Properties

Label 675.3.d.k.674.2
Level $675$
Weight $3$
Character 675.674
Analytic conductor $18.392$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,3,Mod(674,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.674"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,6,0,14,0,0,0,42,0,0,0,0,0,0,0,46,84,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.60217600.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 16x^{4} + 64x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 674.2
Root \(2.94600i\) of defining polynomial
Character \(\chi\) \(=\) 675.674
Dual form 675.3.d.k.674.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.94600 q^{2} -0.213103 q^{4} +6.41178i q^{7} +8.19868 q^{8} +2.74732i q^{11} -20.3009i q^{13} -12.4773i q^{14} -15.1022 q^{16} +21.0907 q^{17} -13.6615 q^{19} -5.34627i q^{22} -1.87465 q^{23} +39.5054i q^{26} -1.36637i q^{28} +6.98266i q^{29} -26.8602 q^{31} -3.40595 q^{32} -41.0423 q^{34} +19.1899i q^{37} +26.5853 q^{38} +67.2073i q^{41} -67.0135i q^{43} -0.585461i q^{44} +3.64806 q^{46} +70.6846 q^{47} +7.88907 q^{49} +4.32617i q^{52} +81.2159 q^{53} +52.5681i q^{56} -13.5882i q^{58} -106.356i q^{59} +13.4563 q^{61} +52.2699 q^{62} +67.0367 q^{64} +63.0790i q^{67} -4.49448 q^{68} -32.1660i q^{71} +123.844i q^{73} -37.3435i q^{74} +2.91131 q^{76} -17.6152 q^{77} +19.0868 q^{79} -130.785i q^{82} +119.462 q^{83} +130.408i q^{86} +22.5244i q^{88} +152.844i q^{89} +130.165 q^{91} +0.399493 q^{92} -137.552 q^{94} +16.4385i q^{97} -15.3521 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 14 q^{4} + 42 q^{8} + 46 q^{16} + 84 q^{17} + 16 q^{19} + 102 q^{23} - 56 q^{31} + 174 q^{32} + 80 q^{34} + 96 q^{38} + 234 q^{46} + 138 q^{47} - 74 q^{49} + 120 q^{53} - 46 q^{61} - 36 q^{62}+ \cdots - 318 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.94600 −0.972998 −0.486499 0.873681i \(-0.661726\pi\)
−0.486499 + 0.873681i \(0.661726\pi\)
\(3\) 0 0
\(4\) −0.213103 −0.0532757
\(5\) 0 0
\(6\) 0 0
\(7\) 6.41178i 0.915969i 0.888960 + 0.457984i \(0.151428\pi\)
−0.888960 + 0.457984i \(0.848572\pi\)
\(8\) 8.19868 1.02483
\(9\) 0 0
\(10\) 0 0
\(11\) 2.74732i 0.249756i 0.992172 + 0.124878i \(0.0398540\pi\)
−0.992172 + 0.124878i \(0.960146\pi\)
\(12\) 0 0
\(13\) − 20.3009i − 1.56160i −0.624778 0.780802i \(-0.714811\pi\)
0.624778 0.780802i \(-0.285189\pi\)
\(14\) − 12.4773i − 0.891235i
\(15\) 0 0
\(16\) −15.1022 −0.943886
\(17\) 21.0907 1.24063 0.620314 0.784354i \(-0.287005\pi\)
0.620314 + 0.784354i \(0.287005\pi\)
\(18\) 0 0
\(19\) −13.6615 −0.719029 −0.359514 0.933140i \(-0.617058\pi\)
−0.359514 + 0.933140i \(0.617058\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) − 5.34627i − 0.243012i
\(23\) −1.87465 −0.0815065 −0.0407532 0.999169i \(-0.512976\pi\)
−0.0407532 + 0.999169i \(0.512976\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 39.5054i 1.51944i
\(27\) 0 0
\(28\) − 1.36637i − 0.0487988i
\(29\) 6.98266i 0.240781i 0.992727 + 0.120391i \(0.0384147\pi\)
−0.992727 + 0.120391i \(0.961585\pi\)
\(30\) 0 0
\(31\) −26.8602 −0.866459 −0.433229 0.901284i \(-0.642626\pi\)
−0.433229 + 0.901284i \(0.642626\pi\)
\(32\) −3.40595 −0.106436
\(33\) 0 0
\(34\) −41.0423 −1.20713
\(35\) 0 0
\(36\) 0 0
\(37\) 19.1899i 0.518647i 0.965791 + 0.259323i \(0.0834995\pi\)
−0.965791 + 0.259323i \(0.916500\pi\)
\(38\) 26.5853 0.699613
\(39\) 0 0
\(40\) 0 0
\(41\) 67.2073i 1.63920i 0.572935 + 0.819601i \(0.305805\pi\)
−0.572935 + 0.819601i \(0.694195\pi\)
\(42\) 0 0
\(43\) − 67.0135i − 1.55845i −0.626742 0.779227i \(-0.715612\pi\)
0.626742 0.779227i \(-0.284388\pi\)
\(44\) − 0.585461i − 0.0133059i
\(45\) 0 0
\(46\) 3.64806 0.0793056
\(47\) 70.6846 1.50393 0.751963 0.659205i \(-0.229107\pi\)
0.751963 + 0.659205i \(0.229107\pi\)
\(48\) 0 0
\(49\) 7.88907 0.161002
\(50\) 0 0
\(51\) 0 0
\(52\) 4.32617i 0.0831955i
\(53\) 81.2159 1.53237 0.766187 0.642617i \(-0.222151\pi\)
0.766187 + 0.642617i \(0.222151\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 52.5681i 0.938716i
\(57\) 0 0
\(58\) − 13.5882i − 0.234280i
\(59\) − 106.356i − 1.80264i −0.433151 0.901321i \(-0.642598\pi\)
0.433151 0.901321i \(-0.357402\pi\)
\(60\) 0 0
\(61\) 13.4563 0.220594 0.110297 0.993899i \(-0.464820\pi\)
0.110297 + 0.993899i \(0.464820\pi\)
\(62\) 52.2699 0.843062
\(63\) 0 0
\(64\) 67.0367 1.04745
\(65\) 0 0
\(66\) 0 0
\(67\) 63.0790i 0.941478i 0.882273 + 0.470739i \(0.156013\pi\)
−0.882273 + 0.470739i \(0.843987\pi\)
\(68\) −4.49448 −0.0660953
\(69\) 0 0
\(70\) 0 0
