Properties

Label 675.4.a.k.1.1
Level $675$
Weight $4$
Character 675.1
Self dual yes
Analytic conductor $39.826$
Analytic rank $1$
Dimension $2$
CM discriminant -15
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,4,Mod(1,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Root \(1.61803\) of defining polynomial
Character \(\chi\) \(=\) 675.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-5.61803 q^{2} +23.5623 q^{4} -87.4296 q^{8} +O(q^{10})\) \(q-5.61803 q^{2} +23.5623 q^{4} -87.4296 q^{8} +302.684 q^{16} +51.3181 q^{17} +61.8754 q^{19} -220.193 q^{23} -105.371 q^{31} -1001.05 q^{32} -288.307 q^{34} -347.618 q^{38} +1237.05 q^{46} +545.601 q^{47} -343.000 q^{49} +85.1866 q^{53} -585.735 q^{61} +591.976 q^{62} +3202.47 q^{64} +1209.17 q^{68} +1457.93 q^{76} +1035.35 q^{79} -75.9567 q^{83} -5188.27 q^{92} -3065.20 q^{94} +1926.99 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9 q^{2} + 27 q^{4} - 72 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 9 q^{2} + 27 q^{4} - 72 q^{8} + 223 q^{16} - 36 q^{17} + 164 q^{19} - 342 q^{23} + 232 q^{31} - 855 q^{32} + 7 q^{34} - 693 q^{38} + 1649 q^{46} - 686 q^{49} + 792 q^{53} + 358 q^{61} - 549 q^{62} + 3346 q^{64} + 909 q^{68} + 1809 q^{76} - 304 q^{79} - 1422 q^{83} - 5607 q^{92} - 1220 q^{94} + 3087 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.61803 −1.98627 −0.993137 0.116953i \(-0.962687\pi\)
−0.993137 + 0.116953i \(0.962687\pi\)
\(3\) 0 0
\(4\) 23.5623 2.94529
\(5\) 0 0
\(6\) 0 0
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −87.4296 −3.86388
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 302.684 4.72943
\(17\) 51.3181 0.732145 0.366073 0.930586i \(-0.380702\pi\)
0.366073 + 0.930586i \(0.380702\pi\)
\(18\) 0 0
\(19\) 61.8754 0.747115 0.373558 0.927607i \(-0.378138\pi\)
0.373558 + 0.927607i \(0.378138\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −220.193 −1.99624 −0.998120 0.0612908i \(-0.980478\pi\)
−0.998120 + 0.0612908i \(0.980478\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) −105.371 −0.610488 −0.305244 0.952274i \(-0.598738\pi\)
−0.305244 + 0.952274i \(0.598738\pi\)
\(32\) −1001.05 −5.53008
\(33\) 0 0
\(34\) −288.307 −1.45424
\(35\) 0 0
\(36\) 0 0
\(37\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(38\) −347.618 −1.48398
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 1237.05 3.96508
\(47\) 545.601 1.69328 0.846639 0.532168i \(-0.178623\pi\)
0.846639 + 0.532168i \(0.178623\pi\)
\(48\) 0 0
\(49\) −343.000 −1.00000
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 85.1866 0.220779 0.110389 0.993888i \(-0.464790\pi\)
0.110389 + 0.993888i \(0.464790\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) −585.735 −1.22944 −0.614719 0.788746i \(-0.710731\pi\)
−0.614719 + 0.788746i \(0.710731\pi\)
\(62\) 591.976 1.21260
\(63\) 0 0
\(64\) 3202.47 6.25483
\(65\) 0 0
\(66\) 0 0
\(67\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(68\) 1209.17 2.15638
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 1457.93 2.20047
\(77\) 0 0
\(78\) 0 0
\(79\) 1035.35 1.47451 0.737255 0.675615i \(-0.236122\pi\)
0.737255 + 0.675615i \(0.236122\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −75.9567 −0.100450 −0.0502249 0.998738i \(-0.515994\pi\)
−0.0502249 + 0.998738i \(0.515994\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −5188.27 −5.87950
\(93\) 0 0
\(94\) −3065.20 −3.36331
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 1926.99 1.98627
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −478.581 −0.438527
\(107\) −17.8885 −0.0161622 −0.00808108 0.999967i \(-0.502572\pi\)
−0.00808108 + 0.999967i \(0.502572\pi\)
\(108\) 0 0
\(109\) −2084.23 −1.83149 −0.915747 0.401756i \(-0.868400\pi\)
−0.915747 + 0.401756i \(0.868400\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1426.61 1.18765 0.593824 0.804595i \(-0.297617\pi\)
0.593824 + 0.804595i \(0.297617\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −1331.00 −1.00000
