Properties

Label 675.4.a.n.1.1
Level $675$
Weight $4$
Character 675.1
Self dual yes
Analytic conductor $39.826$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(1,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 675.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.24264 q^{2} +10.0000 q^{4} -11.0000 q^{7} -8.48528 q^{8} +O(q^{10})\) \(q-4.24264 q^{2} +10.0000 q^{4} -11.0000 q^{7} -8.48528 q^{8} +16.9706 q^{11} -29.0000 q^{13} +46.6690 q^{14} -44.0000 q^{16} +50.9117 q^{17} +29.0000 q^{19} -72.0000 q^{22} -84.8528 q^{23} +123.037 q^{26} -110.000 q^{28} +271.529 q^{29} -268.000 q^{31} +254.558 q^{32} -216.000 q^{34} -83.0000 q^{37} -123.037 q^{38} -271.529 q^{41} +232.000 q^{43} +169.706 q^{44} +360.000 q^{46} +390.323 q^{47} -222.000 q^{49} -290.000 q^{52} -305.470 q^{53} +93.3381 q^{56} -1152.00 q^{58} +288.500 q^{59} +767.000 q^{61} +1137.03 q^{62} -728.000 q^{64} +511.000 q^{67} +509.117 q^{68} +712.764 q^{71} -137.000 q^{73} +352.139 q^{74} +290.000 q^{76} -186.676 q^{77} -475.000 q^{79} +1152.00 q^{82} -576.999 q^{83} -984.293 q^{86} -144.000 q^{88} -254.558 q^{89} +319.000 q^{91} -848.528 q^{92} -1656.00 q^{94} -821.000 q^{97} +941.866 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 20 q^{4} - 22 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 20 q^{4} - 22 q^{7} - 58 q^{13} - 88 q^{16} + 58 q^{19} - 144 q^{22} - 220 q^{28} - 536 q^{31} - 432 q^{34} - 166 q^{37} + 464 q^{43} + 720 q^{46} - 444 q^{49} - 580 q^{52} - 2304 q^{58} + 1534 q^{61} - 1456 q^{64} + 1022 q^{67} - 274 q^{73} + 580 q^{76} - 950 q^{79} + 2304 q^{82} - 288 q^{88} + 638 q^{91} - 3312 q^{94} - 1642 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.24264 −1.50000 −0.750000 0.661438i \(-0.769947\pi\)
−0.750000 + 0.661438i \(0.769947\pi\)
\(3\) 0 0
\(4\) 10.0000 1.25000
\(5\) 0 0
\(6\) 0 0
\(7\) −11.0000 −0.593944 −0.296972 0.954886i \(-0.595977\pi\)
−0.296972 + 0.954886i \(0.595977\pi\)
\(8\) −8.48528 −0.375000
\(9\) 0 0
\(10\) 0 0
\(11\) 16.9706 0.465165 0.232583 0.972577i \(-0.425282\pi\)
0.232583 + 0.972577i \(0.425282\pi\)
\(12\) 0 0
\(13\) −29.0000 −0.618704 −0.309352 0.950948i \(-0.600112\pi\)
−0.309352 + 0.950948i \(0.600112\pi\)
\(14\) 46.6690 0.890916
\(15\) 0 0
\(16\) −44.0000 −0.687500
\(17\) 50.9117 0.726347 0.363173 0.931722i \(-0.381693\pi\)
0.363173 + 0.931722i \(0.381693\pi\)
\(18\) 0 0
\(19\) 29.0000 0.350161 0.175080 0.984554i \(-0.443981\pi\)
0.175080 + 0.984554i \(0.443981\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −72.0000 −0.697748
\(23\) −84.8528 −0.769262 −0.384631 0.923070i \(-0.625671\pi\)
−0.384631 + 0.923070i \(0.625671\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 123.037 0.928056
\(27\) 0 0
\(28\) −110.000 −0.742430
\(29\) 271.529 1.73868 0.869339 0.494216i \(-0.164545\pi\)
0.869339 + 0.494216i \(0.164545\pi\)
\(30\) 0 0
\(31\) −268.000 −1.55272 −0.776358 0.630292i \(-0.782935\pi\)
−0.776358 + 0.630292i \(0.782935\pi\)
\(32\) 254.558 1.40625
\(33\) 0 0
\(34\) −216.000 −1.08952
\(35\) 0 0
\(36\) 0 0
\(37\) −83.0000 −0.368787 −0.184393 0.982853i \(-0.559032\pi\)
−0.184393 + 0.982853i \(0.559032\pi\)
\(38\) −123.037 −0.525241
\(39\) 0 0
\(40\) 0 0
\(41\) −271.529 −1.03429 −0.517143 0.855899i \(-0.673004\pi\)
−0.517143 + 0.855899i \(0.673004\pi\)
\(42\) 0 0
\(43\) 232.000 0.822783 0.411391 0.911459i \(-0.365043\pi\)
0.411391 + 0.911459i \(0.365043\pi\)
\(44\) 169.706 0.581456
\(45\) 0 0
\(46\) 360.000 1.15389
\(47\) 390.323 1.21137 0.605686 0.795704i \(-0.292899\pi\)
0.605686 + 0.795704i \(0.292899\pi\)
\(48\) 0 0
\(49\) −222.000 −0.647230
\(50\) 0 0
\(51\) 0 0
\(52\) −290.000 −0.773380
\(53\) −305.470 −0.791690 −0.395845 0.918317i \(-0.629548\pi\)
−0.395845 + 0.918317i \(0.629548\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 93.3381 0.222729
\(57\) 0 0
\(58\) −1152.00 −2.60802
\(59\) 288.500 0.636601 0.318300 0.947990i \(-0.396888\pi\)
0.318300 + 0.947990i \(0.396888\pi\)
\(60\) 0 0
\(61\) 767.000 1.60991 0.804953 0.593338i \(-0.202190\pi\)
0.804953 + 0.593338i \(0.202190\pi\)
\(62\) 1137.03 2.32908
\(63\) 0 0
\(64\) −728.000 −1.42188
\(65\) 0 0
\(66\) 0 0
\(67\) 511.000 0.931770 0.465885 0.884845i \(-0.345736\pi\)
0.465885 + 0.884845i \(0.345736\pi\)
\(68\) 509.117 0.907934
\(69\) 0 0
\(70\) 0 0
\(71\) 712.764 1.19140 0.595701 0.803207i \(-0.296874\pi\)
0.595701 + 0.803207i \(0.296874\pi\)
\(72\) 0 0
\(73\) −137.000 −0.219653 −0.109826 0.993951i \(-0.535029\pi\)
