Properties

Label 675.4.a.s.1.3
Level $675$
Weight $4$
Character 675.1
Self dual yes
Analytic conductor $39.826$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,5,0,17,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.654334\) of defining polynomial
Character \(\chi\) \(=\) 675.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+5.45876 q^{2} +21.7980 q^{4} +11.8065 q^{7} +75.3201 q^{8} +56.2376 q^{11} -34.5961 q^{13} +64.4489 q^{14} +236.770 q^{16} +39.2675 q^{17} -146.561 q^{19} +306.987 q^{22} -23.5777 q^{23} -188.851 q^{26} +257.359 q^{28} -161.003 q^{29} -29.5465 q^{31} +689.908 q^{32} +214.352 q^{34} +217.688 q^{37} -800.039 q^{38} -142.290 q^{41} +468.030 q^{43} +1225.87 q^{44} -128.705 q^{46} +394.318 q^{47} -203.606 q^{49} -754.126 q^{52} -134.780 q^{53} +889.268 q^{56} -878.875 q^{58} +131.195 q^{59} +259.801 q^{61} -161.287 q^{62} +1871.88 q^{64} -445.244 q^{67} +855.954 q^{68} -560.841 q^{71} +88.6681 q^{73} +1188.30 q^{74} -3194.74 q^{76} +663.970 q^{77} +450.342 q^{79} -776.726 q^{82} +284.295 q^{83} +2554.86 q^{86} +4235.82 q^{88} -625.305 q^{89} -408.459 q^{91} -513.948 q^{92} +2152.49 q^{94} +193.261 q^{97} -1111.44 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 5 q^{2} + 17 q^{4} + 4 q^{7} + 75 q^{8} - 5 q^{11} - 7 q^{13} - 60 q^{14} + 161 q^{16} + 155 q^{17} - 50 q^{19} + 229 q^{22} + 285 q^{23} - 185 q^{26} + 334 q^{28} - 115 q^{29} - 115 q^{31} + 775 q^{32}+ \cdots - 305 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.45876 1.92996 0.964981 0.262320i \(-0.0844875\pi\)
0.964981 + 0.262320i \(0.0844875\pi\)
\(3\) 0 0
\(4\) 21.7980 2.72475
\(5\) 0 0
\(6\) 0 0
\(7\) 11.8065 0.637492 0.318746 0.947840i \(-0.396738\pi\)
0.318746 + 0.947840i \(0.396738\pi\)
\(8\) 75.3201 3.32871
\(9\) 0 0
\(10\) 0 0
\(11\) 56.2376 1.54148 0.770740 0.637150i \(-0.219887\pi\)
0.770740 + 0.637150i \(0.219887\pi\)
\(12\) 0 0
\(13\) −34.5961 −0.738094 −0.369047 0.929411i \(-0.620316\pi\)
−0.369047 + 0.929411i \(0.620316\pi\)
\(14\) 64.4489 1.23034
\(15\) 0 0
\(16\) 236.770 3.69953
\(17\) 39.2675 0.560221 0.280111 0.959968i \(-0.409629\pi\)
0.280111 + 0.959968i \(0.409629\pi\)
\(18\) 0 0
\(19\) −146.561 −1.76965 −0.884825 0.465924i \(-0.845722\pi\)
−0.884825 + 0.465924i \(0.845722\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 306.987 2.97500
\(23\) −23.5777 −0.213752 −0.106876 0.994272i \(-0.534085\pi\)
−0.106876 + 0.994272i \(0.534085\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −188.851 −1.42449
\(27\) 0 0
\(28\) 257.359 1.73701
\(29\) −161.003 −1.03095 −0.515473 0.856906i \(-0.672384\pi\)
−0.515473 + 0.856906i \(0.672384\pi\)
\(30\) 0 0
\(31\) −29.5465 −0.171184 −0.0855921 0.996330i \(-0.527278\pi\)
−0.0855921 + 0.996330i \(0.527278\pi\)
\(32\) 689.908 3.81124
\(33\) 0 0
\(34\) 214.352 1.08121
\(35\) 0 0
\(36\) 0 0
\(37\) 217.688 0.967233 0.483617 0.875280i \(-0.339323\pi\)
0.483617 + 0.875280i \(0.339323\pi\)
\(38\) −800.039 −3.41536
\(39\) 0 0
\(40\) 0 0
\(41\) −142.290 −0.541999 −0.270999 0.962580i \(-0.587354\pi\)
−0.270999 + 0.962580i \(0.587354\pi\)
\(42\) 0 0
\(43\) 468.030 1.65986 0.829929 0.557869i \(-0.188381\pi\)
0.829929 + 0.557869i \(0.188381\pi\)
\(44\) 1225.87 4.20015
\(45\) 0 0
\(46\) −128.705 −0.412533
\(47\) 394.318 1.22377 0.611886 0.790946i \(-0.290411\pi\)
0.611886 + 0.790946i \(0.290411\pi\)
\(48\) 0 0
\(49\) −203.606 −0.593604
\(50\) 0 0
\(51\) 0 0
\(52\) −754.126 −2.01112
\(53\) −134.780 −0.349311 −0.174655 0.984630i \(-0.555881\pi\)
−0.174655 + 0.984630i \(0.555881\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 889.268 2.12203
\(57\) 0 0
\(58\) −878.875 −1.98969
\(59\) 131.195 0.289495 0.144747 0.989469i \(-0.453763\pi\)
0.144747 + 0.989469i \(0.453763\pi\)
\(60\) 0 0
\(61\) 259.801 0.545313 0.272657 0.962111i \(-0.412098\pi\)
0.272657 + 0.962111i \(0.412098\pi\)
\(62\) −161.287 −0.330379
\(63\) 0 0
\(64\) 1871.88 3.65602
\(65\) 0 0
\(66\) 0 0
\(67\) −445.244 −0.811869 −0.405935 0.913902i \(-0.633054\pi\)
−0.405935 + 0.913902i \(0.633054\pi\)
\(68\) 855.954 1.52647
\(69\) 0 0
\(70\) 0 0
\(71\) −560.841 −0.937459 −0.468729 0.883342i \(-0.655288\pi\)
−0.468729 + 0.883342i \(0.655288\pi\)
\(72\) 0 0
\(73\) 88.6681 0.142162 0.0710809 0.997471i \(-0.477355\pi\)
0.0710809 + 0.997471i \(0.477355\pi\)
\(74\) 1188.30 1.86672
\(75\) 0 0
\(76\) −3194.74 −4.82186