\(122\) 3290.68 2.44200
\(123\) 0 0
\(124\) −2482.78 −1.79806
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) −9983.18 −6.89372
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) −4486.72 −2.82892
\(137\) −1182.95 −0.737710 −0.368855 0.929487i \(-0.620250\pi\)
−0.368855 + 0.929487i \(0.620250\pi\)
\(138\) 0 0
\(139\) −1604.00 −0.978773 −0.489387 0.872067i \(-0.662779\pi\)
−0.489387 + 0.872067i \(0.662779\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −3112.00 −1.67716 −0.838579 0.544779i \(-0.816613\pi\)
−0.838579 + 0.544779i \(0.816613\pi\)
\(152\) −5409.74 −2.88676
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) −5816.64 −2.92878
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 426.727 0.199521
\(167\) −3709.77 −1.71899 −0.859493 0.511148i \(-0.829220\pi\)
−0.859493 + 0.511148i \(0.829220\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3711.57 −1.63113 −0.815566 0.578665i \(-0.803574\pi\)
−0.815566 + 0.578665i \(0.803574\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) 0 0
\(181\) 3416.17 1.40288 0.701442 0.712726i \(-0.252540\pi\)
0.701442 + 0.712726i \(0.252540\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 19251.4 7.71323
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 12855.6 4.98719
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −8081.87 −2.94529
\(197\) 5524.79 1.99810 0.999049 0.0436000i \(-0.0138827\pi\)
0.999049 + 0.0436000i \(0.0138827\pi\)
\(198\) 0 0
\(199\) −5456.00 −1.94355 −0.971773 0.235919i \(-0.924190\pi\)
−0.971773 + 0.235919i \(0.924190\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −1729.80 −0.564381 −0.282191 0.959358i \(-0.591061\pi\)
−0.282191 + 0.959358i \(0.591061\pi\)
\(212\) 2007.19 0.650257
\(213\) 0 0
\(214\) 100.498 0.0321025
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 11709.3 3.63785
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −8014.75 −2.35900
\(227\) 5181.88 1.51513 0.757563 0.652762i \(-0.226390\pi\)
0.757563 + 0.652762i \(0.226390\pi\)
\(228\) 0 0
\(229\) −6140.13 −1.77184 −0.885920 0.463837i \(-0.846472\pi\)
−0.885920 + 0.463837i \(0.846472\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4449.78 −1.25114 −0.625568 0.780170i \(-0.715133\pi\)
−0.625568 + 0.780170i \(0.715133\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 7078.38 1.89194 0.945972 0.324249i \(-0.105112\pi\)
0.945972 + 0.324249i \(0.105112\pi\)
\(242\) 7477.60 1.98627
\(243\) 0 0
\(244\) −13801.3 −3.62105
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 9212.52 2.35885
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 30466.1 7.43800
\(257\) −7609.37 −1.84692 −0.923462 0.383691i \(-0.874653\pi\)
−0.923462 + 0.383691i \(0.874653\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6341.49 −1.48682 −0.743409 0.668837i \(-0.766792\pi\)
−0.743409 + 0.668837i \(0.766792\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) −8427.28 −1.88901 −0.944503 0.328503i \(-0.893456\pi\)
−0.944503 + 0.328503i \(0.893456\pi\)
\(272\) 15533.2 3.46263
\(273\) 0 0
\(274\) 6645.85 1.46529
\(275\) 0 0
\(276\) 0 0
\(277\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(278\) 9011.33 1.94411
\(279\) 0 0
\(280\) 0 0
\(281\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −2279.45 −0.463963
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6663.10 −1.32854 −0.664270 0.747492i \(-0.731258\pi\)
−0.664270 + 0.747492i \(0.731258\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 17483.3 3.33130
\(303\) 0 0
\(304\) 18728.7 3.53343
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 24395.3 4.34285
\(317\) −9434.33 −1.67156 −0.835781 0.549063i \(-0.814985\pi\)
−0.835781 + 0.549063i \(0.814985\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3175.33 0.546997
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 5852.00 0.971767 0.485884 0.874023i \(-0.338498\pi\)
0.485884 + 0.874023i \(0.338498\pi\)
