\) 0 0
\(46\) 3.00000 0.00961578
\(47\) − 347.000i − 1.07692i −0.842652 0.538459i \(-0.819007\pi\)
0.842652 0.538459i \(-0.180993\pi\)
\(48\) 0 0
\(49\) 307.000 0.895044
\(50\) 0 0
\(51\) 0 0
\(52\) 35.0000i 0.0933390i
\(53\) − 4.00000i − 0.0103668i −0.999987 0.00518342i \(-0.998350\pi\)
0.999987 0.00518342i \(-0.00164994\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 90.0000 0.214763
\(57\) 0 0
\(58\) 157.000i 0.355433i
\(59\) −748.000 −1.65053 −0.825265 0.564745i \(-0.808974\pi\)
−0.825265 + 0.564745i \(0.808974\pi\)
\(60\) 0 0
\(61\) −338.000 −0.709450 −0.354725 0.934971i \(-0.615426\pi\)
−0.354725 + 0.934971i \(0.615426\pi\)
\(62\) 225.000i 0.460888i
\(63\) 0 0
\(64\) 167.000 0.326172
\(65\) 0 0
\(66\) 0 0
\(67\) 492.000i 0.897125i 0.893751 + 0.448562i \(0.148064\pi\)
−0.893751 + 0.448562i \(0.851936\pi\)
\(68\) − 917.000i − 1.63533i
\(69\) 0 0
\(70\) 0 0
\(71\) 32.0000 0.0534888 0.0267444 0.999642i \(-0.491486\pi\)
0.0267444 + 0.999642i \(0.491486\pi\)
\(72\) 0 0
\(73\) − 970.000i − 1.55520i −0.628757 0.777602i \(-0.716436\pi\)
0.628757 0.777602i \(-0.283564\pi\)
\(74\) 70.0000 0.109964
\(75\) 0 0
\(76\) 392.000 0.591651
\(77\) 282.000i 0.417362i
\(78\) 0 0
\(79\) 1257.00 1.79017 0.895086 0.445894i \(-0.147114\pi\)
0.895086 + 0.445894i \(0.147114\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 140.000i 0.188542i
\(83\) 102.000i 0.134891i 0.997723 + 0.0674455i \(0.0214849\pi\)
−0.997723 + 0.0674455i \(0.978515\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 397.000 0.497786
\(87\) 0 0
\(88\) − 705.000i − 0.854014i
\(89\) 1488.00 1.77222 0.886111 0.463474i \(-0.153397\pi\)
0.886111 + 0.463474i \(0.153397\pi\)
\(90\) 0 0
\(91\) 30.0000 0.0345588
\(92\) − 21.0000i − 0.0237978i
\(93\) 0 0
\(94\) 347.000 0.380748
\(95\) 0 0
\(96\) 0 0
\(97\) 974.000i 1.01953i 0.860313 + 0.509767i \(0.170268\pi\)
−0.860313 + 0.509767i \(0.829732\pi\)
\(98\) 307.000i 0.316446i
\(99\) 0 0
\(100\) 0 0
\(101\) −1335.00 −1.31522 −0.657611 0.753357i \(-0.728433\pi\)
−0.657611 + 0.753357i \(0.728433\pi\)
\(102\) 0 0
\(103\) − 686.000i − 0.656248i −0.944635 0.328124i \(-0.893584\pi\)
0.944635 0.328124i \(-0.106416\pi\)
\(104\) −75.0000 −0.0707150
\(105\) 0 0
\(106\) 4.00000 0.00366523
\(107\) − 1098.00i − 0.992034i −0.868313 0.496017i \(-0.834795\pi\)
0.868313 0.496017i \(-0.165205\pi\)
\(108\) 0 0
\(109\) 700.000 0.615118 0.307559 0.951529i \(-0.400488\pi\)
0.307559 + 0.951529i \(0.400488\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 246.000i − 0.207543i
\(113\) 1055.00i 0.878284i 0.898418 + 0.439142i \(0.144717\pi\)
−0.898418 + 0.439142i \(0.855283\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 1099.00 0.879652
\(117\) 0 0
\(118\) − 748.000i − 0.583551i
\(119\) −786.000 −0.605483
\(120\) 0 0
\(121\) 878.000 0.659654
\(122\) − 338.000i − 0.250829i
\(123\) 0 0
\(124\) 1575.00 1.14064
\(125\) 0 0
\(126\) 0 0
\(127\) − 1646.00i − 1.15007i −0.818129 0.575035i \(-0.804988\pi\)
0.818129 0.575035i \(-0.195012\pi\)
\(128\) 1455.00i 1.00473i
\(129\) 0 0
\(130\) 0 0
\(131\) −1833.00 −1.22252 −0.611259 0.791430i \(-0.709337\pi\)
−0.611259 + 0.791430i \(0.709337\pi\)
\(132\) 0 0
\(133\) − 336.000i − 0.219059i
\(134\) −492.000 −0.317182
\(135\) 0 0
\(136\) 1965.00 1.23895
\(137\) 1098.00i 0.684733i 0.939566 + 0.342367i \(0.111229\pi\)
−0.939566 + 0.342367i \(0.888771\pi\)
\(138\) 0 0
\(139\) 1042.00 0.635837 0.317918 0.948118i \(-0.397016\pi\)
0.317918 + 0.948118i \(0.397016\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 32.0000i 0.0189111i
\(143\) − 235.000i − 0.137424i
\(144\) 0 0
\(145\) 0 0
\(146\) 970.000 0.549848
\(147\) 0 0
\(148\) − 490.000i − 0.272147i
\(149\) 2941.00 1.61702 0.808510 0.588482i \(-0.200274\pi\)
0.808510 + 0.588482i \(0.200274\pi\)
\(150\) 0 0
\(151\) 511.000 0.275395 0.137697 0.990474i \(-0.456030\pi\)
0.137697 + 0.990474i \(0.456030\pi\)
\(152\) 840.000i 0.448243i
\(153\) 0 0
\(154\) −282.000 −0.147560
\(155\) 0 0
\(156\) 0 0
\(157\) − 571.000i − 0.290260i −0.989413 0.145130i \(-0.953640\pi\)
0.989413 0.145130i \(-0.0463600\pi\)
