Properties

Label 675.3.d.d.674.2
Level $675$
Weight $3$
Character 675.674
Analytic conductor $18.392$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,3,Mod(674,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.674");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 675.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.3924178443\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 5 \)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 674.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 675.674
Dual form 675.3.d.d.674.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.00000 q^{2} +5.00000 q^{4} +5.00000i q^{7} +3.00000 q^{8} +15.0000i q^{11} +10.0000i q^{13} +15.0000i q^{14} -11.0000 q^{16} +18.0000 q^{17} +16.0000 q^{19} +45.0000i q^{22} +12.0000 q^{23} +30.0000i q^{26} +25.0000i q^{28} +30.0000i q^{29} -1.00000 q^{31} -45.0000 q^{32} +54.0000 q^{34} +20.0000i q^{37} +48.0000 q^{38} -60.0000i q^{41} -50.0000i q^{43} +75.0000i q^{44} +36.0000 q^{46} -6.00000 q^{47} +24.0000 q^{49} +50.0000i q^{52} +27.0000 q^{53} +15.0000i q^{56} +90.0000i q^{58} -30.0000i q^{59} -76.0000 q^{61} -3.00000 q^{62} -91.0000 q^{64} -10.0000i q^{67} +90.0000 q^{68} +90.0000i q^{71} -65.0000i q^{73} +60.0000i q^{74} +80.0000 q^{76} -75.0000 q^{77} -14.0000 q^{79} -180.000i q^{82} -3.00000 q^{83} -150.000i q^{86} +45.0000i q^{88} +90.0000i q^{89} -50.0000 q^{91} +60.0000 q^{92} -18.0000 q^{94} -85.0000i q^{97} +72.0000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 6 q^{2} + 10 q^{4} + 6 q^{8} - 22 q^{16} + 36 q^{17} + 32 q^{19} + 24 q^{23} - 2 q^{31} - 90 q^{32} + 108 q^{34} + 96 q^{38} + 72 q^{46} - 12 q^{47} + 48 q^{49} + 54 q^{53} - 152 q^{61} - 6 q^{62}+ \cdots + 144 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 3.00000 1.50000 0.750000 0.661438i \(-0.230053\pi\)
0.750000 + 0.661438i \(0.230053\pi\)
\(3\) 0 0
\(4\) 5.00000 1.25000
\(5\) 0 0
\(6\) 0 0
\(7\) 5.00000i 0.714286i 0.934050 + 0.357143i \(0.116249\pi\)
−0.934050 + 0.357143i \(0.883751\pi\)
\(8\) 3.00000 0.375000
\(9\) 0 0
\(10\) 0 0
\(11\) 15.0000i 1.36364i 0.731522 + 0.681818i \(0.238810\pi\)
−0.731522 + 0.681818i \(0.761190\pi\)
\(12\) 0 0
\(13\) 10.0000i 0.769231i 0.923077 + 0.384615i \(0.125666\pi\)
−0.923077 + 0.384615i \(0.874334\pi\)
\(14\) 15.0000i 1.07143i
\(15\) 0 0
\(16\) −11.0000 −0.687500
\(17\) 18.0000 1.05882 0.529412 0.848365i \(-0.322413\pi\)
0.529412 + 0.848365i \(0.322413\pi\)
\(18\) 0 0
\(19\) 16.0000 0.842105 0.421053 0.907036i \(-0.361661\pi\)
0.421053 + 0.907036i \(0.361661\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 45.0000i 2.04545i
\(23\) 12.0000 0.521739 0.260870 0.965374i \(-0.415991\pi\)
0.260870 + 0.965374i \(0.415991\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 30.0000i 1.15385i
\(27\) 0 0
\(28\) 25.0000i 0.892857i
\(29\) 30.0000i 1.03448i 0.855840 + 0.517241i \(0.173041\pi\)
−0.855840 + 0.517241i \(0.826959\pi\)
\(30\) 0 0
\(31\) −1.00000 −0.0322581 −0.0161290 0.999870i \(-0.505134\pi\)
−0.0161290 + 0.999870i \(0.505134\pi\)
\(32\) −45.0000 −1.40625
\(33\) 0 0
\(34\) 54.0000 1.58824
\(35\) 0 0
\(36\) 0 0
\(37\) 20.0000i 0.540541i 0.962784 + 0.270270i \(0.0871131\pi\)
−0.962784 + 0.270270i \(0.912887\pi\)
\(38\) 48.0000 1.26316
\(39\) 0 0
\(40\) 0 0
\(41\) − 60.0000i − 1.46341i −0.681619 0.731707i \(-0.738724\pi\)
0.681619 0.731707i \(-0.261276\pi\)
\(42\) 0 0
\(43\) − 50.0000i − 1.16279i −0.813621 0.581395i \(-0.802507\pi\)
0.813621 0.581395i \(-0.197493\pi\)
\(44\) 75.0000i 1.70455i
\(45\) 0 0
\(46\) 36.0000 0.782609
\(47\) −6.00000 −0.127660 −0.0638298 0.997961i \(-0.520331\pi\)
−0.0638298 + 0.997961i \(0.520331\pi\)
\(48\) 0 0
\(49\) 24.0000 0.489796
\(50\) 0 0
\(51\) 0 0
\(52\) 50.0000i 0.961538i
\(53\) 27.0000 0.509434 0.254717 0.967016i \(-0.418018\pi\)
0.254717 + 0.967016i \(0.418018\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 15.0000i 0.267857i
\(57\) 0 0
\(58\) 90.0000i 1.55172i
\(59\) − 30.0000i − 0.508475i −0.967142 0.254237i \(-0.918176\pi\)
0.967142 0.254237i \(-0.0818244\pi\)
\(60\) 0 0
\(61\) −76.0000 −1.24590 −0.622951 0.782261i \(-0.714066\pi\)
−0.622951 + 0.782261i \(0.714066\pi\)
\(62\) −3.00000 −0.0483871
\(63\) 0 0
\(64\) −91.0000 −1.42188
\(65\) 0 0
\(66\) 0 0
\(67\) − 10.0000i − 0.149254i −0.997212 0.0746269i \(-0.976223\pi\)
0.997212 0.0746269i \(-0.0237766\pi\)
\(68\) 90.0000 1.32353
\(69\) 0 0
\(70\) 0 0
\(71\) 90.0000i 1.26761i 0.773495 + 0.633803i \(0.218507\pi\)
−0.773495 + 0.633803i \(0.781493\pi\)
\(72\) 0 0
\(73\) − 65.0000i − 0.890411i −0.895428 0.445205i \(-0.853131\pi\)