\(332\) −1789.71 −0.295854
\(333\) 0 0
\(334\) 20841.6 3.41438
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) 12342.8 1.98627
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 20851.7 3.23988
\(347\) −8550.72 −1.32284 −0.661422 0.750014i \(-0.730047\pi\)
−0.661422 + 0.750014i \(0.730047\pi\)
\(348\) 0 0
\(349\) −12680.0 −1.94483 −0.972417 0.233249i \(-0.925064\pi\)
−0.972417 + 0.233249i \(0.925064\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2473.09 0.372888 0.186444 0.982466i \(-0.440304\pi\)
0.186444 + 0.982466i \(0.440304\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) −3030.44 −0.441819
\(362\) −19192.2 −2.78651
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) −66649.0 −9.44109
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −47701.6 −6.54262
\(377\) 0 0
\(378\) 0 0
\(379\) 14417.4 1.95401 0.977007 0.213206i \(-0.0683904\pi\)
0.977007 + 0.213206i \(0.0683904\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −5218.29 −0.696193 −0.348097 0.937459i \(-0.613172\pi\)
−0.348097 + 0.937459i \(0.613172\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) −11299.9 −1.46154
\(392\) 29988.3 3.86388
\(393\) 0 0
\(394\) −31038.5 −3.96877
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 30652.0 3.86042
\(399\) 0 0
\(400\) 0 0
\(401\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 1.36180 0.000164637 0 8.23187e−5 1.00000i \(-0.499974\pi\)
8.23187e−5 1.00000i \(0.499974\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 10286.0 1.19076 0.595378 0.803446i \(-0.297002\pi\)
0.595378 + 0.803446i \(0.297002\pi\)
\(422\) 9718.08 1.12102
\(423\) 0 0
\(424\) −7447.82 −0.853062
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) −421.495 −0.0476022
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −49109.2 −5.39428
\(437\) −13624.6 −1.49142
\(438\) 0 0
\(439\) 14626.0 1.59012 0.795058 0.606533i \(-0.207440\pi\)
0.795058 + 0.606533i \(0.207440\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −13083.8 −1.40323 −0.701613 0.712559i \(-0.747536\pi\)
−0.701613 + 0.712559i \(0.747536\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 33614.3 3.49797
\(453\) 0 0
\(454\) −29112.0 −3.00946
\(455\) 0 0
\(456\) 0 0
\(457\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(458\) 34495.5 3.51936
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 24999.0 2.48510
\(467\) 14908.5 1.47726 0.738632 0.674109i \(-0.235472\pi\)
0.738632 + 0.674109i \(0.235472\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −39766.6 −3.75792
\(483\) 0 0
\(484\) −31361.4 −2.94529
\(485\) 0 0
\(486\) 0 0
\(487\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(488\) 51210.6 4.75040
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −31894.0 −2.88727
\(497\) 0 0
\(498\) 0 0
\(499\) 19297.7 1.73123 0.865614 0.500711i \(-0.166928\pi\)
0.865614 + 0.500711i \(0.166928\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 6488.09 0.575129 0.287564 0.957761i \(-0.407154\pi\)
0.287564 + 0.957761i \(0.407154\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −91294.0 −7.88020
\(513\) 0 0
\(514\) 42749.7 3.66850
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 35626.7 2.95323
\(527\) −5407.43 −0.446966
\(528\) 0 0
\(529\) 36318.2 2.98497
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3238.00 −0.257324 −0.128662 0.991688i \(-0.541068\pi\)
−0.128662 + 0.991688i \(0.541068\pi\)
\(542\) 47344.7 3.75209
\(543\) 0 0
\(544\) −51372.1 −4.04882
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(548\) −27873.0 −2.17277
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) −37793.9 −2.88277
\(557\) 26184.4 1.99186 0.995931 0.0901226i \(-0.0287259\pi\)
0.995931 + 0.0901226i \(0.0287259\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −14632.8 −1.09538 −0.547691 0.836681i \(-0.684493\pi\)
−0.547691 + 0.836681i \(0.684493\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) −5861.76 −0.429610 −0.214805 0.976657i \(-0.568912\pi\)