\(158\) 1257.00i 0.632921i
\(159\) 0 0
\(160\) 0 0
\(161\) −18.0000 −0.00881117
\(162\) 0 0
\(163\) − 713.000i − 0.342616i −0.985217 0.171308i \(-0.945201\pi\)
0.985217 0.171308i \(-0.0547994\pi\)
\(164\) 980.000 0.466617
\(165\) 0 0
\(166\) −102.000 −0.0476912
\(167\) 1596.00i 0.739534i 0.929125 + 0.369767i \(0.120563\pi\)
−0.929125 + 0.369767i \(0.879437\pi\)
\(168\) 0 0
\(169\) 2172.00 0.988621
\(170\) 0 0
\(171\) 0 0
\(172\) − 2779.00i − 1.23196i
\(173\) − 4134.00i − 1.81678i −0.418129 0.908388i \(-0.637314\pi\)
0.418129 0.908388i \(-0.362686\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1927.00 −0.825302
\(177\) 0 0
\(178\) 1488.00i 0.626575i
\(179\) −1828.00 −0.763302 −0.381651 0.924306i \(-0.624644\pi\)
−0.381651 + 0.924306i \(0.624644\pi\)
\(180\) 0 0
\(181\) −520.000 −0.213543 −0.106772 0.994284i \(-0.534051\pi\)
−0.106772 + 0.994284i \(0.534051\pi\)
\(182\) 30.0000i 0.0122184i
\(183\) 0 0
\(184\) 45.0000 0.0180296
\(185\) 0 0
\(186\) 0 0
\(187\) 6157.00i 2.40772i
\(188\) − 2429.00i − 0.942303i
\(189\) 0 0
\(190\) 0 0
\(191\) 4826.00 1.82826 0.914129 0.405424i \(-0.132876\pi\)
0.914129 + 0.405424i \(0.132876\pi\)
\(192\) 0 0
\(193\) − 1670.00i − 0.622846i −0.950271 0.311423i \(-0.899194\pi\)
0.950271 0.311423i \(-0.100806\pi\)
\(194\) −974.000 −0.360459
\(195\) 0 0
\(196\) 2149.00 0.783163
\(197\) − 1380.00i − 0.499091i −0.968363 0.249546i \(-0.919719\pi\)
0.968363 0.249546i \(-0.0802812\pi\)
\(198\) 0 0
\(199\) −4357.00 −1.55206 −0.776029 0.630697i \(-0.782769\pi\)
−0.776029 + 0.630697i \(0.782769\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 1335.00i − 0.465001i
\(203\) − 942.000i − 0.325692i
\(204\) 0 0
\(205\) 0 0
\(206\) 686.000 0.232019
\(207\) 0 0
\(208\) 205.000i 0.0683375i
\(209\) −2632.00 −0.871097
\(210\) 0 0
\(211\) −4162.00 −1.35793 −0.678967 0.734169i \(-0.737572\pi\)
−0.678967 + 0.734169i \(0.737572\pi\)
\(212\) − 28.0000i − 0.00907098i
\(213\) 0 0
\(214\) 1098.00 0.350737
\(215\) 0 0
\(216\) 0 0
\(217\) − 1350.00i − 0.422322i
\(218\) 700.000i 0.217477i
\(219\) 0 0
\(220\) 0 0
\(221\) 655.000 0.199367
\(222\) 0 0
\(223\) 5956.00i 1.78853i 0.447533 + 0.894267i \(0.352303\pi\)
−0.447533 + 0.894267i \(0.647697\pi\)
\(224\) 966.000 0.288141
\(225\) 0 0
\(226\) −1055.00 −0.310520
\(227\) 4940.00i 1.44440i 0.691683 + 0.722201i \(0.256870\pi\)
−0.691683 + 0.722201i \(0.743130\pi\)
\(228\) 0 0
\(229\) −4344.00 −1.25354 −0.626768 0.779206i \(-0.715622\pi\)
−0.626768 + 0.779206i \(0.715622\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 2355.00i 0.666437i
\(233\) 5202.00i 1.46264i 0.682036 + 0.731318i \(0.261095\pi\)
−0.682036 + 0.731318i \(0.738905\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −5236.00 −1.44421
\(237\) 0 0
\(238\) − 786.000i − 0.214071i
\(239\) −1546.00 −0.418420 −0.209210 0.977871i \(-0.567089\pi\)
−0.209210 + 0.977871i \(0.567089\pi\)
\(240\) 0 0
\(241\) −3659.00 −0.977995 −0.488998 0.872285i \(-0.662637\pi\)
−0.488998 + 0.872285i \(0.662637\pi\)
\(242\) 878.000i 0.233223i
\(243\) 0 0
\(244\) −2366.00 −0.620769
\(245\) 0 0
\(246\) 0 0
\(247\) 280.000i 0.0721294i
\(248\) 3375.00i 0.864164i
\(249\) 0 0
\(250\) 0 0
\(251\) 1221.00 0.307047 0.153524 0.988145i \(-0.450938\pi\)
0.153524 + 0.988145i \(0.450938\pi\)
\(252\) 0 0
\(253\) 141.000i 0.0350379i
\(254\) 1646.00 0.406611
\(255\) 0 0
\(256\) −119.000 −0.0290527
\(257\) − 6255.00i − 1.51820i −0.650977 0.759098i \(-0.725640\pi\)
0.650977 0.759098i \(-0.274360\pi\)
\(258\) 0 0
\(259\) −420.000 −0.100763
\(260\) 0 0
\(261\) 0 0
\(262\) − 1833.00i − 0.432226i
\(263\) − 836.000i − 0.196007i −0.995186 0.0980037i \(-0.968754\pi\)
0.995186 0.0980037i \(-0.0312457\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 336.000 0.0774492
\(267\) 0 0
\(268\) 3444.00i 0.784984i
\(269\) 2231.00 0.505675 0.252837 0.967509i \(-0.418636\pi\)
0.252837 + 0.967509i \(0.418636\pi\)
\(270\) 0 0
\(271\) −4832.00 −1.08311 −0.541556 0.840665i \(-0.682164\pi\)
−0.541556 + 0.840665i \(0.682164\pi\)
\(272\) − 5371.00i − 1.19730i
\(273\) 0 0
\(274\) −1098.00 −0.242090
\(275\) 0 0