−0.109826 + 0.993951i \(0.535029\pi\)
\(74\) 352.139 0.553180
\(75\) 0 0
\(76\) 290.000 0.437701
\(77\) −186.676 −0.276282
\(78\) 0 0
\(79\) −475.000 −0.676477 −0.338238 0.941060i \(-0.609831\pi\)
−0.338238 + 0.941060i \(0.609831\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 1152.00 1.55143
\(83\) −576.999 −0.763059 −0.381529 0.924357i \(-0.624603\pi\)
−0.381529 + 0.924357i \(0.624603\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −984.293 −1.23417
\(87\) 0 0
\(88\) −144.000 −0.174437
\(89\) −254.558 −0.303181 −0.151591 0.988443i \(-0.548440\pi\)
−0.151591 + 0.988443i \(0.548440\pi\)
\(90\) 0 0
\(91\) 319.000 0.367476
\(92\) −848.528 −0.961578
\(93\) 0 0
\(94\) −1656.00 −1.81706
\(95\) 0 0
\(96\) 0 0
\(97\) −821.000 −0.859381 −0.429690 0.902976i \(-0.641377\pi\)
−0.429690 + 0.902976i \(0.641377\pi\)
\(98\) 941.866 0.970845
\(99\) 0 0
\(100\) 0 0
\(101\) −543.058 −0.535013 −0.267506 0.963556i \(-0.586200\pi\)
−0.267506 + 0.963556i \(0.586200\pi\)
\(102\) 0 0
\(103\) −839.000 −0.802613 −0.401306 0.915944i \(-0.631444\pi\)
−0.401306 + 0.915944i \(0.631444\pi\)
\(104\) 246.073 0.232014
\(105\) 0 0
\(106\) 1296.00 1.18753
\(107\) 763.675 0.689975 0.344987 0.938607i \(-0.387883\pi\)
0.344987 + 0.938607i \(0.387883\pi\)
\(108\) 0 0
\(109\) 218.000 0.191565 0.0957826 0.995402i \(-0.469465\pi\)
0.0957826 + 0.995402i \(0.469465\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 484.000 0.408337
\(113\) −1510.38 −1.25739 −0.628693 0.777654i \(-0.716410\pi\)
−0.628693 + 0.777654i \(0.716410\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 2715.29 2.17335
\(117\) 0 0
\(118\) −1224.00 −0.954901
\(119\) −560.029 −0.431410
\(120\) 0 0
\(121\) −1043.00 −0.783621
\(122\) −3254.11 −2.41486
\(123\) 0 0
\(124\) −2680.00 −1.94090
\(125\) 0 0
\(126\) 0 0
\(127\) −1244.00 −0.869190 −0.434595 0.900626i \(-0.643109\pi\)
−0.434595 + 0.900626i \(0.643109\pi\)
\(128\) 1052.17 0.726562
\(129\) 0 0
\(130\) 0 0
\(131\) −2511.64 −1.67514 −0.837570 0.546330i \(-0.816024\pi\)
−0.837570 + 0.546330i \(0.816024\pi\)
\(132\) 0 0
\(133\) −319.000 −0.207976
\(134\) −2167.99 −1.39765
\(135\) 0 0
\(136\) −432.000 −0.272380
\(137\) −1340.67 −0.836070 −0.418035 0.908431i \(-0.637281\pi\)
−0.418035 + 0.908431i \(0.637281\pi\)
\(138\) 0 0
\(139\) 947.000 0.577867 0.288933 0.957349i \(-0.406699\pi\)
0.288933 + 0.957349i \(0.406699\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −3024.00 −1.78710
\(143\) −492.146 −0.287800
\(144\) 0 0
\(145\) 0 0
\(146\) 581.242 0.329479
\(147\) 0 0
\(148\) −830.000 −0.460984
\(149\) −576.999 −0.317246 −0.158623 0.987339i \(-0.550705\pi\)
−0.158623 + 0.987339i \(0.550705\pi\)
\(150\) 0 0
\(151\) −2311.00 −1.24547 −0.622737 0.782431i \(-0.713979\pi\)
−0.622737 + 0.782431i \(0.713979\pi\)
\(152\) −246.073 −0.131310
\(153\) 0 0
\(154\) 792.000 0.414423
\(155\) 0 0
\(156\) 0 0
\(157\) −1622.00 −0.824520 −0.412260 0.911066i \(-0.635261\pi\)
−0.412260 + 0.911066i \(0.635261\pi\)
\(158\) 2015.25 1.01472
\(159\) 0 0
\(160\) 0 0
\(161\) 933.381 0.456899
\(162\) 0 0
\(163\) −2243.00 −1.07782 −0.538912 0.842362i \(-0.681164\pi\)
−0.538912 + 0.842362i \(0.681164\pi\)
\(164\) −2715.29 −1.29286
\(165\) 0 0
\(166\) 2448.00 1.14459
\(167\) −2732.26 −1.26604 −0.633020 0.774135i \(-0.718185\pi\)
−0.633020 + 0.774135i \(0.718185\pi\)
\(168\) 0 0
\(169\) −1356.00 −0.617205
\(170\) 0 0
\(171\) 0 0
\(172\) 2320.00 1.02848
\(173\) 1357.65 0.596646 0.298323 0.954465i \(-0.403573\pi\)
0.298323 + 0.954465i \(0.403573\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −746.705 −0.319801
\(177\) 0 0
\(178\) 1080.00 0.454772
\(179\) −2341.94 −0.977903 −0.488952 0.872311i \(-0.662621\pi\)
−0.488952 + 0.872311i \(0.662621\pi\)
\(180\) 0 0
\(181\) −1591.00 −0.653360 −0.326680 0.945135i \(-0.605930\pi\)
−0.326680 + 0.945135i \(0.605930\pi\)
\(182\) −1353.40 −0.551214
\(183\) 0 0
\(184\) 720.000 0.288473
\(185\) 0 0
\(186\) 0 0
\(187\) 864.000 0.337871
\(188\) 3903.23 1.51421
\(189\) 0 0
\(190\) 0 0
\(191\) −4768.73 −1.80656 −0.903280 0.429051i \(-0.858848\pi\)
−0.903280 + 0.429051i \(0.858848\pi\)
\(192\) 0 0
\(193\) 3481.00 1.29828 0.649140 0.760669i \(-0.275129\pi\)
0.649140 + 0.760669i \(0.275129\pi\)
\(194\) 3483.21 1.28907
\(195\) 0 0
\(196\) −2220.00 −0.809038
\(197\) 2392.85 0.865398 0.432699 0.901538i \(-0.357561\pi\)
0.432699 + 0.901538i \(0.357561\pi\)
\(198\) 0 0
\(199\) 2351.00 0.837477 0.418739 0.908107i \(-0.362472\pi\)