\(71\) − 32.1660i − 0.453042i −0.974006 0.226521i \(-0.927265\pi\)
0.974006 0.226521i \(-0.0727352\pi\)
\(72\) 0 0
\(73\) 123.844i 1.69649i 0.529605 + 0.848244i \(0.322340\pi\)
−0.529605 + 0.848244i \(0.677660\pi\)
\(74\) − 37.3435i − 0.504642i
\(75\) 0 0
\(76\) 2.91131 0.0383067
\(77\) −17.6152 −0.228769
\(78\) 0 0
\(79\) 19.0868 0.241605 0.120803 0.992677i \(-0.461453\pi\)
0.120803 + 0.992677i \(0.461453\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 130.785i − 1.59494i
\(83\) 119.462 1.43930 0.719650 0.694337i \(-0.244302\pi\)
0.719650 + 0.694337i \(0.244302\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 130.408i 1.51637i
\(87\) 0 0
\(88\) 22.5244i 0.255959i
\(89\) 152.844i 1.71735i 0.512523 + 0.858674i \(0.328711\pi\)
−0.512523 + 0.858674i \(0.671289\pi\)
\(90\) 0 0
\(91\) 130.165 1.43038
\(92\) 0.399493 0.00434231
\(93\) 0 0
\(94\) −137.552 −1.46332
\(95\) 0 0
\(96\) 0 0
\(97\) 16.4385i 0.169469i 0.996404 + 0.0847345i \(0.0270042\pi\)
−0.996404 + 0.0847345i \(0.972996\pi\)
\(98\) −15.3521 −0.156654
\(99\) 0 0
\(100\) 0 0
\(101\) 107.615i 1.06550i 0.846274 + 0.532748i \(0.178841\pi\)
−0.846274 + 0.532748i \(0.821159\pi\)
\(102\) 0 0
\(103\) 28.6540i 0.278194i 0.990279 + 0.139097i \(0.0444200\pi\)
−0.990279 + 0.139097i \(0.955580\pi\)
\(104\) − 166.440i − 1.60039i
\(105\) 0 0
\(106\) −158.046 −1.49100
\(107\) 77.6672 0.725862 0.362931 0.931816i \(-0.381776\pi\)
0.362931 + 0.931816i \(0.381776\pi\)
\(108\) 0 0
\(109\) 205.842 1.88846 0.944228 0.329291i \(-0.106810\pi\)
0.944228 + 0.329291i \(0.106810\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 96.8318i − 0.864570i
\(113\) −88.5285 −0.783438 −0.391719 0.920085i \(-0.628119\pi\)
−0.391719 + 0.920085i \(0.628119\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) − 1.48802i − 0.0128278i
\(117\) 0 0
\(118\) 206.968i 1.75397i
\(119\) 135.229i 1.13638i
\(120\) 0 0
\(121\) 113.452 0.937622
\(122\) −26.1858 −0.214638
\(123\) 0 0
\(124\) 5.72399 0.0461612
\(125\) 0 0
\(126\) 0 0
\(127\) − 51.9477i − 0.409037i −0.978863 0.204519i \(-0.934437\pi\)
0.978863 0.204519i \(-0.0655629\pi\)
\(128\) −116.829 −0.912728
\(129\) 0 0
\(130\) 0 0
\(131\) − 98.2420i − 0.749939i −0.927037 0.374969i \(-0.877653\pi\)
0.927037 0.374969i \(-0.122347\pi\)
\(132\) 0 0
\(133\) − 87.5948i − 0.658608i
\(134\) − 122.751i − 0.916055i
\(135\) 0 0
\(136\) 172.916 1.27144
\(137\) 81.1445 0.592296 0.296148 0.955142i \(-0.404298\pi\)
0.296148 + 0.955142i \(0.404298\pi\)
\(138\) 0 0
\(139\) 120.844 0.869381 0.434690 0.900580i \(-0.356858\pi\)
0.434690 + 0.900580i \(0.356858\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 62.5948i 0.440809i
\(143\) 55.7729 0.390020
\(144\) 0 0
\(145\) 0 0
\(146\) − 240.999i − 1.65068i
\(147\) 0 0
\(148\) − 4.08942i − 0.0276312i
\(149\) 112.793i 0.756998i 0.925602 + 0.378499i \(0.123560\pi\)
−0.925602 + 0.378499i \(0.876440\pi\)
\(150\) 0 0
\(151\) 62.6221 0.414716 0.207358 0.978265i \(-0.433514\pi\)
0.207358 + 0.978265i \(0.433514\pi\)
\(152\) −112.007 −0.736886
\(153\) 0 0
\(154\) 34.2791 0.222591
\(155\) 0 0
\(156\) 0 0
\(157\) 181.896i 1.15857i 0.815124 + 0.579286i \(0.196669\pi\)
−0.815124 + 0.579286i \(0.803331\pi\)
\(158\) −37.1429 −0.235081
\(159\) 0 0
\(160\) 0 0
\(161\) − 12.0198i − 0.0746574i
\(162\) 0 0
\(163\) 179.817i 1.10317i 0.834119 + 0.551585i \(0.185977\pi\)
−0.834119 + 0.551585i \(0.814023\pi\)
\(164\) − 14.3220i − 0.0873296i
\(165\) 0 0
\(166\) −232.472 −1.40044
\(167\) −218.835 −1.31039 −0.655195 0.755460i \(-0.727414\pi\)
−0.655195 + 0.755460i \(0.727414\pi\)
\(168\) 0 0
\(169\) −243.125 −1.43861
\(170\) 0 0
\(171\) 0 0
\(172\) 14.2808i 0.0830276i
\(173\) 52.0991 0.301151 0.150575 0.988599i \(-0.451887\pi\)
0.150575 + 0.988599i \(0.451887\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 41.4905i − 0.235741i
\(177\) 0 0
\(178\) − 297.434i − 1.67097i
\(179\) 170.130i 0.950445i 0.879866 + 0.475223i \(0.157632\pi\)
−0.879866 + 0.475223i \(0.842368\pi\)
\(180\) 0 0
\(181\) −24.5286 −0.135517 −0.0677587 0.997702i \(-0.521585\pi\)
−0.0677587 + 0.997702i \(0.521585\pi\)
\(182\) −253.300 −1.39176
\(183\) 0 0
\(184\) −15.3696 −0.0835307
\(185\) 0 0
\(186\) 0 0
\(187\) 57.9428i 0.309854i
\(188\) −15.0631 −0.0801227
\(189\) 0 0
\(190\) 0 0
\(191\) − 231.080i − 1.20984i −0.796285 0.604922i \(-0.793204\pi\)
0.796285 0.604922i \(-0.206796\pi\)
\(192\) 0 0
\(193\) − 290.185i − 1.50355i −0.659420 0.751775i \(-0.729198\pi\)
0.659420 0.751775i \(-0.270802\pi\)