\(77\) 663.970 0.982681
\(78\) 0 0
\(79\) 450.342 0.641360 0.320680 0.947188i \(-0.396089\pi\)
0.320680 + 0.947188i \(0.396089\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −776.726 −1.04604
\(83\) 284.295 0.375969 0.187985 0.982172i \(-0.439804\pi\)
0.187985 + 0.982172i \(0.439804\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 2554.86 3.20346
\(87\) 0 0
\(88\) 4235.82 5.13114
\(89\) −625.305 −0.744744 −0.372372 0.928083i \(-0.621455\pi\)
−0.372372 + 0.928083i \(0.621455\pi\)
\(90\) 0 0
\(91\) −408.459 −0.470529
\(92\) −513.948 −0.582421
\(93\) 0 0
\(94\) 2152.49 2.36183
\(95\) 0 0
\(96\) 0 0
\(97\) 193.261 0.202296 0.101148 0.994871i \(-0.467748\pi\)
0.101148 + 0.994871i \(0.467748\pi\)
\(98\) −1111.44 −1.14563
\(99\) 0 0
\(100\) 0 0
\(101\) −1374.86 −1.35449 −0.677245 0.735758i \(-0.736826\pi\)
−0.677245 + 0.735758i \(0.736826\pi\)
\(102\) 0 0
\(103\) −2029.60 −1.94158 −0.970789 0.239935i \(-0.922874\pi\)
−0.970789 + 0.239935i \(0.922874\pi\)
\(104\) −2605.78 −2.45690
\(105\) 0 0
\(106\) −735.732 −0.674156
\(107\) −823.062 −0.743630 −0.371815 0.928307i \(-0.621264\pi\)
−0.371815 + 0.928307i \(0.621264\pi\)
\(108\) 0 0
\(109\) −829.868 −0.729238 −0.364619 0.931157i \(-0.618801\pi\)
−0.364619 + 0.931157i \(0.618801\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 2795.43 2.35842
\(113\) −1503.37 −1.25155 −0.625773 0.780005i \(-0.715216\pi\)
−0.625773 + 0.780005i \(0.715216\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −3509.54 −2.80908
\(117\) 0 0
\(118\) 716.164 0.558714
\(119\) 463.612 0.357137
\(120\) 0 0
\(121\) 1831.67 1.37616
\(122\) 1418.19 1.05243
\(123\) 0 0
\(124\) −644.056 −0.466435
\(125\) 0 0
\(126\) 0 0
\(127\) 576.348 0.402698 0.201349 0.979520i \(-0.435468\pi\)
0.201349 + 0.979520i \(0.435468\pi\)
\(128\) 4698.89 3.24474
\(129\) 0 0
\(130\) 0 0
\(131\) −2390.04 −1.59403 −0.797017 0.603957i \(-0.793590\pi\)
−0.797017 + 0.603957i \(0.793590\pi\)
\(132\) 0 0
\(133\) −1730.37 −1.12814
\(134\) −2430.48 −1.56688
\(135\) 0 0
\(136\) 2957.63 1.86481
\(137\) 1002.46 0.625152 0.312576 0.949893i \(-0.398808\pi\)
0.312576 + 0.949893i \(0.398808\pi\)
\(138\) 0 0
\(139\) 131.817 0.0804356 0.0402178 0.999191i \(-0.487195\pi\)
0.0402178 + 0.999191i \(0.487195\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3061.50 −1.80926
\(143\) −1945.60 −1.13776
\(144\) 0 0
\(145\) 0 0
\(146\) 484.017 0.274367
\(147\) 0 0
\(148\) 4745.16 2.63547
\(149\) −1019.49 −0.560533 −0.280267 0.959922i \(-0.590423\pi\)
−0.280267 + 0.959922i \(0.590423\pi\)
\(150\) 0 0
\(151\) 2822.38 1.52107 0.760537 0.649295i \(-0.224936\pi\)
0.760537 + 0.649295i \(0.224936\pi\)
\(152\) −11039.0 −5.89065
\(153\) 0 0
\(154\) 3624.45 1.89654
\(155\) 0 0
\(156\) 0 0
\(157\) −476.499 −0.242222 −0.121111 0.992639i \(-0.538646\pi\)
−0.121111 + 0.992639i \(0.538646\pi\)
\(158\) 2458.31 1.23780
\(159\) 0 0
\(160\) 0 0
\(161\) −278.371 −0.136265
\(162\) 0 0
\(163\) 2242.26 1.07747 0.538734 0.842476i \(-0.318903\pi\)
0.538734 + 0.842476i \(0.318903\pi\)
\(164\) −3101.64 −1.47681
\(165\) 0 0
\(166\) 1551.90 0.725607
\(167\) 95.0390 0.0440380 0.0220190 0.999758i \(-0.492991\pi\)
0.0220190 + 0.999758i \(0.492991\pi\)
\(168\) 0 0
\(169\) −1000.11 −0.455217
\(170\) 0 0
\(171\) 0 0
\(172\) 10202.1 4.52270
\(173\) −2133.76 −0.937727 −0.468864 0.883271i \(-0.655336\pi\)
−0.468864 + 0.883271i \(0.655336\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 13315.4 5.70275
\(177\) 0 0
\(178\) −3413.39 −1.43733
\(179\) 1704.68 0.711808 0.355904 0.934523i \(-0.384173\pi\)
0.355904 + 0.934523i \(0.384173\pi\)
\(180\) 0 0
\(181\) −1360.98 −0.558902 −0.279451 0.960160i \(-0.590152\pi\)
−0.279451 + 0.960160i \(0.590152\pi\)
\(182\) −2229.68 −0.908103
\(183\) 0 0
\(184\) −1775.88 −0.711518
\(185\) 0 0
\(186\) 0 0
\(187\) 2208.31 0.863570
\(188\) 8595.36 3.33447
\(189\) 0 0
\(190\) 0 0
\(191\) 1096.84 0.415522 0.207761 0.978180i \(-0.433382\pi\)
0.207761 + 0.978180i \(0.433382\pi\)
\(192\) 0 0
\(193\) 2867.27 1.06938 0.534691 0.845048i \(-0.320428\pi\)
0.534691 + 0.845048i \(0.320428\pi\)
\(194\) 1054.97 0.390424
\(195\) 0 0
\(196\) −4438.21 −1.61742
\(197\) 724.139 0.261892 0.130946 0.991389i \(-0.458199\pi\)
0.130946 + 0.991389i \(0.458199\pi\)
\(198\) 0 0
\(199\) −1693.65 −0.603315 −0.301658 0.953416i \(-0.597540\pi\)
