Properties

Label 675.4.a.p.1.2
Level $675$
Weight $4$
Character 675.1
Self dual yes
Analytic conductor $39.826$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-5,0,17,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.1772.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 12x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-3.32803\) of defining polynomial
Character \(\chi\) \(=\) 675.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12612 q^{2} -3.47962 q^{4} -30.7000 q^{7} +24.4070 q^{8} +50.1548 q^{11} +15.9592 q^{13} +65.2720 q^{14} -24.0553 q^{16} -105.668 q^{17} -21.3040 q^{19} -106.635 q^{22} -136.137 q^{23} -33.9312 q^{26} +106.824 q^{28} -224.323 q^{29} -225.982 q^{31} -144.112 q^{32} +224.663 q^{34} +416.386 q^{37} +45.2948 q^{38} +76.1411 q^{41} -31.7372 q^{43} -174.519 q^{44} +289.443 q^{46} -60.8026 q^{47} +599.493 q^{49} -55.5320 q^{52} +466.532 q^{53} -749.297 q^{56} +476.938 q^{58} +95.4239 q^{59} -357.174 q^{61} +480.464 q^{62} +498.842 q^{64} -87.8344 q^{67} +367.685 q^{68} +412.693 q^{71} +331.133 q^{73} -885.286 q^{74} +74.1296 q^{76} -1539.75 q^{77} -248.123 q^{79} -161.885 q^{82} +552.505 q^{83} +67.4771 q^{86} +1224.13 q^{88} -291.478 q^{89} -489.949 q^{91} +473.704 q^{92} +129.274 q^{94} -198.606 q^{97} -1274.59 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 5 q^{2} + 17 q^{4} + 4 q^{7} - 75 q^{8} + 5 q^{11} - 7 q^{13} + 60 q^{14} + 161 q^{16} - 155 q^{17} - 50 q^{19} + 229 q^{22} - 285 q^{23} + 185 q^{26} + 334 q^{28} + 115 q^{29} - 115 q^{31} - 775 q^{32}+ \cdots + 305 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12612 −0.751697 −0.375848 0.926681i \(-0.622649\pi\)
−0.375848 + 0.926681i \(0.622649\pi\)
\(3\) 0 0
\(4\) −3.47962 −0.434952
\(5\) 0 0
\(6\) 0 0
\(7\) −30.7000 −1.65765 −0.828823 0.559511i \(-0.810989\pi\)
−0.828823 + 0.559511i \(0.810989\pi\)
\(8\) 24.4070 1.07865
\(9\) 0 0
\(10\) 0 0
\(11\) 50.1548 1.37475 0.687375 0.726303i \(-0.258763\pi\)
0.687375 + 0.726303i \(0.258763\pi\)
\(12\) 0 0
\(13\) 15.9592 0.340484 0.170242 0.985402i \(-0.445545\pi\)
0.170242 + 0.985402i \(0.445545\pi\)
\(14\) 65.2720 1.24605
\(15\) 0 0
\(16\) −24.0553 −0.375865
\(17\) −105.668 −1.50755 −0.753774 0.657134i \(-0.771769\pi\)
−0.753774 + 0.657134i \(0.771769\pi\)
\(18\) 0 0
\(19\) −21.3040 −0.257235 −0.128618 0.991694i \(-0.541054\pi\)
−0.128618 + 0.991694i \(0.541054\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −106.635 −1.03339
\(23\) −136.137 −1.23420 −0.617098 0.786886i \(-0.711692\pi\)
−0.617098 + 0.786886i \(0.711692\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) −33.9312 −0.255941
\(27\) 0 0
\(28\) 106.824 0.720997
\(29\) −224.323 −1.43641 −0.718203 0.695834i \(-0.755035\pi\)
−0.718203 + 0.695834i \(0.755035\pi\)
\(30\) 0 0
\(31\) −225.982 −1.30928 −0.654638 0.755943i \(-0.727179\pi\)
−0.654638 + 0.755943i \(0.727179\pi\)
\(32\) −144.112 −0.796112
\(33\) 0 0
\(34\) 224.663 1.13322
\(35\) 0 0
\(36\) 0 0
\(37\) 416.386 1.85009 0.925046 0.379854i \(-0.124026\pi\)
0.925046 + 0.379854i \(0.124026\pi\)
\(38\) 45.2948 0.193363
\(39\) 0 0
\(40\) 0 0
\(41\) 76.1411 0.290030 0.145015 0.989429i \(-0.453677\pi\)
0.145015 + 0.989429i \(0.453677\pi\)
\(42\) 0 0
\(43\) −31.7372 −0.112555 −0.0562777 0.998415i \(-0.517923\pi\)
−0.0562777 + 0.998415i \(0.517923\pi\)
\(44\) −174.519 −0.597950
\(45\) 0 0
\(46\) 289.443 0.927741
\(47\) −60.8026 −0.188701 −0.0943507 0.995539i \(-0.530078\pi\)
−0.0943507 + 0.995539i \(0.530078\pi\)
\(48\) 0 0
\(49\) 599.493 1.74779
\(50\) 0 0
\(51\) 0 0
\(52\) −55.5320 −0.148094
\(53\) 466.532 1.20911 0.604557 0.796562i \(-0.293350\pi\)
0.604557 + 0.796562i \(0.293350\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −749.297 −1.78802
\(57\) 0 0
\(58\) 476.938 1.07974
\(59\) 95.4239 0.210562 0.105281 0.994443i \(-0.466426\pi\)
0.105281 + 0.994443i \(0.466426\pi\)
\(60\) 0 0
\(61\) −357.174 −0.749696 −0.374848 0.927086i \(-0.622305\pi\)
−0.374848 + 0.927086i \(0.622305\pi\)
\(62\) 480.464 0.984178
\(63\) 0 0
\(64\) 498.842 0.974300
\(65\) 0 0
\(66\) 0 0
\(67\) −87.8344 −0.160159 −0.0800797 0.996788i \(-0.525517\pi\)
−0.0800797 + 0.996788i \(0.525517\pi\)
\(68\) 367.685 0.655711
\(69\) 0 0
\(70\) 0 0
\(71\) 412.693 0.689826 0.344913 0.938635i \(-0.387908\pi\)
0.344913 + 0.938635i \(0.387908\pi\)
\(72\) 0 0
\(73\) 331.133 0.530906 0.265453 0.964124i \(-0.414478\pi\)