\(194\) − 31.9892i − 0.164893i
\(195\) 0 0
\(196\) −1.68118 −0.00857746
\(197\) 82.9589 0.421111 0.210555 0.977582i \(-0.432473\pi\)
0.210555 + 0.977582i \(0.432473\pi\)
\(198\) 0 0
\(199\) 37.8701 0.190302 0.0951510 0.995463i \(-0.469667\pi\)
0.0951510 + 0.995463i \(0.469667\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) − 209.419i − 1.03673i
\(203\) −44.7713 −0.220548
\(204\) 0 0
\(205\) 0 0
\(206\) − 55.7605i − 0.270682i
\(207\) 0 0
\(208\) 306.587i 1.47398i
\(209\) − 37.5326i − 0.179582i
\(210\) 0 0
\(211\) −223.286 −1.05823 −0.529114 0.848551i \(-0.677476\pi\)
−0.529114 + 0.848551i \(0.677476\pi\)
\(212\) −17.3073 −0.0816383
\(213\) 0 0
\(214\) −151.140 −0.706262
\(215\) 0 0
\(216\) 0 0
\(217\) − 172.222i − 0.793649i
\(218\) −400.567 −1.83746
\(219\) 0 0
\(220\) 0 0
\(221\) − 428.159i − 1.93737i
\(222\) 0 0
\(223\) − 239.237i − 1.07281i −0.843960 0.536406i \(-0.819782\pi\)
0.843960 0.536406i \(-0.180218\pi\)
\(224\) − 21.8382i − 0.0974919i
\(225\) 0 0
\(226\) 172.276 0.762283
\(227\) −10.1604 −0.0447594 −0.0223797 0.999750i \(-0.507124\pi\)
−0.0223797 + 0.999750i \(0.507124\pi\)
\(228\) 0 0
\(229\) −140.208 −0.612263 −0.306131 0.951989i \(-0.599035\pi\)
−0.306131 + 0.951989i \(0.599035\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 57.2486i 0.246761i
\(233\) −224.074 −0.961692 −0.480846 0.876805i \(-0.659670\pi\)
−0.480846 + 0.876805i \(0.659670\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 22.6647i 0.0960370i
\(237\) 0 0
\(238\) − 263.154i − 1.10569i
\(239\) 446.856i 1.86969i 0.355054 + 0.934846i \(0.384463\pi\)
−0.355054 + 0.934846i \(0.615537\pi\)
\(240\) 0 0
\(241\) −420.097 −1.74314 −0.871572 0.490268i \(-0.836899\pi\)
−0.871572 + 0.490268i \(0.836899\pi\)
\(242\) −220.778 −0.912304
\(243\) 0 0
\(244\) −2.86756 −0.0117523
\(245\) 0 0
\(246\) 0 0
\(247\) 277.341i 1.12284i
\(248\) −220.218 −0.887977
\(249\) 0 0
\(250\) 0 0
\(251\) − 393.654i − 1.56834i −0.620544 0.784171i \(-0.713088\pi\)
0.620544 0.784171i \(-0.286912\pi\)
\(252\) 0 0
\(253\) − 5.15026i − 0.0203567i
\(254\) 101.090i 0.397992i
\(255\) 0 0
\(256\) −40.7975 −0.159365
\(257\) 350.416 1.36349 0.681743 0.731592i \(-0.261222\pi\)
0.681743 + 0.731592i \(0.261222\pi\)
\(258\) 0 0
\(259\) −123.042 −0.475064
\(260\) 0 0
\(261\) 0 0
\(262\) 191.178i 0.729688i
\(263\) 168.686 0.641393 0.320696 0.947182i \(-0.396083\pi\)
0.320696 + 0.947182i \(0.396083\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 170.459i 0.640824i
\(267\) 0 0
\(268\) − 13.4423i − 0.0501579i
\(269\) − 138.025i − 0.513103i −0.966531 0.256552i \(-0.917414\pi\)
0.966531 0.256552i \(-0.0825864\pi\)
\(270\) 0 0
\(271\) 147.030 0.542547 0.271274 0.962502i \(-0.412555\pi\)
0.271274 + 0.962502i \(0.412555\pi\)
\(272\) −318.515 −1.17101
\(273\) 0 0
\(274\) −157.907 −0.576302
\(275\) 0 0
\(276\) 0 0
\(277\) 244.575i 0.882943i 0.897275 + 0.441472i \(0.145543\pi\)
−0.897275 + 0.441472i \(0.854457\pi\)
\(278\) −235.162 −0.845905
\(279\) 0 0
\(280\) 0 0
\(281\) 274.284i 0.976100i 0.872816 + 0.488050i \(0.162292\pi\)
−0.872816 + 0.488050i \(0.837708\pi\)
\(282\) 0 0
\(283\) − 166.960i − 0.589965i −0.955503 0.294982i \(-0.904686\pi\)
0.955503 0.294982i \(-0.0953138\pi\)
\(284\) 6.85466i 0.0241361i
\(285\) 0 0
\(286\) −108.534 −0.379489
\(287\) −430.918 −1.50146
\(288\) 0 0
\(289\) 155.816 0.539157
\(290\) 0 0
\(291\) 0 0
\(292\) − 26.3914i − 0.0903816i
\(293\) 459.087 1.56685 0.783426 0.621486i \(-0.213471\pi\)
0.783426 + 0.621486i \(0.213471\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 157.332i 0.531527i
\(297\) 0 0
\(298\) − 219.494i − 0.736557i
\(299\) 38.0570i 0.127281i
\(300\) 0 0
\(301\) 429.676 1.42749
\(302\) −121.862 −0.403517
\(303\) 0 0
\(304\) 206.319 0.678681
\(305\) 0 0
\(306\) 0 0
\(307\) − 257.545i − 0.838908i −0.907777 0.419454i \(-0.862222\pi\)
0.907777 0.419454i \(-0.137778\pi\)
\(308\) 3.75385 0.0121878
\(309\) 0 0
\(310\) 0 0
\(311\) − 314.146i − 1.01012i −0.863085 0.505058i \(-0.831471\pi\)
0.863085 0.505058i \(-0.168529\pi\)
\(312\) 0 0
\(313\) 119.111i 0.380548i 0.981731 + 0.190274i \(0.0609376\pi\)
−0.981731 + 0.190274i \(0.939062\pi\)
\(314\) − 353.969i − 1.12729i
\(315\) 0 0
\(316\) −4.06745 −0.0128717
\(317\) 344.122 1.08556 0.542780 0.839875i \(-0.317372\pi\)
0.542780 + 0.839875i \(0.317372\pi\)
\(318\) 0 0
\(319\) −19.1836 −0.0601366
\(320\) 0 0
\(321\) 0 0
\(322\) 23.3905i 0.0726414i
\(323\) −288.131 −0.892047
\(324\) 0 0
\(325\) 0 0
\(326\) − 349.922i − 1.07338i
\(327\) 0 0