\(276\) 0 0
\(277\) 6450.00i 1.39907i 0.714597 + 0.699536i \(0.246610\pi\)
−0.714597 + 0.699536i \(0.753390\pi\)
\(278\) 1042.00i 0.224802i
\(279\) 0 0
\(280\) 0 0
\(281\) −1050.00 −0.222910 −0.111455 0.993769i \(-0.535551\pi\)
−0.111455 + 0.993769i \(0.535551\pi\)
\(282\) 0 0
\(283\) 1584.00i 0.332717i 0.986065 + 0.166359i \(0.0532010\pi\)
−0.986065 + 0.166359i \(0.946799\pi\)
\(284\) 224.000 0.0468027
\(285\) 0 0
\(286\) 235.000 0.0485869
\(287\) − 840.000i − 0.172765i
\(288\) 0 0
\(289\) −12248.0 −2.49298
\(290\) 0 0
\(291\) 0 0
\(292\) − 6790.00i − 1.36080i
\(293\) − 6594.00i − 1.31476i −0.753558 0.657382i \(-0.771664\pi\)
0.753558 0.657382i \(-0.228336\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1050.00 0.206182
\(297\) 0 0
\(298\) 2941.00i 0.571703i
\(299\) 15.0000 0.00290125
\(300\) 0 0
\(301\) −2382.00 −0.456134
\(302\) 511.000i 0.0973667i
\(303\) 0 0
\(304\) 2296.00 0.433173
\(305\) 0 0
\(306\) 0 0
\(307\) − 4343.00i − 0.807388i −0.914894 0.403694i \(-0.867726\pi\)
0.914894 0.403694i \(-0.132274\pi\)
\(308\) 1974.00i 0.365192i
\(309\) 0 0
\(310\) 0 0
\(311\) −2124.00 −0.387270 −0.193635 0.981074i \(-0.562028\pi\)
−0.193635 + 0.981074i \(0.562028\pi\)
\(312\) 0 0
\(313\) 7516.00i 1.35728i 0.734470 + 0.678641i \(0.237431\pi\)
−0.734470 + 0.678641i \(0.762569\pi\)
\(314\) 571.000 0.102622
\(315\) 0 0
\(316\) 8799.00 1.56640
\(317\) − 6880.00i − 1.21899i −0.792791 0.609494i \(-0.791373\pi\)
0.792791 0.609494i \(-0.208627\pi\)
\(318\) 0 0
\(319\) −7379.00 −1.29512
\(320\) 0 0
\(321\) 0 0
\(322\) − 18.0000i − 0.00311522i
\(323\) − 7336.00i − 1.26373i
\(324\) 0 0
\(325\) 0 0
\(326\) 713.000 0.121133
\(327\) 0 0
\(328\) 2100.00i 0.353516i
\(329\) −2082.00 −0.348889
\(330\) 0 0
\(331\) −4986.00 −0.827962 −0.413981 0.910286i \(-0.635862\pi\)
−0.413981 + 0.910286i \(0.635862\pi\)
\(332\) 714.000i 0.118030i
\(333\) 0 0
\(334\) −1596.00 −0.261465
\(335\) 0 0
\(336\) 0 0
\(337\) 904.000i 0.146125i 0.997327 + 0.0730623i \(0.0232772\pi\)
−0.997327 + 0.0730623i \(0.976723\pi\)
\(338\) 2172.00i 0.349530i
\(339\) 0 0
\(340\) 0 0
\(341\) −10575.0 −1.67938
\(342\) 0 0
\(343\) − 3900.00i − 0.613936i
\(344\) 5955.00 0.933349
\(345\) 0 0
\(346\) 4134.00 0.642327
\(347\) 8860.00i 1.37069i 0.728218 + 0.685345i \(0.240349\pi\)
−0.728218 + 0.685345i \(0.759651\pi\)
\(348\) 0 0
\(349\) 4454.00 0.683144 0.341572 0.939856i \(-0.389041\pi\)
0.341572 + 0.939856i \(0.389041\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 7567.00i − 1.14580i
\(353\) 8781.00i 1.32398i 0.749512 + 0.661991i \(0.230288\pi\)
−0.749512 + 0.661991i \(0.769712\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 10416.0 1.55069
\(357\) 0 0
\(358\) − 1828.00i − 0.269868i
\(359\) −2928.00 −0.430457 −0.215228 0.976564i \(-0.569050\pi\)
−0.215228 + 0.976564i \(0.569050\pi\)
\(360\) 0 0
\(361\) −3723.00 −0.542790
\(362\) − 520.000i − 0.0754989i
\(363\) 0 0
\(364\) 210.000 0.0302390
\(365\) 0 0
\(366\) 0 0
\(367\) 9102.00i 1.29461i 0.762233 + 0.647303i \(0.224103\pi\)
−0.762233 + 0.647303i \(0.775897\pi\)
\(368\) − 123.000i − 0.0174234i
\(369\) 0 0
\(370\) 0 0
\(371\) −24.0000 −0.00335854
\(372\) 0 0
\(373\) 8183.00i 1.13592i 0.823055 + 0.567962i \(0.192268\pi\)
−0.823055 + 0.567962i \(0.807732\pi\)
\(374\) −6157.00 −0.851259
\(375\) 0 0
\(376\) 5205.00 0.713903
\(377\) 785.000i 0.107240i
\(378\) 0 0
\(379\) −6136.00 −0.831623 −0.415812 0.909451i \(-0.636502\pi\)
−0.415812 + 0.909451i \(0.636502\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 4826.00i 0.646386i
\(383\) − 5643.00i − 0.752856i −0.926446 0.376428i \(-0.877152\pi\)
0.926446 0.376428i \(-0.122848\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1670.00 0.220209
\(387\) 0 0
\(388\) 6818.00i 0.892092i
\(389\) −8991.00 −1.17188 −0.585941 0.810354i \(-0.699275\pi\)
−0.585941 + 0.810354i \(0.699275\pi\)
\(390\) 0 0
\(391\) −393.000 −0.0508309
\(392\) 4605.00i 0.593336i
\(393\) 0 0
\(394\) 1380.00 0.176455
\(395\) 0 0
\(396\) 0 0
\(397\) − 12449.0i − 1.57380i −0.617082 0.786898i \(-0.711686\pi\)
0.617082 0.786898i \(-0.288314\pi\)