0.265453 + 0.964124i \(0.414478\pi\)
\(74\) −885.286 −1.39071
\(75\) 0 0
\(76\) 74.1296 0.111885
\(77\) −1539.75 −2.27885
\(78\) 0 0
\(79\) −248.123 −0.353368 −0.176684 0.984268i \(-0.556537\pi\)
−0.176684 + 0.984268i \(0.556537\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −161.885 −0.218015
\(83\) 552.505 0.730667 0.365333 0.930877i \(-0.380955\pi\)
0.365333 + 0.930877i \(0.380955\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 67.4771 0.0846075
\(87\) 0 0
\(88\) 1224.13 1.48287
\(89\) −291.478 −0.347153 −0.173577 0.984820i \(-0.555532\pi\)
−0.173577 + 0.984820i \(0.555532\pi\)
\(90\) 0 0
\(91\) −489.949 −0.564402
\(92\) 473.704 0.536816
\(93\) 0 0
\(94\) 129.274 0.141846
\(95\) 0 0
\(96\) 0 0
\(97\) −198.606 −0.207891 −0.103946 0.994583i \(-0.533147\pi\)
−0.103946 + 0.994583i \(0.533147\pi\)
\(98\) −1274.59 −1.31381
\(99\) 0 0
\(100\) 0 0
\(101\) 816.235 0.804143 0.402071 0.915608i \(-0.368290\pi\)
0.402071 + 0.915608i \(0.368290\pi\)
\(102\) 0 0
\(103\) 1402.37 1.34155 0.670776 0.741660i \(-0.265961\pi\)
0.670776 + 0.741660i \(0.265961\pi\)
\(104\) 389.518 0.367263
\(105\) 0 0
\(106\) −991.902 −0.908887
\(107\) 978.996 0.884515 0.442258 0.896888i \(-0.354178\pi\)
0.442258 + 0.896888i \(0.354178\pi\)
\(108\) 0 0
\(109\) 2122.96 1.86553 0.932766 0.360484i \(-0.117388\pi\)
0.932766 + 0.360484i \(0.117388\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 738.500 0.623051
\(113\) −1794.80 −1.49416 −0.747082 0.664732i \(-0.768546\pi\)
−0.747082 + 0.664732i \(0.768546\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 780.559 0.624768
\(117\) 0 0
\(118\) −202.883 −0.158278
\(119\) 3244.02 2.49898
\(120\) 0 0
\(121\) 1184.50 0.889935
\(122\) 759.395 0.563544
\(123\) 0 0
\(124\) 786.330 0.569472
\(125\) 0 0
\(126\) 0 0
\(127\) 748.894 0.523257 0.261628 0.965169i \(-0.415741\pi\)
0.261628 + 0.965169i \(0.415741\pi\)
\(128\) 92.2971 0.0637343
\(129\) 0 0
\(130\) 0 0
\(131\) −2396.11 −1.59808 −0.799042 0.601275i \(-0.794660\pi\)
−0.799042 + 0.601275i \(0.794660\pi\)
\(132\) 0 0
\(133\) 654.033 0.426405
\(134\) 186.746 0.120391
\(135\) 0 0
\(136\) −2579.05 −1.62611
\(137\) −1004.48 −0.626409 −0.313205 0.949686i \(-0.601403\pi\)
−0.313205 + 0.949686i \(0.601403\pi\)
\(138\) 0 0
\(139\) 2403.02 1.46634 0.733172 0.680043i \(-0.238039\pi\)
0.733172 + 0.680043i \(0.238039\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −877.435 −0.518540
\(143\) 800.432 0.468080
\(144\) 0 0
\(145\) 0 0
\(146\) −704.028 −0.399081
\(147\) 0 0
\(148\) −1448.86 −0.804701
\(149\) 509.648 0.280215 0.140107 0.990136i \(-0.455255\pi\)
0.140107 + 0.990136i \(0.455255\pi\)
\(150\) 0 0
\(151\) 1443.30 0.777840 0.388920 0.921272i \(-0.372848\pi\)
0.388920 + 0.921272i \(0.372848\pi\)
\(152\) −519.967 −0.277466
\(153\) 0 0
\(154\) 3273.70 1.71300
\(155\) 0 0
\(156\) 0 0
\(157\) 2155.64 1.09579 0.547895 0.836547i \(-0.315429\pi\)
0.547895 + 0.836547i \(0.315429\pi\)
\(158\) 527.539 0.265625
\(159\) 0 0
\(160\) 0 0
\(161\) 4179.41 2.04586
\(162\) 0 0
\(163\) 529.909 0.254636 0.127318 0.991862i \(-0.459363\pi\)
0.127318 + 0.991862i \(0.459363\pi\)
\(164\) −264.942 −0.126149
\(165\) 0 0
\(166\) −1174.69 −0.549240
\(167\) 2979.28 1.38050 0.690250 0.723571i \(-0.257501\pi\)
0.690250 + 0.723571i \(0.257501\pi\)
\(168\) 0 0
\(169\) −1942.30 −0.884071
\(170\) 0 0
\(171\) 0 0
\(172\) 110.433 0.0489562
\(173\) −1779.88 −0.782205 −0.391103 0.920347i \(-0.627906\pi\)
−0.391103 + 0.920347i \(0.627906\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1206.49 −0.516720
\(177\) 0 0
\(178\) 619.718 0.260954
\(179\) −2836.26 −1.18431 −0.592157 0.805823i \(-0.701724\pi\)
−0.592157 + 0.805823i \(0.701724\pi\)
\(180\) 0 0
\(181\) 811.890 0.333410 0.166705 0.986007i \(-0.446687\pi\)
0.166705 + 0.986007i \(0.446687\pi\)
\(182\) 1041.69 0.424259
\(183\) 0 0
\(184\) −3322.70 −1.33126
\(185\) 0 0
\(186\) 0 0
\(187\) −5299.77 −2.07250
\(188\) 211.570 0.0820761
\(189\) 0 0
\(190\) 0 0
\(191\) 1148.46 0.435077 0.217539 0.976052i \(-0.430197\pi\)
0.217539 + 0.976052i \(0.430197\pi\)
\(192\) 0 0
\(193\) 2150.93 0.802215 0.401107 0.916031i \(-0.368625\pi\)
0.401107 + 0.916031i \(0.368625\pi\)
\(194\) 422.261 0.156271
\(195\) 0 0
\(196\) −2086.00 −0.760206
\(197\) 5057.51 1.82910 0.914551 0.404471i \(-0.132544\pi\)
0.914551 + 0.404471i \(0.132544\pi\)
\(198\) 0 0