\(328\) 551.011i 1.67991i
\(329\) 453.214i 1.37755i
\(330\) 0 0
\(331\) −41.0069 −0.123888 −0.0619439 0.998080i \(-0.519730\pi\)
−0.0619439 + 0.998080i \(0.519730\pi\)
\(332\) −25.4577 −0.0766797
\(333\) 0 0
\(334\) 425.852 1.27501
\(335\) 0 0
\(336\) 0 0
\(337\) − 225.925i − 0.670399i −0.942147 0.335200i \(-0.891196\pi\)
0.942147 0.335200i \(-0.108804\pi\)
\(338\) 473.119 1.39976
\(339\) 0 0
\(340\) 0 0
\(341\) − 73.7936i − 0.216403i
\(342\) 0 0
\(343\) 364.760i 1.06344i
\(344\) − 549.422i − 1.59716i
\(345\) 0 0
\(346\) −101.385 −0.293019
\(347\) 407.547 1.17449 0.587244 0.809410i \(-0.300213\pi\)
0.587244 + 0.809410i \(0.300213\pi\)
\(348\) 0 0
\(349\) 39.1150 0.112077 0.0560387 0.998429i \(-0.482153\pi\)
0.0560387 + 0.998429i \(0.482153\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 9.35722i − 0.0265830i
\(353\) 43.5078 0.123252 0.0616258 0.998099i \(-0.480371\pi\)
0.0616258 + 0.998099i \(0.480371\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) − 32.5714i − 0.0914928i
\(357\) 0 0
\(358\) − 331.072i − 0.924781i
\(359\) 30.7176i 0.0855643i 0.999084 + 0.0427821i \(0.0136221\pi\)
−0.999084 + 0.0427821i \(0.986378\pi\)
\(360\) 0 0
\(361\) −174.362 −0.482998
\(362\) 47.7326 0.131858
\(363\) 0 0
\(364\) −27.7384 −0.0762045
\(365\) 0 0
\(366\) 0 0
\(367\) − 576.528i − 1.57092i −0.618912 0.785460i \(-0.712426\pi\)
0.618912 0.785460i \(-0.287574\pi\)
\(368\) 28.3113 0.0769328
\(369\) 0 0
\(370\) 0 0
\(371\) 520.738i 1.40361i
\(372\) 0 0
\(373\) 353.505i 0.947735i 0.880596 + 0.473867i \(0.157142\pi\)
−0.880596 + 0.473867i \(0.842858\pi\)
\(374\) − 112.756i − 0.301488i
\(375\) 0 0
\(376\) 579.520 1.54128
\(377\) 141.754 0.376005
\(378\) 0 0
\(379\) −545.663 −1.43974 −0.719871 0.694107i \(-0.755799\pi\)
−0.719871 + 0.694107i \(0.755799\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 449.681i 1.17717i
\(383\) −62.8586 −0.164122 −0.0820609 0.996627i \(-0.526150\pi\)
−0.0820609 + 0.996627i \(0.526150\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 564.699i 1.46295i
\(387\) 0 0
\(388\) − 3.50309i − 0.00902857i
\(389\) − 194.282i − 0.499441i −0.968318 0.249720i \(-0.919661\pi\)
0.968318 0.249720i \(-0.0803387\pi\)
\(390\) 0 0
\(391\) −39.5376 −0.101119
\(392\) 64.6800 0.165000
\(393\) 0 0
\(394\) −161.438 −0.409740
\(395\) 0 0
\(396\) 0 0
\(397\) − 490.342i − 1.23512i −0.786525 0.617559i \(-0.788122\pi\)
0.786525 0.617559i \(-0.211878\pi\)
\(398\) −73.6951 −0.185163
\(399\) 0 0
\(400\) 0 0
\(401\) 496.793i 1.23888i 0.785042 + 0.619442i \(0.212641\pi\)
−0.785042 + 0.619442i \(0.787359\pi\)
\(402\) 0 0
\(403\) 545.285i 1.35307i
\(404\) − 22.9331i − 0.0567651i
\(405\) 0 0
\(406\) 87.1247 0.214593
\(407\) −52.7208 −0.129535
\(408\) 0 0
\(409\) 266.707 0.652095 0.326047 0.945353i \(-0.394283\pi\)
0.326047 + 0.945353i \(0.394283\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 6.10624i − 0.0148210i
\(413\) 681.931 1.65116
\(414\) 0 0
\(415\) 0 0
\(416\) 69.1436i 0.166211i
\(417\) 0 0
\(418\) 73.0383i 0.174733i
\(419\) 329.828i 0.787180i 0.919286 + 0.393590i \(0.128767\pi\)
−0.919286 + 0.393590i \(0.871233\pi\)
\(420\) 0 0
\(421\) 184.257 0.437665 0.218832 0.975762i \(-0.429775\pi\)
0.218832 + 0.975762i \(0.429775\pi\)
\(422\) 434.514 1.02965
\(423\) 0 0
\(424\) 665.863 1.57043
\(425\) 0 0
\(426\) 0 0
\(427\) 86.2786i 0.202058i
\(428\) −16.5511 −0.0386708
\(429\) 0 0
\(430\) 0 0
\(431\) 590.656i 1.37043i 0.728340 + 0.685216i \(0.240292\pi\)
−0.728340 + 0.685216i \(0.759708\pi\)
\(432\) 0 0
\(433\) 308.140i 0.711640i 0.934555 + 0.355820i \(0.115798\pi\)
−0.934555 + 0.355820i \(0.884202\pi\)
\(434\) 335.143i 0.772219i
\(435\) 0 0
\(436\) −43.8654 −0.100609
\(437\) 25.6106 0.0586055
\(438\) 0 0
\(439\) 679.266 1.54730 0.773651 0.633612i \(-0.218428\pi\)
0.773651 + 0.633612i \(0.218428\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 833.195i 1.88506i
\(443\) −147.846 −0.333738 −0.166869 0.985979i \(-0.553366\pi\)
−0.166869 + 0.985979i \(0.553366\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 465.554i 1.04384i
\(447\) 0 0
\(448\) 429.824i 0.959429i
\(449\) − 315.942i − 0.703657i −0.936064 0.351829i \(-0.885560\pi\)
0.936064 0.351829i \(-0.114440\pi\)
\(450\) 0 0
\(451\) −184.640 −0.409401
\(452\) 18.8657 0.0417382
\(453\) 0 0
\(454\) 19.7721 0.0435508
\(455\) 0 0
\(456\) 0 0
\(457\) − 314.688i − 0.688596i −0.938860 0.344298i \(-0.888117\pi\)
0.938860 0.344298i \(-0.111883\pi\)
\(458\) 272.844 0.595730
\(459\) 0 0
\(460\) 0 0