0.895428 0.445205i \(-0.146869\pi\)
\(74\) 60.0000i 0.810811i
\(75\) 0 0
\(76\) 80.0000 1.05263
\(77\) −75.0000 −0.974026
\(78\) 0 0
\(79\) −14.0000 −0.177215 −0.0886076 0.996067i \(-0.528242\pi\)
−0.0886076 + 0.996067i \(0.528242\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) − 180.000i − 2.19512i
\(83\) −3.00000 −0.0361446 −0.0180723 0.999837i \(-0.505753\pi\)
−0.0180723 + 0.999837i \(0.505753\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) − 150.000i − 1.74419i
\(87\) 0 0
\(88\) 45.0000i 0.511364i
\(89\) 90.0000i 1.01124i 0.862757 + 0.505618i \(0.168735\pi\)
−0.862757 + 0.505618i \(0.831265\pi\)
\(90\) 0 0
\(91\) −50.0000 −0.549451
\(92\) 60.0000 0.652174
\(93\) 0 0
\(94\) −18.0000 −0.191489
\(95\) 0 0
\(96\) 0 0
\(97\) − 85.0000i − 0.876289i −0.898905 0.438144i \(-0.855636\pi\)
0.898905 0.438144i \(-0.144364\pi\)
\(98\) 72.0000 0.734694
\(99\) 0 0
\(100\) 0 0
\(101\) 195.000i 1.93069i 0.260971 + 0.965347i \(0.415957\pi\)
−0.260971 + 0.965347i \(0.584043\pi\)
\(102\) 0 0
\(103\) − 170.000i − 1.65049i −0.564778 0.825243i \(-0.691038\pi\)
0.564778 0.825243i \(-0.308962\pi\)
\(104\) 30.0000i 0.288462i
\(105\) 0 0
\(106\) 81.0000 0.764151
\(107\) 189.000 1.76636 0.883178 0.469039i \(-0.155400\pi\)
0.883178 + 0.469039i \(0.155400\pi\)
\(108\) 0 0
\(109\) −164.000 −1.50459 −0.752294 0.658828i \(-0.771052\pi\)
−0.752294 + 0.658828i \(0.771052\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) − 55.0000i − 0.491071i
\(113\) −24.0000 −0.212389 −0.106195 0.994345i \(-0.533867\pi\)
−0.106195 + 0.994345i \(0.533867\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 150.000i 1.29310i
\(117\) 0 0
\(118\) − 90.0000i − 0.762712i
\(119\) 90.0000i 0.756303i
\(120\) 0 0
\(121\) −104.000 −0.859504
\(122\) −228.000 −1.86885
\(123\) 0 0
\(124\) −5.00000 −0.0403226
\(125\) 0 0
\(126\) 0 0
\(127\) − 205.000i − 1.61417i −0.590433 0.807087i \(-0.701043\pi\)
0.590433 0.807087i \(-0.298957\pi\)
\(128\) −93.0000 −0.726562
\(129\) 0 0
\(130\) 0 0
\(131\) − 15.0000i − 0.114504i −0.998360 0.0572519i \(-0.981766\pi\)
0.998360 0.0572519i \(-0.0182338\pi\)
\(132\) 0 0
\(133\) 80.0000i 0.601504i
\(134\) − 30.0000i − 0.223881i
\(135\) 0 0
\(136\) 54.0000 0.397059
\(137\) 138.000 1.00730 0.503650 0.863908i \(-0.331990\pi\)
0.503650 + 0.863908i \(0.331990\pi\)
\(138\) 0 0
\(139\) 28.0000 0.201439 0.100719 0.994915i \(-0.467886\pi\)
0.100719 + 0.994915i \(0.467886\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 270.000i 1.90141i
\(143\) −150.000 −1.04895
\(144\) 0 0
\(145\) 0 0
\(146\) − 195.000i − 1.33562i
\(147\) 0 0
\(148\) 100.000i 0.675676i
\(149\) − 75.0000i − 0.503356i −0.967811 0.251678i \(-0.919018\pi\)
0.967811 0.251678i \(-0.0809823\pi\)
\(150\) 0 0
\(151\) 77.0000 0.509934 0.254967 0.966950i \(-0.417935\pi\)
0.254967 + 0.966950i \(0.417935\pi\)
\(152\) 48.0000 0.315789
\(153\) 0 0
\(154\) −225.000 −1.46104
\(155\) 0 0
\(156\) 0 0
\(157\) − 100.000i − 0.636943i −0.947932 0.318471i \(-0.896831\pi\)
0.947932 0.318471i \(-0.103169\pi\)
\(158\) −42.0000 −0.265823
\(159\) 0 0
\(160\) 0 0
\(161\) 60.0000i 0.372671i
\(162\) 0 0
\(163\) − 110.000i − 0.674847i −0.941353 0.337423i \(-0.890445\pi\)
0.941353 0.337423i \(-0.109555\pi\)
\(164\) − 300.000i − 1.82927i
\(165\) 0 0
\(166\) −9.00000 −0.0542169
\(167\) 78.0000 0.467066 0.233533 0.972349i \(-0.424971\pi\)
0.233533 + 0.972349i \(0.424971\pi\)
\(168\) 0 0
\(169\) 69.0000 0.408284
\(170\) 0 0
\(171\) 0 0
\(172\) − 250.000i − 1.45349i
\(173\) 177.000 1.02312 0.511561 0.859247i \(-0.329068\pi\)
0.511561 + 0.859247i \(0.329068\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) − 165.000i − 0.937500i
\(177\) 0 0
\(178\) 270.000i 1.51685i
\(179\) − 225.000i − 1.25698i −0.777816 0.628492i \(-0.783673\pi\)
0.777816 0.628492i \(-0.216327\pi\)
\(180\) 0 0
\(181\) −16.0000 −0.0883978 −0.0441989 0.999023i \(-0.514074\pi\)
−0.0441989 + 0.999023i \(0.514074\pi\)
\(182\) −150.000 −0.824176
\(183\) 0 0
\(184\) 36.0000 0.195652
\(185\) 0 0
\(186\) 0 0
\(187\) 270.000i 1.44385i
\(188\) −30.0000 −0.159574
\(189\) 0 0
\(190\) 0 0
\(191\) − 30.0000i − 0.157068i −0.996911 0.0785340i \(-0.974976\pi\)
0.996911 0.0785340i \(-0.0250239\pi\)
\(192\) 0 0
\(193\) − 215.000i − 1.11399i −0.830516 0.556995i \(-0.811954\pi\)
0.830516 0.556995i \(-0.188046\pi\)
\(194\) − 255.000i − 1.31443i
\(195\) 0 0
\(196\) 120.000 0.612245
\(197\) −207.000 −1.05076 −0.525381 0.850867i \(-0.676077\pi\)
−0.525381 + 0.850867i \(0.676077\pi\)
\(198\) 0 0
\(199\) 223.000 1.12060 0.560302 0.828289i \(-0.310685\pi\)