\(199\) −3554.12 −1.26605 −0.633027 0.774130i \(-0.718188\pi\)
−0.633027 + 0.774130i \(0.718188\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −1735.41 −0.604471
\(203\) 6886.73 2.38105
\(204\) 0 0
\(205\) 0 0
\(206\) −2981.61 −1.00844
\(207\) 0 0
\(208\) −383.905 −0.127976
\(209\) −1068.50 −0.353634
\(210\) 0 0
\(211\) −107.909 −0.0352075 −0.0176038 0.999845i \(-0.505604\pi\)
−0.0176038 + 0.999845i \(0.505604\pi\)
\(212\) −1623.35 −0.525907
\(213\) 0 0
\(214\) −2081.46 −0.664887
\(215\) 0 0
\(216\) 0 0
\(217\) 6937.65 2.17032
\(218\) −4513.67 −1.40231
\(219\) 0 0
\(220\) 0 0
\(221\) −1686.38 −0.513296
\(222\) 0 0
\(223\) 1942.03 0.583174 0.291587 0.956544i \(-0.405817\pi\)
0.291587 + 0.956544i \(0.405817\pi\)
\(224\) 4424.24 1.31967
\(225\) 0 0
\(226\) 3815.96 1.12316
\(227\) −3443.99 −1.00698 −0.503492 0.864000i \(-0.667952\pi\)
−0.503492 + 0.864000i \(0.667952\pi\)
\(228\) 0 0
\(229\) 2069.39 0.597159 0.298579 0.954385i \(-0.403487\pi\)
0.298579 + 0.954385i \(0.403487\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −5475.07 −1.54938
\(233\) 2769.24 0.778622 0.389311 0.921106i \(-0.372713\pi\)
0.389311 + 0.921106i \(0.372713\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −332.038 −0.0915842
\(237\) 0 0
\(238\) −6897.17 −1.87848
\(239\) −2943.84 −0.796742 −0.398371 0.917224i \(-0.630424\pi\)
−0.398371 + 0.917224i \(0.630424\pi\)
\(240\) 0 0
\(241\) 4474.54 1.19598 0.597988 0.801505i \(-0.295967\pi\)
0.597988 + 0.801505i \(0.295967\pi\)
\(242\) −2518.40 −0.668961
\(243\) 0 0
\(244\) 1242.83 0.326082
\(245\) 0 0
\(246\) 0 0
\(247\) −339.995 −0.0875845
\(248\) −5515.55 −1.41225
\(249\) 0 0
\(250\) 0 0
\(251\) −2121.41 −0.533474 −0.266737 0.963769i \(-0.585945\pi\)
−0.266737 + 0.963769i \(0.585945\pi\)
\(252\) 0 0
\(253\) −6827.92 −1.69671
\(254\) −1592.24 −0.393330
\(255\) 0 0
\(256\) −4186.97 −1.02221
\(257\) −4548.24 −1.10393 −0.551967 0.833866i \(-0.686123\pi\)
−0.551967 + 0.833866i \(0.686123\pi\)
\(258\) 0 0
\(259\) −12783.1 −3.06680
\(260\) 0 0
\(261\) 0 0
\(262\) 5094.42 1.20127
\(263\) 3499.84 0.820567 0.410284 0.911958i \(-0.365430\pi\)
0.410284 + 0.911958i \(0.365430\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1390.55 −0.320527
\(267\) 0 0
\(268\) 305.630 0.0696616
\(269\) 2594.25 0.588008 0.294004 0.955804i \(-0.405012\pi\)
0.294004 + 0.955804i \(0.405012\pi\)
\(270\) 0 0
\(271\) 8518.20 1.90939 0.954693 0.297593i \(-0.0961838\pi\)
0.954693 + 0.297593i \(0.0961838\pi\)
\(272\) 2541.89 0.566634
\(273\) 0 0
\(274\) 2135.63 0.470870
\(275\) 0 0
\(276\) 0 0
\(277\) 1890.50 0.410068 0.205034 0.978755i \(-0.434269\pi\)
0.205034 + 0.978755i \(0.434269\pi\)
\(278\) −5109.12 −1.10225
\(279\) 0 0
\(280\) 0 0
\(281\) 3138.68 0.666328 0.333164 0.942869i \(-0.391884\pi\)
0.333164 + 0.942869i \(0.391884\pi\)
\(282\) 0 0
\(283\) −4069.09 −0.854708 −0.427354 0.904084i \(-0.640554\pi\)
−0.427354 + 0.904084i \(0.640554\pi\)
\(284\) −1436.01 −0.300041
\(285\) 0 0
\(286\) −1701.81 −0.351854
\(287\) −2337.54 −0.480768
\(288\) 0 0
\(289\) 6252.77 1.27270
\(290\) 0 0
\(291\) 0 0
\(292\) −1152.22 −0.230919
\(293\) −3637.95 −0.725362 −0.362681 0.931913i \(-0.618139\pi\)
−0.362681 + 0.931913i \(0.618139\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 10162.7 1.99560
\(297\) 0 0
\(298\) −1083.57 −0.210637
\(299\) −2172.64 −0.420224
\(300\) 0 0
\(301\) 974.334 0.186577
\(302\) −3068.62 −0.584700
\(303\) 0 0
\(304\) 512.474 0.0966856
\(305\) 0 0
\(306\) 0 0
\(307\) 6829.07 1.26956 0.634781 0.772692i \(-0.281090\pi\)
0.634781 + 0.772692i \(0.281090\pi\)
\(308\) 5357.75 0.991189
\(309\) 0 0
\(310\) 0 0
\(311\) 6601.03 1.20357 0.601785 0.798659i \(-0.294457\pi\)
0.601785 + 0.798659i \(0.294457\pi\)
\(312\) 0 0
\(313\) −2766.59 −0.499607 −0.249803 0.968297i \(-0.580366\pi\)
−0.249803 + 0.968297i \(0.580366\pi\)
\(314\) −4583.15 −0.823701
\(315\) 0 0
\(316\) 863.373 0.153698
\(317\) −4564.41 −0.808716 −0.404358 0.914601i \(-0.632505\pi\)
−0.404358 + 0.914601i \(0.632505\pi\)
\(318\) 0 0
\(319\) −11250.9 −1.97470
\(320\) 0 0
\(321\) 0 0
\(322\) −8885.92 −1.53787
\(323\) 2251.15 0.387794
\(324\) 0 0
\(325\) 0 0
\(326\) −1126.65 −0.191409
\(327\) 0 0
\(328\) 1858.38 0.312841
\(329\) 1866.64 0.312800
\(330\) 0 0
\(331\) −4665.62 −0.774760 −0.387380 0.921920i \(-0.626620\pi\)
−0.387380 + 0.921920i \(0.626620\pi\)
\(332\) −1922.51 −0.317805
\(333\) 0 0
\(334\) −6334.30 −1.03772