0.418739 + 0.908107i \(0.362472\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 2304.00 0.802519
\(203\) −2986.82 −1.03268
\(204\) 0 0
\(205\) 0 0
\(206\) 3559.58 1.20392
\(207\) 0 0
\(208\) 1276.00 0.425359
\(209\) 492.146 0.162883
\(210\) 0 0
\(211\) 1703.00 0.555637 0.277818 0.960634i \(-0.410389\pi\)
0.277818 + 0.960634i \(0.410389\pi\)
\(212\) −3054.70 −0.989612
\(213\) 0 0
\(214\) −3240.00 −1.03496
\(215\) 0 0
\(216\) 0 0
\(217\) 2948.00 0.922227
\(218\) −924.896 −0.287348
\(219\) 0 0
\(220\) 0 0
\(221\) −1476.44 −0.449394
\(222\) 0 0
\(223\) −1388.00 −0.416804 −0.208402 0.978043i \(-0.566826\pi\)
−0.208402 + 0.978043i \(0.566826\pi\)
\(224\) −2800.14 −0.835234
\(225\) 0 0
\(226\) 6408.00 1.88608
\(227\) 4717.82 1.37944 0.689719 0.724077i \(-0.257734\pi\)
0.689719 + 0.724077i \(0.257734\pi\)
\(228\) 0 0
\(229\) 434.000 0.125238 0.0626191 0.998038i \(-0.480055\pi\)
0.0626191 + 0.998038i \(0.480055\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −2304.00 −0.652004
\(233\) −3461.99 −0.973403 −0.486701 0.873568i \(-0.661800\pi\)
−0.486701 + 0.873568i \(0.661800\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 2885.00 0.795751
\(237\) 0 0
\(238\) 2376.00 0.647114
\(239\) −2817.11 −0.762443 −0.381222 0.924484i \(-0.624497\pi\)
−0.381222 + 0.924484i \(0.624497\pi\)
\(240\) 0 0
\(241\) −2095.00 −0.559962 −0.279981 0.960006i \(-0.590328\pi\)
−0.279981 + 0.960006i \(0.590328\pi\)
\(242\) 4425.07 1.17543
\(243\) 0 0
\(244\) 7670.00 2.01238
\(245\) 0 0
\(246\) 0 0
\(247\) −841.000 −0.216646
\(248\) 2274.06 0.582269
\(249\) 0 0
\(250\) 0 0
\(251\) 203.647 0.0512114 0.0256057 0.999672i \(-0.491849\pi\)
0.0256057 + 0.999672i \(0.491849\pi\)
\(252\) 0 0
\(253\) −1440.00 −0.357834
\(254\) 5277.85 1.30379
\(255\) 0 0
\(256\) 1360.00 0.332031
\(257\) 1798.88 0.436619 0.218309 0.975880i \(-0.429946\pi\)
0.218309 + 0.975880i \(0.429946\pi\)
\(258\) 0 0
\(259\) 913.000 0.219039
\(260\) 0 0
\(261\) 0 0
\(262\) 10656.0 2.51271
\(263\) −373.352 −0.0875357 −0.0437679 0.999042i \(-0.513936\pi\)
−0.0437679 + 0.999042i \(0.513936\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 1353.40 0.311964
\(267\) 0 0
\(268\) 5110.00 1.16471
\(269\) 7484.02 1.69631 0.848157 0.529744i \(-0.177712\pi\)
0.848157 + 0.529744i \(0.177712\pi\)
\(270\) 0 0
\(271\) −3319.00 −0.743966 −0.371983 0.928239i \(-0.621322\pi\)
−0.371983 + 0.928239i \(0.621322\pi\)
\(272\) −2240.11 −0.499364
\(273\) 0 0
\(274\) 5688.00 1.25410
\(275\) 0 0
\(276\) 0 0
\(277\) −8354.00 −1.81207 −0.906035 0.423203i \(-0.860906\pi\)
−0.906035 + 0.423203i \(0.860906\pi\)
\(278\) −4017.78 −0.866800
\(279\) 0 0
\(280\) 0 0
\(281\) −2579.53 −0.547621 −0.273811 0.961784i \(-0.588284\pi\)
−0.273811 + 0.961784i \(0.588284\pi\)
\(282\) 0 0
\(283\) 6208.00 1.30398 0.651992 0.758226i \(-0.273934\pi\)
0.651992 + 0.758226i \(0.273934\pi\)
\(284\) 7127.64 1.48925
\(285\) 0 0
\(286\) 2088.00 0.431699
\(287\) 2986.82 0.614308
\(288\) 0 0
\(289\) −2321.00 −0.472420
\(290\) 0 0
\(291\) 0 0
\(292\) −1370.00 −0.274566
\(293\) −6194.26 −1.23506 −0.617529 0.786548i \(-0.711866\pi\)
−0.617529 + 0.786548i \(0.711866\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 704.278 0.138295
\(297\) 0 0
\(298\) 2448.00 0.475869
\(299\) 2460.73 0.475946
\(300\) 0 0
\(301\) −2552.00 −0.488687
\(302\) 9804.74 1.86821
\(303\) 0 0
\(304\) −1276.00 −0.240736
\(305\) 0 0
\(306\) 0 0
\(307\) 2320.00 0.431301 0.215650 0.976471i \(-0.430813\pi\)
0.215650 + 0.976471i \(0.430813\pi\)
\(308\) −1866.76 −0.345353
\(309\) 0 0
\(310\) 0 0
\(311\) 797.616 0.145430 0.0727149 0.997353i \(-0.476834\pi\)
0.0727149 + 0.997353i \(0.476834\pi\)
\(312\) 0 0
\(313\) −1307.00 −0.236026 −0.118013 0.993012i \(-0.537652\pi\)
−0.118013 + 0.993012i \(0.537652\pi\)
\(314\) 6881.56 1.23678
\(315\) 0 0
\(316\) −4750.00 −0.845596
\(317\) 2070.41 0.366832 0.183416 0.983035i \(-0.441284\pi\)
0.183416 + 0.983035i \(0.441284\pi\)
\(318\) 0 0
\(319\) 4608.00 0.808773
\(320\) 0 0
\(321\) 0 0
\(322\) −3960.00 −0.685348
\(323\) 1476.44 0.254338
\(324\) 0 0
\(325\) 0 0
\(326\) 9516.24 1.61674
\(327\) 0 0
\(328\) 2304.00 0.387857
\(329\) −4293.55 −0.719487
\(330\) 0 0
\(331\) −5173.00 −0.859014 −0.429507 0.903063i \(-0.641313\pi\)
−0.429507 + 0.903063i \(0.641313\pi\)
\(332\) −5769.99 −0.953824
\(333\) 0 0
\(334\) 11592.0 1.89906
\(335\) 0 0
\(336\) 0 0
\(337\) −2621.00 −0.423665 −0.211832 0.977306i \(-0.567943\pi\)