\(461\) 343.949i 0.746093i 0.927813 + 0.373046i \(0.121687\pi\)
−0.927813 + 0.373046i \(0.878313\pi\)
\(462\) 0 0
\(463\) − 318.673i − 0.688278i −0.938919 0.344139i \(-0.888171\pi\)
0.938919 0.344139i \(-0.111829\pi\)
\(464\) − 105.453i − 0.227270i
\(465\) 0 0
\(466\) 436.048 0.935724
\(467\) 33.4248 0.0715733 0.0357867 0.999359i \(-0.488606\pi\)
0.0357867 + 0.999359i \(0.488606\pi\)
\(468\) 0 0
\(469\) −404.449 −0.862364
\(470\) 0 0
\(471\) 0 0
\(472\) − 871.978i − 1.84741i
\(473\) 184.107 0.389233
\(474\) 0 0
\(475\) 0 0
\(476\) − 28.8176i − 0.0605412i
\(477\) 0 0
\(478\) − 869.580i − 1.81921i
\(479\) − 104.499i − 0.218160i −0.994033 0.109080i \(-0.965209\pi\)
0.994033 0.109080i \(-0.0347905\pi\)
\(480\) 0 0
\(481\) 389.572 0.809921
\(482\) 817.508 1.69607
\(483\) 0 0
\(484\) −24.1770 −0.0499524
\(485\) 0 0
\(486\) 0 0
\(487\) 220.335i 0.452434i 0.974077 + 0.226217i \(0.0726358\pi\)
−0.974077 + 0.226217i \(0.927364\pi\)
\(488\) 110.324 0.226073
\(489\) 0 0
\(490\) 0 0
\(491\) − 670.746i − 1.36608i −0.730380 0.683041i \(-0.760657\pi\)
0.730380 0.683041i \(-0.239343\pi\)
\(492\) 0 0
\(493\) 147.269i 0.298720i
\(494\) − 539.704i − 1.09252i
\(495\) 0 0
\(496\) 405.648 0.817838
\(497\) 206.241 0.414972
\(498\) 0 0
\(499\) 522.246 1.04658 0.523292 0.852153i \(-0.324704\pi\)
0.523292 + 0.852153i \(0.324704\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 766.049i 1.52599i
\(503\) −197.944 −0.393527 −0.196763 0.980451i \(-0.563043\pi\)
−0.196763 + 0.980451i \(0.563043\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 10.0224i 0.0198071i
\(507\) 0 0
\(508\) 11.0702i 0.0217917i
\(509\) − 503.620i − 0.989431i −0.869055 0.494715i \(-0.835272\pi\)
0.869055 0.494715i \(-0.164728\pi\)
\(510\) 0 0
\(511\) −794.058 −1.55393
\(512\) 546.709 1.06779
\(513\) 0 0
\(514\) −681.908 −1.32667
\(515\) 0 0
\(516\) 0 0
\(517\) 194.193i 0.375615i
\(518\) 239.438 0.462236
\(519\) 0 0
\(520\) 0 0
\(521\) 474.180i 0.910134i 0.890457 + 0.455067i \(0.150385\pi\)
−0.890457 + 0.455067i \(0.849615\pi\)
\(522\) 0 0
\(523\) − 710.931i − 1.35933i −0.733521 0.679666i \(-0.762125\pi\)
0.733521 0.679666i \(-0.237875\pi\)
\(524\) 20.9356i 0.0399535i
\(525\) 0 0
\(526\) −328.263 −0.624073
\(527\) −566.500 −1.07495
\(528\) 0 0
\(529\) −525.486 −0.993357
\(530\) 0 0
\(531\) 0 0
\(532\) 18.6667i 0.0350878i
\(533\) 1364.36 2.55978
\(534\) 0 0
\(535\) 0 0
\(536\) 517.164i 0.964859i
\(537\) 0 0
\(538\) 268.596i 0.499248i
\(539\) 21.6738i 0.0402111i
\(540\) 0 0
\(541\) −829.835 −1.53389 −0.766946 0.641712i \(-0.778224\pi\)
−0.766946 + 0.641712i \(0.778224\pi\)
\(542\) −286.120 −0.527897
\(543\) 0 0
\(544\) −71.8337 −0.132047
\(545\) 0 0
\(546\) 0 0
\(547\) − 71.3316i − 0.130405i −0.997872 0.0652026i \(-0.979231\pi\)
0.997872 0.0652026i \(-0.0207694\pi\)
\(548\) −17.2921 −0.0315550
\(549\) 0 0
\(550\) 0 0
\(551\) − 95.3939i − 0.173129i
\(552\) 0 0
\(553\) 122.380i 0.221303i
\(554\) − 475.942i − 0.859102i
\(555\) 0 0
\(556\) −25.7522 −0.0463168
\(557\) −52.0760 −0.0934937 −0.0467468 0.998907i \(-0.514885\pi\)
−0.0467468 + 0.998907i \(0.514885\pi\)
\(558\) 0 0
\(559\) −1360.43 −2.43369
\(560\) 0 0
\(561\) 0 0
\(562\) − 533.756i − 0.949743i
\(563\) −297.145 −0.527789 −0.263895 0.964552i \(-0.585007\pi\)
−0.263895 + 0.964552i \(0.585007\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 324.903i 0.574034i
\(567\) 0 0
\(568\) − 263.718i − 0.464293i
\(569\) − 117.372i − 0.206278i −0.994667 0.103139i \(-0.967111\pi\)
0.994667 0.103139i \(-0.0328887\pi\)
\(570\) 0 0
\(571\) 595.259 1.04248 0.521242 0.853409i \(-0.325469\pi\)
0.521242 + 0.853409i \(0.325469\pi\)
\(572\) −11.8854 −0.0207786
\(573\) 0 0
\(574\) 838.565 1.46091
\(575\) 0 0
\(576\) 0 0
\(577\) − 12.9488i − 0.0224415i −0.999937 0.0112208i \(-0.996428\pi\)
0.999937 0.0112208i \(-0.00357176\pi\)
\(578\) −303.218 −0.524598
\(579\) 0 0
\(580\) 0 0
\(581\) 765.964i 1.31835i
\(582\) 0 0
\(583\) 223.126i 0.382720i
\(584\) 1015.35i 1.73862i
\(585\) 0 0
\(586\) −893.382 −1.52454
\(587\) 742.994 1.26575 0.632874 0.774255i \(-0.281875\pi\)
0.632874 + 0.774255i \(0.281875\pi\)
\(588\) 0 0
\(589\) 366.952 0.623009
\(590\) 0 0
\(591\) 0 0
\(592\) − 289.810i − 0.489543i
\(593\) 470.348 0.793167 0.396584 0.917999i \(-0.370196\pi\)
0.396584 + 0.917999i \(0.370196\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 24.0364i − 0.0403296i
\(597\) 0 0
\(598\) − 74.0587i − 0.123844i
\(599\) − 144.766i − 0.241680i −0.992672 0.120840i \(-0.961441\pi\)