\(335\) 0 0
\(336\) 0 0
\(337\) 3807.06 0.615382 0.307691 0.951486i \(-0.400444\pi\)
0.307691 + 0.951486i \(0.400444\pi\)
\(338\) 4129.57 0.664553
\(339\) 0 0
\(340\) 0 0
\(341\) −11334.1 −1.79993
\(342\) 0 0
\(343\) −7874.33 −1.23957
\(344\) −774.612 −0.121408
\(345\) 0 0
\(346\) 3784.23 0.587981
\(347\) −2311.26 −0.357565 −0.178783 0.983889i \(-0.557216\pi\)
−0.178783 + 0.983889i \(0.557216\pi\)
\(348\) 0 0
\(349\) −10873.2 −1.66771 −0.833854 0.551984i \(-0.813871\pi\)
−0.833854 + 0.551984i \(0.813871\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −7227.89 −1.09445
\(353\) 2893.74 0.436312 0.218156 0.975914i \(-0.429996\pi\)
0.218156 + 0.975914i \(0.429996\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 1014.23 0.150995
\(357\) 0 0
\(358\) 6030.23 0.890245
\(359\) −9875.47 −1.45183 −0.725915 0.687784i \(-0.758584\pi\)
−0.725915 + 0.687784i \(0.758584\pi\)
\(360\) 0 0
\(361\) −6405.14 −0.933830
\(362\) −1726.17 −0.250624
\(363\) 0 0
\(364\) 1704.83 0.245488
\(365\) 0 0
\(366\) 0 0
\(367\) −10722.2 −1.52505 −0.762523 0.646961i \(-0.776040\pi\)
−0.762523 + 0.646961i \(0.776040\pi\)
\(368\) 3274.82 0.463891
\(369\) 0 0
\(370\) 0 0
\(371\) −14322.5 −2.00428
\(372\) 0 0
\(373\) −4175.90 −0.579678 −0.289839 0.957075i \(-0.593602\pi\)
−0.289839 + 0.957075i \(0.593602\pi\)
\(374\) 11267.9 1.55789
\(375\) 0 0
\(376\) −1484.01 −0.203543
\(377\) −3580.03 −0.489074
\(378\) 0 0
\(379\) 1715.14 0.232457 0.116228 0.993223i \(-0.462920\pi\)
0.116228 + 0.993223i \(0.462920\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −2441.77 −0.327046
\(383\) −5139.06 −0.685624 −0.342812 0.939404i \(-0.611379\pi\)
−0.342812 + 0.939404i \(0.611379\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −4573.14 −0.603022
\(387\) 0 0
\(388\) 691.074 0.0904226
\(389\) 8996.53 1.17260 0.586301 0.810093i \(-0.300584\pi\)
0.586301 + 0.810093i \(0.300584\pi\)
\(390\) 0 0
\(391\) 14385.3 1.86061
\(392\) 14631.8 1.88525
\(393\) 0 0
\(394\) −10752.9 −1.37493
\(395\) 0 0
\(396\) 0 0
\(397\) 105.823 0.0133781 0.00668905 0.999978i \(-0.497871\pi\)
0.00668905 + 0.999978i \(0.497871\pi\)
\(398\) 7556.48 0.951688
\(399\) 0 0
\(400\) 0 0
\(401\) 14481.8 1.80346 0.901730 0.432300i \(-0.142298\pi\)
0.901730 + 0.432300i \(0.142298\pi\)
\(402\) 0 0
\(403\) −3606.50 −0.445788
\(404\) −2840.18 −0.349763
\(405\) 0 0
\(406\) −14642.0 −1.78983
\(407\) 20883.8 2.54341
\(408\) 0 0
\(409\) −861.065 −0.104100 −0.0520500 0.998644i \(-0.516576\pi\)
−0.0520500 + 0.998644i \(0.516576\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −4879.72 −0.583511
\(413\) −2929.52 −0.349037
\(414\) 0 0
\(415\) 0 0
\(416\) −2299.91 −0.271064
\(417\) 0 0
\(418\) 2271.75 0.265825
\(419\) −13017.7 −1.51780 −0.758900 0.651207i \(-0.774263\pi\)
−0.758900 + 0.651207i \(0.774263\pi\)
\(420\) 0 0
\(421\) 14546.6 1.68398 0.841991 0.539492i \(-0.181384\pi\)
0.841991 + 0.539492i \(0.181384\pi\)
\(422\) 229.428 0.0264654
\(423\) 0 0
\(424\) 11386.7 1.30421
\(425\) 0 0
\(426\) 0 0
\(427\) 10965.3 1.24273
\(428\) −3406.53 −0.384722
\(429\) 0 0
\(430\) 0 0
\(431\) −3539.94 −0.395622 −0.197811 0.980240i \(-0.563383\pi\)
−0.197811 + 0.980240i \(0.563383\pi\)
\(432\) 0 0
\(433\) −669.471 −0.0743019 −0.0371509 0.999310i \(-0.511828\pi\)
−0.0371509 + 0.999310i \(0.511828\pi\)
\(434\) −14750.3 −1.63142
\(435\) 0 0
\(436\) −7387.09 −0.811416
\(437\) 2900.26 0.317478
\(438\) 0 0
\(439\) 12568.5 1.36643 0.683216 0.730216i \(-0.260581\pi\)
0.683216 + 0.730216i \(0.260581\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 3585.45 0.385843
\(443\) −11060.3 −1.18621 −0.593106 0.805124i \(-0.702099\pi\)
−0.593106 + 0.805124i \(0.702099\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −4128.98 −0.438370
\(447\) 0 0
\(448\) −15314.5 −1.61504
\(449\) 18553.9 1.95014 0.975072 0.221891i \(-0.0712228\pi\)
0.975072 + 0.221891i \(0.0712228\pi\)
\(450\) 0 0
\(451\) 3818.84 0.398719
\(452\) 6245.21 0.649889
\(453\) 0 0
\(454\) 7322.33 0.756947
\(455\) 0 0
\(456\) 0 0
\(457\) 6802.26 0.696272 0.348136 0.937444i \(-0.386815\pi\)
0.348136 + 0.937444i \(0.386815\pi\)
\(458\) −4399.78 −0.448882
\(459\) 0 0
\(460\) 0 0
\(461\) 14894.4 1.50477 0.752386 0.658722i \(-0.228903\pi\)
0.752386 + 0.658722i \(0.228903\pi\)
\(462\) 0 0
\(463\) 14288.7 1.43423 0.717117 0.696952i \(-0.245461\pi\)
0.717117 + 0.696952i \(0.245461\pi\)
\(464\) 5396.17 0.539895
