Properties

Label 675.2.u.e.49.7
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.7
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.852522 - 1.01600i) q^{2} +(1.72092 - 0.196018i) q^{3} +(0.0418420 - 0.237298i) q^{4} +(-1.66628 - 1.58134i) q^{6} +(4.36644 - 0.769922i) q^{7} +(-2.57396 + 1.48608i) q^{8} +(2.92315 - 0.674663i) q^{9} +(3.91123 + 1.42357i) q^{11} +(0.0254923 - 0.416573i) q^{12} +(-0.972900 + 1.15946i) q^{13} +(-4.50473 - 3.77991i) q^{14} +(3.25136 + 1.18340i) q^{16} +(0.985419 + 0.568932i) q^{17} +(-3.17751 - 2.39475i) q^{18} +(3.37499 + 5.84565i) q^{19} +(7.36340 - 2.18088i) q^{21} +(-1.88807 - 5.18742i) q^{22} +(-7.86279 - 1.38642i) q^{23} +(-4.13830 + 3.06197i) q^{24} +2.00742 q^{26} +(4.89828 - 1.73403i) q^{27} -1.06836i q^{28} +(-1.89402 + 1.58927i) q^{29} +(0.369663 - 2.09646i) q^{31} +(0.463549 + 1.27359i) q^{32} +(7.00997 + 1.68319i) q^{33} +(-0.262059 - 1.48621i) q^{34} +(-0.0377853 - 0.721887i) q^{36} +(-8.65969 - 4.99967i) q^{37} +(3.06191 - 8.41252i) q^{38} +(-1.44701 + 2.18604i) q^{39} +(-0.384359 - 0.322515i) q^{41} +(-8.49322 - 5.62194i) q^{42} +(-0.0373936 + 0.102738i) q^{43} +(0.501464 - 0.868561i) q^{44} +(5.29460 + 9.17051i) q^{46} +(-7.45681 + 1.31484i) q^{47} +(5.82730 + 1.39921i) q^{48} +(11.8952 - 4.32950i) q^{49} +(1.80735 + 0.785929i) q^{51} +(0.234429 + 0.279381i) q^{52} -3.96330i q^{53} +(-5.93766 - 3.49833i) q^{54} +(-10.0949 + 8.47063i) q^{56} +(6.95395 + 9.39836i) q^{57} +(3.22938 + 0.569427i) q^{58} +(-7.67614 + 2.79389i) q^{59} +(-2.14296 - 12.1533i) q^{61} +(-2.44514 + 1.41170i) q^{62} +(12.2444 - 5.19648i) q^{63} +(4.35880 - 7.54966i) q^{64} +(-4.26604 - 8.55705i) q^{66} +(1.88943 - 2.25173i) q^{67} +(0.176238 - 0.210033i) q^{68} +(-13.8030 - 0.844680i) q^{69} +(-3.78880 + 6.56240i) q^{71} +(-6.52149 + 6.08060i) q^{72} +(-8.88121 + 5.12757i) q^{73} +(2.30293 + 13.0605i) q^{74} +(1.52838 - 0.556283i) q^{76} +(18.1742 + 3.20460i) q^{77} +(3.45462 - 0.393490i) q^{78} +(-3.74388 + 3.14149i) q^{79} +(8.08966 - 3.94429i) q^{81} +0.665459i q^{82} +(2.34014 + 2.78888i) q^{83} +(-0.209418 - 1.83857i) q^{84} +(0.136260 - 0.0495947i) q^{86} +(-2.94793 + 3.10627i) q^{87} +(-12.1829 + 2.14817i) q^{88} +(-5.74755 - 9.95505i) q^{89} +(-3.35542 + 5.81176i) q^{91} +(-0.657989 + 1.80781i) q^{92} +(0.225218 - 3.68031i) q^{93} +(7.69297 + 6.45516i) q^{94} +(1.04738 + 2.10089i) q^{96} +(2.68084 - 7.36555i) q^{97} +(-14.5397 - 8.39449i) q^{98} +(12.3936 + 1.52256i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.852522 1.01600i −0.602824 0.718418i 0.375192 0.926947i \(-0.377577\pi\)