0.992672 0.120840i \(-0.0385588\pi\)
\(600\) 0 0
\(601\) 256.583 0.426926 0.213463 0.976951i \(-0.431526\pi\)
0.213463 + 0.976951i \(0.431526\pi\)
\(602\) −836.147 −1.38895
\(603\) 0 0
\(604\) −13.3449 −0.0220943
\(605\) 0 0
\(606\) 0 0
\(607\) 356.366i 0.587094i 0.955945 + 0.293547i \(0.0948357\pi\)
−0.955945 + 0.293547i \(0.905164\pi\)
\(608\) 46.5305 0.0765304
\(609\) 0 0
\(610\) 0 0
\(611\) − 1434.96i − 2.34854i
\(612\) 0 0
\(613\) − 1145.01i − 1.86789i −0.357422 0.933943i \(-0.616344\pi\)
0.357422 0.933943i \(-0.383656\pi\)
\(614\) 501.181i 0.816255i
\(615\) 0 0
\(616\) −144.421 −0.234450
\(617\) −811.543 −1.31531 −0.657653 0.753321i \(-0.728450\pi\)
−0.657653 + 0.753321i \(0.728450\pi\)
\(618\) 0 0
\(619\) −595.797 −0.962515 −0.481258 0.876579i \(-0.659820\pi\)
−0.481258 + 0.876579i \(0.659820\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 611.327i 0.982841i
\(623\) −980.002 −1.57304
\(624\) 0 0
\(625\) 0 0
\(626\) − 231.790i − 0.370272i
\(627\) 0 0
\(628\) − 38.7625i − 0.0617237i
\(629\) 404.728i 0.643447i
\(630\) 0 0
\(631\) −584.585 −0.926442 −0.463221 0.886243i \(-0.653306\pi\)
−0.463221 + 0.886243i \(0.653306\pi\)
\(632\) 156.487 0.247605
\(633\) 0 0
\(634\) −669.660 −1.05625
\(635\) 0 0
\(636\) 0 0
\(637\) − 160.155i − 0.251421i
\(638\) 37.3312 0.0585128
\(639\) 0 0
\(640\) 0 0
\(641\) 803.853i 1.25406i 0.778995 + 0.627030i \(0.215730\pi\)
−0.778995 + 0.627030i \(0.784270\pi\)
\(642\) 0 0
\(643\) − 426.906i − 0.663928i −0.943292 0.331964i \(-0.892289\pi\)
0.943292 0.331964i \(-0.107711\pi\)
\(644\) 2.56146i 0.00397742i
\(645\) 0 0
\(646\) 560.702 0.867959
\(647\) 803.477 1.24185 0.620925 0.783870i \(-0.286757\pi\)
0.620925 + 0.783870i \(0.286757\pi\)
\(648\) 0 0
\(649\) 292.193 0.450221
\(650\) 0 0
\(651\) 0 0
\(652\) − 38.3194i − 0.0587721i
\(653\) −1002.19 −1.53475 −0.767374 0.641200i \(-0.778437\pi\)
−0.767374 + 0.641200i \(0.778437\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) − 1014.98i − 1.54722i
\(657\) 0 0
\(658\) − 881.952i − 1.34035i
\(659\) − 381.903i − 0.579518i −0.957100 0.289759i \(-0.906425\pi\)
0.957100 0.289759i \(-0.0935752\pi\)
\(660\) 0 0
\(661\) −850.360 −1.28647 −0.643237 0.765667i \(-0.722409\pi\)
−0.643237 + 0.765667i \(0.722409\pi\)
\(662\) 79.7992 0.120543
\(663\) 0 0
\(664\) 979.430 1.47504
\(665\) 0 0
\(666\) 0 0
\(667\) − 13.0900i − 0.0196252i
\(668\) 46.6344 0.0698119
\(669\) 0 0
\(670\) 0 0
\(671\) 36.9686i 0.0550948i
\(672\) 0 0
\(673\) − 200.948i − 0.298585i −0.988793 0.149292i \(-0.952300\pi\)
0.988793 0.149292i \(-0.0476996\pi\)
\(674\) 439.648i 0.652297i
\(675\) 0 0
\(676\) 51.8105 0.0766428
\(677\) 89.2667 0.131856 0.0659281 0.997824i \(-0.478999\pi\)
0.0659281 + 0.997824i \(0.478999\pi\)
\(678\) 0 0
\(679\) −105.400 −0.155228
\(680\) 0 0
\(681\) 0 0
\(682\) 143.602i 0.210560i
\(683\) −995.726 −1.45787 −0.728936 0.684582i \(-0.759985\pi\)
−0.728936 + 0.684582i \(0.759985\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) − 709.822i − 1.03473i
\(687\) 0 0
\(688\) 1012.05i 1.47100i
\(689\) − 1648.75i − 2.39296i
\(690\) 0 0
\(691\) 948.518 1.37267 0.686337 0.727284i \(-0.259218\pi\)
0.686337 + 0.727284i \(0.259218\pi\)
\(692\) −11.1025 −0.0160440
\(693\) 0 0
\(694\) −793.085 −1.14277
\(695\) 0 0
\(696\) 0 0
\(697\) 1417.45i 2.03364i
\(698\) −76.1176 −0.109051
\(699\) 0 0
\(700\) 0 0
\(701\) 618.434i 0.882217i 0.897454 + 0.441109i \(0.145415\pi\)
−0.897454 + 0.441109i \(0.854585\pi\)
\(702\) 0 0
\(703\) − 262.164i − 0.372922i
\(704\) 184.171i 0.261607i
\(705\) 0 0
\(706\) −84.6660 −0.119924
\(707\) −690.005 −0.975962
\(708\) 0 0
\(709\) −208.535 −0.294126 −0.147063 0.989127i \(-0.546982\pi\)
−0.147063 + 0.989127i \(0.546982\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 1253.12i 1.76000i
\(713\) 50.3535 0.0706220
\(714\) 0 0
\(715\) 0 0
\(716\) − 36.2551i − 0.0506356i
\(717\) 0 0
\(718\) − 59.7763i − 0.0832539i
\(719\) 1077.05i 1.49799i 0.662576 + 0.748995i \(0.269463\pi\)
−0.662576 + 0.748995i \(0.730537\pi\)
\(720\) 0 0
\(721\) −183.723 −0.254817
\(722\) 339.308 0.469956
\(723\) 0 0
\(724\) 5.22712 0.00721978
\(725\) 0 0
\(726\) 0 0
\(727\) − 1352.36i − 1.86019i −0.367321 0.930094i \(-0.619725\pi\)
0.367321 0.930094i \(-0.380275\pi\)
\(728\) 1067.18 1.46590
\(729\) 0 0
\(730\) 0 0
\(731\) − 1413.36i − 1.93346i
\(732\) 0 0
\(733\) 394.787i 0.538591i 0.963058 + 0.269295i \(0.0867908\pi\)
−0.963058 + 0.269295i \(0.913209\pi\)
\(734\) 1121.92i 1.52850i
\(735\) 0 0
\(736\) 6.38495 0.00867521