\(465\) 0 0
\(466\) −5887.74 −0.585288
\(467\) −13115.1 −1.29956 −0.649780 0.760122i \(-0.725139\pi\)
−0.649780 + 0.760122i \(0.725139\pi\)
\(468\) 0 0
\(469\) 2696.52 0.265488
\(470\) 0 0
\(471\) 0 0
\(472\) 2329.01 0.227122
\(473\) −1591.77 −0.154735
\(474\) 0 0
\(475\) 0 0
\(476\) −11287.9 −1.08694
\(477\) 0 0
\(478\) 6258.96 0.598908
\(479\) 7919.79 0.755458 0.377729 0.925916i \(-0.376705\pi\)
0.377729 + 0.925916i \(0.376705\pi\)
\(480\) 0 0
\(481\) 6645.20 0.629927
\(482\) −9513.40 −0.899011
\(483\) 0 0
\(484\) −4121.62 −0.387079
\(485\) 0 0
\(486\) 0 0
\(487\) 17003.1 1.58210 0.791051 0.611751i \(-0.209534\pi\)
0.791051 + 0.611751i \(0.209534\pi\)
\(488\) −8717.56 −0.808659
\(489\) 0 0
\(490\) 0 0
\(491\) 6391.74 0.587485 0.293743 0.955885i \(-0.405099\pi\)
0.293743 + 0.955885i \(0.405099\pi\)
\(492\) 0 0
\(493\) 23703.8 2.16545
\(494\) 722.870 0.0658370
\(495\) 0 0
\(496\) 5436.07 0.492111
\(497\) −12669.7 −1.14349
\(498\) 0 0
\(499\) −2674.12 −0.239900 −0.119950 0.992780i \(-0.538273\pi\)
−0.119950 + 0.992780i \(0.538273\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 4510.36 0.401011
\(503\) −1263.13 −0.111969 −0.0559843 0.998432i \(-0.517830\pi\)
−0.0559843 + 0.998432i \(0.517830\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 14517.0 1.27541
\(507\) 0 0
\(508\) −2605.86 −0.227592
\(509\) 1380.84 0.120245 0.0601226 0.998191i \(-0.480851\pi\)
0.0601226 + 0.998191i \(0.480851\pi\)
\(510\) 0 0
\(511\) −10165.8 −0.880055
\(512\) 8163.62 0.704657
\(513\) 0 0
\(514\) 9670.09 0.829824
\(515\) 0 0
\(516\) 0 0
\(517\) −3049.54 −0.259417
\(518\) 27178.3 2.30530
\(519\) 0 0
\(520\) 0 0
\(521\) 2689.80 0.226185 0.113092 0.993584i \(-0.463924\pi\)
0.113092 + 0.993584i \(0.463924\pi\)
\(522\) 0 0
\(523\) −7144.18 −0.597310 −0.298655 0.954361i \(-0.596538\pi\)
−0.298655 + 0.954361i \(0.596538\pi\)
\(524\) 8337.54 0.695090
\(525\) 0 0
\(526\) −7441.07 −0.616818
\(527\) 23879.1 1.97379
\(528\) 0 0
\(529\) 6366.25 0.523239
\(530\) 0 0
\(531\) 0 0
\(532\) −2275.78 −0.185466
\(533\) 1215.15 0.0987508
\(534\) 0 0
\(535\) 0 0
\(536\) −2143.78 −0.172756
\(537\) 0 0
\(538\) −5515.68 −0.442004
\(539\) 30067.4 2.40278
\(540\) 0 0
\(541\) −3310.57 −0.263091 −0.131546 0.991310i \(-0.541994\pi\)
−0.131546 + 0.991310i \(0.541994\pi\)
\(542\) −18110.7 −1.43528
\(543\) 0 0
\(544\) 15228.0 1.20018
\(545\) 0 0
\(546\) 0 0
\(547\) −2286.52 −0.178729 −0.0893643 0.995999i \(-0.528484\pi\)
−0.0893643 + 0.995999i \(0.528484\pi\)
\(548\) 3495.19 0.272458
\(549\) 0 0
\(550\) 0 0
\(551\) 4778.98 0.369494
\(552\) 0 0
\(553\) 7617.39 0.585758
\(554\) −4019.42 −0.308247
\(555\) 0 0
\(556\) −8361.60 −0.637789
\(557\) 13846.6 1.05332 0.526658 0.850077i \(-0.323445\pi\)
0.526658 + 0.850077i \(0.323445\pi\)
\(558\) 0 0
\(559\) −506.502 −0.0383233
\(560\) 0 0
\(561\) 0 0
\(562\) −6673.21 −0.500876
\(563\) −16164.4 −1.21003 −0.605017 0.796213i \(-0.706834\pi\)
−0.605017 + 0.796213i \(0.706834\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 8651.37 0.642481
\(567\) 0 0
\(568\) 10072.6 0.744080
\(569\) −496.334 −0.0365684 −0.0182842 0.999833i \(-0.505820\pi\)
−0.0182842 + 0.999833i \(0.505820\pi\)
\(570\) 0 0
\(571\) 5971.18 0.437629 0.218815 0.975766i \(-0.429781\pi\)
0.218815 + 0.975766i \(0.429781\pi\)
\(572\) −2785.20 −0.203592
\(573\) 0 0
\(574\) 4969.88 0.361392
\(575\) 0 0
\(576\) 0 0
\(577\) −9571.82 −0.690607 −0.345304 0.938491i \(-0.612224\pi\)
−0.345304 + 0.938491i \(0.612224\pi\)
\(578\) −13294.1 −0.956684
\(579\) 0 0
\(580\) 0 0
\(581\) −16961.9 −1.21119
\(582\) 0 0
\(583\) 23398.8 1.66223
\(584\) 8081.97 0.572662
\(585\) 0 0
\(586\) 7734.71 0.545253
\(587\) 5322.18 0.374225 0.187112 0.982339i \(-0.440087\pi\)
0.187112 + 0.982339i \(0.440087\pi\)
\(588\) 0 0
\(589\) 4814.31 0.336791
\(590\) 0 0
\(591\) 0 0
\(592\) −10016.3 −0.695385
\(593\) −11066.5 −0.766354 −0.383177 0.923675i \(-0.625170\pi\)
−0.383177 + 0.923675i \(0.625170\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1773.38 −0.121880
\(597\) 0 0
\(598\) 4619.29 0.315881
\(599\) −18385.0 −1.25407 −0.627037 0.778989i \(-0.715733\pi\)
−0.627037 + 0.778989i \(0.715733\pi\)
\(600\) 0 0
\(601\) −617.830 −0.0419331 −0.0209666 0.999780i \(-0.506674\pi\)
−0.0209666 + 0.999780i \(0.506674\pi\)
\(602\) −2071.55 −0.140249
\(603\) 0 0
\(604\) −5022.12 −0.338323
\(605\) 0 0
\(606\) 0 0