−0.301658 + 0.953416i \(0.597540\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −7505.02 −2.61411
\(203\) −1900.88 −0.657220
\(204\) 0 0
\(205\) 0 0
\(206\) −11079.1 −3.74717
\(207\) 0 0
\(208\) −8191.30 −2.73060
\(209\) −8242.22 −2.72788
\(210\) 0 0
\(211\) 947.452 0.309124 0.154562 0.987983i \(-0.450603\pi\)
0.154562 + 0.987983i \(0.450603\pi\)
\(212\) −2937.94 −0.951785
\(213\) 0 0
\(214\) −4492.89 −1.43518
\(215\) 0 0
\(216\) 0 0
\(217\) −348.841 −0.109129
\(218\) −4530.05 −1.40740
\(219\) 0 0
\(220\) 0 0
\(221\) −1358.50 −0.413496
\(222\) 0 0
\(223\) −111.866 −0.0335923 −0.0167961 0.999859i \(-0.505347\pi\)
−0.0167961 + 0.999859i \(0.505347\pi\)
\(224\) 8145.41 2.42964
\(225\) 0 0
\(226\) −8206.51 −2.41544
\(227\) 1200.70 0.351072 0.175536 0.984473i \(-0.443834\pi\)
0.175536 + 0.984473i \(0.443834\pi\)
\(228\) 0 0
\(229\) 822.380 0.237312 0.118656 0.992935i \(-0.462141\pi\)
0.118656 + 0.992935i \(0.462141\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −12126.7 −3.43172
\(233\) −5329.21 −1.49840 −0.749202 0.662341i \(-0.769563\pi\)
−0.749202 + 0.662341i \(0.769563\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2859.80 0.788802
\(237\) 0 0
\(238\) 2530.75 0.689260
\(239\) 7085.61 1.91770 0.958850 0.283914i \(-0.0916331\pi\)
0.958850 + 0.283914i \(0.0916331\pi\)
\(240\) 0 0
\(241\) −6560.09 −1.75341 −0.876707 0.481025i \(-0.840265\pi\)
−0.876707 + 0.481025i \(0.840265\pi\)
\(242\) 9998.63 2.65593
\(243\) 0 0
\(244\) 5663.15 1.48584
\(245\) 0 0
\(246\) 0 0
\(247\) 5070.42 1.30617
\(248\) −2225.45 −0.569822
\(249\) 0 0
\(250\) 0 0
\(251\) −714.222 −0.179607 −0.0898033 0.995960i \(-0.528624\pi\)
−0.0898033 + 0.995960i \(0.528624\pi\)
\(252\) 0 0
\(253\) −1325.95 −0.329494
\(254\) 3146.14 0.777191
\(255\) 0 0
\(256\) 10675.0 2.60621
\(257\) 4396.59 1.06713 0.533563 0.845760i \(-0.320853\pi\)
0.533563 + 0.845760i \(0.320853\pi\)
\(258\) 0 0
\(259\) 2570.13 0.616604
\(260\) 0 0
\(261\) 0 0
\(262\) −13046.6 −3.07643
\(263\) −7550.31 −1.77024 −0.885118 0.465367i \(-0.845922\pi\)
−0.885118 + 0.465367i \(0.845922\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −9445.68 −2.17726
\(267\) 0 0
\(268\) −9705.45 −2.21214
\(269\) 5536.86 1.25497 0.627487 0.778627i \(-0.284083\pi\)
0.627487 + 0.778627i \(0.284083\pi\)
\(270\) 0 0
\(271\) 3058.25 0.685518 0.342759 0.939423i \(-0.388639\pi\)
0.342759 + 0.939423i \(0.388639\pi\)
\(272\) 9297.36 2.07256
\(273\) 0 0
\(274\) 5472.18 1.20652
\(275\) 0 0
\(276\) 0 0
\(277\) 4070.19 0.882865 0.441433 0.897294i \(-0.354470\pi\)
0.441433 + 0.897294i \(0.354470\pi\)
\(278\) 719.556 0.155238
\(279\) 0 0
\(280\) 0 0
\(281\) −7446.19 −1.58079 −0.790396 0.612597i \(-0.790125\pi\)
−0.790396 + 0.612597i \(0.790125\pi\)
\(282\) 0 0
\(283\) 774.651 0.162715 0.0813573 0.996685i \(-0.474075\pi\)
0.0813573 + 0.996685i \(0.474075\pi\)
\(284\) −12225.2 −2.55434
\(285\) 0 0
\(286\) −10620.6 −2.19583
\(287\) −1679.95 −0.345520
\(288\) 0 0
\(289\) −3371.06 −0.686152
\(290\) 0 0
\(291\) 0 0
\(292\) 1932.79 0.387356
\(293\) 6749.23 1.34571 0.672857 0.739772i \(-0.265067\pi\)
0.672857 + 0.739772i \(0.265067\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 16396.3 3.21964
\(297\) 0 0
\(298\) −5565.12 −1.08181
\(299\) 815.696 0.157769
\(300\) 0 0
\(301\) 5525.80 1.05815
\(302\) 15406.7 2.93561
\(303\) 0 0
\(304\) −34701.2 −6.54687
\(305\) 0 0
\(306\) 0 0
\(307\) 2204.39 0.409808 0.204904 0.978782i \(-0.434312\pi\)
0.204904 + 0.978782i \(0.434312\pi\)
\(308\) 14473.2 2.67756
\(309\) 0 0
\(310\) 0 0
\(311\) 6032.98 1.10000 0.549998 0.835166i \(-0.314628\pi\)
0.549998 + 0.835166i \(0.314628\pi\)
\(312\) 0 0
\(313\) 5772.96 1.04251 0.521257 0.853400i \(-0.325463\pi\)
0.521257 + 0.853400i \(0.325463\pi\)
\(314\) −2601.09 −0.467479
\(315\) 0 0
\(316\) 9816.57 1.74755
\(317\) −3302.07 −0.585057 −0.292528 0.956257i \(-0.594497\pi\)
−0.292528 + 0.956257i \(0.594497\pi\)
\(318\) 0 0
\(319\) −9054.41 −1.58918
\(320\) 0 0
\(321\) 0 0
\(322\) −1519.56 −0.262986
\(323\) −5755.07 −0.991395
\(324\) 0 0
\(325\) 0 0
\(326\) 12239.9 2.07947
\(327\) 0 0
\(328\) −10717.3 −1.80416
\(329\) 4655.53 0.780144
\(330\) 0 0
\(331\) 8053.15 1.33728 0.668642 0.743584i \(-0.266876\pi\)
0.668642 + 0.743584i \(0.266876\pi\)
\(332\) 6197.08 1.02442
\(333\) 0 0
\(334\) 518.795 0.0849916
\(335\) 0 0
\(336\) 0 0