−0.211832 + 0.977306i \(0.567943\pi\)
\(338\) 5753.02 0.925808
\(339\) 0 0
\(340\) 0 0
\(341\) −4548.11 −0.722270
\(342\) 0 0
\(343\) 6215.00 0.978363
\(344\) −1968.59 −0.308544
\(345\) 0 0
\(346\) −5760.00 −0.894970
\(347\) 7704.64 1.19195 0.595975 0.803003i \(-0.296766\pi\)
0.595975 + 0.803003i \(0.296766\pi\)
\(348\) 0 0
\(349\) 1955.00 0.299853 0.149927 0.988697i \(-0.452096\pi\)
0.149927 + 0.988697i \(0.452096\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 4320.00 0.654139
\(353\) −1187.94 −0.179115 −0.0895576 0.995982i \(-0.528545\pi\)
−0.0895576 + 0.995982i \(0.528545\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −2545.58 −0.378977
\(357\) 0 0
\(358\) 9936.00 1.46685
\(359\) −560.029 −0.0823320 −0.0411660 0.999152i \(-0.513107\pi\)
−0.0411660 + 0.999152i \(0.513107\pi\)
\(360\) 0 0
\(361\) −6018.00 −0.877387
\(362\) 6750.04 0.980039
\(363\) 0 0
\(364\) 3190.00 0.459345
\(365\) 0 0
\(366\) 0 0
\(367\) −7895.00 −1.12293 −0.561465 0.827500i \(-0.689762\pi\)
−0.561465 + 0.827500i \(0.689762\pi\)
\(368\) 3733.52 0.528868
\(369\) 0 0
\(370\) 0 0
\(371\) 3360.17 0.470219
\(372\) 0 0
\(373\) −9803.00 −1.36080 −0.680402 0.732839i \(-0.738195\pi\)
−0.680402 + 0.732839i \(0.738195\pi\)
\(374\) −3665.64 −0.506807
\(375\) 0 0
\(376\) −3312.00 −0.454264
\(377\) −7874.34 −1.07573
\(378\) 0 0
\(379\) 10505.0 1.42376 0.711881 0.702300i \(-0.247844\pi\)
0.711881 + 0.702300i \(0.247844\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 20232.0 2.70984
\(383\) 1086.12 0.144903 0.0724516 0.997372i \(-0.476918\pi\)
0.0724516 + 0.997372i \(0.476918\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14768.6 −1.94742
\(387\) 0 0
\(388\) −8210.00 −1.07423
\(389\) 2155.26 0.280915 0.140458 0.990087i \(-0.455143\pi\)
0.140458 + 0.990087i \(0.455143\pi\)
\(390\) 0 0
\(391\) −4320.00 −0.558751
\(392\) 1883.73 0.242711
\(393\) 0 0
\(394\) −10152.0 −1.29810
\(395\) 0 0
\(396\) 0 0
\(397\) −12422.0 −1.57038 −0.785192 0.619253i \(-0.787436\pi\)
−0.785192 + 0.619253i \(0.787436\pi\)
\(398\) −9974.45 −1.25622
\(399\) 0 0
\(400\) 0 0
\(401\) 15511.1 1.93164 0.965819 0.259216i \(-0.0834642\pi\)
0.965819 + 0.259216i \(0.0834642\pi\)
\(402\) 0 0
\(403\) 7772.00 0.960672
\(404\) −5430.58 −0.668766
\(405\) 0 0
\(406\) 12672.0 1.54902
\(407\) −1408.56 −0.171547
\(408\) 0 0
\(409\) 7265.00 0.878316 0.439158 0.898410i \(-0.355277\pi\)
0.439158 + 0.898410i \(0.355277\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) −8390.00 −1.00327
\(413\) −3173.50 −0.378105
\(414\) 0 0
\(415\) 0 0
\(416\) −7382.19 −0.870053
\(417\) 0 0
\(418\) −2088.00 −0.244324
\(419\) −3173.50 −0.370013 −0.185006 0.982737i \(-0.559231\pi\)
−0.185006 + 0.982737i \(0.559231\pi\)
\(420\) 0 0
\(421\) 3413.00 0.395106 0.197553 0.980292i \(-0.436701\pi\)
0.197553 + 0.980292i \(0.436701\pi\)
\(422\) −7225.22 −0.833455
\(423\) 0 0
\(424\) 2592.00 0.296884
\(425\) 0 0
\(426\) 0 0
\(427\) −8437.00 −0.956194
\(428\) 7636.75 0.862468
\(429\) 0 0
\(430\) 0 0
\(431\) −12677.0 −1.41678 −0.708388 0.705824i \(-0.750577\pi\)
−0.708388 + 0.705824i \(0.750577\pi\)
\(432\) 0 0
\(433\) −8642.00 −0.959141 −0.479570 0.877503i \(-0.659208\pi\)
−0.479570 + 0.877503i \(0.659208\pi\)
\(434\) −12507.3 −1.38334
\(435\) 0 0
\(436\) 2180.00 0.239457
\(437\) −2460.73 −0.269366
\(438\) 0 0
\(439\) 524.000 0.0569685 0.0284842 0.999594i \(-0.490932\pi\)
0.0284842 + 0.999594i \(0.490932\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 6264.00 0.674091
\(443\) 18158.5 1.94749 0.973743 0.227649i \(-0.0731040\pi\)
0.973743 + 0.227649i \(0.0731040\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 5888.79 0.625206
\(447\) 0 0
\(448\) 8008.00 0.844514
\(449\) 3309.26 0.347825 0.173913 0.984761i \(-0.444359\pi\)
0.173913 + 0.984761i \(0.444359\pi\)
\(450\) 0 0
\(451\) −4608.00 −0.481114
\(452\) −15103.8 −1.57173
\(453\) 0 0
\(454\) −20016.0 −2.06916
\(455\) 0 0
\(456\) 0 0
\(457\) 9466.00 0.968930 0.484465 0.874811i \(-0.339014\pi\)
0.484465 + 0.874811i \(0.339014\pi\)
\(458\) −1841.31 −0.187857
\(459\) 0 0
\(460\) 0 0
\(461\) −3241.38 −0.327475 −0.163738 0.986504i \(-0.552355\pi\)
−0.163738 + 0.986504i \(0.552355\pi\)
\(462\) 0 0
\(463\) −11315.0 −1.13575 −0.567875 0.823115i \(-0.692234\pi\)
−0.567875 + 0.823115i \(0.692234\pi\)
\(464\) −11947.3 −1.19534
\(465\) 0 0
\(466\) 14688.0 1.46010
\(467\) −17462.7 −1.73036 −0.865180 0.501462i \(-0.832796\pi\)