\(607\) −13839.8 −0.925436 −0.462718 0.886506i \(-0.653126\pi\)
−0.462718 + 0.886506i \(0.653126\pi\)
\(608\) 3070.15 0.204788
\(609\) 0 0
\(610\) 0 0
\(611\) −970.362 −0.0642498
\(612\) 0 0
\(613\) 25655.4 1.69039 0.845196 0.534457i \(-0.179484\pi\)
0.845196 + 0.534457i \(0.179484\pi\)
\(614\) −14519.4 −0.954326
\(615\) 0 0
\(616\) −37580.8 −2.45808
\(617\) 4218.26 0.275236 0.137618 0.990485i \(-0.456055\pi\)
0.137618 + 0.990485i \(0.456055\pi\)
\(618\) 0 0
\(619\) 12182.6 0.791047 0.395524 0.918456i \(-0.370563\pi\)
0.395524 + 0.918456i \(0.370563\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −14034.6 −0.904719
\(623\) 8948.40 0.575458
\(624\) 0 0
\(625\) 0 0
\(626\) 5882.10 0.375553
\(627\) 0 0
\(628\) −7500.80 −0.476616
\(629\) −43998.8 −2.78910
\(630\) 0 0
\(631\) 16673.2 1.05190 0.525951 0.850515i \(-0.323709\pi\)
0.525951 + 0.850515i \(0.323709\pi\)
\(632\) −6055.95 −0.381159
\(633\) 0 0
\(634\) 9704.48 0.607909
\(635\) 0 0
\(636\) 0 0
\(637\) 9567.44 0.595096
\(638\) 23920.7 1.48437
\(639\) 0 0
\(640\) 0 0
\(641\) −26270.8 −1.61878 −0.809388 0.587275i \(-0.800201\pi\)
−0.809388 + 0.587275i \(0.800201\pi\)
\(642\) 0 0
\(643\) −11556.3 −0.708767 −0.354384 0.935100i \(-0.615309\pi\)
−0.354384 + 0.935100i \(0.615309\pi\)
\(644\) −14542.7 −0.889851
\(645\) 0 0
\(646\) −4786.22 −0.291504
\(647\) −25395.2 −1.54310 −0.771552 0.636166i \(-0.780519\pi\)
−0.771552 + 0.636166i \(0.780519\pi\)
\(648\) 0 0
\(649\) 4785.96 0.289469
\(650\) 0 0
\(651\) 0 0
\(652\) −1843.88 −0.110754
\(653\) −6182.84 −0.370526 −0.185263 0.982689i \(-0.559314\pi\)
−0.185263 + 0.982689i \(0.559314\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) −1831.60 −0.109012
\(657\) 0 0
\(658\) −3968.70 −0.235131
\(659\) 8885.32 0.525224 0.262612 0.964901i \(-0.415416\pi\)
0.262612 + 0.964901i \(0.415416\pi\)
\(660\) 0 0
\(661\) −7171.60 −0.422001 −0.211001 0.977486i \(-0.567672\pi\)
−0.211001 + 0.977486i \(0.567672\pi\)
\(662\) 9919.66 0.582385
\(663\) 0 0
\(664\) 13485.0 0.788133
\(665\) 0 0
\(666\) 0 0
\(667\) 30538.7 1.77281
\(668\) −10366.7 −0.600451
\(669\) 0 0
\(670\) 0 0
\(671\) −17914.0 −1.03064
\(672\) 0 0
\(673\) 4250.52 0.243455 0.121728 0.992564i \(-0.461157\pi\)
0.121728 + 0.992564i \(0.461157\pi\)
\(674\) −8094.27 −0.462581
\(675\) 0 0
\(676\) 6758.47 0.384528
\(677\) 2233.65 0.126804 0.0634019 0.997988i \(-0.479805\pi\)
0.0634019 + 0.997988i \(0.479805\pi\)
\(678\) 0 0
\(679\) 6097.23 0.344610
\(680\) 0 0
\(681\) 0 0
\(682\) 24097.6 1.35300
\(683\) −6071.62 −0.340153 −0.170076 0.985431i \(-0.554401\pi\)
−0.170076 + 0.985431i \(0.554401\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 16741.8 0.931784
\(687\) 0 0
\(688\) 763.450 0.0423056
\(689\) 7445.49 0.411684
\(690\) 0 0
\(691\) −765.784 −0.0421589 −0.0210794 0.999778i \(-0.506710\pi\)
−0.0210794 + 0.999778i \(0.506710\pi\)
\(692\) 6193.29 0.340222
\(693\) 0 0
\(694\) 4914.02 0.268780
\(695\) 0 0
\(696\) 0 0
\(697\) −8045.70 −0.437235
\(698\) 23117.8 1.25361
\(699\) 0 0
\(700\) 0 0
\(701\) −23564.3 −1.26963 −0.634814 0.772665i \(-0.718923\pi\)
−0.634814 + 0.772665i \(0.718923\pi\)
\(702\) 0 0
\(703\) −8870.67 −0.475909
\(704\) 25019.3 1.33942
\(705\) 0 0
\(706\) −6152.43 −0.327974
\(707\) −25058.4 −1.33298
\(708\) 0 0
\(709\) 24172.3 1.28041 0.640204 0.768205i \(-0.278850\pi\)
0.640204 + 0.768205i \(0.278850\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −7114.13 −0.374457
\(713\) 30764.5 1.61590
\(714\) 0 0
\(715\) 0 0
\(716\) 9869.11 0.515120
\(717\) 0 0
\(718\) 20996.4 1.09134
\(719\) −12829.0 −0.665424 −0.332712 0.943028i \(-0.607964\pi\)
−0.332712 + 0.943028i \(0.607964\pi\)
\(720\) 0 0
\(721\) −43052.9 −2.22382
\(722\) 13618.1 0.701957
\(723\) 0 0
\(724\) −2825.06 −0.145018
\(725\) 0 0
\(726\) 0 0
\(727\) 24724.7 1.26133 0.630666 0.776054i \(-0.282782\pi\)
0.630666 + 0.776054i \(0.282782\pi\)
\(728\) −11958.2 −0.608792
\(729\) 0 0
\(730\) 0 0
\(731\) 3353.62 0.169683
\(732\) 0 0
\(733\) 20172.2 1.01648 0.508239 0.861216i \(-0.330297\pi\)
0.508239 + 0.861216i \(0.330297\pi\)
\(734\) 22796.6 1.14637
\(735\) 0 0
\(736\) 19618.9 0.982559
\(737\) −4405.32 −0.220179
\(738\) 0 0
\(739\) −16452.8 −0.818979 −0.409489 0.912315i \(-0.634293\pi\)
−0.409489 + 0.912315i \(0.634293\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 30451.4 1.50661
\(743\) 20864.6 1.03021 0.515107 0.857126i \(-0.327752\pi\)