−0.214805 + 0.976657i \(0.568912\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 12806.0 0.921559
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 37433.5 2.63885
\(587\) 2475.70 0.174076 0.0870382 0.996205i \(-0.472260\pi\)
0.0870382 + 0.996205i \(0.472260\pi\)
\(588\) 0 0
\(589\) −6519.85 −0.456105
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −27999.2 −1.93894 −0.969470 0.245211i \(-0.921143\pi\)
−0.969470 + 0.245211i \(0.921143\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −15799.1 −1.07231 −0.536154 0.844120i \(-0.680123\pi\)
−0.536154 + 0.844120i \(0.680123\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −73325.9 −4.93972
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) −61940.4 −4.13161
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 3177.55 0.207331 0.103666 0.994612i \(-0.466943\pi\)
0.103666 + 0.994612i \(0.466943\pi\)
\(618\) 0 0
\(619\) −3476.00 −0.225706 −0.112853 0.993612i \(-0.535999\pi\)
−0.112853 + 0.993612i \(0.535999\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 27085.6 1.70881 0.854407 0.519604i \(-0.173921\pi\)
0.854407 + 0.519604i \(0.173921\pi\)
\(632\) −90520.4 −5.69732
\(633\) 0 0
\(634\) 53002.4 3.32018
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −17839.1 −1.08649
\(647\) 27093.7 1.64631 0.823156 0.567815i \(-0.192211\pi\)
0.823156 + 0.567815i \(0.192211\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −32543.1 −1.95024 −0.975122 0.221667i \(-0.928850\pi\)
−0.975122 + 0.221667i \(0.928850\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(660\) 0 0
\(661\) 32978.0 1.94054 0.970269 0.242029i \(-0.0778130\pi\)
0.970269 + 0.242029i \(0.0778130\pi\)
\(662\) −32876.7 −1.93020
\(663\) 0 0
\(664\) 6640.86 0.388126
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) −87410.7 −5.06291
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) −51766.4 −2.94529
\(677\) −32901.5 −1.86781 −0.933905 0.357521i \(-0.883622\pi\)
−0.933905 + 0.357521i \(0.883622\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 33457.3 1.87439 0.937194 0.348807i \(-0.113413\pi\)
0.937194 + 0.348807i \(0.113413\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 2902.39 0.159786 0.0798929 0.996803i \(-0.474542\pi\)
0.0798929 + 0.996803i \(0.474542\pi\)
\(692\) −87453.2 −4.80415
\(693\) 0 0
\(694\) 48038.3 2.62753
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 71236.9 3.86297
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −13893.9 −0.740658
\(707\) 0 0
\(708\) 0 0
\(709\) 37726.0 1.99835 0.999175 0.0406201i \(-0.0129334\pi\)
0.999175 + 0.0406201i \(0.0129334\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 23201.9 1.21868
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 17025.1 0.877574
\(723\) 0 0
\(724\) 80492.9 4.13190
\(725\) 0 0
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 220425. 11.0394
\(737\) 0 0
\(738\) 0 0
\(739\) −29548.2 −1.47084 −0.735419 0.677613i \(-0.763014\pi\)
−0.735419 + 0.677613i \(0.763014\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 10241.2 0.505670 0.252835 0.967509i \(-0.418637\pi\)
0.252835 + 0.967509i \(0.418637\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 41015.8 1.99292 0.996462 0.0840433i \(-0.0267834\pi\)
0.996462 + 0.0840433i \(0.0267834\pi\)
\(752\) 165144. 8.00824
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(758\) −80997.4 −3.88121
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 29316.5 1.38283
\(767\) 0 0
\(768\) 0 0
\(769\) 40536.8 1.90090 0.950452 0.310873i \(-0.100621\pi\)
0.950452 + 0.310873i \(0.100621\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31003.3 1.44257 0.721287 0.692636i \(-0.243551\pi\)
0.721287 + 0.692636i \(0.243551\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 63483.3 2.90302
\(783\) 0 0
\(784\) −103821. −4.72943
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 130177. 5.88497
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) −128556. −5.72430