0.560302 + 0.828289i \(0.310685\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 585.000i 2.89604i
\(203\) −150.000 −0.738916
\(204\) 0 0
\(205\) 0 0
\(206\) − 510.000i − 2.47573i
\(207\) 0 0
\(208\) − 110.000i − 0.528846i
\(209\) 240.000i 1.14833i
\(210\) 0 0
\(211\) −316.000 −1.49763 −0.748815 0.662779i \(-0.769377\pi\)
−0.748815 + 0.662779i \(0.769377\pi\)
\(212\) 135.000 0.636792
\(213\) 0 0
\(214\) 567.000 2.64953
\(215\) 0 0
\(216\) 0 0
\(217\) − 5.00000i − 0.0230415i
\(218\) −492.000 −2.25688
\(219\) 0 0
\(220\) 0 0
\(221\) 180.000i 0.814480i
\(222\) 0 0
\(223\) 130.000i 0.582960i 0.956577 + 0.291480i \(0.0941476\pi\)
−0.956577 + 0.291480i \(0.905852\pi\)
\(224\) − 225.000i − 1.00446i
\(225\) 0 0
\(226\) −72.0000 −0.318584
\(227\) −42.0000 −0.185022 −0.0925110 0.995712i \(-0.529489\pi\)
−0.0925110 + 0.995712i \(0.529489\pi\)
\(228\) 0 0
\(229\) 226.000 0.986900 0.493450 0.869774i \(-0.335736\pi\)
0.493450 + 0.869774i \(0.335736\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 90.0000i 0.387931i
\(233\) −234.000 −1.00429 −0.502146 0.864783i \(-0.667456\pi\)
−0.502146 + 0.864783i \(0.667456\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) − 150.000i − 0.635593i
\(237\) 0 0
\(238\) 270.000i 1.13445i
\(239\) − 120.000i − 0.502092i −0.967975 0.251046i \(-0.919225\pi\)
0.967975 0.251046i \(-0.0807746\pi\)
\(240\) 0 0
\(241\) 14.0000 0.0580913 0.0290456 0.999578i \(-0.490753\pi\)
0.0290456 + 0.999578i \(0.490753\pi\)
\(242\) −312.000 −1.28926
\(243\) 0 0
\(244\) −380.000 −1.55738
\(245\) 0 0
\(246\) 0 0
\(247\) 160.000i 0.647773i
\(248\) −3.00000 −0.0120968
\(249\) 0 0
\(250\) 0 0
\(251\) − 90.0000i − 0.358566i −0.983798 0.179283i \(-0.942622\pi\)
0.983798 0.179283i \(-0.0573777\pi\)
\(252\) 0 0
\(253\) 180.000i 0.711462i
\(254\) − 615.000i − 2.42126i
\(255\) 0 0
\(256\) 85.0000 0.332031
\(257\) 438.000 1.70428 0.852140 0.523314i \(-0.175304\pi\)
0.852140 + 0.523314i \(0.175304\pi\)
\(258\) 0 0
\(259\) −100.000 −0.386100
\(260\) 0 0
\(261\) 0 0
\(262\) − 45.0000i − 0.171756i
\(263\) 276.000 1.04943 0.524715 0.851278i \(-0.324172\pi\)
0.524715 + 0.851278i \(0.324172\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 240.000i 0.902256i
\(267\) 0 0
\(268\) − 50.0000i − 0.186567i
\(269\) 270.000i 1.00372i 0.864950 + 0.501859i \(0.167350\pi\)
−0.864950 + 0.501859i \(0.832650\pi\)
\(270\) 0 0
\(271\) 299.000 1.10332 0.551661 0.834069i \(-0.313994\pi\)
0.551661 + 0.834069i \(0.313994\pi\)
\(272\) −198.000 −0.727941
\(273\) 0 0
\(274\) 414.000 1.51095
\(275\) 0 0
\(276\) 0 0
\(277\) 140.000i 0.505415i 0.967543 + 0.252708i \(0.0813211\pi\)
−0.967543 + 0.252708i \(0.918679\pi\)
\(278\) 84.0000 0.302158
\(279\) 0 0
\(280\) 0 0
\(281\) 150.000i 0.533808i 0.963723 + 0.266904i \(0.0860006\pi\)
−0.963723 + 0.266904i \(0.913999\pi\)
\(282\) 0 0
\(283\) 280.000i 0.989399i 0.869064 + 0.494700i \(0.164722\pi\)
−0.869064 + 0.494700i \(0.835278\pi\)
\(284\) 450.000i 1.58451i
\(285\) 0 0
\(286\) −450.000 −1.57343
\(287\) 300.000 1.04530
\(288\) 0 0
\(289\) 35.0000 0.121107
\(290\) 0 0
\(291\) 0 0
\(292\) − 325.000i − 1.11301i
\(293\) −258.000 −0.880546 −0.440273 0.897864i \(-0.645118\pi\)
−0.440273 + 0.897864i \(0.645118\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 60.0000i 0.202703i
\(297\) 0 0
\(298\) − 225.000i − 0.755034i
\(299\) 120.000i 0.401338i
\(300\) 0 0
\(301\) 250.000 0.830565
\(302\) 231.000 0.764901
\(303\) 0 0
\(304\) −176.000 −0.578947
\(305\) 0 0
\(306\) 0 0
\(307\) 290.000i 0.944625i 0.881431 + 0.472313i \(0.156581\pi\)
−0.881431 + 0.472313i \(0.843419\pi\)
\(308\) −375.000 −1.21753
\(309\) 0 0
\(310\) 0 0
\(311\) 480.000i 1.54341i 0.635982 + 0.771704i \(0.280595\pi\)
−0.635982 + 0.771704i \(0.719405\pi\)
\(312\) 0 0
\(313\) − 185.000i − 0.591054i −0.955334 0.295527i \(-0.904505\pi\)
0.955334 0.295527i \(-0.0954953\pi\)
\(314\) − 300.000i − 0.955414i
\(315\) 0 0
\(316\) −70.0000 −0.221519
\(317\) 183.000 0.577287 0.288644 0.957437i \(-0.406796\pi\)
0.288644 + 0.957437i \(0.406796\pi\)
\(318\) 0 0
\(319\) −450.000 −1.41066
\(320\) 0 0
\(321\) 0 0
\(322\) 180.000i 0.559006i
\(323\) 288.000 0.891641
\(324\) 0 0
\(325\) 0 0
\(326\) − 330.000i − 1.01227i
\(327\) 0 0
\(328\) − 180.000i − 0.548780i
\(329\) − 30.0000i − 0.0911854i
\(330\) 0 0
\(331\) −238.000 −0.719033 −0.359517 0.933139i \(-0.617058\pi\)
−0.359517 + 0.933139i \(0.617058\pi\)
\(332\) −15.0000 −0.0451807
\(333\) 0 0
\(334\) 234.000 0.700599
\(335\) 0 0
\(336\) 0 0
\(337\) − 10.0000i − 0.0296736i −0.999890 0.0148368i \(-0.995277\pi\)
0.999890 0.0148368i \(-0.00472287\pi\)
\(338\) 207.000 0.612426