\(398\) − 4357.00i − 0.548735i
\(399\) 0 0
\(400\) 0 0
\(401\) 8076.00 1.00573 0.502863 0.864366i \(-0.332280\pi\)
0.502863 + 0.864366i \(0.332280\pi\)
\(402\) 0 0
\(403\) 1125.00i 0.139058i
\(404\) −9345.00 −1.15082
\(405\) 0 0
\(406\) 942.000 0.115149
\(407\) 3290.00i 0.400686i
\(408\) 0 0
\(409\) 2833.00 0.342501 0.171250 0.985228i \(-0.445219\pi\)
0.171250 + 0.985228i \(0.445219\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 4802.00i − 0.574217i
\(413\) 4488.00i 0.534722i
\(414\) 0 0
\(415\) 0 0
\(416\) −805.000 −0.0948759
\(417\) 0 0
\(418\) − 2632.00i − 0.307979i
\(419\) 4777.00 0.556973 0.278487 0.960440i \(-0.410167\pi\)
0.278487 + 0.960440i \(0.410167\pi\)
\(420\) 0 0
\(421\) −6464.00 −0.748304 −0.374152 0.927367i \(-0.622066\pi\)
−0.374152 + 0.927367i \(0.622066\pi\)
\(422\) − 4162.00i − 0.480102i
\(423\) 0 0
\(424\) 60.0000 0.00687231
\(425\) 0 0
\(426\) 0 0
\(427\) 2028.00i 0.229840i
\(428\) − 7686.00i − 0.868030i
\(429\) 0 0
\(430\) 0 0
\(431\) 10680.0 1.19359 0.596795 0.802394i \(-0.296440\pi\)
0.596795 + 0.802394i \(0.296440\pi\)
\(432\) 0 0
\(433\) − 11566.0i − 1.28366i −0.766845 0.641832i \(-0.778175\pi\)
0.766845 0.641832i \(-0.221825\pi\)
\(434\) 1350.00 0.149314
\(435\) 0 0
\(436\) 4900.00 0.538228
\(437\) − 168.000i − 0.0183902i
\(438\) 0 0
\(439\) 1448.00 0.157424 0.0787122 0.996897i \(-0.474919\pi\)
0.0787122 + 0.996897i \(0.474919\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 655.000i 0.0704868i
\(443\) 2376.00i 0.254824i 0.991850 + 0.127412i \(0.0406671\pi\)
−0.991850 + 0.127412i \(0.959333\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −5956.00 −0.632343
\(447\) 0 0
\(448\) − 1002.00i − 0.105670i
\(449\) 14894.0 1.56546 0.782730 0.622362i \(-0.213827\pi\)
0.782730 + 0.622362i \(0.213827\pi\)
\(450\) 0 0
\(451\) −6580.00 −0.687007
\(452\) 7385.00i 0.768498i
\(453\) 0 0
\(454\) −4940.00 −0.510673
\(455\) 0 0
\(456\) 0 0
\(457\) 16204.0i 1.65862i 0.558786 + 0.829312i \(0.311267\pi\)
−0.558786 + 0.829312i \(0.688733\pi\)
\(458\) − 4344.00i − 0.443192i
\(459\) 0 0
\(460\) 0 0
\(461\) −5082.00 −0.513432 −0.256716 0.966487i \(-0.582641\pi\)
−0.256716 + 0.966487i \(0.582641\pi\)
\(462\) 0 0
\(463\) 10326.0i 1.03648i 0.855235 + 0.518240i \(0.173412\pi\)
−0.855235 + 0.518240i \(0.826588\pi\)
\(464\) 6437.00 0.644031
\(465\) 0 0
\(466\) −5202.00 −0.517120
\(467\) 4184.00i 0.414588i 0.978279 + 0.207294i \(0.0664656\pi\)
−0.978279 + 0.207294i \(0.933534\pi\)
\(468\) 0 0
\(469\) 2952.00 0.290641
\(470\) 0 0
\(471\) 0 0
\(472\) − 11220.0i − 1.09416i
\(473\) 18659.0i 1.81383i
\(474\) 0 0
\(475\) 0 0
\(476\) −5502.00 −0.529798
\(477\) 0 0
\(478\) − 1546.00i − 0.147934i
\(479\) 15576.0 1.48577 0.742887 0.669417i \(-0.233456\pi\)
0.742887 + 0.669417i \(0.233456\pi\)
\(480\) 0 0
\(481\) 350.000 0.0331780
\(482\) − 3659.00i − 0.345774i
\(483\) 0 0
\(484\) 6146.00 0.577198
\(485\) 0 0
\(486\) 0 0
\(487\) 10220.0i 0.950949i 0.879729 + 0.475475i \(0.157724\pi\)
−0.879729 + 0.475475i \(0.842276\pi\)
\(488\) − 5070.00i − 0.470304i
\(489\) 0 0
\(490\) 0 0
\(491\) −2692.00 −0.247430 −0.123715 0.992318i \(-0.539481\pi\)
−0.123715 + 0.992318i \(0.539481\pi\)
\(492\) 0 0
\(493\) − 20567.0i − 1.87889i
\(494\) −280.000 −0.0255016
\(495\) 0 0
\(496\) 9225.00 0.835110
\(497\) − 192.000i − 0.0173287i
\(498\) 0 0
\(499\) −5764.00 −0.517098 −0.258549 0.965998i \(-0.583244\pi\)
−0.258549 + 0.965998i \(0.583244\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 1221.00i 0.108558i
\(503\) 2437.00i 0.216025i 0.994150 + 0.108012i \(0.0344486\pi\)
−0.994150 + 0.108012i \(0.965551\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −141.000 −0.0123878
\(507\) 0 0
\(508\) − 11522.0i − 1.00631i
\(509\) 5849.00 0.509337 0.254668 0.967028i \(-0.418034\pi\)
0.254668 + 0.967028i \(0.418034\pi\)
\(510\) 0 0
\(511\) −5820.00 −0.503839
\(512\) 11521.0i 0.994455i
\(513\) 0 0
\(514\) 6255.00 0.536763
\(515\) 0 0
\(516\) 0 0
\(517\) 16309.0i 1.38737i
\(518\) − 420.000i − 0.0356250i
\(519\) 0 0
\(520\) 0 0
\(521\) −17032.0 −1.43222 −0.716109 0.697989i \(-0.754079\pi\)
