Properties

Label 675.4.a.bb
Level $675$
Weight $4$
Character orbit 675.a
Self dual yes
Analytic conductor $39.826$
Analytic rank $1$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,4,Mod(1,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 675.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,30,0,0,-36] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(39.8262892539\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 21x^{4} + 5x^{3} + 101x^{2} + 29x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{4}\cdot 5 \)
Twist minimal: no (minimal twist has level 135)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + ( - \beta_{4} + 5) q^{4} + (\beta_{4} + \beta_{2} - 6) q^{7} + ( - \beta_{5} + 4 \beta_1) q^{8} + ( - \beta_{3} - 6 \beta_1) q^{11} + (4 \beta_{4} - 2 \beta_{2} - 27) q^{13} + (3 \beta_{5} + 2 \beta_{3} - 15 \beta_1) q^{14}+ \cdots + ( - 57 \beta_{5} - 6 \beta_{3} + 602 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 30 q^{4} - 36 q^{7} - 162 q^{13} + 42 q^{16} - 450 q^{22} - 828 q^{28} + 126 q^{31} - 534 q^{34} - 1008 q^{37} - 558 q^{43} - 834 q^{46} + 1434 q^{49} - 2610 q^{52} + 270 q^{58} + 396 q^{61} - 1134 q^{64}+ \cdots - 4104 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 21x^{4} + 5x^{3} + 101x^{2} + 29x + 2 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 6\nu^{5} - 7\nu^{4} - 124\nu^{3} + 54\nu^{2} + 577\nu + 52 ) / 10 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 6\nu^{5} - 12\nu^{4} - 114\nu^{3} + 114\nu^{2} + 522\nu + 2 ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 21\nu^{5} - 27\nu^{4} - 414\nu^{3} + 159\nu^{2} + 1827\nu + 492 ) / 10 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 18\nu^{5} - 21\nu^{4} - 372\nu^{3} + 147\nu^{2} + 1776\nu + 256 ) / 5 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -33\nu^{5} + 36\nu^{4} + 702\nu^{3} - 252\nu^{2} - 3441\nu - 501 ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{5} + 5\beta_{4} - 2\beta_{3} - 12\beta _1 + 5 ) / 30 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 3\beta_{5} + 5\beta_{4} - 6\beta_{3} + 24\beta _1 + 215 ) / 30 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 23\beta_{5} + 75\beta_{4} - 26\beta_{3} - 5\beta_{2} - 96\beta _1 + 245 ) / 30 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 71\beta_{5} + 155\beta_{4} - 102\beta_{3} - 40\beta_{2} + 288\beta _1 + 2715 ) / 30 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 87\beta_{5} + 241\beta_{4} - 82\beta_{3} - 30\beta_{2} - 132\beta _1 + 1111 ) / 6 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.179777
2.80934
−0.113318
4.25817
−2.52770
−3.24672
−4.92742 0 16.2795 0 0 −34.7816 −40.7965 0 0
1.2 −3.62699 0 5.15507 0 0 22.4519 10.3185 0 0
1.3 −1.25118 0 −6.43456 0 0 −5.67029 18.0602 0 0
1.4 1.25118 0 −6.43456 0 0 −5.67029 −18.0602 0 0
1.5 3.62699 0 5.15507 0 0 22.4519 −10.3185 0 0
1.6 4.92742 0 16.2795 0 0 −34.7816 40.7965 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(5\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 675.4.a.bb 6
3.b odd 2 1 inner 675.4.a.bb 6
5.b even 2 1 675.4.a.bc 6
5.c odd 4 2 135.4.b.c 12
15.d odd 2 1 675.4.a.bc 6
15.e even 4 2 135.4.b.c 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
135.4.b.c 12 5.c odd 4 2
135.4.b.c 12 15.e even 4 2
675.4.a.bb 6 1.a even 1 1 trivial
675.4.a.bb 6 3.b odd 2 1 inner
675.4.a.bc 6 5.b even 2 1
675.4.a.bc 6 15.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(675))\):

\( T_{2}^{6} - 39T_{2}^{4} + 378T_{2}^{2} - 500 \) Copy content Toggle raw display
\( T_{7}^{3} + 18T_{7}^{2} - 711T_{7} - 4428 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} - 39 T^{4} + \cdots - 500 \) Copy content Toggle raw display
$3$ \( T^{6} \) Copy content Toggle raw display
$5$ \( T^{6} \) Copy content Toggle raw display
$7$ \( (T^{3} + 18 T^{2} + \cdots - 4428)^{2} \) Copy content Toggle raw display
$11$ \( T^{6} - 3357 T^{4} + \cdots - 192820500 \) Copy content Toggle raw display
$13$ \( (T^{3} + 81 T^{2} + \cdots - 128925)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 76335368000 \) Copy content Toggle raw display
$19$ \( (T^{3} - 5943 T + 119558)^{2} \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 307148112500 \) Copy content Toggle raw display
$29$ \( T^{6} + \cdots - 4585850680500 \) Copy content Toggle raw display
$31$ \( (T^{3} - 63 T^{2} + \cdots + 186100)^{2} \) Copy content Toggle raw display
$37$ \( (T^{3} + 504 T^{2} + \cdots + 3593970)^{2} \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots - 967871758050000 \) Copy content Toggle raw display
$43$ \( (T^{3} + 279 T^{2} + \cdots - 3020436)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 869738053832000 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 108910045472000 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T^{3} - 198 T^{2} + \cdots + 19133944)^{2} \) Copy content Toggle raw display
$67$ \( (T^{3} + 1134 T^{2} + \cdots + 1053540)^{2} \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( (T^{3} + 72 T^{2} + \cdots + 51707970)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} + 549 T^{2} + \cdots - 285462565)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 14\!\cdots\!00 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 35\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( (T^{3} + 2052 T^{2} + \cdots - 2585429982)^{2} \) Copy content Toggle raw display
show more
show less