\(737\) −173.298 −0.235140
\(738\) 0 0
\(739\) 947.519 1.28216 0.641082 0.767473i \(-0.278486\pi\)
0.641082 + 0.767473i \(0.278486\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) − 1013.35i − 1.36571i
\(743\) −917.875 −1.23536 −0.617682 0.786428i \(-0.711928\pi\)
−0.617682 + 0.786428i \(0.711928\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 687.919i − 0.922144i
\(747\) 0 0
\(748\) − 12.3478i − 0.0165077i
\(749\) 497.985i 0.664867i
\(750\) 0 0
\(751\) 1373.39 1.82875 0.914374 0.404871i \(-0.132684\pi\)
0.914374 + 0.404871i \(0.132684\pi\)
\(752\) −1067.49 −1.41954
\(753\) 0 0
\(754\) −275.852 −0.365852
\(755\) 0 0
\(756\) 0 0
\(757\) − 907.831i − 1.19925i −0.800282 0.599624i \(-0.795317\pi\)
0.800282 0.599624i \(-0.204683\pi\)
\(758\) 1061.86 1.40087
\(759\) 0 0
\(760\) 0 0
\(761\) − 532.362i − 0.699555i −0.936833 0.349778i \(-0.886257\pi\)
0.936833 0.349778i \(-0.113743\pi\)
\(762\) 0 0
\(763\) 1319.81i 1.72977i
\(764\) 49.2438i 0.0644552i
\(765\) 0 0
\(766\) 122.323 0.159690
\(767\) −2159.12 −2.81501
\(768\) 0 0
\(769\) 101.705 0.132257 0.0661284 0.997811i \(-0.478935\pi\)
0.0661284 + 0.997811i \(0.478935\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 61.8392i 0.0801026i
\(773\) −760.965 −0.984431 −0.492215 0.870473i \(-0.663813\pi\)
−0.492215 + 0.870473i \(0.663813\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 134.774i 0.173678i
\(777\) 0 0
\(778\) 378.073i 0.485955i
\(779\) − 918.155i − 1.17863i
\(780\) 0 0
\(781\) 88.3701 0.113150
\(782\) 76.9400 0.0983887
\(783\) 0 0
\(784\) −119.142 −0.151967
\(785\) 0 0
\(786\) 0 0
\(787\) 311.448i 0.395741i 0.980228 + 0.197870i \(0.0634025\pi\)
−0.980228 + 0.197870i \(0.936598\pi\)
\(788\) −17.6788 −0.0224350
\(789\) 0 0
\(790\) 0 0
\(791\) − 567.625i − 0.717605i
\(792\) 0 0
\(793\) − 273.174i − 0.344481i
\(794\) 954.202i 1.20177i
\(795\) 0 0
\(796\) −8.07022 −0.0101385
\(797\) 658.366 0.826055 0.413027 0.910719i \(-0.364471\pi\)
0.413027 + 0.910719i \(0.364471\pi\)
\(798\) 0 0
\(799\) 1490.78 1.86581
\(800\) 0 0
\(801\) 0 0
\(802\) − 966.756i − 1.20543i
\(803\) −340.238 −0.423708
\(804\) 0 0
\(805\) 0 0
\(806\) − 1061.12i − 1.31653i
\(807\) 0 0
\(808\) 882.302i 1.09196i
\(809\) − 1026.08i − 1.26833i −0.773197 0.634166i \(-0.781343\pi\)
0.773197 0.634166i \(-0.218657\pi\)
\(810\) 0 0
\(811\) −1489.54 −1.83668 −0.918338 0.395798i \(-0.870468\pi\)
−0.918338 + 0.395798i \(0.870468\pi\)
\(812\) 9.54088 0.0117498
\(813\) 0 0
\(814\) 102.594 0.126037
\(815\) 0 0
\(816\) 0 0
\(817\) 915.508i 1.12057i
\(818\) −519.010 −0.634486
\(819\) 0 0
\(820\) 0 0
\(821\) − 594.254i − 0.723818i −0.932213 0.361909i \(-0.882125\pi\)
0.932213 0.361909i \(-0.117875\pi\)
\(822\) 0 0
\(823\) 543.853i 0.660818i 0.943838 + 0.330409i \(0.107187\pi\)
−0.943838 + 0.330409i \(0.892813\pi\)
\(824\) 234.925i 0.285103i
\(825\) 0 0
\(826\) −1327.03 −1.60658
\(827\) −1566.71 −1.89445 −0.947225 0.320570i \(-0.896125\pi\)
−0.947225 + 0.320570i \(0.896125\pi\)
\(828\) 0 0
\(829\) −896.771 −1.08175 −0.540875 0.841103i \(-0.681907\pi\)
−0.540875 + 0.841103i \(0.681907\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 1360.90i − 1.63570i
\(833\) 166.386 0.199743
\(834\) 0 0
\(835\) 0 0
\(836\) 7.99830i 0.00956734i
\(837\) 0 0
\(838\) − 641.844i − 0.765924i
\(839\) 476.848i 0.568353i 0.958772 + 0.284176i \(0.0917202\pi\)
−0.958772 + 0.284176i \(0.908280\pi\)
\(840\) 0 0
\(841\) 792.242 0.942024
\(842\) −358.563 −0.425847
\(843\) 0 0
\(844\) 47.5829 0.0563778
\(845\) 0 0
\(846\) 0 0
\(847\) 727.431i 0.858832i
\(848\) −1226.54 −1.44639
\(849\) 0 0
\(850\) 0 0
\(851\) − 35.9744i − 0.0422731i
\(852\) 0 0
\(853\) 195.809i 0.229553i 0.993391 + 0.114777i \(0.0366152\pi\)
−0.993391 + 0.114777i \(0.963385\pi\)
\(854\) − 167.898i − 0.196601i
\(855\) 0 0
\(856\) 636.769 0.743888
\(857\) 633.759 0.739509 0.369754 0.929129i \(-0.379442\pi\)
0.369754 + 0.929129i \(0.379442\pi\)
\(858\) 0 0
\(859\) 676.916 0.788027 0.394014 0.919105i \(-0.371086\pi\)
0.394014 + 0.919105i \(0.371086\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 1149.41i − 1.33343i
\(863\) 1373.71 1.59179 0.795895 0.605435i \(-0.207001\pi\)
0.795895 + 0.605435i \(0.207001\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) − 599.639i − 0.692424i
\(867\) 0 0
\(868\) 36.7009i 0.0422822i
\(869\) 52.4375i 0.0603424i
\(870\) 0 0
\(871\) 1280.56 1.47022
\(872\) 1687.63 1.93536
\(873\) 0 0
\(874\) −49.8381 −0.0570230
\(875\) 0 0
\(876\) 0 0
\(877\) 338.203i 0.385636i 0.981235 + 0.192818i \(0.0617627\pi\)