−0.978016 + 0.208529i \(0.933132\pi\)
\(3\) 1.72092 0.196018i 0.993576 0.113171i
\(4\) 0.0418420 0.237298i 0.0209210 0.118649i
\(5\) 0 0
\(6\) −1.66628 1.58134i −0.680255 0.645580i
\(7\) 4.36644 0.769922i 1.65036 0.291003i 0.730402 0.683018i \(-0.239333\pi\)
0.919959 + 0.392015i \(0.128222\pi\)
\(8\) −2.57396 + 1.48608i −0.910034 + 0.525408i
\(9\) 2.92315 0.674663i 0.974385 0.224888i
\(10\) 0 0
\(11\) 3.91123 + 1.42357i 1.17928 + 0.429223i 0.855947 0.517063i \(-0.172975\pi\)
0.323332 + 0.946286i \(0.395197\pi\)
\(12\) 0.0254923 0.416573i 0.00735900 0.120254i
\(13\) −0.972900 + 1.15946i −0.269834 + 0.321576i −0.883897 0.467681i \(-0.845090\pi\)
0.614063 + 0.789257i \(0.289534\pi\)
\(14\) −4.50473 3.77991i −1.20394 1.01022i
\(15\) 0 0
\(16\) 3.25136 + 1.18340i 0.812839 + 0.295849i
\(17\) 0.985419 + 0.568932i 0.238999 + 0.137986i 0.614717 0.788748i \(-0.289270\pi\)
−0.375717 + 0.926734i \(0.622604\pi\)
\(18\) −3.17751 2.39475i −0.748946 0.564448i
\(19\) 3.37499 + 5.84565i 0.774275 + 1.34108i 0.935201 + 0.354118i \(0.115219\pi\)
−0.160926 + 0.986967i \(0.551448\pi\)
\(20\) 0 0
\(21\) 7.36340 2.18088i 1.60683 0.475906i
\(22\) −1.88807 5.18742i −0.402537 1.10596i
\(23\) −7.86279 1.38642i −1.63950 0.289089i −0.723520 0.690303i \(-0.757477\pi\)
−0.915984 + 0.401215i \(0.868588\pi\)
\(24\) −4.13830 + 3.06197i −0.844726 + 0.625022i
\(25\) 0 0
\(26\) 2.00742 0.393688
\(27\) 4.89828 1.73403i 0.942674 0.333715i
\(28\) 1.06836i 0.201902i
\(29\) −1.89402 + 1.58927i −0.351710 + 0.295120i −0.801476 0.598026i \(-0.795952\pi\)
0.449766 + 0.893146i \(0.351507\pi\)
\(30\) 0 0
\(31\) 0.369663 2.09646i 0.0663933 0.376535i −0.933448 0.358713i \(-0.883216\pi\)
0.999841 0.0178222i \(-0.00567328\pi\)
\(32\) 0.463549 + 1.27359i 0.0819447 + 0.225141i
\(33\) 7.00997 + 1.68319i 1.22028 + 0.293005i
\(34\) −0.262059 1.48621i −0.0449427 0.254883i
\(35\) 0 0
\(36\) −0.0377853 0.721887i −0.00629756 0.120315i
\(37\) −8.65969 4.99967i −1.42364 0.821941i −0.427036 0.904235i \(-0.640442\pi\)
−0.996608 + 0.0822930i \(0.973776\pi\)
\(38\) 3.06191 8.41252i 0.496707 1.36469i
\(39\) −1.44701 + 2.18604i −0.231708 + 0.350047i
\(40\) 0 0
\(41\) −0.384359 0.322515i −0.0600268 0.0503685i 0.612281 0.790640i \(-0.290252\pi\)
−0.672307 + 0.740272i \(0.734697\pi\)
\(42\) −8.49322 5.62194i −1.31053 0.867484i
\(43\) −0.0373936 + 0.102738i −0.00570247 + 0.0156674i −0.942511 0.334175i \(-0.891542\pi\)