−0.865180 + 0.501462i \(0.832796\pi\)
\(468\) 0 0
\(469\) −5621.00 −0.553419
\(470\) 0 0
\(471\) 0 0
\(472\) −2448.00 −0.238725
\(473\) 3937.17 0.382730
\(474\) 0 0
\(475\) 0 0
\(476\) −5600.29 −0.539262
\(477\) 0 0
\(478\) 11952.0 1.14366
\(479\) 8926.52 0.851488 0.425744 0.904844i \(-0.360012\pi\)
0.425744 + 0.904844i \(0.360012\pi\)
\(480\) 0 0
\(481\) 2407.00 0.228170
\(482\) 8888.33 0.839943
\(483\) 0 0
\(484\) −10430.0 −0.979527
\(485\) 0 0
\(486\) 0 0
\(487\) 18493.0 1.72073 0.860367 0.509674i \(-0.170234\pi\)
0.860367 + 0.509674i \(0.170234\pi\)
\(488\) −6508.21 −0.603715
\(489\) 0 0
\(490\) 0 0
\(491\) 12812.8 1.17766 0.588831 0.808256i \(-0.299588\pi\)
0.588831 + 0.808256i \(0.299588\pi\)
\(492\) 0 0
\(493\) 13824.0 1.26288
\(494\) 3568.06 0.324969
\(495\) 0 0
\(496\) 11792.0 1.06749
\(497\) −7840.40 −0.707626
\(498\) 0 0
\(499\) −12256.0 −1.09951 −0.549753 0.835327i \(-0.685278\pi\)
−0.549753 + 0.835327i \(0.685278\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −864.000 −0.0768171
\(503\) 7382.19 0.654385 0.327193 0.944958i \(-0.393897\pi\)
0.327193 + 0.944958i \(0.393897\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 6109.40 0.536751
\(507\) 0 0
\(508\) −12440.0 −1.08649
\(509\) −20992.6 −1.82806 −0.914028 0.405652i \(-0.867044\pi\)
−0.914028 + 0.405652i \(0.867044\pi\)
\(510\) 0 0
\(511\) 1507.00 0.130461
\(512\) −14187.4 −1.22461
\(513\) 0 0
\(514\) −7632.00 −0.654928
\(515\) 0 0
\(516\) 0 0
\(517\) 6624.00 0.563488
\(518\) −3873.53 −0.328558
\(519\) 0 0
\(520\) 0 0
\(521\) 12269.7 1.03176 0.515879 0.856661i \(-0.327465\pi\)
0.515879 + 0.856661i \(0.327465\pi\)
\(522\) 0 0
\(523\) −6833.00 −0.571293 −0.285646 0.958335i \(-0.592208\pi\)
−0.285646 + 0.958335i \(0.592208\pi\)
\(524\) −25116.4 −2.09392
\(525\) 0 0
\(526\) 1584.00 0.131304
\(527\) −13644.3 −1.12781
\(528\) 0 0
\(529\) −4967.00 −0.408235
\(530\) 0 0
\(531\) 0 0
\(532\) −3190.00 −0.259970
\(533\) 7874.34 0.639917
\(534\) 0 0
\(535\) 0 0
\(536\) −4335.98 −0.349414
\(537\) 0 0
\(538\) −31752.0 −2.54447
\(539\) −3767.46 −0.301069
\(540\) 0 0
\(541\) −10555.0 −0.838808 −0.419404 0.907800i \(-0.637761\pi\)
−0.419404 + 0.907800i \(0.637761\pi\)
\(542\) 14081.3 1.11595
\(543\) 0 0
\(544\) 12960.0 1.02143
\(545\) 0 0
\(546\) 0 0
\(547\) −17291.0 −1.35157 −0.675786 0.737098i \(-0.736196\pi\)
−0.675786 + 0.737098i \(0.736196\pi\)
\(548\) −13406.7 −1.04509
\(549\) 0 0
\(550\) 0 0
\(551\) 7874.34 0.608817
\(552\) 0 0
\(553\) 5225.00 0.401790
\(554\) 35443.0 2.71810
\(555\) 0 0
\(556\) 9470.00 0.722334
\(557\) −10335.1 −0.786196 −0.393098 0.919497i \(-0.628597\pi\)
−0.393098 + 0.919497i \(0.628597\pi\)
\(558\) 0 0
\(559\) −6728.00 −0.509059
\(560\) 0 0
\(561\) 0 0
\(562\) 10944.0 0.821432
\(563\) −16427.5 −1.22973 −0.614864 0.788633i \(-0.710789\pi\)
−0.614864 + 0.788633i \(0.710789\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −26338.3 −1.95598
\(567\) 0 0
\(568\) −6048.00 −0.446775
\(569\) 15697.8 1.15656 0.578282 0.815837i \(-0.303723\pi\)
0.578282 + 0.815837i \(0.303723\pi\)
\(570\) 0 0
\(571\) −4075.00 −0.298658 −0.149329 0.988788i \(-0.547711\pi\)
−0.149329 + 0.988788i \(0.547711\pi\)
\(572\) −4921.46 −0.359749
\(573\) 0 0
\(574\) −12672.0 −0.921462
\(575\) 0 0
\(576\) 0 0
\(577\) −6995.00 −0.504689 −0.252345 0.967637i \(-0.581202\pi\)
−0.252345 + 0.967637i \(0.581202\pi\)
\(578\) 9847.17 0.708630
\(579\) 0 0
\(580\) 0 0
\(581\) 6346.99 0.453214
\(582\) 0 0
\(583\) −5184.00 −0.368266
\(584\) 1162.48 0.0823697
\(585\) 0 0
\(586\) 26280.0 1.85259
\(587\) 5583.32 0.392586 0.196293 0.980545i \(-0.437110\pi\)
0.196293 + 0.980545i \(0.437110\pi\)
\(588\) 0 0
\(589\) −7772.00 −0.543701
\(590\) 0 0
\(591\) 0 0
\(592\) 3652.00 0.253541
\(593\) 14968.0 1.03653 0.518266 0.855219i \(-0.326578\pi\)
0.518266 + 0.855219i \(0.326578\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −5769.99 −0.396557
\(597\) 0 0
\(598\) −10440.0 −0.713919
\(599\) −18192.4 −1.24094 −0.620470 0.784230i \(-0.713058\pi\)
−0.620470 + 0.784230i \(0.713058\pi\)
\(600\) 0 0
\(601\) −6550.00 −0.444559 −0.222280 0.974983i \(-0.571350\pi\)
−0.222280 + 0.974983i \(0.571350\pi\)
\(602\) 10827.2 0.733031
\(603\) 0 0
\(604\) −23110.0 −1.55684
\(605\) 0 0
\(606\) 0 0
\(607\) −12827.0 −0.857713 −0.428857 0.903373i \(-0.641083\pi\)
−0.428857 + 0.903373i \(0.641083\pi\)
\(608\) 7382.19 0.492414
\(609\) 0 0
\(610\) 0 0
\(611\) −11319.4 −0.749480
\(612\) 0 0