\(797\) −38238.7 −1.69948 −0.849739 0.527204i \(-0.823241\pi\)
−0.849739 + 0.527204i \(0.823241\pi\)
\(798\) 0 0
\(799\) 27999.2 1.23972
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) −14092.0 −0.610157 −0.305078 0.952327i \(-0.598683\pi\)
−0.305078 + 0.952327i \(0.598683\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −7.65064 −0.000327015 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −3817.14 −0.160502 −0.0802509 0.996775i \(-0.525572\pi\)
−0.0802509 + 0.996775i \(0.525572\pi\)
\(828\) 0 0
\(829\) −45254.0 −1.89594 −0.947971 0.318356i \(-0.896869\pi\)
−0.947971 + 0.318356i \(0.896869\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −17602.1 −0.732145
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −24389.0 −1.00000
\(842\) −57787.0 −2.36517
\(843\) 0 0
\(844\) −40758.1 −1.66226
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 25784.6 1.04416
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 1563.99 0.0624486
\(857\) −38654.7 −1.54075 −0.770374 0.637593i \(-0.779930\pi\)
−0.770374 + 0.637593i \(0.779930\pi\)
\(858\) 0 0
\(859\) −50225.7 −1.99497 −0.997484 0.0708878i \(-0.977417\pi\)
−0.997484 + 0.0708878i \(0.977417\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 24350.6 0.960490 0.480245 0.877134i \(-0.340548\pi\)
0.480245 + 0.877134i \(0.340548\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 182223. 7.07667
\(873\) 0 0
\(874\) 76543.2 2.96237
\(875\) 0 0
\(876\) 0 0
\(877\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(878\) −82169.4 −3.15841
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 73505.1 2.78719
\(887\) 29614.4 1.12103 0.560516 0.828144i \(-0.310603\pi\)
0.560516 + 0.828144i \(0.310603\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 33759.2 1.26507
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 4371.61 0.161642
\(902\) 0 0
\(903\) 0 0
\(904\) −124728. −4.58893
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(908\) 122097. 4.46248
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) −144676. −5.21858
\(917\) 0 0
\(918\) 0 0
\(919\) −21224.0 −0.761823 −0.380911 0.924612i \(-0.624390\pi\)
−0.380911 + 0.924612i \(0.624390\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) −21223.3 −0.747115
\(932\) −104847. −3.68495
\(933\) 0 0
\(934\) −83756.4 −2.93425
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 54525.5 1.87100 0.935502 0.353321i \(-0.114948\pi\)
0.935502 + 0.353321i \(0.114948\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30289.8 −1.02957 −0.514786 0.857319i \(-0.672129\pi\)
−0.514786 + 0.857319i \(0.672129\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −18688.0 −0.627304
\(962\) 0 0
\(963\) 0 0
\(964\) 166783. 5.57232
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(968\) 116369. 3.86388
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −177293. −5.81455
\(977\) −13018.4 −0.426300 −0.213150 0.977019i \(-0.568372\pi\)
−0.213150 + 0.977019i \(0.568372\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −39208.1 −1.27217 −0.636086 0.771618i \(-0.719448\pi\)
−0.636086 + 0.771618i \(0.719448\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 29634.4 0.949917 0.474959 0.880008i \(-0.342463\pi\)
0.474959 + 0.880008i \(0.342463\pi\)
\(992\) 105482. 3.37605
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) −108415. −3.43870
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.4.a.k.1.1 2
3.2 odd 2 675.4.a.o.1.2 2
5.2 odd 4 135.4.b.a.109.1 4
5.3 odd 4 135.4.b.a.109.4 yes 4
5.4 even 2 675.4.a.o.1.2 2
15.2 even 4 135.4.b.a.109.4 yes 4
15.8 even 4 135.4.b.a.109.1 4
15.14 odd 2 CM 675.4.a.k.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.4.b.a.109.1 4 5.2 odd 4
135.4.b.a.109.1 4 15.8 even 4
135.4.b.a.109.4 yes 4 5.3 odd 4
135.4.b.a.109.4 yes 4 15.2 even 4
675.4.a.k.1.1 2 1.1 even 1 trivial
675.4.a.k.1.1 2 15.14 odd 2 CM
675.4.a.o.1.2 2 3.2 odd 2
675.4.a.o.1.2 2 5.4 even 2