\(339\) 0 0
\(340\) 0 0
\(341\) − 15.0000i − 0.0439883i
\(342\) 0 0
\(343\) 365.000i 1.06414i
\(344\) − 150.000i − 0.436047i
\(345\) 0 0
\(346\) 531.000 1.53468
\(347\) 69.0000 0.198847 0.0994236 0.995045i \(-0.468300\pi\)
0.0994236 + 0.995045i \(0.468300\pi\)
\(348\) 0 0
\(349\) 256.000 0.733524 0.366762 0.930315i \(-0.380466\pi\)
0.366762 + 0.930315i \(0.380466\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) − 675.000i − 1.91761i
\(353\) 456.000 1.29178 0.645892 0.763428i \(-0.276485\pi\)
0.645892 + 0.763428i \(0.276485\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 450.000i 1.26404i
\(357\) 0 0
\(358\) − 675.000i − 1.88547i
\(359\) − 450.000i − 1.25348i −0.779228 0.626741i \(-0.784388\pi\)
0.779228 0.626741i \(-0.215612\pi\)
\(360\) 0 0
\(361\) −105.000 −0.290859
\(362\) −48.0000 −0.132597
\(363\) 0 0
\(364\) −250.000 −0.686813
\(365\) 0 0
\(366\) 0 0
\(367\) − 625.000i − 1.70300i −0.524357 0.851499i \(-0.675694\pi\)
0.524357 0.851499i \(-0.324306\pi\)
\(368\) −132.000 −0.358696
\(369\) 0 0
\(370\) 0 0
\(371\) 135.000i 0.363881i
\(372\) 0 0
\(373\) − 170.000i − 0.455764i −0.973689 0.227882i \(-0.926820\pi\)
0.973689 0.227882i \(-0.0731801\pi\)
\(374\) 810.000i 2.16578i
\(375\) 0 0
\(376\) −18.0000 −0.0478723
\(377\) −300.000 −0.795756
\(378\) 0 0
\(379\) −704.000 −1.85752 −0.928760 0.370682i \(-0.879124\pi\)
−0.928760 + 0.370682i \(0.879124\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) − 90.0000i − 0.235602i
\(383\) −618.000 −1.61358 −0.806789 0.590840i \(-0.798796\pi\)
−0.806789 + 0.590840i \(0.798796\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) − 645.000i − 1.67098i
\(387\) 0 0
\(388\) − 425.000i − 1.09536i
\(389\) 525.000i 1.34961i 0.737994 + 0.674807i \(0.235773\pi\)
−0.737994 + 0.674807i \(0.764227\pi\)
\(390\) 0 0
\(391\) 216.000 0.552430
\(392\) 72.0000 0.183673
\(393\) 0 0
\(394\) −621.000 −1.57614
\(395\) 0 0
\(396\) 0 0
\(397\) − 70.0000i − 0.176322i −0.996106 0.0881612i \(-0.971901\pi\)
0.996106 0.0881612i \(-0.0280991\pi\)
\(398\) 669.000 1.68090
\(399\) 0 0
\(400\) 0 0
\(401\) 120.000i 0.299252i 0.988743 + 0.149626i \(0.0478069\pi\)
−0.988743 + 0.149626i \(0.952193\pi\)
\(402\) 0 0
\(403\) − 10.0000i − 0.0248139i
\(404\) 975.000i 2.41337i
\(405\) 0 0
\(406\) −450.000 −1.10837
\(407\) −300.000 −0.737101
\(408\) 0 0
\(409\) −269.000 −0.657702 −0.328851 0.944382i \(-0.606661\pi\)
−0.328851 + 0.944382i \(0.606661\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 850.000i − 2.06311i
\(413\) 150.000 0.363196
\(414\) 0 0
\(415\) 0 0
\(416\) − 450.000i − 1.08173i
\(417\) 0 0
\(418\) 720.000i 1.72249i
\(419\) − 210.000i − 0.501193i −0.968092 0.250597i \(-0.919373\pi\)
0.968092 0.250597i \(-0.0806268\pi\)
\(420\) 0 0
\(421\) 644.000 1.52969 0.764846 0.644214i \(-0.222815\pi\)
0.764846 + 0.644214i \(0.222815\pi\)
\(422\) −948.000 −2.24645
\(423\) 0 0
\(424\) 81.0000 0.191038
\(425\) 0 0
\(426\) 0 0
\(427\) − 380.000i − 0.889930i
\(428\) 945.000 2.20794
\(429\) 0 0
\(430\) 0 0
\(431\) − 270.000i − 0.626450i −0.949679 0.313225i \(-0.898591\pi\)
0.949679 0.313225i \(-0.101409\pi\)
\(432\) 0 0
\(433\) 565.000i 1.30485i 0.757853 + 0.652425i \(0.226248\pi\)
−0.757853 + 0.652425i \(0.773752\pi\)
\(434\) − 15.0000i − 0.0345622i
\(435\) 0 0
\(436\) −820.000 −1.88073
\(437\) 192.000 0.439359
\(438\) 0 0
\(439\) 211.000 0.480638 0.240319 0.970694i \(-0.422748\pi\)
0.240319 + 0.970694i \(0.422748\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 540.000i 1.22172i
\(443\) −498.000 −1.12415 −0.562077 0.827085i \(-0.689997\pi\)
−0.562077 + 0.827085i \(0.689997\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 390.000i 0.874439i
\(447\) 0 0
\(448\) − 455.000i − 1.01562i
\(449\) − 360.000i − 0.801782i −0.916126 0.400891i \(-0.868701\pi\)
0.916126 0.400891i \(-0.131299\pi\)
\(450\) 0 0
\(451\) 900.000 1.99557
\(452\) −120.000 −0.265487
\(453\) 0 0
\(454\) −126.000 −0.277533
\(455\) 0 0
\(456\) 0 0
\(457\) 365.000i 0.798687i 0.916801 + 0.399344i \(0.130762\pi\)
−0.916801 + 0.399344i \(0.869238\pi\)
\(458\) 678.000 1.48035
\(459\) 0 0
\(460\) 0 0
\(461\) 105.000i 0.227766i 0.993494 + 0.113883i \(0.0363289\pi\)
−0.993494 + 0.113883i \(0.963671\pi\)
\(462\) 0 0
\(463\) − 215.000i − 0.464363i −0.972672 0.232181i \(-0.925414\pi\)
0.972672 0.232181i \(-0.0745863\pi\)
\(464\) − 330.000i − 0.711207i
\(465\) 0 0
\(466\) −702.000 −1.50644
\(467\) 63.0000 0.134904 0.0674518 0.997723i \(-0.478513\pi\)
0.0674518 + 0.997723i \(0.478513\pi\)
\(468\) 0 0
\(469\) 50.0000 0.106610
\(470\) 0 0
\(471\) 0 0
\(472\) − 90.0000i − 0.190678i