\(613\) −18767.0 −1.23653 −0.618264 0.785970i \(-0.712164\pi\)
−0.618264 + 0.785970i \(0.712164\pi\)
\(614\) −9842.93 −0.646951
\(615\) 0 0
\(616\) 1584.00 0.103606
\(617\) 7551.90 0.492752 0.246376 0.969174i \(-0.420760\pi\)
0.246376 + 0.969174i \(0.420760\pi\)
\(618\) 0 0
\(619\) 24581.0 1.59611 0.798056 0.602583i \(-0.205862\pi\)
0.798056 + 0.602583i \(0.205862\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −3384.00 −0.218145
\(623\) 2800.14 0.180073
\(624\) 0 0
\(625\) 0 0
\(626\) 5545.13 0.354038
\(627\) 0 0
\(628\) −16220.0 −1.03065
\(629\) −4225.67 −0.267867
\(630\) 0 0
\(631\) −18223.0 −1.14968 −0.574838 0.818267i \(-0.694935\pi\)
−0.574838 + 0.818267i \(0.694935\pi\)
\(632\) 4030.51 0.253679
\(633\) 0 0
\(634\) −8784.00 −0.550248
\(635\) 0 0
\(636\) 0 0
\(637\) 6438.00 0.400444
\(638\) −19550.1 −1.21316
\(639\) 0 0
\(640\) 0 0
\(641\) 1595.23 0.0982963 0.0491481 0.998792i \(-0.484349\pi\)
0.0491481 + 0.998792i \(0.484349\pi\)
\(642\) 0 0
\(643\) 26296.0 1.61277 0.806386 0.591389i \(-0.201420\pi\)
0.806386 + 0.591389i \(0.201420\pi\)
\(644\) 9333.81 0.571124
\(645\) 0 0
\(646\) −6264.00 −0.381507
\(647\) 25659.5 1.55916 0.779582 0.626301i \(-0.215432\pi\)
0.779582 + 0.626301i \(0.215432\pi\)
\(648\) 0 0
\(649\) 4896.00 0.296125
\(650\) 0 0
\(651\) 0 0
\(652\) −22430.0 −1.34728
\(653\) −441.235 −0.0264423 −0.0132212 0.999913i \(-0.504209\pi\)
−0.0132212 + 0.999913i \(0.504209\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 11947.3 0.711071
\(657\) 0 0
\(658\) 18216.0 1.07923
\(659\) 27051.1 1.59903 0.799515 0.600647i \(-0.205090\pi\)
0.799515 + 0.600647i \(0.205090\pi\)
\(660\) 0 0
\(661\) 623.000 0.0366594 0.0183297 0.999832i \(-0.494165\pi\)
0.0183297 + 0.999832i \(0.494165\pi\)
\(662\) 21947.2 1.28852
\(663\) 0 0
\(664\) 4896.00 0.286147
\(665\) 0 0
\(666\) 0 0
\(667\) −23040.0 −1.33750
\(668\) −27322.6 −1.58255
\(669\) 0 0
\(670\) 0 0
\(671\) 13016.4 0.748872
\(672\) 0 0
\(673\) −27875.0 −1.59659 −0.798293 0.602269i \(-0.794263\pi\)
−0.798293 + 0.602269i \(0.794263\pi\)
\(674\) 11120.0 0.635497
\(675\) 0 0
\(676\) −13560.0 −0.771507
\(677\) 6601.55 0.374768 0.187384 0.982287i \(-0.439999\pi\)
0.187384 + 0.982287i \(0.439999\pi\)
\(678\) 0 0
\(679\) 9031.00 0.510424
\(680\) 0 0
\(681\) 0 0
\(682\) 19296.0 1.08340
\(683\) 15680.8 0.878491 0.439245 0.898367i \(-0.355246\pi\)
0.439245 + 0.898367i \(0.355246\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −26368.0 −1.46754
\(687\) 0 0
\(688\) −10208.0 −0.565663
\(689\) 8858.63 0.489822
\(690\) 0 0
\(691\) −10600.0 −0.583564 −0.291782 0.956485i \(-0.594248\pi\)
−0.291782 + 0.956485i \(0.594248\pi\)
\(692\) 13576.5 0.745808
\(693\) 0 0
\(694\) −32688.0 −1.78792
\(695\) 0 0
\(696\) 0 0
\(697\) −13824.0 −0.751250
\(698\) −8294.36 −0.449780
\(699\) 0 0
\(700\) 0 0
\(701\) 13593.4 0.732406 0.366203 0.930535i \(-0.380658\pi\)
0.366203 + 0.930535i \(0.380658\pi\)
\(702\) 0 0
\(703\) −2407.00 −0.129135
\(704\) −12354.6 −0.661407
\(705\) 0 0
\(706\) 5040.00 0.268673
\(707\) 5973.64 0.317768
\(708\) 0 0
\(709\) −33523.0 −1.77572 −0.887858 0.460117i \(-0.847807\pi\)
−0.887858 + 0.460117i \(0.847807\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 2160.00 0.113693
\(713\) 22740.6 1.19445
\(714\) 0 0
\(715\) 0 0
\(716\) −23419.4 −1.22238
\(717\) 0 0
\(718\) 2376.00 0.123498
\(719\) 31870.7 1.65310 0.826549 0.562865i \(-0.190301\pi\)
0.826549 + 0.562865i \(0.190301\pi\)
\(720\) 0 0
\(721\) 9229.00 0.476707
\(722\) 25532.2 1.31608
\(723\) 0 0
\(724\) −15910.0 −0.816700
\(725\) 0 0
\(726\) 0 0
\(727\) 13084.0 0.667481 0.333741 0.942665i \(-0.391689\pi\)
0.333741 + 0.942665i \(0.391689\pi\)
\(728\) −2706.80 −0.137803
\(729\) 0 0
\(730\) 0 0
\(731\) 11811.5 0.597626
\(732\) 0 0
\(733\) 19222.0 0.968596 0.484298 0.874903i \(-0.339075\pi\)
0.484298 + 0.874903i \(0.339075\pi\)
\(734\) 33495.6 1.68440
\(735\) 0 0
\(736\) −21600.0 −1.08178
\(737\) 8671.96 0.433427
\(738\) 0 0
\(739\) 6320.00 0.314594 0.157297 0.987551i \(-0.449722\pi\)
0.157297 + 0.987551i \(0.449722\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −14256.0 −0.705329
\(743\) −4157.79 −0.205295 −0.102648 0.994718i \(-0.532731\pi\)
−0.102648 + 0.994718i \(0.532731\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 41590.6 2.04121
\(747\) 0 0
\(748\) 8640.00 0.422339
\(749\) −8400.43 −0.409806
\(750\) 0 0
\(751\) 20333.0 0.987965 0.493982 0.869472i \(-0.335541\pi\)
0.493982 + 0.869472i \(0.335541\pi\)
