Properties

Label 675.4.a.q
Level $675$
Weight $4$
Character orbit 675.a
Self dual yes
Analytic conductor $39.826$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-1,0,23,0,0,-44] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.5637.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 23x + 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{2} + \beta_1 + 7) q^{4} + ( - 2 \beta_1 - 14) q^{7} + ( - \beta_{2} - 8 \beta_1 - 9) q^{8} + ( - 4 \beta_{2} + 2 \beta_1 - 12) q^{11} + (4 \beta_{2} + 10 \beta_1 - 14) q^{13}+ \cdots + ( - 60 \beta_{2} - 5 \beta_1 - 876) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 23 q^{4} - 44 q^{7} - 36 q^{8} - 38 q^{11} - 28 q^{13} + 108 q^{14} + 191 q^{16} - 19 q^{17} + 187 q^{19} - 122 q^{22} - 81 q^{23} - 416 q^{26} - 410 q^{28} - 160 q^{29} + 227 q^{31} - 569 q^{32}+ \cdots - 2693 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 23x + 6 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 15 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 15 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
5.20067
0.258712
−4.45938
−5.20067 0 19.0470 0 0 −24.4013 −57.4517 0 0
1.2 −0.258712 0 −7.93307 0 0 −14.5174 4.12208 0 0
1.3 4.45938 0 11.8861 0 0 −5.08123 17.3296 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( -1 \)
\(5\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.4.a.q 3
3.b odd 2 1 675.4.a.r 3
5.b even 2 1 135.4.a.g yes 3
5.c odd 4 2 675.4.b.k 6
15.d odd 2 1 135.4.a.f 3
15.e even 4 2 675.4.b.l 6
20.d odd 2 1 2160.4.a.be 3
45.h odd 6 2 405.4.e.t 6
45.j even 6 2 405.4.e.r 6
60.h even 2 1 2160.4.a.bm 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.a.f 3 15.d odd 2 1
135.4.a.g yes 3 5.b even 2 1
405.4.e.r 6 45.j even 6 2
405.4.e.t 6 45.h odd 6 2
675.4.a.q 3 1.a even 1 1 trivial
675.4.a.r 3 3.b odd 2 1
675.4.b.k 6 5.c odd 4 2
675.4.b.l 6 15.e even 4 2
2160.4.a.be 3 20.d odd 2 1
2160.4.a.bm 3 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(675))\):

\( T_{2}^{3} + T_{2}^{2} - 23T_{2} - 6 \) Copy content Toggle raw display
\( T_{7}^{3} + 44T_{7}^{2} + 552T_{7} + 1800 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + T^{2} - 23T - 6 \) Copy content Toggle raw display
$3$ \( T^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} + 44 T^{2} + \cdots + 1800 \) Copy content Toggle raw display
$11$ \( T^{3} + 38 T^{2} + \cdots - 83280 \) Copy content Toggle raw display
$13$ \( T^{3} + 28 T^{2} + \cdots - 100120 \) Copy content Toggle raw display
$17$ \( T^{3} + 19 T^{2} + \cdots - 553887 \) Copy content Toggle raw display
$19$ \( T^{3} - 187 T^{2} + \cdots + 525871 \) Copy content Toggle raw display
$23$ \( T^{3} + 81 T^{2} + \cdots - 2043981 \) Copy content Toggle raw display
$29$ \( T^{3} + 160 T^{2} + \cdots - 7892760 \) Copy content Toggle raw display
$31$ \( T^{3} - 227 T^{2} + \cdots - 246321 \) Copy content Toggle raw display
$37$ \( T^{3} + 78 T^{2} + \cdots - 13637080 \) Copy content Toggle raw display
$41$ \( T^{3} - 338 T^{2} + \cdots + 12116640 \) Copy content Toggle raw display
$43$ \( T^{3} + 22 T^{2} + \cdots - 18464560 \) Copy content Toggle raw display
$47$ \( T^{3} + 472 T^{2} + \cdots - 283200 \) Copy content Toggle raw display
$53$ \( T^{3} - 521 T^{2} + \cdots + 939789 \) Copy content Toggle raw display
$59$ \( T^{3} + 140 T^{2} + \cdots - 34131480 \) Copy content Toggle raw display
$61$ \( T^{3} - 595 T^{2} + \cdots + 1782607 \) Copy content Toggle raw display
$67$ \( T^{3} + 878 T^{2} + \cdots - 11295000 \) Copy content Toggle raw display
$71$ \( T^{3} - 602 T^{2} + \cdots + 280550880 \) Copy content Toggle raw display
$73$ \( T^{3} + 1294 T^{2} + \cdots - 404091280 \) Copy content Toggle raw display
$79$ \( T^{3} - 629 T^{2} + \cdots - 2010303 \) Copy content Toggle raw display
$83$ \( T^{3} + 1287 T^{2} + \cdots - 346404411 \) Copy content Toggle raw display
$89$ \( T^{3} + 2154 T^{2} + \cdots + 74325600 \) Copy content Toggle raw display
$97$ \( T^{3} + 1392 T^{2} + \cdots + 63595520 \) Copy content Toggle raw display
show more
show less