\(473\) 750.000 1.58562
\(474\) 0 0
\(475\) 0 0
\(476\) 450.000i 0.945378i
\(477\) 0 0
\(478\) − 360.000i − 0.753138i
\(479\) 750.000i 1.56576i 0.622171 + 0.782881i \(0.286251\pi\)
−0.622171 + 0.782881i \(0.713749\pi\)
\(480\) 0 0
\(481\) −200.000 −0.415800
\(482\) 42.0000 0.0871369
\(483\) 0 0
\(484\) −520.000 −1.07438
\(485\) 0 0
\(486\) 0 0
\(487\) 110.000i 0.225873i 0.993602 + 0.112936i \(0.0360256\pi\)
−0.993602 + 0.112936i \(0.963974\pi\)
\(488\) −228.000 −0.467213
\(489\) 0 0
\(490\) 0 0
\(491\) − 645.000i − 1.31365i −0.754045 0.656823i \(-0.771900\pi\)
0.754045 0.656823i \(-0.228100\pi\)
\(492\) 0 0
\(493\) 540.000i 1.09533i
\(494\) 480.000i 0.971660i
\(495\) 0 0
\(496\) 11.0000 0.0221774
\(497\) −450.000 −0.905433
\(498\) 0 0
\(499\) 766.000 1.53507 0.767535 0.641007i \(-0.221483\pi\)
0.767535 + 0.641007i \(0.221483\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) − 270.000i − 0.537849i
\(503\) −828.000 −1.64612 −0.823062 0.567952i \(-0.807736\pi\)
−0.823062 + 0.567952i \(0.807736\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 540.000i 1.06719i
\(507\) 0 0
\(508\) − 1025.00i − 2.01772i
\(509\) 555.000i 1.09037i 0.838315 + 0.545187i \(0.183541\pi\)
−0.838315 + 0.545187i \(0.816459\pi\)
\(510\) 0 0
\(511\) 325.000 0.636008
\(512\) 627.000 1.22461
\(513\) 0 0
\(514\) 1314.00 2.55642
\(515\) 0 0
\(516\) 0 0
\(517\) − 90.0000i − 0.174081i
\(518\) −300.000 −0.579151
\(519\) 0 0
\(520\) 0 0
\(521\) 450.000i 0.863724i 0.901940 + 0.431862i \(0.142143\pi\)
−0.901940 + 0.431862i \(0.857857\pi\)
\(522\) 0 0
\(523\) 250.000i 0.478011i 0.971018 + 0.239006i \(0.0768215\pi\)
−0.971018 + 0.239006i \(0.923179\pi\)
\(524\) − 75.0000i − 0.143130i
\(525\) 0 0
\(526\) 828.000 1.57414
\(527\) −18.0000 −0.0341556
\(528\) 0 0
\(529\) −385.000 −0.727788
\(530\) 0 0
\(531\) 0 0
\(532\) 400.000i 0.751880i
\(533\) 600.000 1.12570
\(534\) 0 0
\(535\) 0 0
\(536\) − 30.0000i − 0.0559701i
\(537\) 0 0
\(538\) 810.000i 1.50558i
\(539\) 360.000i 0.667904i
\(540\) 0 0
\(541\) −268.000 −0.495379 −0.247689 0.968839i \(-0.579671\pi\)
−0.247689 + 0.968839i \(0.579671\pi\)
\(542\) 897.000 1.65498
\(543\) 0 0
\(544\) −810.000 −1.48897
\(545\) 0 0
\(546\) 0 0
\(547\) 410.000i 0.749543i 0.927117 + 0.374771i \(0.122279\pi\)
−0.927117 + 0.374771i \(0.877721\pi\)
\(548\) 690.000 1.25912
\(549\) 0 0
\(550\) 0 0
\(551\) 480.000i 0.871143i
\(552\) 0 0
\(553\) − 70.0000i − 0.126582i
\(554\) 420.000i 0.758123i
\(555\) 0 0
\(556\) 140.000 0.251799
\(557\) 639.000 1.14722 0.573609 0.819130i \(-0.305543\pi\)
0.573609 + 0.819130i \(0.305543\pi\)
\(558\) 0 0
\(559\) 500.000 0.894454
\(560\) 0 0
\(561\) 0 0
\(562\) 450.000i 0.800712i
\(563\) 201.000 0.357016 0.178508 0.983938i \(-0.442873\pi\)
0.178508 + 0.983938i \(0.442873\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 840.000i 1.48410i
\(567\) 0 0
\(568\) 270.000i 0.475352i
\(569\) − 240.000i − 0.421793i −0.977508 0.210896i \(-0.932362\pi\)
0.977508 0.210896i \(-0.0676382\pi\)
\(570\) 0 0
\(571\) −946.000 −1.65674 −0.828371 0.560179i \(-0.810732\pi\)
−0.828371 + 0.560179i \(0.810732\pi\)
\(572\) −750.000 −1.31119
\(573\) 0 0
\(574\) 900.000 1.56794
\(575\) 0 0
\(576\) 0 0
\(577\) 830.000i 1.43847i 0.694764 + 0.719237i \(0.255509\pi\)
−0.694764 + 0.719237i \(0.744491\pi\)
\(578\) 105.000 0.181661
\(579\) 0 0
\(580\) 0 0
\(581\) − 15.0000i − 0.0258176i
\(582\) 0 0
\(583\) 405.000i 0.694683i
\(584\) − 195.000i − 0.333904i
\(585\) 0 0
\(586\) −774.000 −1.32082
\(587\) 453.000 0.771721 0.385860 0.922557i \(-0.373905\pi\)
0.385860 + 0.922557i \(0.373905\pi\)
\(588\) 0 0
\(589\) −16.0000 −0.0271647
\(590\) 0 0
\(591\) 0 0
\(592\) − 220.000i − 0.371622i
\(593\) 702.000 1.18381 0.591906 0.806007i \(-0.298376\pi\)
0.591906 + 0.806007i \(0.298376\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) − 375.000i − 0.629195i
\(597\) 0 0
\(598\) 360.000i 0.602007i
\(599\) − 1110.00i − 1.85309i −0.376186 0.926544i \(-0.622765\pi\)
0.376186 0.926544i \(-0.377235\pi\)
\(600\) 0 0
\(601\) 869.000 1.44592 0.722962 0.690888i \(-0.242780\pi\)
0.722962 + 0.690888i \(0.242780\pi\)
\(602\) 750.000 1.24585
\(603\) 0 0
\(604\) 385.000 0.637417
\(605\) 0 0
\(606\) 0 0
\(607\) 530.000i 0.873147i 0.899669 + 0.436573i \(0.143808\pi\)
−0.899669 + 0.436573i \(0.856192\pi\)
\(608\) −720.000 −1.18421
\(609\) 0 0
\(610\) 0 0
\(611\) − 60.0000i − 0.0981997i
\(612\) 0 0
\(613\) 70.0000i 0.114192i 0.998369 + 0.0570962i \(0.0181842\pi\)
−0.998369 + 0.0570962i \(0.981816\pi\)
\(614\) 870.000i 1.41694i
\(615\) 0 0
\(616\) −225.000 −0.365260