\(752\) −17174.2 −0.832818
\(753\) 0 0
\(754\) 33408.0 1.61359
\(755\) 0 0
\(756\) 0 0
\(757\) 14011.0 0.672706 0.336353 0.941736i \(-0.390806\pi\)
0.336353 + 0.941736i \(0.390806\pi\)
\(758\) −44568.9 −2.13564
\(759\) 0 0
\(760\) 0 0
\(761\) −25981.9 −1.23764 −0.618820 0.785533i \(-0.712389\pi\)
−0.618820 + 0.785533i \(0.712389\pi\)
\(762\) 0 0
\(763\) −2398.00 −0.113779
\(764\) −47687.3 −2.25820
\(765\) 0 0
\(766\) −4608.00 −0.217355
\(767\) −8366.49 −0.393867
\(768\) 0 0
\(769\) −6289.00 −0.294912 −0.147456 0.989069i \(-0.547108\pi\)
−0.147456 + 0.989069i \(0.547108\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 34810.0 1.62285
\(773\) 7229.46 0.336385 0.168192 0.985754i \(-0.446207\pi\)
0.168192 + 0.985754i \(0.446207\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 6966.42 0.322268
\(777\) 0 0
\(778\) −9144.00 −0.421373
\(779\) −7874.34 −0.362166
\(780\) 0 0
\(781\) 12096.0 0.554198
\(782\) 18328.2 0.838127
\(783\) 0 0
\(784\) 9768.00 0.444971
\(785\) 0 0
\(786\) 0 0
\(787\) 25675.0 1.16292 0.581458 0.813576i \(-0.302482\pi\)
0.581458 + 0.813576i \(0.302482\pi\)
\(788\) 23928.5 1.08175
\(789\) 0 0
\(790\) 0 0
\(791\) 16614.2 0.746817
\(792\) 0 0
\(793\) −22243.0 −0.996056
\(794\) 52702.1 2.35558
\(795\) 0 0
\(796\) 23510.0 1.04685
\(797\) 3326.23 0.147831 0.0739154 0.997265i \(-0.476451\pi\)
0.0739154 + 0.997265i \(0.476451\pi\)
\(798\) 0 0
\(799\) 19872.0 0.879876
\(800\) 0 0
\(801\) 0 0
\(802\) −65808.0 −2.89746
\(803\) −2324.97 −0.102175
\(804\) 0 0
\(805\) 0 0
\(806\) −32973.8 −1.44101
\(807\) 0 0
\(808\) 4608.00 0.200630
\(809\) 10080.5 0.438087 0.219043 0.975715i \(-0.429706\pi\)
0.219043 + 0.975715i \(0.429706\pi\)
\(810\) 0 0
\(811\) 14312.0 0.619682 0.309841 0.950788i \(-0.399724\pi\)
0.309841 + 0.950788i \(0.399724\pi\)
\(812\) −29868.2 −1.29085
\(813\) 0 0
\(814\) 5976.00 0.257320
\(815\) 0 0
\(816\) 0 0
\(817\) 6728.00 0.288106
\(818\) −30822.8 −1.31747
\(819\) 0 0
\(820\) 0 0
\(821\) 2766.20 0.117590 0.0587948 0.998270i \(-0.481274\pi\)
0.0587948 + 0.998270i \(0.481274\pi\)
\(822\) 0 0
\(823\) 33343.0 1.41223 0.706114 0.708098i \(-0.250447\pi\)
0.706114 + 0.708098i \(0.250447\pi\)
\(824\) 7119.15 0.300980
\(825\) 0 0
\(826\) 13464.0 0.567158
\(827\) 18379.1 0.772799 0.386399 0.922332i \(-0.373719\pi\)
0.386399 + 0.922332i \(0.373719\pi\)
\(828\) 0 0
\(829\) 3593.00 0.150531 0.0752654 0.997164i \(-0.476020\pi\)
0.0752654 + 0.997164i \(0.476020\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 21112.0 0.879720
\(833\) −11302.4 −0.470114
\(834\) 0 0
\(835\) 0 0
\(836\) 4921.46 0.203603
\(837\) 0 0
\(838\) 13464.0 0.555019
\(839\) −17140.3 −0.705301 −0.352651 0.935755i \(-0.614720\pi\)
−0.352651 + 0.935755i \(0.614720\pi\)
\(840\) 0 0
\(841\) 49339.0 2.02300
\(842\) −14480.1 −0.592658
\(843\) 0 0
\(844\) 17030.0 0.694546
\(845\) 0 0
\(846\) 0 0
\(847\) 11473.0 0.465427
\(848\) 13440.7 0.544287
\(849\) 0 0
\(850\) 0 0
\(851\) 7042.78 0.283694
\(852\) 0 0
\(853\) 4741.00 0.190303 0.0951517 0.995463i \(-0.469666\pi\)
0.0951517 + 0.995463i \(0.469666\pi\)
\(854\) 35795.2 1.43429
\(855\) 0 0
\(856\) −6480.00 −0.258740
\(857\) −11981.2 −0.477562 −0.238781 0.971073i \(-0.576748\pi\)
−0.238781 + 0.971073i \(0.576748\pi\)
\(858\) 0 0
\(859\) 6887.00 0.273552 0.136776 0.990602i \(-0.456326\pi\)
0.136776 + 0.990602i \(0.456326\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 53784.0 2.12516
\(863\) 8400.43 0.331349 0.165674 0.986181i \(-0.447020\pi\)
0.165674 + 0.986181i \(0.447020\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 36664.9 1.43871
\(867\) 0 0
\(868\) 29480.0 1.15278
\(869\) −8061.02 −0.314674
\(870\) 0 0
\(871\) −14819.0 −0.576490
\(872\) −1849.79 −0.0718370
\(873\) 0 0
\(874\) 10440.0 0.404048
\(875\) 0 0
\(876\) 0 0
\(877\) −13475.0 −0.518835 −0.259418 0.965765i \(-0.583531\pi\)
−0.259418 + 0.965765i \(0.583531\pi\)
\(878\) −2223.14 −0.0854527
\(879\) 0 0
\(880\) 0 0
\(881\) −5243.90 −0.200535 −0.100268 0.994961i \(-0.531970\pi\)
−0.100268 + 0.994961i \(0.531970\pi\)
\(882\) 0 0
\(883\) 7909.00 0.301426 0.150713 0.988578i \(-0.451843\pi\)
0.150713 + 0.988578i \(0.451843\pi\)
\(884\) −14764.4 −0.561742
\(885\) 0 0
\(886\) −77040.0 −2.92123
\(887\) −35672.1 −1.35034 −0.675171 0.737662i \(-0.735930\pi\)
−0.675171 + 0.737662i \(0.735930\pi\)
\(888\) 0 0
\(889\) 13684.0 0.516250
\(890\) 0 0
\(891\) 0 0
\(892\) −13880.0 −0.521005
\(893\) 11319.4 0.424175
\(894\) 0 0