\(337\) −3460.33 −0.559335 −0.279668 0.960097i \(-0.590224\pi\)
−0.279668 + 0.960097i \(0.590224\pi\)
\(338\) −5459.37 −0.878552
\(339\) 0 0
\(340\) 0 0
\(341\) −1661.62 −0.263877
\(342\) 0 0
\(343\) −6453.51 −1.01591
\(344\) 35252.0 5.52518
\(345\) 0 0
\(346\) −11647.7 −1.80978
\(347\) −9328.27 −1.44314 −0.721568 0.692344i \(-0.756578\pi\)
−0.721568 + 0.692344i \(0.756578\pi\)
\(348\) 0 0
\(349\) 8899.42 1.36497 0.682486 0.730899i \(-0.260899\pi\)
0.682486 + 0.730899i \(0.260899\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 38798.8 5.87495
\(353\) 3722.45 0.561264 0.280632 0.959816i \(-0.409456\pi\)
0.280632 + 0.959816i \(0.409456\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −13630.4 −2.02924
\(357\) 0 0
\(358\) 9305.42 1.37376
\(359\) −11029.3 −1.62145 −0.810727 0.585425i \(-0.800928\pi\)
−0.810727 + 0.585425i \(0.800928\pi\)
\(360\) 0 0
\(361\) 14621.1 2.13166
\(362\) −7429.29 −1.07866
\(363\) 0 0
\(364\) −8903.60 −1.28208
\(365\) 0 0
\(366\) 0 0
\(367\) 4853.11 0.690274 0.345137 0.938552i \(-0.387833\pi\)
0.345137 + 0.938552i \(0.387833\pi\)
\(368\) −5582.49 −0.790781
\(369\) 0 0
\(370\) 0 0
\(371\) −1591.28 −0.222683
\(372\) 0 0
\(373\) 12373.8 1.71767 0.858834 0.512254i \(-0.171189\pi\)
0.858834 + 0.512254i \(0.171189\pi\)
\(374\) 12054.6 1.66666
\(375\) 0 0
\(376\) 29700.1 4.07358
\(377\) 5570.06 0.760935
\(378\) 0 0
\(379\) 11150.6 1.51127 0.755634 0.654994i \(-0.227329\pi\)
0.755634 + 0.654994i \(0.227329\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 5987.39 0.801941
\(383\) 2199.59 0.293457 0.146728 0.989177i \(-0.453126\pi\)
0.146728 + 0.989177i \(0.453126\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 15651.7 2.06386
\(387\) 0 0
\(388\) 4212.72 0.551207
\(389\) −9218.92 −1.20159 −0.600794 0.799404i \(-0.705149\pi\)
−0.600794 + 0.799404i \(0.705149\pi\)
\(390\) 0 0
\(391\) −925.838 −0.119748
\(392\) −15335.6 −1.97594
\(393\) 0 0
\(394\) 3952.90 0.505442
\(395\) 0 0
\(396\) 0 0
\(397\) −1119.36 −0.141509 −0.0707544 0.997494i \(-0.522541\pi\)
−0.0707544 + 0.997494i \(0.522541\pi\)
\(398\) −9245.23 −1.16438
\(399\) 0 0
\(400\) 0 0
\(401\) −12296.9 −1.53137 −0.765683 0.643218i \(-0.777599\pi\)
−0.765683 + 0.643218i \(0.777599\pi\)
\(402\) 0 0
\(403\) 1022.19 0.126350
\(404\) −29969.2 −3.69065
\(405\) 0 0
\(406\) −10376.4 −1.26841
\(407\) 12242.2 1.49097
\(408\) 0 0
\(409\) 2500.22 0.302269 0.151134 0.988513i \(-0.451707\pi\)
0.151134 + 0.988513i \(0.451707\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −44241.3 −5.29032
\(413\) 1548.96 0.184551
\(414\) 0 0
\(415\) 0 0
\(416\) −23868.1 −2.81305
\(417\) 0 0
\(418\) −44992.3 −5.26470
\(419\) 8332.97 0.971581 0.485790 0.874075i \(-0.338532\pi\)
0.485790 + 0.874075i \(0.338532\pi\)
\(420\) 0 0
\(421\) 11374.2 1.31673 0.658367 0.752697i \(-0.271248\pi\)
0.658367 + 0.752697i \(0.271248\pi\)
\(422\) 5171.91 0.596598
\(423\) 0 0
\(424\) −10151.6 −1.16275
\(425\) 0 0
\(426\) 0 0
\(427\) 3067.35 0.347633
\(428\) −17941.1 −2.02621
\(429\) 0 0
\(430\) 0 0
\(431\) 10030.2 1.12097 0.560484 0.828165i \(-0.310615\pi\)
0.560484 + 0.828165i \(0.310615\pi\)
\(432\) 0 0
\(433\) −7609.38 −0.844535 −0.422267 0.906471i \(-0.638766\pi\)
−0.422267 + 0.906471i \(0.638766\pi\)
\(434\) −1904.24 −0.210614
\(435\) 0 0
\(436\) −18089.5 −1.98699
\(437\) 3455.57 0.378266
\(438\) 0 0
\(439\) −12370.5 −1.34490 −0.672450 0.740143i \(-0.734758\pi\)
−0.672450 + 0.740143i \(0.734758\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) −7415.72 −0.798032
\(443\) −12084.4 −1.29605 −0.648023 0.761621i \(-0.724404\pi\)
−0.648023 + 0.761621i \(0.724404\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −610.647 −0.0648318
\(447\) 0 0
\(448\) 22100.4 2.33068
\(449\) 625.550 0.0657495 0.0328747 0.999459i \(-0.489534\pi\)
0.0328747 + 0.999459i \(0.489534\pi\)
\(450\) 0 0
\(451\) −8002.04 −0.835480
\(452\) −32770.4 −3.41016
\(453\) 0 0
\(454\) 6554.33 0.677555
\(455\) 0 0
\(456\) 0 0
\(457\) −1811.22 −0.185395 −0.0926974 0.995694i \(-0.529549\pi\)
−0.0926974 + 0.995694i \(0.529549\pi\)
\(458\) 4489.17 0.458003
\(459\) 0 0
\(460\) 0 0
\(461\) 11625.0 1.17447 0.587233 0.809418i \(-0.300217\pi\)
0.587233 + 0.809418i \(0.300217\pi\)
\(462\) 0 0
\(463\) −7291.88 −0.731928 −0.365964 0.930629i \(-0.619261\pi\)
−0.365964 + 0.930629i \(0.619261\pi\)
\(464\) −38120.6 −3.81402
\(465\) 0 0