\(617\) −552.000 −0.894652 −0.447326 0.894371i \(-0.647624\pi\)
−0.447326 + 0.894371i \(0.647624\pi\)
\(618\) 0 0
\(619\) −662.000 −1.06947 −0.534733 0.845021i \(-0.679588\pi\)
−0.534733 + 0.845021i \(0.679588\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 1440.00i 2.31511i
\(623\) −450.000 −0.722311
\(624\) 0 0
\(625\) 0 0
\(626\) − 555.000i − 0.886581i
\(627\) 0 0
\(628\) − 500.000i − 0.796178i
\(629\) 360.000i 0.572337i
\(630\) 0 0
\(631\) −331.000 −0.524564 −0.262282 0.964991i \(-0.584475\pi\)
−0.262282 + 0.964991i \(0.584475\pi\)
\(632\) −42.0000 −0.0664557
\(633\) 0 0
\(634\) 549.000 0.865931
\(635\) 0 0
\(636\) 0 0
\(637\) 240.000i 0.376766i
\(638\) −1350.00 −2.11599
\(639\) 0 0
\(640\) 0 0
\(641\) 60.0000i 0.0936037i 0.998904 + 0.0468019i \(0.0149029\pi\)
−0.998904 + 0.0468019i \(0.985097\pi\)
\(642\) 0 0
\(643\) − 440.000i − 0.684292i −0.939647 0.342146i \(-0.888846\pi\)
0.939647 0.342146i \(-0.111154\pi\)
\(644\) 300.000i 0.465839i
\(645\) 0 0
\(646\) 864.000 1.33746
\(647\) −972.000 −1.50232 −0.751159 0.660121i \(-0.770505\pi\)
−0.751159 + 0.660121i \(0.770505\pi\)
\(648\) 0 0
\(649\) 450.000 0.693374
\(650\) 0 0
\(651\) 0 0
\(652\) − 550.000i − 0.843558i
\(653\) −483.000 −0.739663 −0.369832 0.929099i \(-0.620585\pi\)
−0.369832 + 0.929099i \(0.620585\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 660.000i 1.00610i
\(657\) 0 0
\(658\) − 90.0000i − 0.136778i
\(659\) − 825.000i − 1.25190i −0.779864 0.625948i \(-0.784712\pi\)
0.779864 0.625948i \(-0.215288\pi\)
\(660\) 0 0
\(661\) −928.000 −1.40393 −0.701967 0.712210i \(-0.747694\pi\)
−0.701967 + 0.712210i \(0.747694\pi\)
\(662\) −714.000 −1.07855
\(663\) 0 0
\(664\) −9.00000 −0.0135542
\(665\) 0 0
\(666\) 0 0
\(667\) 360.000i 0.539730i
\(668\) 390.000 0.583832
\(669\) 0 0
\(670\) 0 0
\(671\) − 1140.00i − 1.69896i
\(672\) 0 0
\(673\) 985.000i 1.46360i 0.681522 + 0.731798i \(0.261319\pi\)
−0.681522 + 0.731798i \(0.738681\pi\)
\(674\) − 30.0000i − 0.0445104i
\(675\) 0 0
\(676\) 345.000 0.510355
\(677\) 354.000 0.522895 0.261448 0.965218i \(-0.415800\pi\)
0.261448 + 0.965218i \(0.415800\pi\)
\(678\) 0 0
\(679\) 425.000 0.625920
\(680\) 0 0
\(681\) 0 0
\(682\) − 45.0000i − 0.0659824i
\(683\) −198.000 −0.289898 −0.144949 0.989439i \(-0.546302\pi\)
−0.144949 + 0.989439i \(0.546302\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 1095.00i 1.59621i
\(687\) 0 0
\(688\) 550.000i 0.799419i
\(689\) 270.000i 0.391872i
\(690\) 0 0
\(691\) −436.000 −0.630970 −0.315485 0.948931i \(-0.602167\pi\)
−0.315485 + 0.948931i \(0.602167\pi\)
\(692\) 885.000 1.27890
\(693\) 0 0
\(694\) 207.000 0.298271
\(695\) 0 0
\(696\) 0 0
\(697\) − 1080.00i − 1.54950i
\(698\) 768.000 1.10029
\(699\) 0 0
\(700\) 0 0
\(701\) − 135.000i − 0.192582i −0.995353 0.0962910i \(-0.969302\pi\)
0.995353 0.0962910i \(-0.0306979\pi\)
\(702\) 0 0
\(703\) 320.000i 0.455192i
\(704\) − 1365.00i − 1.93892i
\(705\) 0 0
\(706\) 1368.00 1.93768
\(707\) −975.000 −1.37907
\(708\) 0 0
\(709\) −32.0000 −0.0451340 −0.0225670 0.999745i \(-0.507184\pi\)
−0.0225670 + 0.999745i \(0.507184\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 270.000i 0.379213i
\(713\) −12.0000 −0.0168303
\(714\) 0 0
\(715\) 0 0
\(716\) − 1125.00i − 1.57123i
\(717\) 0 0
\(718\) − 1350.00i − 1.88022i
\(719\) − 900.000i − 1.25174i −0.779928 0.625869i \(-0.784744\pi\)
0.779928 0.625869i \(-0.215256\pi\)
\(720\) 0 0
\(721\) 850.000 1.17892
\(722\) −315.000 −0.436288
\(723\) 0 0
\(724\) −80.0000 −0.110497
\(725\) 0 0
\(726\) 0 0
\(727\) − 175.000i − 0.240715i −0.992731 0.120358i \(-0.961596\pi\)
0.992731 0.120358i \(-0.0384041\pi\)
\(728\) −150.000 −0.206044
\(729\) 0 0
\(730\) 0 0
\(731\) − 900.000i − 1.23119i
\(732\) 0 0
\(733\) − 1160.00i − 1.58254i −0.611469 0.791269i \(-0.709421\pi\)
0.611469 0.791269i \(-0.290579\pi\)
\(734\) − 1875.00i − 2.55450i
\(735\) 0 0
\(736\) −540.000 −0.733696
\(737\) 150.000 0.203528
\(738\) 0 0
\(739\) 1006.00 1.36130 0.680650 0.732609i \(-0.261698\pi\)
0.680650 + 0.732609i \(0.261698\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 405.000i 0.545822i
\(743\) −114.000 −0.153432 −0.0767160 0.997053i \(-0.524443\pi\)
−0.0767160 + 0.997053i \(0.524443\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) − 510.000i − 0.683646i
\(747\) 0 0
\(748\) 1350.00i 1.80481i
\(749\) 945.000i 1.26168i
\(750\) 0 0
\(751\) 359.000 0.478029 0.239015 0.971016i \(-0.423176\pi\)
0.239015 + 0.971016i \(0.423176\pi\)
\(752\) 66.0000 0.0877660
\(753\) 0 0
\(754\) −900.000 −1.19363
\(755\) 0 0
\(756\) 0 0
\(757\) − 430.000i − 0.568032i −0.958820 0.284016i \(-0.908333\pi\)