0.936809 + 0.349842i \(0.113765\pi\)
\(44\) 0.501464 0.868561i 0.0755985 0.130940i
\(45\) 0 0
\(46\) 5.29460 + 9.17051i 0.780646 + 1.35212i
\(47\) −7.45681 + 1.31484i −1.08769 + 0.191789i −0.688613 0.725129i \(-0.741780\pi\)
−0.399075 + 0.916918i \(0.630669\pi\)
\(48\) 5.82730 + 1.39921i 0.841099 + 0.201959i
\(49\) 11.8952 4.32950i 1.69932 0.618500i
\(50\) 0 0
\(51\) 1.80735 + 0.785929i 0.253080 + 0.110052i
\(52\) 0.234429 + 0.279381i 0.0325094 + 0.0387432i
\(53\) 3.96330i 0.544401i −0.962241 0.272201i \(-0.912249\pi\)
0.962241 0.272201i \(-0.0877514\pi\)
\(54\) −5.93766 3.49833i −0.808013 0.476063i
\(55\) 0 0
\(56\) −10.0949 + 8.47063i −1.34899 + 1.13194i
\(57\) 6.95395 + 9.39836i 0.921073 + 1.24484i
\(58\) 3.22938 + 0.569427i 0.424039 + 0.0747695i
\(59\) −7.67614 + 2.79389i −0.999348 + 0.363733i −0.789333 0.613965i \(-0.789574\pi\)
−0.210015 + 0.977698i \(0.567351\pi\)
\(60\) 0 0
\(61\) −2.14296 12.1533i −0.274377 1.55607i −0.740932 0.671580i \(-0.765616\pi\)
0.466555 0.884492i \(-0.345495\pi\)
\(62\) −2.44514 + 1.41170i −0.310533 + 0.179286i
\(63\) 12.2444 5.19648i 1.54264 0.654695i
\(64\) 4.35880 7.54966i 0.544850 0.943708i
\(65\) 0 0
\(66\) −4.26604 8.55705i −0.525113 1.05330i
\(67\) 1.88943 2.25173i 0.230830 0.275093i −0.638180 0.769887i \(-0.720312\pi\)
0.869010 + 0.494795i \(0.164757\pi\)
\(68\) 0.176238 0.210033i 0.0213720 0.0254702i
\(69\) −13.8030 0.844680i −1.66169 0.101688i
\(70\) 0 0
\(71\) −3.78880 + 6.56240i −0.449648 + 0.778814i −0.998363 0.0571960i \(-0.981784\pi\)
0.548715 + 0.836010i \(0.315117\pi\)
\(72\) −6.52149 + 6.08060i −0.768565 + 0.716605i
\(73\) −8.88121 + 5.12757i −1.03947 + 0.600136i −0.919682 0.392663i \(-0.871554\pi\)
−0.119785 + 0.992800i \(0.538220\pi\)
\(74\) 2.30293 + 13.0605i 0.267710 + 1.51826i
\(75\) 0 0
\(76\) 1.52838 0.556283i 0.175317 0.0638101i
\(77\) 18.1742 + 3.20460i 2.07114 + 0.365198i
\(78\) 3.45462 0.393490i 0.391159 0.0445540i
\(79\) −3.74388 + 3.14149i −0.421219 + 0.353445i −0.828627 0.559802i \(-0.810877\pi\)
0.407408 + 0.913246i \(0.366433\pi\)
\(80\) 0 0
\(81\) 8.08966 3.94429i 0.898851 0.438254i
\(82\) 0.665459i 0.0734876i
\(83\) 2.34014 + 2.78888i 0.256864 + 0.306119i 0.879030 0.476767i \(-0.158191\pi\)
−0.622166 + 0.782886i \(0.713747\pi\)
\(84\) −0.209418 1.83857i −0.0228494 0.200604i
\(85\) 0 0
\(86\) 0.136260 0.0495947i 0.0146933 0.00534794i
\(87\) −2.94793 + 3.10627i −0.316052 + 0.333027i
\(88\) −12.1829 + 2.14817i −1.29870 + 0.228996i