−0.716109 + 0.697989i \(0.754079\pi\)
\(522\) 0 0
\(523\) − 4147.00i − 0.346722i −0.984858 0.173361i \(-0.944537\pi\)
0.984858 0.173361i \(-0.0554627\pi\)
\(524\) −12831.0 −1.06970
\(525\) 0 0
\(526\) 836.000 0.0692991
\(527\) − 29475.0i − 2.43634i
\(528\) 0 0
\(529\) 12158.0 0.999260
\(530\) 0 0
\(531\) 0 0
\(532\) − 2352.00i − 0.191677i
\(533\) 700.000i 0.0568862i
\(534\) 0 0
\(535\) 0 0
\(536\) −7380.00 −0.594715
\(537\) 0 0
\(538\) 2231.00i 0.178783i
\(539\) −14429.0 −1.15306
\(540\) 0 0
\(541\) −3942.00 −0.313271 −0.156636 0.987656i \(-0.550065\pi\)
−0.156636 + 0.987656i \(0.550065\pi\)
\(542\) − 4832.00i − 0.382938i
\(543\) 0 0
\(544\) 21091.0 1.66226
\(545\) 0 0
\(546\) 0 0
\(547\) − 13751.0i − 1.07486i −0.843307 0.537432i \(-0.819395\pi\)
0.843307 0.537432i \(-0.180605\pi\)
\(548\) 7686.00i 0.599142i
\(549\) 0 0
\(550\) 0 0
\(551\) 8792.00 0.679767
\(552\) 0 0
\(553\) − 7542.00i − 0.579961i
\(554\) −6450.00 −0.494647
\(555\) 0 0
\(556\) 7294.00 0.556357
\(557\) 7944.00i 0.604305i 0.953260 + 0.302153i \(0.0977052\pi\)
−0.953260 + 0.302153i \(0.902295\pi\)
\(558\) 0 0
\(559\) 1985.00 0.150191
\(560\) 0 0
\(561\) 0 0
\(562\) − 1050.00i − 0.0788106i
\(563\) 6702.00i 0.501697i 0.968026 + 0.250849i \(0.0807097\pi\)
−0.968026 + 0.250849i \(0.919290\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −1584.00 −0.117633
\(567\) 0 0
\(568\) 480.000i 0.0354584i
\(569\) 2760.00 0.203348 0.101674 0.994818i \(-0.467580\pi\)
0.101674 + 0.994818i \(0.467580\pi\)
\(570\) 0 0
\(571\) 8930.00 0.654481 0.327241 0.944941i \(-0.393881\pi\)
0.327241 + 0.944941i \(0.393881\pi\)
\(572\) − 1645.00i − 0.120246i
\(573\) 0 0
\(574\) 840.000 0.0610817
\(575\) 0 0
\(576\) 0 0
\(577\) 6944.00i 0.501010i 0.968115 + 0.250505i \(0.0805966\pi\)
−0.968115 + 0.250505i \(0.919403\pi\)
\(578\) − 12248.0i − 0.881401i
\(579\) 0 0
\(580\) 0 0
\(581\) 612.000 0.0437006
\(582\) 0 0
\(583\) 188.000i 0.0133553i
\(584\) 14550.0 1.03096
\(585\) 0 0
\(586\) 6594.00 0.464839
\(587\) − 4206.00i − 0.295741i −0.989007 0.147871i \(-0.952758\pi\)
0.989007 0.147871i \(-0.0472419\pi\)
\(588\) 0 0
\(589\) 12600.0 0.881450
\(590\) 0 0
\(591\) 0 0
\(592\) − 2870.00i − 0.199250i
\(593\) 6571.00i 0.455040i 0.973773 + 0.227520i \(0.0730617\pi\)
−0.973773 + 0.227520i \(0.926938\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 20587.0 1.41489
\(597\) 0 0
\(598\) 15.0000i 0.00102575i
\(599\) 9490.00 0.647330 0.323665 0.946172i \(-0.395085\pi\)
0.323665 + 0.946172i \(0.395085\pi\)
\(600\) 0 0
\(601\) 11861.0 0.805025 0.402513 0.915414i \(-0.368137\pi\)
0.402513 + 0.915414i \(0.368137\pi\)
\(602\) − 2382.00i − 0.161268i
\(603\) 0 0
\(604\) 3577.00 0.240970
\(605\) 0 0
\(606\) 0 0
\(607\) − 518.000i − 0.0346375i −0.999850 0.0173188i \(-0.994487\pi\)
0.999850 0.0173188i \(-0.00551301\pi\)
\(608\) 9016.00i 0.601393i
\(609\) 0 0
\(610\) 0 0
\(611\) 1735.00 0.114878
\(612\) 0 0
\(613\) − 15163.0i − 0.999067i −0.866295 0.499533i \(-0.833505\pi\)
0.866295 0.499533i \(-0.166495\pi\)
\(614\) 4343.00 0.285455
\(615\) 0 0
\(616\) −4230.00 −0.276675
\(617\) 19011.0i 1.24044i 0.784426 + 0.620222i \(0.212958\pi\)
−0.784426 + 0.620222i \(0.787042\pi\)
\(618\) 0 0
\(619\) 7906.00 0.513359 0.256679 0.966497i \(-0.417372\pi\)
0.256679 + 0.966497i \(0.417372\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) − 2124.00i − 0.136921i
\(623\) − 8928.00i − 0.574146i
\(624\) 0 0
\(625\) 0 0
\(626\) −7516.00 −0.479872
\(627\) 0 0
\(628\) − 3997.00i − 0.253977i
\(629\) −9170.00 −0.581291
\(630\) 0 0
\(631\) −3416.00 −0.215513 −0.107757 0.994177i \(-0.534367\pi\)
−0.107757 + 0.994177i \(0.534367\pi\)
\(632\) 18855.0i 1.18673i
\(633\) 0 0
\(634\) 6880.00 0.430977
\(635\) 0 0
\(636\) 0 0
\(637\) 1535.00i 0.0954771i
\(638\) − 7379.00i − 0.457896i
\(639\) 0 0
\(640\) 0 0
\(641\) 4830.00 0.297619 0.148809 0.988866i \(-0.452456\pi\)
0.148809 + 0.988866i \(0.452456\pi\)
\(642\) 0 0
\(643\) − 12549.0i − 0.769649i −0.922990 0.384824i \(-0.874262\pi\)
0.922990 0.384824i \(-0.125738\pi\)
\(644\) −126.000 −0.00770978
\(645\) 0 0
\(646\) 7336.00 0.446797
