Properties

Label 675.4.a.w
Level $675$
Weight $4$
Character orbit 675.a
Self dual yes
Analytic conductor $39.826$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,26,0,0,-30] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.3173728.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 29x^{2} + 118 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} + 7) q^{4} + (\beta_{2} - 7) q^{7} + (\beta_{3} + 5 \beta_1) q^{8} + ( - 2 \beta_{3} - 2 \beta_1) q^{11} + (7 \beta_{2} - 2) q^{13} + (\beta_{3} - \beta_1) q^{14} + (5 \beta_{2} + 21) q^{16}+ \cdots + ( - 15 \beta_{3} - 292 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 26 q^{4} - 30 q^{7} - 22 q^{13} + 74 q^{16} + 346 q^{19} - 100 q^{22} + 174 q^{28} + 744 q^{31} + 796 q^{34} + 76 q^{37} - 280 q^{43} + 1656 q^{46} - 778 q^{49} + 2440 q^{52} - 2420 q^{58} + 178 q^{61}+ \cdots + 2050 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 29x^{2} + 118 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 15 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - 21\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + 21\beta_1 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−4.90965
−2.21254
2.21254
4.90965
−4.90965 0 16.1047 0 0 2.10469 −39.7912 0 0
1.2 −2.21254 0 −3.10469 0 0 −17.1047 24.5695 0 0
1.3 2.21254 0 −3.10469 0 0 −17.1047 −24.5695 0 0
1.4 4.90965 0 16.1047 0 0 2.10469 39.7912 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.4.a.w 4
3.b odd 2 1 inner 675.4.a.w 4
5.b even 2 1 675.4.a.x yes 4
5.c odd 4 2 675.4.b.o 8
15.d odd 2 1 675.4.a.x yes 4
15.e even 4 2 675.4.b.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
675.4.a.w 4 1.a even 1 1 trivial
675.4.a.w 4 3.b odd 2 1 inner
675.4.a.x yes 4 5.b even 2 1
675.4.a.x yes 4 15.d odd 2 1
675.4.b.o 8 5.c odd 4 2
675.4.b.o 8 15.e even 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(675))\):

\( T_{2}^{4} - 29T_{2}^{2} + 118 \) Copy content Toggle raw display
\( T_{7}^{2} + 15T_{7} - 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 29T^{2} + 118 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 15 T - 36)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 6092 T^{2} + 7257472 \) Copy content Toggle raw display
$13$ \( (T^{2} + 11 T - 4490)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 11468 T^{2} + 15980032 \) Copy content Toggle raw display
$19$ \( (T^{2} - 173 T + 5176)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 47664 T^{2} + 244684800 \) Copy content Toggle raw display
$29$ \( T^{4} - 56492 T^{2} + 26288512 \) Copy content Toggle raw display
$31$ \( (T^{2} - 372 T + 31275)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 38 T - 1115)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 12373196800 \) Copy content Toggle raw display
$43$ \( (T^{2} + 140 T - 24989)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 6419834368 \) Copy content Toggle raw display
$53$ \( T^{4} - 89228 T^{2} + 475783552 \) Copy content Toggle raw display
$59$ \( T^{4} - 1856 T^{2} + 483328 \) Copy content Toggle raw display
$61$ \( (T^{2} - 89 T - 516926)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 69 T - 319932)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 8294391808 \) Copy content Toggle raw display
$73$ \( (T^{2} + 518 T + 65605)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - 1038 T - 108495)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - 64332 T^{2} + 611712 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 4761627379200 \) Copy content Toggle raw display
$97$ \( (T^{2} - 1025 T - 678386)^{2} \) Copy content Toggle raw display
show more
show less