\(89\) −5.74755 9.95505i −0.609239 1.05523i −0.991366 0.131123i \(-0.958142\pi\)
0.382127 0.924110i \(-0.375192\pi\)
\(90\) 0 0
\(91\) −3.35542 + 5.81176i −0.351744 + 0.609238i
\(92\) −0.657989 + 1.80781i −0.0686001 + 0.188477i
\(93\) 0.225218 3.68031i 0.0233540 0.381630i
\(94\) 7.69297 + 6.45516i 0.793469 + 0.665799i
\(95\) 0 0
\(96\) 1.04738 + 2.10089i 0.106898 + 0.214421i
\(97\) 2.68084 7.36555i 0.272198 0.747858i −0.725991 0.687704i \(-0.758619\pi\)
0.998189 0.0601538i \(-0.0191591\pi\)
\(98\) −14.5397 8.39449i −1.46873 0.847971i
\(99\) 12.3936 + 1.52256i 1.24560 + 0.153023i
\(100\) 0 0
\(101\) −1.84949 10.4890i −0.184031 1.04369i −0.927194 0.374581i \(-0.877786\pi\)
0.743163 0.669110i \(-0.233325\pi\)
\(102\) −0.742306 2.50628i −0.0734993 0.248159i
\(103\) −2.85101 7.83309i −0.280918 0.771817i −0.997254 0.0740609i \(-0.976404\pi\)
0.716335 0.697756i \(-0.245818\pi\)
\(104\) 0.781165 4.43021i 0.0765996 0.434418i
\(105\) 0 0
\(106\) −4.02670 + 3.37880i −0.391107 + 0.328178i
\(107\) 12.1812i 1.17760i −0.808279 0.588800i \(-0.799601\pi\)
0.808279 0.588800i \(-0.200399\pi\)
\(108\) −0.206528 1.23491i −0.0198732 0.118829i
\(109\) 0.268688 0.0257356 0.0128678 0.999917i \(-0.495904\pi\)
0.0128678 + 0.999917i \(0.495904\pi\)
\(110\) 0 0
\(111\) −15.8827 6.90660i −1.50752 0.655546i
\(112\) 15.1080 + 2.66395i 1.42757 + 0.251719i
\(113\) 0.708479 + 1.94653i 0.0666481 + 0.183114i 0.968546 0.248836i \(-0.0800479\pi\)
−0.901898 + 0.431950i \(0.857826\pi\)
\(114\) 3.62030 15.0775i 0.339073 1.41214i
\(115\) 0 0
\(116\) 0.297881 + 0.515944i 0.0276575 + 0.0479042i
\(117\) −2.06170 + 4.04565i −0.190604 + 0.374021i
\(118\) 9.38266 + 5.41708i 0.863743 + 0.498683i
\(119\) 4.74081 + 1.72551i 0.434589 + 0.158178i
\(120\) 0 0
\(121\) 4.84466 + 4.06516i 0.440424 + 0.369560i
\(122\) −10.5208 + 12.5382i −0.952508 + 1.13515i
\(123\) −0.724671 0.479683i −0.0653414 0.0432516i
\(124\) −0.482018 0.175440i −0.0432865 0.0157550i
\(125\) 0 0
\(126\) −15.7182 8.01010i −1.40029 0.713597i
\(127\) −13.1553 + 7.59522i −1.16735 + 0.673967i −0.953053 0.302802i \(-0.902078\pi\)
−0.214292 + 0.976770i \(0.568744\pi\)
\(128\) −8.71693 + 1.53703i −0.770475 + 0.135855i
\(129\) −0.0442131 + 0.184134i −0.00389274 + 0.0162121i
\(130\) 0 0
\(131\) 0.588630 3.33829i 0.0514289 0.291668i −0.948236 0.317568i \(-0.897134\pi\)
0.999665 + 0.0258999i \(0.00824510\pi\)
\(132\) 0.692728 1.59302i 0.0602942 0.138655i
\(133\) 19.2374 + 22.9262i 1.66809 + 1.98796i
\(134\) −3.89853 −0.336782