−0.981235 + 0.192818i \(0.938237\pi\)
\(878\) −1321.85 −1.50552
\(879\) 0 0
\(880\) 0 0
\(881\) 117.833i 0.133749i 0.997761 + 0.0668747i \(0.0213028\pi\)
−0.997761 + 0.0668747i \(0.978697\pi\)
\(882\) 0 0
\(883\) 741.709i 0.839988i 0.907527 + 0.419994i \(0.137968\pi\)
−0.907527 + 0.419994i \(0.862032\pi\)
\(884\) 91.2417i 0.103215i
\(885\) 0 0
\(886\) 287.707 0.324726
\(887\) −467.896 −0.527504 −0.263752 0.964590i \(-0.584960\pi\)
−0.263752 + 0.964590i \(0.584960\pi\)
\(888\) 0 0
\(889\) 333.077 0.374665
\(890\) 0 0
\(891\) 0 0
\(892\) 50.9820i 0.0571548i
\(893\) −965.660 −1.08137
\(894\) 0 0
\(895\) 0 0
\(896\) − 749.083i − 0.836031i
\(897\) 0 0
\(898\) 614.822i 0.684657i
\(899\) − 187.556i − 0.208627i
\(900\) 0 0
\(901\) 1712.90 1.90111
\(902\) 359.308 0.398346
\(903\) 0 0
\(904\) −725.817 −0.802894
\(905\) 0 0
\(906\) 0 0
\(907\) 822.407i 0.906733i 0.891324 + 0.453366i \(0.149777\pi\)
−0.891324 + 0.453366i \(0.850223\pi\)
\(908\) 2.16521 0.00238459
\(909\) 0 0
\(910\) 0 0
\(911\) − 55.3187i − 0.0607230i −0.999539 0.0303615i \(-0.990334\pi\)
0.999539 0.0303615i \(-0.00966586\pi\)
\(912\) 0 0
\(913\) 328.200i 0.359474i
\(914\) 612.382i 0.670002i
\(915\) 0 0
\(916\) 29.8787 0.0326187
\(917\) 629.906 0.686920
\(918\) 0 0
\(919\) 52.0847 0.0566755 0.0283377 0.999598i \(-0.490979\pi\)
0.0283377 + 0.999598i \(0.490979\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) − 669.323i − 0.725947i
\(923\) −652.997 −0.707472
\(924\) 0 0
\(925\) 0 0
\(926\) 620.136i 0.669693i
\(927\) 0 0
\(928\) − 23.7826i − 0.0256278i
\(929\) − 932.074i − 1.00331i −0.865068 0.501655i \(-0.832725\pi\)
0.865068 0.501655i \(-0.167275\pi\)
\(930\) 0 0
\(931\) −107.777 −0.115765
\(932\) 47.7508 0.0512348
\(933\) 0 0
\(934\) −65.0444 −0.0696407
\(935\) 0 0
\(936\) 0 0
\(937\) − 283.275i − 0.302322i −0.988509 0.151161i \(-0.951699\pi\)
0.988509 0.151161i \(-0.0483011\pi\)
\(938\) 787.055 0.839078
\(939\) 0 0
\(940\) 0 0
\(941\) 1579.56i 1.67860i 0.543672 + 0.839298i \(0.317034\pi\)
−0.543672 + 0.839298i \(0.682966\pi\)
\(942\) 0 0
\(943\) − 125.990i − 0.133606i
\(944\) 1606.21i 1.70149i
\(945\) 0 0
\(946\) −358.272 −0.378723
\(947\) −1108.91 −1.17097 −0.585484 0.810684i \(-0.699096\pi\)
−0.585484 + 0.810684i \(0.699096\pi\)
\(948\) 0 0
\(949\) 2514.13 2.64924
\(950\) 0 0
\(951\) 0 0
\(952\) 1108.70i 1.16460i
\(953\) −352.378 −0.369757 −0.184878 0.982761i \(-0.559189\pi\)
−0.184878 + 0.982761i \(0.559189\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 95.2263i − 0.0996091i
\(957\) 0 0
\(958\) 203.354i 0.212269i
\(959\) 520.281i 0.542524i
\(960\) 0 0
\(961\) −239.528 −0.249249
\(962\) −758.105 −0.788051
\(963\) 0 0
\(964\) 89.5239 0.0928671
\(965\) 0 0
\(966\) 0 0
\(967\) 639.884i 0.661721i 0.943680 + 0.330861i \(0.107339\pi\)
−0.943680 + 0.330861i \(0.892661\pi\)
\(968\) 930.158 0.960907
\(969\) 0 0
\(970\) 0 0
\(971\) 26.1957i 0.0269781i 0.999909 + 0.0134890i \(0.00429383\pi\)
−0.999909 + 0.0134890i \(0.995706\pi\)
\(972\) 0 0
\(973\) 774.825i 0.796325i
\(974\) − 428.771i − 0.440217i
\(975\) 0 0
\(976\) −203.219 −0.208216
\(977\) −523.893 −0.536226 −0.268113 0.963387i \(-0.586400\pi\)
−0.268113 + 0.963387i \(0.586400\pi\)
\(978\) 0 0
\(979\) −419.911 −0.428918
\(980\) 0 0
\(981\) 0 0
\(982\) 1305.27i 1.32919i
\(983\) −161.009 −0.163793 −0.0818966 0.996641i \(-0.526098\pi\)
−0.0818966 + 0.996641i \(0.526098\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) − 286.585i − 0.290654i
\(987\) 0 0
\(988\) − 59.1021i − 0.0598200i
\(989\) 125.627i 0.127024i
\(990\) 0 0
\(991\) −345.150 −0.348285 −0.174142 0.984720i \(-0.555715\pi\)
−0.174142 + 0.984720i \(0.555715\pi\)
\(992\) 91.4845 0.0922223
\(993\) 0 0
\(994\) −401.344 −0.403767
\(995\) 0 0
\(996\) 0 0
\(997\) − 1311.95i − 1.31590i −0.753061 0.657951i \(-0.771423\pi\)
0.753061 0.657951i \(-0.228577\pi\)
\(998\) −1016.29 −1.01832
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.d.k.674.2 6
3.2 odd 2 675.3.d.j.674.6 6
5.2 odd 4 675.3.c.r.26.2 6
5.3 odd 4 675.3.c.s.26.5 yes 6
5.4 even 2 675.3.d.j.674.5 6
15.2 even 4 675.3.c.r.26.5 yes 6
15.8 even 4 675.3.c.s.26.2 yes 6
15.14 odd 2 inner 675.3.d.k.674.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.3.c.r.26.2 6 5.2 odd 4
675.3.c.r.26.5 yes 6 15.2 even 4
675.3.c.s.26.2 yes 6 15.8 even 4
675.3.c.s.26.5 yes 6 5.3 odd 4
675.3.d.j.674.5 6 5.4 even 2
675.3.d.j.674.6 6 3.2 odd 2
675.3.d.k.674.1 6 15.14 odd 2 inner
675.3.d.k.674.2 6 1.1 even 1 trivial