\(466\) −29090.9 −2.89186
\(467\) −11637.6 −1.15316 −0.576579 0.817042i \(-0.695613\pi\)
−0.576579 + 0.817042i \(0.695613\pi\)
\(468\) 0 0
\(469\) −5256.78 −0.517560
\(470\) 0 0
\(471\) 0 0
\(472\) 9881.66 0.963644
\(473\) 26320.9 2.55864
\(474\) 0 0
\(475\) 0 0
\(476\) 10105.8 0.973109
\(477\) 0 0
\(478\) 38678.6 3.70109
\(479\) −12041.4 −1.14862 −0.574309 0.818639i \(-0.694729\pi\)
−0.574309 + 0.818639i \(0.694729\pi\)
\(480\) 0 0
\(481\) −7531.14 −0.713909
\(482\) −35810.0 −3.38402
\(483\) 0 0
\(484\) 39926.7 3.74969
\(485\) 0 0
\(486\) 0 0
\(487\) −7037.81 −0.654853 −0.327427 0.944877i \(-0.606181\pi\)
−0.327427 + 0.944877i \(0.606181\pi\)
\(488\) 19568.2 1.81519
\(489\) 0 0
\(490\) 0 0
\(491\) −6603.07 −0.606909 −0.303454 0.952846i \(-0.598140\pi\)
−0.303454 + 0.952846i \(0.598140\pi\)
\(492\) 0 0
\(493\) −6322.17 −0.577558
\(494\) 27678.2 2.52085
\(495\) 0 0
\(496\) −6995.72 −0.633301
\(497\) −6621.58 −0.597623
\(498\) 0 0
\(499\) −36.7047 −0.00329284 −0.00164642 0.999999i \(-0.500524\pi\)
−0.00164642 + 0.999999i \(0.500524\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −3898.76 −0.346634
\(503\) 21242.5 1.88302 0.941508 0.336990i \(-0.109409\pi\)
0.941508 + 0.336990i \(0.109409\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −7238.06 −0.635911
\(507\) 0 0
\(508\) 12563.2 1.09725
\(509\) 11280.4 0.982309 0.491155 0.871072i \(-0.336575\pi\)
0.491155 + 0.871072i \(0.336575\pi\)
\(510\) 0 0
\(511\) 1046.86 0.0906270
\(512\) 20681.3 1.78514
\(513\) 0 0
\(514\) 23999.9 2.05951
\(515\) 0 0
\(516\) 0 0
\(517\) 22175.5 1.88642
\(518\) 14029.7 1.19002
\(519\) 0 0
\(520\) 0 0
\(521\) 10239.3 0.861023 0.430511 0.902585i \(-0.358333\pi\)
0.430511 + 0.902585i \(0.358333\pi\)
\(522\) 0 0
\(523\) 2822.00 0.235942 0.117971 0.993017i \(-0.462361\pi\)
0.117971 + 0.993017i \(0.462361\pi\)
\(524\) −52098.1 −4.34335
\(525\) 0 0
\(526\) −41215.3 −3.41649
\(527\) −1160.22 −0.0959010
\(528\) 0 0
\(529\) −11611.1 −0.954310
\(530\) 0 0
\(531\) 0 0
\(532\) −37718.7 −3.07390
\(533\) 4922.67 0.400046
\(534\) 0 0
\(535\) 0 0
\(536\) −33535.8 −2.70248
\(537\) 0 0
\(538\) 30224.4 2.42205
\(539\) −11450.3 −0.915028
\(540\) 0 0
\(541\) −9409.63 −0.747785 −0.373892 0.927472i \(-0.621977\pi\)
−0.373892 + 0.927472i \(0.621977\pi\)
\(542\) 16694.2 1.32302
\(543\) 0 0
\(544\) 27091.0 2.13514
\(545\) 0 0
\(546\) 0 0
\(547\) 3836.43 0.299879 0.149940 0.988695i \(-0.452092\pi\)
0.149940 + 0.988695i \(0.452092\pi\)
\(548\) 21851.6 1.70339
\(549\) 0 0
\(550\) 0 0
\(551\) 23596.7 1.82441
\(552\) 0 0
\(553\) 5316.97 0.408862
\(554\) 22218.2 1.70390
\(555\) 0 0
\(556\) 2873.35 0.219167
\(557\) 6145.92 0.467524 0.233762 0.972294i \(-0.424896\pi\)
0.233762 + 0.972294i \(0.424896\pi\)
\(558\) 0 0
\(559\) −16192.0 −1.22513
\(560\) 0 0
\(561\) 0 0
\(562\) −40646.9 −3.05087
\(563\) 13247.9 0.991707 0.495854 0.868406i \(-0.334855\pi\)
0.495854 + 0.868406i \(0.334855\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 4228.63 0.314033
\(567\) 0 0
\(568\) −42242.6 −3.12053
\(569\) −6544.89 −0.482208 −0.241104 0.970499i \(-0.577509\pi\)
−0.241104 + 0.970499i \(0.577509\pi\)
\(570\) 0 0
\(571\) 20362.1 1.49234 0.746170 0.665755i \(-0.231890\pi\)
0.746170 + 0.665755i \(0.231890\pi\)
\(572\) −42410.2 −3.10011
\(573\) 0 0
\(574\) −9170.43 −0.666840
\(575\) 0 0
\(576\) 0 0
\(577\) 26247.4 1.89375 0.946876 0.321600i \(-0.104221\pi\)
0.946876 + 0.321600i \(0.104221\pi\)
\(578\) −18401.8 −1.32425
\(579\) 0 0
\(580\) 0 0
\(581\) 3356.54 0.239677
\(582\) 0 0
\(583\) −7579.71 −0.538455
\(584\) 6678.49 0.473215
\(585\) 0 0
\(586\) 36842.4 2.59718
\(587\) −14098.2 −0.991301 −0.495650 0.868522i \(-0.665070\pi\)
−0.495650 + 0.868522i \(0.665070\pi\)
\(588\) 0 0
\(589\) 4330.36 0.302936
\(590\) 0 0
\(591\) 0 0
\(592\) 51541.9 3.57831
\(593\) 3476.71 0.240761 0.120380 0.992728i \(-0.461589\pi\)
0.120380 + 0.992728i \(0.461589\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −22222.8 −1.52732
\(597\) 0 0
\(598\) 4452.69 0.304488
\(599\) 16179.0 1.10360 0.551798 0.833978i \(-0.313942\pi\)
0.551798 + 0.833978i \(0.313942\pi\)
\(600\) 0 0
\(601\) 8112.16 0.550586 0.275293 0.961360i \(-0.411225\pi\)
0.275293 + 0.961360i \(0.411225\pi\)
\(602\) 30164.0 2.04218
\(603\) 0 0
\(604\) 61522.3 4.14455
\(605\) 0 0
\(606\) 0 0
\(607\) −21139.2 −1.41353 −0.706765 0.707449i \(-0.749846\pi\)
