Properties

Label 675.4.a.t
Level $675$
Weight $4$
Character orbit 675.a
Self dual yes
Analytic conductor $39.826$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-6,0,-6,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.467024.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 26x^{2} + 101 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - 2) q^{2} + 3 \beta_{3} q^{4} - \beta_{2} q^{7} + (5 \beta_{3} + 4) q^{8} + ( - 3 \beta_{2} - 2 \beta_1) q^{11} + ( - \beta_{2} - 3 \beta_1) q^{13} + \beta_1 q^{14} + ( - 33 \beta_{3} - 28) q^{16}+ \cdots + (190 \beta_{3} + 794) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 6 q^{2} - 6 q^{4} + 6 q^{8} - 46 q^{16} + 66 q^{17} - 110 q^{19} + 6 q^{23} - 268 q^{31} + 582 q^{32} - 388 q^{34} - 192 q^{38} - 944 q^{46} + 1116 q^{47} + 482 q^{49} + 1824 q^{53} - 1798 q^{61}+ \cdots + 2796 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 26x^{2} + 101 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{3} - 45\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -3\nu^{3} + 69\nu ) / 4 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{2} - 15 ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 4\beta_{3} + 15 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 15\beta_{2} + 23\beta_1 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
4.60936
−4.60936
2.18032
−2.18032
−3.56155 0 4.68466 0 0 −6.06288 11.8078 0 0
1.2 −3.56155 0 4.68466 0 0 6.06288 11.8078 0 0
1.3 0.561553 0 −7.68466 0 0 −29.8369 −8.80776 0 0
1.4 0.561553 0 −7.68466 0 0 29.8369 −8.80776 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.4.a.t 4
3.b odd 2 1 675.4.a.ba 4
5.b even 2 1 675.4.a.ba 4
5.c odd 4 2 135.4.b.b 8
15.d odd 2 1 inner 675.4.a.t 4
15.e even 4 2 135.4.b.b 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.b.b 8 5.c odd 4 2
135.4.b.b 8 15.e even 4 2
675.4.a.t 4 1.a even 1 1 trivial
675.4.a.t 4 15.d odd 2 1 inner
675.4.a.ba 4 3.b odd 2 1
675.4.a.ba 4 5.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(675))\):

\( T_{2}^{2} + 3T_{2} - 2 \) Copy content Toggle raw display
\( T_{7}^{4} - 927T_{7}^{2} + 32724 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 3 T - 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} - 927 T^{2} + 32724 \) Copy content Toggle raw display
$11$ \( T^{4} - 6903 T^{2} + 11813364 \) Copy content Toggle raw display
$13$ \( T^{4} - 5436 T^{2} + 2094336 \) Copy content Toggle raw display
$17$ \( (T^{2} - 33 T - 956)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 55 T - 1118)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3 T - 12854)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} - 6876 T^{2} + 8377344 \) Copy content Toggle raw display
$31$ \( (T^{2} + 134 T - 25499)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 26892 T^{2} + 169641216 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 6509327184 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 3738520656 \) Copy content Toggle raw display
$47$ \( (T^{2} - 558 T + 40288)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 912 T + 191599)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 87371640144 \) Copy content Toggle raw display
$61$ \( (T^{2} + 899 T + 202012)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 197389073664 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots + 28669365504 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 27039219444 \) Copy content Toggle raw display
$79$ \( (T^{2} - 341 T + 18016)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 192 T - 1184609)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 171008948304 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 801172005696 \) Copy content Toggle raw display
show more
show less