0.515107 + 0.857126i \(0.327752\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 8878.47 0.435742
\(747\) 0 0
\(748\) 18441.2 0.901438
\(749\) −30055.2 −1.46621
\(750\) 0 0
\(751\) 15525.7 0.754381 0.377191 0.926136i \(-0.376890\pi\)
0.377191 + 0.926136i \(0.376890\pi\)
\(752\) 1462.63 0.0709262
\(753\) 0 0
\(754\) 7611.56 0.367635
\(755\) 0 0
\(756\) 0 0
\(757\) −30105.7 −1.44546 −0.722729 0.691132i \(-0.757112\pi\)
−0.722729 + 0.691132i \(0.757112\pi\)
\(758\) −3646.60 −0.174737
\(759\) 0 0
\(760\) 0 0
\(761\) 21739.9 1.03557 0.517786 0.855510i \(-0.326756\pi\)
0.517786 + 0.855510i \(0.326756\pi\)
\(762\) 0 0
\(763\) −65175.0 −3.09239
\(764\) −3996.21 −0.189238
\(765\) 0 0
\(766\) 10926.3 0.515381
\(767\) 1522.89 0.0716929
\(768\) 0 0
\(769\) 1942.22 0.0910772 0.0455386 0.998963i \(-0.485500\pi\)
0.0455386 + 0.998963i \(0.485500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7484.42 −0.348925
\(773\) 7921.02 0.368563 0.184282 0.982873i \(-0.441004\pi\)
0.184282 + 0.982873i \(0.441004\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −4847.40 −0.224241
\(777\) 0 0
\(778\) −19127.7 −0.881441
\(779\) −1622.11 −0.0746060
\(780\) 0 0
\(781\) 20698.5 0.948338
\(782\) −30585.0 −1.39861
\(783\) 0 0
\(784\) −14421.0 −0.656933
\(785\) 0 0
\(786\) 0 0
\(787\) 1361.40 0.0616630 0.0308315 0.999525i \(-0.490184\pi\)
0.0308315 + 0.999525i \(0.490184\pi\)
\(788\) −17598.2 −0.795571
\(789\) 0 0
\(790\) 0 0
\(791\) 55100.4 2.47679
\(792\) 0 0
\(793\) −5700.22 −0.255260
\(794\) −224.992 −0.0100563
\(795\) 0 0
\(796\) 12367.0 0.550672
\(797\) −27917.5 −1.24076 −0.620381 0.784300i \(-0.713022\pi\)
−0.620381 + 0.784300i \(0.713022\pi\)
\(798\) 0 0
\(799\) 6424.90 0.284476
\(800\) 0 0
\(801\) 0 0
\(802\) −30790.1 −1.35565
\(803\) 16607.9 0.729863
\(804\) 0 0
\(805\) 0 0
\(806\) 7667.84 0.335097
\(807\) 0 0
\(808\) 19921.9 0.867388
\(809\) 5275.87 0.229283 0.114641 0.993407i \(-0.463428\pi\)
0.114641 + 0.993407i \(0.463428\pi\)
\(810\) 0 0
\(811\) −23769.1 −1.02916 −0.514579 0.857443i \(-0.672052\pi\)
−0.514579 + 0.857443i \(0.672052\pi\)
\(812\) −23963.2 −1.03564
\(813\) 0 0
\(814\) −44401.4 −1.91188
\(815\) 0 0
\(816\) 0 0
\(817\) 676.129 0.0289532
\(818\) 1830.73 0.0782516
\(819\) 0 0
\(820\) 0 0
\(821\) −34209.3 −1.45422 −0.727108 0.686523i \(-0.759136\pi\)
−0.727108 + 0.686523i \(0.759136\pi\)
\(822\) 0 0
\(823\) −1240.13 −0.0525252 −0.0262626 0.999655i \(-0.508361\pi\)
−0.0262626 + 0.999655i \(0.508361\pi\)
\(824\) 34227.8 1.44706
\(825\) 0 0
\(826\) 6228.50 0.262370
\(827\) 26971.0 1.13407 0.567034 0.823694i \(-0.308091\pi\)
0.567034 + 0.823694i \(0.308091\pi\)
\(828\) 0 0
\(829\) −26743.1 −1.12042 −0.560208 0.828352i \(-0.689279\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 7961.13 0.331734
\(833\) −63347.3 −2.63488
\(834\) 0 0
\(835\) 0 0
\(836\) 3717.96 0.153814
\(837\) 0 0
\(838\) 27677.3 1.14093
\(839\) −5273.14 −0.216983 −0.108492 0.994097i \(-0.534602\pi\)
−0.108492 + 0.994097i \(0.534602\pi\)
\(840\) 0 0
\(841\) 25931.9 1.06326
\(842\) −30927.7 −1.26584
\(843\) 0 0
\(844\) 375.483 0.0153136
\(845\) 0 0
\(846\) 0 0
\(847\) −36364.3 −1.47520
\(848\) −11222.6 −0.454464
\(849\) 0 0
\(850\) 0 0
\(851\) −56685.5 −2.28338
\(852\) 0 0
\(853\) −5043.46 −0.202444 −0.101222 0.994864i \(-0.532275\pi\)
−0.101222 + 0.994864i \(0.532275\pi\)
\(854\) −23313.5 −0.934157
\(855\) 0 0
\(856\) 23894.4 0.954081
\(857\) 14478.5 0.577103 0.288552 0.957464i \(-0.406826\pi\)
0.288552 + 0.957464i \(0.406826\pi\)
\(858\) 0 0
\(859\) −7873.88 −0.312751 −0.156376 0.987698i \(-0.549981\pi\)
−0.156376 + 0.987698i \(0.549981\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 7526.35 0.297388
\(863\) −24166.0 −0.953209 −0.476604 0.879118i \(-0.658133\pi\)
−0.476604 + 0.879118i \(0.658133\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1423.38 0.0558525
\(867\) 0 0
\(868\) −24140.4 −0.943983
\(869\) −12444.6 −0.485792
\(870\) 0 0
\(871\) −1401.77 −0.0545317
\(872\) 51815.2 2.01225
\(873\) 0 0
\(874\) −6166.29 −0.238647
\(875\) 0 0
\(876\) 0 0
\(877\) −6411.82 −0.246878 −0.123439 0.992352i \(-0.539392\pi\)
−0.123439 + 0.992352i \(0.539392\pi\)
\(878\) −26722.2 −1.02714
\(879\) 0 0
\(880\) 0 0
\(881\) 22908.5 0.876059 0.438029 0.898961i \(-0.355677\pi\)
0.438029 + 0.898961i \(0.355677\pi\)
\(882\) 0 0
\(883\) −39198.4 −1.49392 −0.746960 0.664869i \(-0.768487\pi\)