−0.706765 + 0.707449i \(0.749846\pi\)
\(608\) −101113. −6.74456
\(609\) 0 0
\(610\) 0 0
\(611\) −13641.9 −0.903258
\(612\) 0 0
\(613\) 11440.3 0.753785 0.376892 0.926257i \(-0.376993\pi\)
0.376892 + 0.926257i \(0.376993\pi\)
\(614\) 12033.2 0.790915
\(615\) 0 0
\(616\) 50010.3 3.27106
\(617\) 21566.2 1.40717 0.703584 0.710612i \(-0.251582\pi\)
0.703584 + 0.710612i \(0.251582\pi\)
\(618\) 0 0
\(619\) −15198.3 −0.986866 −0.493433 0.869784i \(-0.664258\pi\)
−0.493433 + 0.869784i \(0.664258\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 32932.6 2.12295
\(623\) −7382.68 −0.474769
\(624\) 0 0
\(625\) 0 0
\(626\) 31513.2 2.01201
\(627\) 0 0
\(628\) −10386.7 −0.659994
\(629\) 8548.05 0.541865
\(630\) 0 0
\(631\) −4929.66 −0.311009 −0.155504 0.987835i \(-0.549700\pi\)
−0.155504 + 0.987835i \(0.549700\pi\)
\(632\) 33919.8 2.13490
\(633\) 0 0
\(634\) −18025.2 −1.12914
\(635\) 0 0
\(636\) 0 0
\(637\) 7043.97 0.438135
\(638\) −49425.8 −3.06706
\(639\) 0 0
\(640\) 0 0
\(641\) 7535.73 0.464342 0.232171 0.972675i \(-0.425417\pi\)
0.232171 + 0.972675i \(0.425417\pi\)
\(642\) 0 0
\(643\) 15997.2 0.981135 0.490568 0.871403i \(-0.336789\pi\)
0.490568 + 0.871403i \(0.336789\pi\)
\(644\) −6067.93 −0.371289
\(645\) 0 0
\(646\) −31415.5 −1.91336
\(647\) 6020.46 0.365825 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(648\) 0 0
\(649\) 7378.12 0.446250
\(650\) 0 0
\(651\) 0 0
\(652\) 48876.8 2.93583
\(653\) 10948.7 0.656133 0.328067 0.944655i \(-0.393603\pi\)
0.328067 + 0.944655i \(0.393603\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −33690.0 −2.00514
\(657\) 0 0
\(658\) 25413.4 1.50565
\(659\) 12338.3 0.729334 0.364667 0.931138i \(-0.381183\pi\)
0.364667 + 0.931138i \(0.381183\pi\)
\(660\) 0 0
\(661\) 20016.8 1.17786 0.588928 0.808186i \(-0.299550\pi\)
0.588928 + 0.808186i \(0.299550\pi\)
\(662\) 43960.2 2.58091
\(663\) 0 0
\(664\) 21413.1 1.25149
\(665\) 0 0
\(666\) 0 0
\(667\) 3796.08 0.220367
\(668\) 2071.66 0.119993
\(669\) 0 0
\(670\) 0 0
\(671\) 14610.6 0.840589
\(672\) 0 0
\(673\) 8419.22 0.482225 0.241112 0.970497i \(-0.422488\pi\)
0.241112 + 0.970497i \(0.422488\pi\)
\(674\) −18889.1 −1.07950
\(675\) 0 0
\(676\) −21800.5 −1.24036
\(677\) −25707.1 −1.45938 −0.729692 0.683776i \(-0.760337\pi\)
−0.729692 + 0.683776i \(0.760337\pi\)
\(678\) 0 0
\(679\) 2281.74 0.128962
\(680\) 0 0
\(681\) 0 0
\(682\) −9070.41 −0.509272
\(683\) 19624.3 1.09942 0.549708 0.835357i \(-0.314739\pi\)
0.549708 + 0.835357i \(0.314739\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −35228.2 −1.96067
\(687\) 0 0
\(688\) 110815. 6.14069
\(689\) 4662.86 0.257824
\(690\) 0 0
\(691\) 7273.23 0.400415 0.200207 0.979754i \(-0.435838\pi\)
0.200207 + 0.979754i \(0.435838\pi\)
\(692\) −46511.8 −2.55508
\(693\) 0 0
\(694\) −50920.8 −2.78520
\(695\) 0 0
\(696\) 0 0
\(697\) −5587.37 −0.303639
\(698\) 48579.8 2.63434
\(699\) 0 0
\(700\) 0 0
\(701\) 17644.3 0.950664 0.475332 0.879807i \(-0.342328\pi\)
0.475332 + 0.879807i \(0.342328\pi\)
\(702\) 0 0
\(703\) −31904.5 −1.71166
\(704\) 105270. 5.63568
\(705\) 0 0
\(706\) 20320.0 1.08322
\(707\) −16232.3 −0.863476
\(708\) 0 0
\(709\) 24304.4 1.28741 0.643703 0.765276i \(-0.277397\pi\)
0.643703 + 0.765276i \(0.277397\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −47098.1 −2.47904
\(713\) 696.639 0.0365909
\(714\) 0 0
\(715\) 0 0
\(716\) 37158.6 1.93950
\(717\) 0 0
\(718\) −60206.0 −3.12934
\(719\) −15170.2 −0.786863 −0.393431 0.919354i \(-0.628712\pi\)
−0.393431 + 0.919354i \(0.628712\pi\)
\(720\) 0 0
\(721\) −23962.5 −1.23774
\(722\) 79812.8 4.11402
\(723\) 0 0
\(724\) −29666.8 −1.52287
\(725\) 0 0
\(726\) 0 0
\(727\) 17487.0 0.892102 0.446051 0.895008i \(-0.352830\pi\)
0.446051 + 0.895008i \(0.352830\pi\)
\(728\) −30765.2 −1.56625
\(729\) 0 0
\(730\) 0 0
\(731\) 18378.4 0.929888
\(732\) 0 0
\(733\) −18698.0 −0.942194 −0.471097 0.882082i \(-0.656142\pi\)
−0.471097 + 0.882082i \(0.656142\pi\)
\(734\) 26492.0 1.33220
\(735\) 0 0
\(736\) −16266.5 −0.814660
\(737\) −25039.5 −1.25148
\(738\) 0 0
\(739\) −35250.3 −1.75467 −0.877336 0.479876i \(-0.840682\pi\)
−0.877336 + 0.479876i \(0.840682\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −8686.43 −0.429769
\(743\) 11133.6 0.549731 0.274866 0.961483i \(-0.411367\pi\)
0.274866 + 0.961483i \(0.411367\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 67545.5 3.31503
