Defining parameters
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 29 \) | ||
Sturm bound: | \(360\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(675))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 288 | 76 | 212 |
Cusp forms | 252 | 76 | 176 |
Eisenstein series | 36 | 0 | 36 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(3\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(20\) |
\(+\) | \(-\) | \(-\) | \(19\) |
\(-\) | \(+\) | \(-\) | \(16\) |
\(-\) | \(-\) | \(+\) | \(21\) |
Plus space | \(+\) | \(41\) | |
Minus space | \(-\) | \(35\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(675))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(675))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(675)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(9))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(25))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(27))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(135))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(225))\)\(^{\oplus 2}\)