0.958820 0.284016i \(-0.0916668\pi\)
\(758\) −2112.00 −2.78628
\(759\) 0 0
\(760\) 0 0
\(761\) − 1320.00i − 1.73456i −0.497821 0.867280i \(-0.665866\pi\)
0.497821 0.867280i \(-0.334134\pi\)
\(762\) 0 0
\(763\) − 820.000i − 1.07471i
\(764\) − 150.000i − 0.196335i
\(765\) 0 0
\(766\) −1854.00 −2.42037
\(767\) 300.000 0.391134
\(768\) 0 0
\(769\) −1259.00 −1.63719 −0.818596 0.574370i \(-0.805247\pi\)
−0.818596 + 0.574370i \(0.805247\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) − 1075.00i − 1.39249i
\(773\) 522.000 0.675291 0.337646 0.941273i \(-0.390369\pi\)
0.337646 + 0.941273i \(0.390369\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) − 255.000i − 0.328608i
\(777\) 0 0
\(778\) 1575.00i 2.02442i
\(779\) − 960.000i − 1.23235i
\(780\) 0 0
\(781\) −1350.00 −1.72855
\(782\) 648.000 0.828645
\(783\) 0 0
\(784\) −264.000 −0.336735
\(785\) 0 0
\(786\) 0 0
\(787\) − 460.000i − 0.584498i −0.956342 0.292249i \(-0.905596\pi\)
0.956342 0.292249i \(-0.0944036\pi\)
\(788\) −1035.00 −1.31345
\(789\) 0 0
\(790\) 0 0
\(791\) − 120.000i − 0.151707i
\(792\) 0 0
\(793\) − 760.000i − 0.958386i
\(794\) − 210.000i − 0.264484i
\(795\) 0 0
\(796\) 1115.00 1.40075
\(797\) −237.000 −0.297365 −0.148683 0.988885i \(-0.547503\pi\)
−0.148683 + 0.988885i \(0.547503\pi\)
\(798\) 0 0
\(799\) −108.000 −0.135169
\(800\) 0 0
\(801\) 0 0
\(802\) 360.000i 0.448878i
\(803\) 975.000 1.21420
\(804\) 0 0
\(805\) 0 0
\(806\) − 30.0000i − 0.0372208i
\(807\) 0 0
\(808\) 585.000i 0.724010i
\(809\) 810.000i 1.00124i 0.865668 + 0.500618i \(0.166894\pi\)
−0.865668 + 0.500618i \(0.833106\pi\)
\(810\) 0 0
\(811\) 272.000 0.335388 0.167694 0.985839i \(-0.446368\pi\)
0.167694 + 0.985839i \(0.446368\pi\)
\(812\) −750.000 −0.923645
\(813\) 0 0
\(814\) −900.000 −1.10565
\(815\) 0 0
\(816\) 0 0
\(817\) − 800.000i − 0.979192i
\(818\) −807.000 −0.986553
\(819\) 0 0
\(820\) 0 0
\(821\) − 390.000i − 0.475030i −0.971384 0.237515i \(-0.923667\pi\)
0.971384 0.237515i \(-0.0763330\pi\)
\(822\) 0 0
\(823\) − 1205.00i − 1.46416i −0.681221 0.732078i \(-0.738551\pi\)
0.681221 0.732078i \(-0.261449\pi\)
\(824\) − 510.000i − 0.618932i
\(825\) 0 0
\(826\) 450.000 0.544794
\(827\) 18.0000 0.0217654 0.0108827 0.999941i \(-0.496536\pi\)
0.0108827 + 0.999941i \(0.496536\pi\)
\(828\) 0 0
\(829\) −1442.00 −1.73945 −0.869723 0.493541i \(-0.835702\pi\)
−0.869723 + 0.493541i \(0.835702\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) − 910.000i − 1.09375i
\(833\) 432.000 0.518607
\(834\) 0 0
\(835\) 0 0
\(836\) 1200.00i 1.43541i
\(837\) 0 0
\(838\) − 630.000i − 0.751790i
\(839\) − 1590.00i − 1.89511i −0.319588 0.947557i \(-0.603544\pi\)
0.319588 0.947557i \(-0.396456\pi\)
\(840\) 0 0
\(841\) −59.0000 −0.0701546
\(842\) 1932.00 2.29454
\(843\) 0 0
\(844\) −1580.00 −1.87204
\(845\) 0 0
\(846\) 0 0
\(847\) − 520.000i − 0.613932i
\(848\) −297.000 −0.350236
\(849\) 0 0
\(850\) 0 0
\(851\) 240.000i 0.282021i
\(852\) 0 0
\(853\) − 590.000i − 0.691676i −0.938294 0.345838i \(-0.887595\pi\)
0.938294 0.345838i \(-0.112405\pi\)
\(854\) − 1140.00i − 1.33489i
\(855\) 0 0
\(856\) 567.000 0.662383
\(857\) −1302.00 −1.51925 −0.759627 0.650359i \(-0.774618\pi\)
−0.759627 + 0.650359i \(0.774618\pi\)
\(858\) 0 0
\(859\) 316.000 0.367870 0.183935 0.982938i \(-0.441116\pi\)
0.183935 + 0.982938i \(0.441116\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) − 810.000i − 0.939675i
\(863\) −1188.00 −1.37659 −0.688297 0.725429i \(-0.741641\pi\)
−0.688297 + 0.725429i \(0.741641\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 1695.00i 1.95727i
\(867\) 0 0
\(868\) − 25.0000i − 0.0288018i
\(869\) − 210.000i − 0.241657i
\(870\) 0 0
\(871\) 100.000 0.114811
\(872\) −492.000 −0.564220
\(873\) 0 0
\(874\) 576.000 0.659039
\(875\) 0 0
\(876\) 0 0
\(877\) − 550.000i − 0.627138i −0.949565 0.313569i \(-0.898475\pi\)
0.949565 0.313569i \(-0.101525\pi\)
\(878\) 633.000 0.720957
\(879\) 0 0
\(880\) 0 0
\(881\) 90.0000i 0.102157i 0.998695 + 0.0510783i \(0.0162658\pi\)
−0.998695 + 0.0510783i \(0.983734\pi\)
\(882\) 0 0
\(883\) 880.000i 0.996602i 0.867004 + 0.498301i \(0.166043\pi\)
−0.867004 + 0.498301i \(0.833957\pi\)
\(884\) 900.000i 1.01810i
\(885\) 0 0
\(886\) −1494.00 −1.68623
\(887\) −282.000 −0.317926 −0.158963 0.987285i \(-0.550815\pi\)
−0.158963 + 0.987285i \(0.550815\pi\)
\(888\) 0 0
\(889\) 1025.00 1.15298
\(890\) 0 0
\(891\) 0 0
\(892\) 650.000i 0.728700i
\(893\) −96.0000 −0.107503
\(894\) 0 0
\(895\) 0 0
\(896\) − 465.000i − 0.518973i
\(897\) 0 0
\(898\) − 1080.00i − 1.20267i
\(899\) − 30.0000i − 0.0333704i
\(900\) 0 0