\(895\) 0 0
\(896\) −11573.9 −0.431538
\(897\) 0 0
\(898\) −14040.0 −0.521738
\(899\) −72769.8 −2.69967
\(900\) 0 0
\(901\) −15552.0 −0.575041
\(902\) 19550.1 0.721670
\(903\) 0 0
\(904\) 12816.0 0.471520
\(905\) 0 0
\(906\) 0 0
\(907\) 16999.0 0.622318 0.311159 0.950358i \(-0.399283\pi\)
0.311159 + 0.950358i \(0.399283\pi\)
\(908\) 47178.2 1.72430
\(909\) 0 0
\(910\) 0 0
\(911\) −39032.3 −1.41954 −0.709768 0.704435i \(-0.751200\pi\)
−0.709768 + 0.704435i \(0.751200\pi\)
\(912\) 0 0
\(913\) −9792.00 −0.354948
\(914\) −40160.8 −1.45339
\(915\) 0 0
\(916\) 4340.00 0.156548
\(917\) 27628.1 0.994939
\(918\) 0 0
\(919\) −28348.0 −1.01753 −0.508767 0.860904i \(-0.669899\pi\)
−0.508767 + 0.860904i \(0.669899\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 13752.0 0.491213
\(923\) −20670.1 −0.737125
\(924\) 0 0
\(925\) 0 0
\(926\) 48005.5 1.70363
\(927\) 0 0
\(928\) 69120.0 2.44502
\(929\) 33160.5 1.17111 0.585554 0.810633i \(-0.300877\pi\)
0.585554 + 0.810633i \(0.300877\pi\)
\(930\) 0 0
\(931\) −6438.00 −0.226635
\(932\) −34619.9 −1.21675
\(933\) 0 0
\(934\) 74088.0 2.59554
\(935\) 0 0
\(936\) 0 0
\(937\) 133.000 0.00463706 0.00231853 0.999997i \(-0.499262\pi\)
0.00231853 + 0.999997i \(0.499262\pi\)
\(938\) 23847.9 0.830129
\(939\) 0 0
\(940\) 0 0
\(941\) −48790.4 −1.69024 −0.845122 0.534573i \(-0.820473\pi\)
−0.845122 + 0.534573i \(0.820473\pi\)
\(942\) 0 0
\(943\) 23040.0 0.795637
\(944\) −12694.0 −0.437663
\(945\) 0 0
\(946\) −16704.0 −0.574095
\(947\) −45328.4 −1.55541 −0.777705 0.628629i \(-0.783617\pi\)
−0.777705 + 0.628629i \(0.783617\pi\)
\(948\) 0 0
\(949\) 3973.00 0.135900
\(950\) 0 0
\(951\) 0 0
\(952\) 4752.00 0.161779
\(953\) −43122.2 −1.46576 −0.732878 0.680360i \(-0.761823\pi\)
−0.732878 + 0.680360i \(0.761823\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) −28171.1 −0.953054
\(957\) 0 0
\(958\) −37872.0 −1.27723
\(959\) 14747.4 0.496579
\(960\) 0 0
\(961\) 42033.0 1.41093
\(962\) −10212.0 −0.342255
\(963\) 0 0
\(964\) −20950.0 −0.699952
\(965\) 0 0
\(966\) 0 0
\(967\) −22061.0 −0.733644 −0.366822 0.930291i \(-0.619554\pi\)
−0.366822 + 0.930291i \(0.619554\pi\)
\(968\) 8850.15 0.293858
\(969\) 0 0
\(970\) 0 0
\(971\) 33449.0 1.10549 0.552744 0.833351i \(-0.313581\pi\)
0.552744 + 0.833351i \(0.313581\pi\)
\(972\) 0 0
\(973\) −10417.0 −0.343221
\(974\) −78459.2 −2.58110
\(975\) 0 0
\(976\) −33748.0 −1.10681
\(977\) −20602.3 −0.674642 −0.337321 0.941390i \(-0.609521\pi\)
−0.337321 + 0.941390i \(0.609521\pi\)
\(978\) 0 0
\(979\) −4320.00 −0.141029
\(980\) 0 0
\(981\) 0 0
\(982\) −54360.0 −1.76649
\(983\) −11930.3 −0.387098 −0.193549 0.981091i \(-0.562000\pi\)
−0.193549 + 0.981091i \(0.562000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −58650.3 −1.89433
\(987\) 0 0
\(988\) −8410.00 −0.270807
\(989\) −19685.9 −0.632936
\(990\) 0 0
\(991\) −35017.0 −1.12245 −0.561227 0.827662i \(-0.689670\pi\)
−0.561227 + 0.827662i \(0.689670\pi\)
\(992\) −68221.7 −2.18351
\(993\) 0 0
\(994\) 33264.0 1.06144
\(995\) 0 0
\(996\) 0 0
\(997\) −13646.0 −0.433474 −0.216737 0.976230i \(-0.569541\pi\)
−0.216737 + 0.976230i \(0.569541\pi\)
\(998\) 51997.8 1.64926
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.a.n.1.1 2
3.2 odd 2 inner 675.4.a.n.1.2 2
5.2 odd 4 675.4.b.i.649.1 4
5.3 odd 4 675.4.b.i.649.4 4
5.4 even 2 27.4.a.c.1.2 yes 2
15.2 even 4 675.4.b.i.649.3 4
15.8 even 4 675.4.b.i.649.2 4
15.14 odd 2 27.4.a.c.1.1 2
20.19 odd 2 432.4.a.q.1.1 2
35.34 odd 2 1323.4.a.t.1.2 2
40.19 odd 2 1728.4.a.bk.1.2 2
40.29 even 2 1728.4.a.bp.1.2 2
45.4 even 6 81.4.c.e.55.1 4
45.14 odd 6 81.4.c.e.55.2 4
45.29 odd 6 81.4.c.e.28.2 4
45.34 even 6 81.4.c.e.28.1 4
60.59 even 2 432.4.a.q.1.2 2
105.104 even 2 1323.4.a.t.1.1 2
120.29 odd 2 1728.4.a.bp.1.1 2
120.59 even 2 1728.4.a.bk.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.4.a.c.1.1 2 15.14 odd 2
27.4.a.c.1.2 yes 2 5.4 even 2
81.4.c.e.28.1 4 45.34 even 6
81.4.c.e.28.2 4 45.29 odd 6
81.4.c.e.55.1 4 45.4 even 6
81.4.c.e.55.2 4 45.14 odd 6
432.4.a.q.1.1 2 20.19 odd 2
432.4.a.q.1.2 2 60.59 even 2
675.4.a.n.1.1 2 1.1 even 1 trivial
675.4.a.n.1.2 2 3.2 odd 2 inner
675.4.b.i.649.1 4 5.2 odd 4
675.4.b.i.649.2 4 15.8 even 4
675.4.b.i.649.3 4 15.2 even 4
675.4.b.i.649.4 4 5.3 odd 4
1323.4.a.t.1.1 2 105.104 even 2
1323.4.a.t.1.2 2 35.34 odd 2
1728.4.a.bk.1.1 2 120.59 even 2
1728.4.a.bk.1.2 2 40.19 odd 2
1728.4.a.bp.1.1 2 120.29 odd 2
1728.4.a.bp.1.2 2 40.29 even 2