\(647\) 8164.00i 0.496074i 0.968751 + 0.248037i \(0.0797855\pi\)
−0.968751 + 0.248037i \(0.920215\pi\)
\(648\) 0 0
\(649\) 35156.0 2.12634
\(650\) 0 0
\(651\) 0 0
\(652\) − 4991.00i − 0.299789i
\(653\) − 23768.0i − 1.42437i −0.701992 0.712185i \(-0.747706\pi\)
0.701992 0.712185i \(-0.252294\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 5740.00 0.341630
\(657\) 0 0
\(658\) − 2082.00i − 0.123351i
\(659\) −21472.0 −1.26924 −0.634621 0.772824i \(-0.718844\pi\)
−0.634621 + 0.772824i \(0.718844\pi\)
\(660\) 0 0
\(661\) 12982.0 0.763905 0.381953 0.924182i \(-0.375252\pi\)
0.381953 + 0.924182i \(0.375252\pi\)
\(662\) − 4986.00i − 0.292729i
\(663\) 0 0
\(664\) −1530.00 −0.0894210
\(665\) 0 0
\(666\) 0 0
\(667\) − 471.000i − 0.0273421i
\(668\) 11172.0i 0.647092i
\(669\) 0 0
\(670\) 0 0
\(671\) 15886.0 0.913968
\(672\) 0 0
\(673\) 6006.00i 0.344003i 0.985097 + 0.172002i \(0.0550235\pi\)
−0.985097 + 0.172002i \(0.944977\pi\)
\(674\) −904.000 −0.0516629
\(675\) 0 0
\(676\) 15204.0 0.865043
\(677\) 1164.00i 0.0660800i 0.999454 + 0.0330400i \(0.0105189\pi\)
−0.999454 + 0.0330400i \(0.989481\pi\)
\(678\) 0 0
\(679\) 5844.00 0.330298
\(680\) 0 0
\(681\) 0 0
\(682\) − 10575.0i − 0.593750i
\(683\) − 26496.0i − 1.48439i −0.670182 0.742197i \(-0.733784\pi\)
0.670182 0.742197i \(-0.266216\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 3900.00 0.217059
\(687\) 0 0
\(688\) − 16277.0i − 0.901969i
\(689\) 20.0000 0.00110586
\(690\) 0 0
\(691\) 17110.0 0.941961 0.470981 0.882144i \(-0.343900\pi\)
0.470981 + 0.882144i \(0.343900\pi\)
\(692\) − 28938.0i − 1.58968i
\(693\) 0 0
\(694\) −8860.00 −0.484612
\(695\) 0 0
\(696\) 0 0
\(697\) − 18340.0i − 0.996667i
\(698\) 4454.00i 0.241528i
\(699\) 0 0
\(700\) 0 0
\(701\) 30251.0 1.62991 0.814953 0.579527i \(-0.196763\pi\)
0.814953 + 0.579527i \(0.196763\pi\)
\(702\) 0 0
\(703\) − 3920.00i − 0.210307i
\(704\) −7849.00 −0.420199
\(705\) 0 0
\(706\) −8781.00 −0.468098
\(707\) 8010.00i 0.426092i
\(708\) 0 0
\(709\) −18820.0 −0.996897 −0.498448 0.866919i \(-0.666097\pi\)
−0.498448 + 0.866919i \(0.666097\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 22320.0i 1.17483i
\(713\) − 675.000i − 0.0354543i
\(714\) 0 0
\(715\) 0 0
\(716\) −12796.0 −0.667890
\(717\) 0 0
\(718\) − 2928.00i − 0.152189i
\(719\) −31890.0 −1.65410 −0.827049 0.562130i \(-0.809982\pi\)
−0.827049 + 0.562130i \(0.809982\pi\)
\(720\) 0 0
\(721\) −4116.00 −0.212605
\(722\) − 3723.00i − 0.191905i
\(723\) 0 0
\(724\) −3640.00 −0.186850
\(725\) 0 0
\(726\) 0 0
\(727\) − 11452.0i − 0.584224i −0.956384 0.292112i \(-0.905642\pi\)
0.956384 0.292112i \(-0.0943581\pi\)
\(728\) 450.000i 0.0229095i
\(729\) 0 0
\(730\) 0 0
\(731\) −52007.0 −2.63139
\(732\) 0 0
\(733\) − 7094.00i − 0.357466i −0.983898 0.178733i \(-0.942800\pi\)
0.983898 0.178733i \(-0.0571999\pi\)
\(734\) −9102.00 −0.457712
\(735\) 0 0
\(736\) 483.000 0.0241897
\(737\) − 23124.0i − 1.15574i
\(738\) 0 0
\(739\) 3200.00 0.159288 0.0796440 0.996823i \(-0.474622\pi\)
0.0796440 + 0.996823i \(0.474622\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 24.0000i − 0.00118742i
\(743\) 20831.0i 1.02855i 0.857624 + 0.514277i \(0.171940\pi\)
−0.857624 + 0.514277i \(0.828060\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −8183.00 −0.401610
\(747\) 0 0
\(748\) 43099.0i 2.10676i
\(749\) −6588.00 −0.321389
\(750\) 0 0
\(751\) −15605.0 −0.758235 −0.379118 0.925349i \(-0.623772\pi\)
−0.379118 + 0.925349i \(0.623772\pi\)
\(752\) − 14227.0i − 0.689901i
\(753\) 0 0
\(754\) −785.000 −0.0379151
\(755\) 0 0
\(756\) 0 0
\(757\) 21349.0i 1.02502i 0.858680 + 0.512512i \(0.171285\pi\)
−0.858680 + 0.512512i \(0.828715\pi\)
\(758\) − 6136.00i − 0.294023i
\(759\) 0 0
\(760\) 0 0
\(761\) 3702.00 0.176343 0.0881717 0.996105i \(-0.471898\pi\)
0.0881717 + 0.996105i \(0.471898\pi\)
\(762\) 0 0
\(763\) − 4200.00i − 0.199279i
\(764\) 33782.0 1.59972
\(765\) 0 0
\(766\) 5643.00 0.266175
\(767\) − 3740.00i − 0.176067i
\(768\) 0 0
\(769\) 1393.00 0.0653223 0.0326612 0.999466i \(-0.489602\pi\)