\(901\) 486.000 0.539401
\(902\) 2700.00 2.99335
\(903\) 0 0
\(904\) −72.0000 −0.0796460
\(905\) 0 0
\(906\) 0 0
\(907\) − 1300.00i − 1.43330i −0.697435 0.716648i \(-0.745675\pi\)
0.697435 0.716648i \(-0.254325\pi\)
\(908\) −210.000 −0.231278
\(909\) 0 0
\(910\) 0 0
\(911\) − 210.000i − 0.230516i −0.993336 0.115258i \(-0.963231\pi\)
0.993336 0.115258i \(-0.0367695\pi\)
\(912\) 0 0
\(913\) − 45.0000i − 0.0492881i
\(914\) 1095.00i 1.19803i
\(915\) 0 0
\(916\) 1130.00 1.23362
\(917\) 75.0000 0.0817884
\(918\) 0 0
\(919\) −137.000 −0.149075 −0.0745375 0.997218i \(-0.523748\pi\)
−0.0745375 + 0.997218i \(0.523748\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 315.000i 0.341649i
\(923\) −900.000 −0.975081
\(924\) 0 0
\(925\) 0 0
\(926\) − 645.000i − 0.696544i
\(927\) 0 0
\(928\) − 1350.00i − 1.45474i
\(929\) 660.000i 0.710441i 0.934782 + 0.355221i \(0.115594\pi\)
−0.934782 + 0.355221i \(0.884406\pi\)
\(930\) 0 0
\(931\) 384.000 0.412460
\(932\) −1170.00 −1.25536
\(933\) 0 0
\(934\) 189.000 0.202355
\(935\) 0 0
\(936\) 0 0
\(937\) 605.000i 0.645678i 0.946454 + 0.322839i \(0.104637\pi\)
−0.946454 + 0.322839i \(0.895363\pi\)
\(938\) 150.000 0.159915
\(939\) 0 0
\(940\) 0 0
\(941\) 1605.00i 1.70563i 0.522211 + 0.852816i \(0.325107\pi\)
−0.522211 + 0.852816i \(0.674893\pi\)
\(942\) 0 0
\(943\) − 720.000i − 0.763521i
\(944\) 330.000i 0.349576i
\(945\) 0 0
\(946\) 2250.00 2.37844
\(947\) 543.000 0.573390 0.286695 0.958022i \(-0.407443\pi\)
0.286695 + 0.958022i \(0.407443\pi\)
\(948\) 0 0
\(949\) 650.000 0.684932
\(950\) 0 0
\(951\) 0 0
\(952\) 270.000i 0.283613i
\(953\) −144.000 −0.151102 −0.0755509 0.997142i \(-0.524072\pi\)
−0.0755509 + 0.997142i \(0.524072\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) − 600.000i − 0.627615i
\(957\) 0 0
\(958\) 2250.00i 2.34864i
\(959\) 690.000i 0.719499i
\(960\) 0 0
\(961\) −960.000 −0.998959
\(962\) −600.000 −0.623701
\(963\) 0 0
\(964\) 70.0000 0.0726141
\(965\) 0 0
\(966\) 0 0
\(967\) 845.000i 0.873837i 0.899501 + 0.436918i \(0.143930\pi\)
−0.899501 + 0.436918i \(0.856070\pi\)
\(968\) −312.000 −0.322314
\(969\) 0 0
\(970\) 0 0
\(971\) − 405.000i − 0.417096i −0.978012 0.208548i \(-0.933126\pi\)
0.978012 0.208548i \(-0.0668737\pi\)
\(972\) 0 0
\(973\) 140.000i 0.143885i
\(974\) 330.000i 0.338809i
\(975\) 0 0
\(976\) 836.000 0.856557
\(977\) −246.000 −0.251791 −0.125896 0.992043i \(-0.540180\pi\)
−0.125896 + 0.992043i \(0.540180\pi\)
\(978\) 0 0
\(979\) −1350.00 −1.37896
\(980\) 0 0
\(981\) 0 0
\(982\) − 1935.00i − 1.97047i
\(983\) −1038.00 −1.05595 −0.527976 0.849260i \(-0.677049\pi\)
−0.527976 + 0.849260i \(0.677049\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 1620.00i 1.64300i
\(987\) 0 0
\(988\) 800.000i 0.809717i
\(989\) − 600.000i − 0.606673i
\(990\) 0 0
\(991\) −1501.00 −1.51463 −0.757316 0.653049i \(-0.773490\pi\)
−0.757316 + 0.653049i \(0.773490\pi\)
\(992\) 45.0000 0.0453629
\(993\) 0 0
\(994\) −1350.00 −1.35815
\(995\) 0 0
\(996\) 0 0
\(997\) 770.000i 0.772317i 0.922432 + 0.386158i \(0.126198\pi\)
−0.922432 + 0.386158i \(0.873802\pi\)
\(998\) 2298.00 2.30261
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.3.d.d.674.2 2
3.2 odd 2 675.3.d.a.674.2 2
5.2 odd 4 675.3.c.h.26.2 2
5.3 odd 4 27.3.b.b.26.1 2
5.4 even 2 675.3.d.a.674.1 2
15.2 even 4 675.3.c.h.26.1 2
15.8 even 4 27.3.b.b.26.2 yes 2
15.14 odd 2 inner 675.3.d.d.674.1 2
20.3 even 4 432.3.e.c.161.2 2
40.3 even 4 1728.3.e.g.1025.1 2
40.13 odd 4 1728.3.e.m.1025.1 2
45.13 odd 12 81.3.d.b.26.2 4
45.23 even 12 81.3.d.b.26.1 4
45.38 even 12 81.3.d.b.53.2 4
45.43 odd 12 81.3.d.b.53.1 4
60.23 odd 4 432.3.e.c.161.1 2
120.53 even 4 1728.3.e.m.1025.2 2
120.83 odd 4 1728.3.e.g.1025.2 2
180.23 odd 12 1296.3.q.j.593.1 4
180.43 even 12 1296.3.q.j.1025.1 4
180.83 odd 12 1296.3.q.j.1025.2 4
180.103 even 12 1296.3.q.j.593.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.3.b.b.26.1 2 5.3 odd 4
27.3.b.b.26.2 yes 2 15.8 even 4
81.3.d.b.26.1 4 45.23 even 12
81.3.d.b.26.2 4 45.13 odd 12
81.3.d.b.53.1 4 45.43 odd 12
81.3.d.b.53.2 4 45.38 even 12
432.3.e.c.161.1 2 60.23 odd 4
432.3.e.c.161.2 2 20.3 even 4
675.3.c.h.26.1 2 15.2 even 4
675.3.c.h.26.2 2 5.2 odd 4
675.3.d.a.674.1 2 5.4 even 2
675.3.d.a.674.2 2 3.2 odd 2
675.3.d.d.674.1 2 15.14 odd 2 inner
675.3.d.d.674.2 2 1.1 even 1 trivial
1296.3.q.j.593.1 4 180.23 odd 12
1296.3.q.j.593.2 4 180.103 even 12
1296.3.q.j.1025.1 4 180.43 even 12
1296.3.q.j.1025.2 4 180.83 odd 12
1728.3.e.g.1025.1 2 40.3 even 4
1728.3.e.g.1025.2 2 120.83 odd 4
1728.3.e.m.1025.1 2 40.13 odd 4
1728.3.e.m.1025.2 2 120.53 even 4