\(747\) 0 0
\(748\) 48136.8 2.35301
\(749\) −9717.49 −0.474058
\(750\) 0 0
\(751\) 17197.6 0.835619 0.417809 0.908535i \(-0.362798\pi\)
0.417809 + 0.908535i \(0.362798\pi\)
\(752\) 93362.7 4.52738
\(753\) 0 0
\(754\) 30405.6 1.46858
\(755\) 0 0
\(756\) 0 0
\(757\) −804.647 −0.0386333 −0.0193166 0.999813i \(-0.506149\pi\)
−0.0193166 + 0.999813i \(0.506149\pi\)
\(758\) 60868.7 2.91669
\(759\) 0 0
\(760\) 0 0
\(761\) −26208.9 −1.24845 −0.624225 0.781245i \(-0.714585\pi\)
−0.624225 + 0.781245i \(0.714585\pi\)
\(762\) 0 0
\(763\) −9797.85 −0.464883
\(764\) 23909.0 1.13219
\(765\) 0 0
\(766\) 12007.0 0.566360
\(767\) −4538.85 −0.213674
\(768\) 0 0
\(769\) 36544.2 1.71367 0.856837 0.515587i \(-0.172426\pi\)
0.856837 + 0.515587i \(0.172426\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 62500.8 2.91380
\(773\) −42387.4 −1.97228 −0.986139 0.165923i \(-0.946940\pi\)
−0.986139 + 0.165923i \(0.946940\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 14556.5 0.673385
\(777\) 0 0
\(778\) −50323.8 −2.31902
\(779\) 20854.1 0.959148
\(780\) 0 0
\(781\) −31540.4 −1.44507
\(782\) −5053.92 −0.231110
\(783\) 0 0
\(784\) −48207.8 −2.19606
\(785\) 0 0
\(786\) 0 0
\(787\) −26849.4 −1.21611 −0.608054 0.793896i \(-0.708050\pi\)
−0.608054 + 0.793896i \(0.708050\pi\)
\(788\) 15784.8 0.713592
\(789\) 0 0
\(790\) 0 0
\(791\) −17749.5 −0.797851
\(792\) 0 0
\(793\) −8988.09 −0.402492
\(794\) −6110.31 −0.273107
\(795\) 0 0
\(796\) −36918.3 −1.64389
\(797\) −31307.0 −1.39141 −0.695704 0.718328i \(-0.744908\pi\)
−0.695704 + 0.718328i \(0.744908\pi\)
\(798\) 0 0
\(799\) 15483.9 0.685583
\(800\) 0 0
\(801\) 0 0
\(802\) −67125.7 −2.95548
\(803\) 4986.48 0.219140
\(804\) 0 0
\(805\) 0 0
\(806\) 5579.90 0.243851
\(807\) 0 0
\(808\) −103554. −4.50870
\(809\) 10011.9 0.435106 0.217553 0.976049i \(-0.430193\pi\)
0.217553 + 0.976049i \(0.430193\pi\)
\(810\) 0 0
\(811\) 4603.68 0.199331 0.0996653 0.995021i \(-0.468223\pi\)
0.0996653 + 0.995021i \(0.468223\pi\)
\(812\) −41435.5 −1.79076
\(813\) 0 0
\(814\) 66827.4 2.87752
\(815\) 0 0
\(816\) 0 0
\(817\) −68594.8 −2.93737
\(818\) 13648.1 0.583367
\(819\) 0 0
\(820\) 0 0
\(821\) 35429.0 1.50607 0.753033 0.657983i \(-0.228590\pi\)
0.753033 + 0.657983i \(0.228590\pi\)
\(822\) 0 0
\(823\) 28297.6 1.19853 0.599265 0.800550i \(-0.295459\pi\)
0.599265 + 0.800550i \(0.295459\pi\)
\(824\) −152870. −6.46295
\(825\) 0 0
\(826\) 8455.40 0.356176
\(827\) 41059.9 1.72647 0.863236 0.504800i \(-0.168434\pi\)
0.863236 + 0.504800i \(0.168434\pi\)
\(828\) 0 0
\(829\) 9030.68 0.378345 0.189173 0.981944i \(-0.439419\pi\)
0.189173 + 0.981944i \(0.439419\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −64759.8 −2.69849
\(833\) −7995.10 −0.332550
\(834\) 0 0
\(835\) 0 0
\(836\) −179664. −7.43280
\(837\) 0 0
\(838\) 45487.7 1.87511
\(839\) −5227.81 −0.215118 −0.107559 0.994199i \(-0.534303\pi\)
−0.107559 + 0.994199i \(0.534303\pi\)
\(840\) 0 0
\(841\) 1532.87 0.0628508
\(842\) 62089.0 2.54125
\(843\) 0 0
\(844\) 20652.6 0.842288
\(845\) 0 0
\(846\) 0 0
\(847\) 21625.6 0.877290
\(848\) −31911.8 −1.29228
\(849\) 0 0
\(850\) 0 0
\(851\) −5132.58 −0.206748
\(852\) 0 0
\(853\) 30002.9 1.20432 0.602158 0.798377i \(-0.294308\pi\)
0.602158 + 0.798377i \(0.294308\pi\)
\(854\) 16743.9 0.670918
\(855\) 0 0
\(856\) −61993.1 −2.47533
\(857\) 15671.7 0.624662 0.312331 0.949973i \(-0.398890\pi\)
0.312331 + 0.949973i \(0.398890\pi\)
\(858\) 0 0
\(859\) −31306.8 −1.24351 −0.621755 0.783212i \(-0.713580\pi\)
−0.621755 + 0.783212i \(0.713580\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 54752.3 2.16342
\(863\) 13212.3 0.521150 0.260575 0.965454i \(-0.416088\pi\)
0.260575 + 0.965454i \(0.416088\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −41537.8 −1.62992
\(867\) 0 0
\(868\) −7604.05 −0.297348
\(869\) 25326.2 0.988643
\(870\) 0 0
\(871\) 15403.7 0.599236
\(872\) −62505.7 −2.42742
\(873\) 0 0
\(874\) 18863.1 0.730039
\(875\) 0 0
\(876\) 0 0
\(877\) −15440.6 −0.594519 −0.297260 0.954797i \(-0.596073\pi\)
−0.297260 + 0.954797i \(0.596073\pi\)
\(878\) −67527.5 −2.59561
\(879\) 0 0
\(880\) 0 0
\(881\) 27563.1 1.05406 0.527029 0.849847i \(-0.323306\pi\)
0.527029 + 0.849847i \(0.323306\pi\)
\(882\) 0 0
\(883\) −19897.7 −0.758337 −0.379169 0.925328i \(-0.623790\pi\)
−0.379169 + 0.925328i \(0.623790\pi\)