0.0326612 + 0.999466i \(0.489602\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 11690.0i − 0.544990i
\(773\) 6906.00i 0.321334i 0.987009 + 0.160667i \(0.0513646\pi\)
−0.987009 + 0.160667i \(0.948635\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −14610.0 −0.675861
\(777\) 0 0
\(778\) − 8991.00i − 0.414323i
\(779\) 7840.00 0.360587
\(780\) 0 0
\(781\) −1504.00 −0.0689083
\(782\) − 393.000i − 0.0179714i
\(783\) 0 0
\(784\) 12587.0 0.573387
\(785\) 0 0
\(786\) 0 0
\(787\) 30493.0i 1.38114i 0.723265 + 0.690571i \(0.242641\pi\)
−0.723265 + 0.690571i \(0.757359\pi\)
\(788\) − 9660.00i − 0.436705i
\(789\) 0 0
\(790\) 0 0
\(791\) 6330.00 0.284537
\(792\) 0 0
\(793\) − 1690.00i − 0.0756793i
\(794\) 12449.0 0.556421
\(795\) 0 0
\(796\) −30499.0 −1.35805
\(797\) 33488.0i 1.48834i 0.667991 + 0.744169i \(0.267154\pi\)
−0.667991 + 0.744169i \(0.732846\pi\)
\(798\) 0 0
\(799\) −45457.0 −2.01271
\(800\) 0 0
\(801\) 0 0
\(802\) 8076.00i 0.355578i
\(803\) 45590.0i 2.00353i
\(804\) 0 0
\(805\) 0 0
\(806\) −1125.00 −0.0491643
\(807\) 0 0
\(808\) − 20025.0i − 0.871878i
\(809\) 15304.0 0.665093 0.332546 0.943087i \(-0.392092\pi\)
0.332546 + 0.943087i \(0.392092\pi\)
\(810\) 0 0
\(811\) −40122.0 −1.73721 −0.868603 0.495509i \(-0.834982\pi\)
−0.868603 + 0.495509i \(0.834982\pi\)
\(812\) − 6594.00i − 0.284980i
\(813\) 0 0
\(814\) −3290.00 −0.141664
\(815\) 0 0
\(816\) 0 0
\(817\) − 22232.0i − 0.952019i
\(818\) 2833.00i 0.121092i
\(819\) 0 0
\(820\) 0 0
\(821\) 25098.0 1.06690 0.533451 0.845831i \(-0.320895\pi\)
0.533451 + 0.845831i \(0.320895\pi\)
\(822\) 0 0
\(823\) 43492.0i 1.84208i 0.389462 + 0.921042i \(0.372661\pi\)
−0.389462 + 0.921042i \(0.627339\pi\)
\(824\) 10290.0 0.435035
\(825\) 0 0
\(826\) −4488.00 −0.189053
\(827\) 11206.0i 0.471186i 0.971852 + 0.235593i \(0.0757032\pi\)
−0.971852 + 0.235593i \(0.924297\pi\)
\(828\) 0 0
\(829\) 23964.0 1.00399 0.501993 0.864872i \(-0.332600\pi\)
0.501993 + 0.864872i \(0.332600\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 835.000i 0.0347938i
\(833\) − 40217.0i − 1.67279i
\(834\) 0 0
\(835\) 0 0
\(836\) −18424.0 −0.762210
\(837\) 0 0
\(838\) 4777.00i 0.196920i
\(839\) 34606.0 1.42399 0.711997 0.702182i \(-0.247791\pi\)
0.711997 + 0.702182i \(0.247791\pi\)
\(840\) 0 0
\(841\) 260.000 0.0106605
\(842\) − 6464.00i − 0.264566i
\(843\) 0 0
\(844\) −29134.0 −1.18819
\(845\) 0 0
\(846\) 0 0
\(847\) − 5268.00i − 0.213708i
\(848\) − 164.000i − 0.00664125i
\(849\) 0 0
\(850\) 0 0
\(851\) −210.000 −0.00845912
\(852\) 0 0
\(853\) 18477.0i 0.741665i 0.928700 + 0.370833i \(0.120928\pi\)
−0.928700 + 0.370833i \(0.879072\pi\)
\(854\) −2028.00 −0.0812608
\(855\) 0 0
\(856\) 16470.0 0.657632
\(857\) − 41342.0i − 1.64786i −0.566692 0.823930i \(-0.691777\pi\)
0.566692 0.823930i \(-0.308223\pi\)
\(858\) 0 0
\(859\) −21898.0 −0.869791 −0.434895 0.900481i \(-0.643215\pi\)
−0.434895 + 0.900481i \(0.643215\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 10680.0i 0.421998i
\(863\) 18487.0i 0.729206i 0.931163 + 0.364603i \(0.118795\pi\)
−0.931163 + 0.364603i \(0.881205\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 11566.0 0.453844
\(867\) 0 0
\(868\) − 9450.00i − 0.369532i
\(869\) −59079.0 −2.30623
\(870\) 0 0
\(871\) −2460.00 −0.0956991
\(872\) 10500.0i 0.407769i
\(873\) 0 0
\(874\) 168.000 0.00650193
\(875\) 0 0
\(876\) 0 0
\(877\) 7593.00i 0.292357i 0.989258 + 0.146179i \(0.0466974\pi\)
−0.989258 + 0.146179i \(0.953303\pi\)
\(878\) 1448.00i 0.0556579i
\(879\) 0 0
\(880\) 0 0
\(881\) −3038.00 −0.116178 −0.0580890 0.998311i \(-0.518501\pi\)
−0.0580890 + 0.998311i \(0.518501\pi\)
\(882\) 0 0
\(883\) 16732.0i 0.637686i 0.947808 + 0.318843i \(0.103294\pi\)
−0.947808 + 0.318843i \(0.896706\pi\)
\(884\) 4585.00 0.174446
\(885\) 0 0
\(886\) −2376.00 −0.0900940
\(887\) − 8031.00i − 0.304007i −0.988380 0.152004i \(-0.951427\pi\)
0.988380 0.152004i \(-0.0485726\pi\)
\(888\) 0 0
\(889\) −9876.00 −0.372588
\(890\) 0 0
\(891\) 0 0
\(892\) 41692.0i 1.56497i
\(893\) − 19432.0i − 0.728183i
\(894\) 0 0
\(895\) 0 0
\(896\) 8730.00 0.325501
\(897\) 0 0
\(898\) 14894.0i 0.553474i
\(899\) 35325.0 1.31052