−0.746960 + 0.664869i \(0.768487\pi\)
\(884\) 5867.97 0.223259
\(885\) 0 0
\(886\) 23515.6 0.891672
\(887\) −5422.19 −0.205253 −0.102626 0.994720i \(-0.532725\pi\)
−0.102626 + 0.994720i \(0.532725\pi\)
\(888\) 0 0
\(889\) −22991.1 −0.867375
\(890\) 0 0
\(891\) 0 0
\(892\) −6757.51 −0.253653
\(893\) 1295.34 0.0485406
\(894\) 0 0
\(895\) 0 0
\(896\) −2833.53 −0.105649
\(897\) 0 0
\(898\) −39447.9 −1.46592
\(899\) 50693.0 1.88065
\(900\) 0 0
\(901\) −49297.6 −1.82280
\(902\) −8119.32 −0.299716
\(903\) 0 0
\(904\) −43805.7 −1.61168
\(905\) 0 0
\(906\) 0 0
\(907\) 30727.0 1.12489 0.562444 0.826836i \(-0.309861\pi\)
0.562444 + 0.826836i \(0.309861\pi\)
\(908\) 11983.8 0.437990
\(909\) 0 0
\(910\) 0 0
\(911\) 4101.34 0.149159 0.0745793 0.997215i \(-0.476239\pi\)
0.0745793 + 0.997215i \(0.476239\pi\)
\(912\) 0 0
\(913\) 27710.8 1.00448
\(914\) −14462.4 −0.523385
\(915\) 0 0
\(916\) −7200.69 −0.259735
\(917\) 73560.7 2.64906
\(918\) 0 0
\(919\) −50926.3 −1.82797 −0.913984 0.405750i \(-0.867010\pi\)
−0.913984 + 0.405750i \(0.867010\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −31667.2 −1.13113
\(923\) 6586.26 0.234875
\(924\) 0 0
\(925\) 0 0
\(926\) −30379.4 −1.07811
\(927\) 0 0
\(928\) 32327.6 1.14354
\(929\) 22040.8 0.778402 0.389201 0.921153i \(-0.372751\pi\)
0.389201 + 0.921153i \(0.372751\pi\)
\(930\) 0 0
\(931\) −12771.6 −0.449593
\(932\) −9635.89 −0.338663
\(933\) 0 0
\(934\) 27884.3 0.976875
\(935\) 0 0
\(936\) 0 0
\(937\) −28111.2 −0.980097 −0.490049 0.871695i \(-0.663021\pi\)
−0.490049 + 0.871695i \(0.663021\pi\)
\(938\) −5733.12 −0.199566
\(939\) 0 0
\(940\) 0 0
\(941\) 52811.3 1.82954 0.914770 0.403974i \(-0.132371\pi\)
0.914770 + 0.403974i \(0.132371\pi\)
\(942\) 0 0
\(943\) −10365.6 −0.357954
\(944\) −2295.45 −0.0791427
\(945\) 0 0
\(946\) 3384.30 0.116314
\(947\) 1826.23 0.0626657 0.0313329 0.999509i \(-0.490025\pi\)
0.0313329 + 0.999509i \(0.490025\pi\)
\(948\) 0 0
\(949\) 5284.63 0.180765
\(950\) 0 0
\(951\) 0 0
\(952\) 79176.9 2.69552
\(953\) 41164.2 1.39920 0.699601 0.714534i \(-0.253361\pi\)
0.699601 + 0.714534i \(0.253361\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 10243.4 0.346545
\(957\) 0 0
\(958\) −16838.4 −0.567875
\(959\) 30837.4 1.03837
\(960\) 0 0
\(961\) 21276.8 0.714202
\(962\) −14128.5 −0.473514
\(963\) 0 0
\(964\) −15569.7 −0.520192
\(965\) 0 0
\(966\) 0 0
\(967\) 7088.78 0.235739 0.117870 0.993029i \(-0.462394\pi\)
0.117870 + 0.993029i \(0.462394\pi\)
\(968\) 28910.2 0.959927
\(969\) 0 0
\(970\) 0 0
\(971\) 2355.90 0.0778625 0.0389312 0.999242i \(-0.487605\pi\)
0.0389312 + 0.999242i \(0.487605\pi\)
\(972\) 0 0
\(973\) −73773.0 −2.43068
\(974\) −36150.6 −1.18926
\(975\) 0 0
\(976\) 8591.95 0.281784
\(977\) 16795.1 0.549972 0.274986 0.961448i \(-0.411327\pi\)
0.274986 + 0.961448i \(0.411327\pi\)
\(978\) 0 0
\(979\) −14619.0 −0.477249
\(980\) 0 0
\(981\) 0 0
\(982\) −13589.6 −0.441611
\(983\) 14733.8 0.478063 0.239032 0.971012i \(-0.423170\pi\)
0.239032 + 0.971012i \(0.423170\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −50397.2 −1.62776
\(987\) 0 0
\(988\) 1183.05 0.0380950
\(989\) 4320.61 0.138915
\(990\) 0 0
\(991\) 36809.2 1.17990 0.589950 0.807440i \(-0.299147\pi\)
0.589950 + 0.807440i \(0.299147\pi\)
\(992\) 32566.6 1.04233
\(993\) 0 0
\(994\) 26937.3 0.859556
\(995\) 0 0
\(996\) 0 0
\(997\) 21210.0 0.673749 0.336875 0.941550i \(-0.390630\pi\)
0.336875 + 0.941550i \(0.390630\pi\)
\(998\) 5685.49 0.180332
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.a.p.1.2 3
3.2 odd 2 675.4.a.s.1.2 3
5.2 odd 4 675.4.b.n.649.3 6
5.3 odd 4 675.4.b.n.649.4 6
5.4 even 2 135.4.a.h.1.2 yes 3
15.2 even 4 675.4.b.m.649.4 6
15.8 even 4 675.4.b.m.649.3 6
15.14 odd 2 135.4.a.e.1.2 3
20.19 odd 2 2160.4.a.bq.1.1 3
45.4 even 6 405.4.e.q.136.2 6
45.14 odd 6 405.4.e.v.136.2 6
45.29 odd 6 405.4.e.v.271.2 6
45.34 even 6 405.4.e.q.271.2 6
60.59 even 2 2160.4.a.bi.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.a.e.1.2 3 15.14 odd 2
135.4.a.h.1.2 yes 3 5.4 even 2
405.4.e.q.136.2 6 45.4 even 6
405.4.e.q.271.2 6 45.34 even 6
405.4.e.v.136.2 6 45.14 odd 6
405.4.e.v.271.2 6 45.29 odd 6
675.4.a.p.1.2 3 1.1 even 1 trivial
675.4.a.s.1.2 3 3.2 odd 2
675.4.b.m.649.3 6 15.8 even 4
675.4.b.m.649.4 6 15.2 even 4
675.4.b.n.649.3 6 5.2 odd 4
675.4.b.n.649.4 6 5.3 odd 4
2160.4.a.bi.1.1 3 60.59 even 2
2160.4.a.bq.1.1 3 20.19 odd 2