\(884\) −29612.6 −1.12667
\(885\) 0 0
\(886\) −65965.9 −2.50132
\(887\) 40061.6 1.51650 0.758251 0.651963i \(-0.226054\pi\)
0.758251 + 0.651963i \(0.226054\pi\)
\(888\) 0 0
\(889\) 6804.66 0.256716
\(890\) 0 0
\(891\) 0 0
\(892\) −2438.45 −0.0915306
\(893\) −57791.6 −2.16565
\(894\) 0 0
\(895\) 0 0
\(896\) 55477.5 2.06850
\(897\) 0 0
\(898\) 3414.72 0.126894
\(899\) 4757.07 0.176482
\(900\) 0 0
\(901\) −5292.47 −0.195691
\(902\) −43681.2 −1.61244
\(903\) 0 0
\(904\) −113234. −4.16603
\(905\) 0 0
\(906\) 0 0
\(907\) −27839.6 −1.01918 −0.509591 0.860417i \(-0.670203\pi\)
−0.509591 + 0.860417i \(0.670203\pi\)
\(908\) 26172.9 0.956584
\(909\) 0 0
\(910\) 0 0
\(911\) −22251.0 −0.809232 −0.404616 0.914487i \(-0.632595\pi\)
−0.404616 + 0.914487i \(0.632595\pi\)
\(912\) 0 0
\(913\) 15988.1 0.579549
\(914\) −9887.02 −0.357805
\(915\) 0 0
\(916\) 17926.3 0.646616
\(917\) −28218.0 −1.01618
\(918\) 0 0
\(919\) 29480.5 1.05819 0.529093 0.848564i \(-0.322532\pi\)
0.529093 + 0.848564i \(0.322532\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 63457.9 2.26668
\(923\) 19402.9 0.691933
\(924\) 0 0
\(925\) 0 0
\(926\) −39804.6 −1.41259
\(927\) 0 0
\(928\) −111077. −3.92919
\(929\) −42351.8 −1.49571 −0.747857 0.663860i \(-0.768917\pi\)
−0.747857 + 0.663860i \(0.768917\pi\)
\(930\) 0 0
\(931\) 29840.7 1.05047
\(932\) −116166. −4.08278
\(933\) 0 0
\(934\) −63526.9 −2.22555
\(935\) 0 0
\(936\) 0 0
\(937\) 35930.6 1.25272 0.626362 0.779532i \(-0.284543\pi\)
0.626362 + 0.779532i \(0.284543\pi\)
\(938\) −28695.5 −0.998872
\(939\) 0 0
\(940\) 0 0
\(941\) 21564.0 0.747041 0.373521 0.927622i \(-0.378151\pi\)
0.373521 + 0.927622i \(0.378151\pi\)
\(942\) 0 0
\(943\) 3354.87 0.115853
\(944\) 31063.1 1.07099
\(945\) 0 0
\(946\) 143679. 4.93807
\(947\) −16632.4 −0.570729 −0.285364 0.958419i \(-0.592115\pi\)
−0.285364 + 0.958419i \(0.592115\pi\)
\(948\) 0 0
\(949\) −3067.57 −0.104929
\(950\) 0 0
\(951\) 0 0
\(952\) 34919.3 1.18880
\(953\) 39557.8 1.34460 0.672299 0.740279i \(-0.265307\pi\)
0.672299 + 0.740279i \(0.265307\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 154452. 5.22526
\(957\) 0 0
\(958\) −65731.4 −2.21679
\(959\) 11835.5 0.398529
\(960\) 0 0
\(961\) −28918.0 −0.970696
\(962\) −41110.6 −1.37782
\(963\) 0 0
\(964\) −142997. −4.77762
\(965\) 0 0
\(966\) 0 0
\(967\) 10666.2 0.354707 0.177354 0.984147i \(-0.443246\pi\)
0.177354 + 0.984147i \(0.443246\pi\)
\(968\) 137961. 4.58083
\(969\) 0 0
\(970\) 0 0
\(971\) −31821.8 −1.05171 −0.525855 0.850574i \(-0.676254\pi\)
−0.525855 + 0.850574i \(0.676254\pi\)
\(972\) 0 0
\(973\) 1556.30 0.0512771
\(974\) −38417.7 −1.26384
\(975\) 0 0
\(976\) 61513.0 2.01740
\(977\) 11126.5 0.364347 0.182173 0.983266i \(-0.441687\pi\)
0.182173 + 0.983266i \(0.441687\pi\)
\(978\) 0 0
\(979\) −35165.7 −1.14801
\(980\) 0 0
\(981\) 0 0
\(982\) −36044.5 −1.17131
\(983\) −991.225 −0.0321619 −0.0160810 0.999871i \(-0.505119\pi\)
−0.0160810 + 0.999871i \(0.505119\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −34511.2 −1.11467
\(987\) 0 0
\(988\) 110525. 3.55898
\(989\) −11035.1 −0.354798
\(990\) 0 0
\(991\) −48714.9 −1.56153 −0.780767 0.624822i \(-0.785171\pi\)
−0.780767 + 0.624822i \(0.785171\pi\)
\(992\) −20384.4 −0.652424
\(993\) 0 0
\(994\) −36145.6 −1.15339
\(995\) 0 0
\(996\) 0 0
\(997\) 42207.2 1.34074 0.670369 0.742028i \(-0.266136\pi\)
0.670369 + 0.742028i \(0.266136\pi\)
\(998\) −200.362 −0.00635505
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.a.s.1.3 3
3.2 odd 2 675.4.a.p.1.1 3
5.2 odd 4 675.4.b.m.649.6 6
5.3 odd 4 675.4.b.m.649.1 6
5.4 even 2 135.4.a.e.1.1 3
15.2 even 4 675.4.b.n.649.1 6
15.8 even 4 675.4.b.n.649.6 6
15.14 odd 2 135.4.a.h.1.3 yes 3
20.19 odd 2 2160.4.a.bi.1.2 3
45.4 even 6 405.4.e.v.136.3 6
45.14 odd 6 405.4.e.q.136.1 6
45.29 odd 6 405.4.e.q.271.1 6
45.34 even 6 405.4.e.v.271.3 6
60.59 even 2 2160.4.a.bq.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.1 3 5.4 even 2
135.4.a.h.1.3 yes 3 15.14 odd 2
405.4.e.q.136.1 6 45.14 odd 6
405.4.e.q.271.1 6 45.29 odd 6
405.4.e.v.136.3 6 45.4 even 6
405.4.e.v.271.3 6 45.34 even 6
675.4.a.p.1.1 3 3.2 odd 2
675.4.a.s.1.3 3 1.1 even 1 trivial
675.4.b.m.649.1 6 5.3 odd 4
675.4.b.m.649.6 6 5.2 odd 4
675.4.b.n.649.1 6 15.2 even 4
675.4.b.n.649.6 6 15.8 even 4
2160.4.a.bi.1.2 3 20.19 odd 2
2160.4.a.bq.1.2 3 60.59 even 2