\(900\) 0 0
\(901\) −524.000 −0.0193751
\(902\) − 6580.00i − 0.242894i
\(903\) 0 0
\(904\) −15825.0 −0.582225
\(905\) 0 0
\(906\) 0 0
\(907\) − 38487.0i − 1.40897i −0.709717 0.704487i \(-0.751177\pi\)
0.709717 0.704487i \(-0.248823\pi\)
\(908\) 34580.0i 1.26385i
\(909\) 0 0
\(910\) 0 0
\(911\) −5120.00 −0.186205 −0.0931027 0.995657i \(-0.529679\pi\)
−0.0931027 + 0.995657i \(0.529679\pi\)
\(912\) 0 0
\(913\) − 4794.00i − 0.173777i
\(914\) −16204.0 −0.586412
\(915\) 0 0
\(916\) −30408.0 −1.09684
\(917\) 10998.0i 0.396059i
\(918\) 0 0
\(919\) −28075.0 −1.00774 −0.503868 0.863781i \(-0.668090\pi\)
−0.503868 + 0.863781i \(0.668090\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 5082.00i − 0.181526i
\(923\) 160.000i 0.00570581i
\(924\) 0 0
\(925\) 0 0
\(926\) −10326.0 −0.366451
\(927\) 0 0
\(928\) 25277.0i 0.894136i
\(929\) 12856.0 0.454028 0.227014 0.973892i \(-0.427104\pi\)
0.227014 + 0.973892i \(0.427104\pi\)
\(930\) 0 0
\(931\) 17192.0 0.605204
\(932\) 36414.0i 1.27981i
\(933\) 0 0
\(934\) −4184.00 −0.146579
\(935\) 0 0
\(936\) 0 0
\(937\) − 1374.00i − 0.0479046i −0.999713 0.0239523i \(-0.992375\pi\)
0.999713 0.0239523i \(-0.00762499\pi\)
\(938\) 2952.00i 0.102757i
\(939\) 0 0
\(940\) 0 0
\(941\) 8543.00 0.295955 0.147978 0.988991i \(-0.452724\pi\)
0.147978 + 0.988991i \(0.452724\pi\)
\(942\) 0 0
\(943\) − 420.000i − 0.0145038i
\(944\) −30668.0 −1.05737
\(945\) 0 0
\(946\) −18659.0 −0.641286
\(947\) 13506.0i 0.463449i 0.972781 + 0.231724i \(0.0744368\pi\)
−0.972781 + 0.231724i \(0.925563\pi\)
\(948\) 0 0
\(949\) 4850.00 0.165898
\(950\) 0 0
\(951\) 0 0
\(952\) − 11790.0i − 0.401382i
\(953\) − 21775.0i − 0.740148i −0.929002 0.370074i \(-0.879332\pi\)
0.929002 0.370074i \(-0.120668\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −10822.0 −0.366118
\(957\) 0 0
\(958\) 15576.0i 0.525300i
\(959\) 6588.00 0.221833
\(960\) 0 0
\(961\) 20834.0 0.699339
\(962\) 350.000i 0.0117302i
\(963\) 0 0
\(964\) −25613.0 −0.855746
\(965\) 0 0
\(966\) 0 0
\(967\) 3854.00i 0.128166i 0.997945 + 0.0640829i \(0.0204122\pi\)
−0.997945 + 0.0640829i \(0.979588\pi\)
\(968\) 13170.0i 0.437293i
\(969\) 0 0
\(970\) 0 0
\(971\) 12933.0 0.427435 0.213718 0.976895i \(-0.431443\pi\)
0.213718 + 0.976895i \(0.431443\pi\)
\(972\) 0 0
\(973\) − 6252.00i − 0.205992i
\(974\) −10220.0 −0.336211
\(975\) 0 0
\(976\) −13858.0 −0.454492
\(977\) 17521.0i 0.573743i 0.957969 + 0.286871i \(0.0926152\pi\)
−0.957969 + 0.286871i \(0.907385\pi\)
\(978\) 0 0
\(979\) −69936.0 −2.28311
\(980\) 0 0
\(981\) 0 0
\(982\) − 2692.00i − 0.0874798i
\(983\) 12573.0i 0.407952i 0.978976 + 0.203976i \(0.0653864\pi\)
−0.978976 + 0.203976i \(0.934614\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 20567.0 0.664287
\(987\) 0 0
\(988\) 1960.00i 0.0631133i
\(989\) −1191.00 −0.0382928
\(990\) 0 0
\(991\) 8945.00 0.286728 0.143364 0.989670i \(-0.454208\pi\)
0.143364 + 0.989670i \(0.454208\pi\)
\(992\) 36225.0i 1.15942i
\(993\) 0 0
\(994\) 192.000 0.00612663
\(995\) 0 0
\(996\) 0 0
\(997\) − 58179.0i − 1.84809i −0.382282 0.924046i \(-0.624862\pi\)
0.382282 0.924046i \(-0.375138\pi\)
\(998\) − 5764.00i − 0.182822i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.b.e.649.2 2
3.2 odd 2 675.4.b.f.649.1 2
5.2 odd 4 675.4.a.c.1.1 1
5.3 odd 4 135.4.a.c.1.1 yes 1
5.4 even 2 inner 675.4.b.e.649.1 2
15.2 even 4 675.4.a.h.1.1 1
15.8 even 4 135.4.a.b.1.1 1
15.14 odd 2 675.4.b.f.649.2 2
20.3 even 4 2160.4.a.p.1.1 1
45.13 odd 12 405.4.e.f.136.1 2
45.23 even 12 405.4.e.h.136.1 2
45.38 even 12 405.4.e.h.271.1 2
45.43 odd 12 405.4.e.f.271.1 2
60.23 odd 4 2160.4.a.f.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.b.1.1 1 15.8 even 4
135.4.a.c.1.1 yes 1 5.3 odd 4
405.4.e.f.136.1 2 45.13 odd 12
405.4.e.f.271.1 2 45.43 odd 12
405.4.e.h.136.1 2 45.23 even 12
405.4.e.h.271.1 2 45.38 even 12
675.4.a.c.1.1 1 5.2 odd 4
675.4.a.h.1.1 1 15.2 even 4
675.4.b.e.649.1 2 5.4 even 2 inner
675.4.b.e.649.2 2 1.1 even 1 trivial
675.4.b.f.649.1 2 3.2 odd 2
675.4.b.f.649.2 2 15.14 odd 2
2160.4.a.f.1.1 1 60.23 odd 4
2160.4.a.p.1.1 1 20.3 even 4