\(135\) 0 0
\(136\) −3.38191 −0.289997
\(137\) 11.9084 + 14.1918i 1.01740 + 1.21249i 0.976985 + 0.213306i \(0.0684231\pi\)
0.0404136 + 0.999183i \(0.487132\pi\)
\(138\) 10.9092 + 14.7439i 0.928651 + 1.25509i
\(139\) −2.88601 + 16.3674i −0.244788 + 1.38826i 0.576197 + 0.817311i \(0.304536\pi\)
−0.820985 + 0.570950i \(0.806575\pi\)
\(140\) 0 0
\(141\) −12.5749 + 3.72440i −1.05900 + 0.313651i
\(142\) 9.89741 1.74518i 0.830572 0.146452i
\(143\) −5.45581 + 3.14991i −0.456237 + 0.263409i
\(144\) 10.3026 + 1.26568i 0.858551 + 0.105474i
\(145\) 0 0
\(146\) 12.7810 + 4.65191i 1.05776 + 0.384995i
\(147\) 19.6221 9.78241i 1.61840 0.806840i
\(148\) −1.54875 + 1.84573i −0.127307 + 0.151718i
\(149\) 6.52625 + 5.47617i 0.534651 + 0.448626i 0.869704 0.493574i \(-0.164310\pi\)
−0.335053 + 0.942199i \(0.608754\pi\)
\(150\) 0 0
\(151\) 11.3452 + 4.12932i 0.923259 + 0.336039i 0.759534 0.650467i \(-0.225427\pi\)
0.163725 + 0.986506i \(0.447649\pi\)
\(152\) −17.3742 10.0310i −1.40923 0.813621i
\(153\) 3.26437 + 0.998250i 0.263909 + 0.0807038i
\(154\) −12.2380 21.1969i −0.986169 1.70810i
\(155\) 0 0
\(156\) 0.458197 + 0.434841i 0.0366851 + 0.0348152i
\(157\) 4.45846 + 12.2495i 0.355824 + 0.977618i 0.980463 + 0.196704i \(0.0630239\pi\)
−0.624639 + 0.780914i \(0.714754\pi\)
\(158\) 6.38347 + 1.12558i 0.507842 + 0.0895462i
\(159\) −0.776877 6.82053i −0.0616103 0.540904i
\(160\) 0 0
\(161\) −35.3999 −2.78990
\(162\) −10.9040 4.85647i −0.856698 0.381561i
\(163\) 15.2191i 1.19205i 0.802966 + 0.596025i \(0.203254\pi\)
−0.802966 + 0.596025i \(0.796746\pi\)
\(164\) −0.0926146 + 0.0777128i −0.00723198 + 0.00606835i
\(165\) 0 0
\(166\) 0.838462 4.75515i 0.0650773 0.369072i
\(167\) 5.44622 + 14.9634i 0.421441 + 1.15790i 0.950882 + 0.309553i \(0.100179\pi\)
−0.529441 + 0.848347i \(0.677598\pi\)
\(168\) −15.7122 + 16.5561i −1.21222 + 1.27733i
\(169\) 1.85962 + 10.5464i 0.143048 + 0.811264i
\(170\) 0 0
\(171\) 13.8095 + 14.8108i 1.05604 + 1.13261i
\(172\) 0.0228149 + 0.0131722i 0.00173962 + 0.00100437i
\(173\) 4.36838 12.0020i 0.332122 0.912497i −0.655437 0.755249i \(-0.727516\pi\)
0.987559 0.157248i \(-0.0502621\pi\)
\(174\) 5.66914 + 0.346925i 0.429776 + 0.0263003i
\(175\) 0 0
\(176\) 11.0322 + 9.25707i 0.831580 + 0.697778i
\(177\) −12.6624 + 6.31272i −0.951764 + 0.474493i
\(178\) −5.21438 + 14.3264i −0.390834 + 1.07381i
\(179\) 1.85652 3.21558i 0.138763 0.240344i −0.788266 0.615335i \(-0.789021\pi\)
0.927029 + 0.374991i \(0.122354\pi\)
\(180\) 0 0
\(181\) −1.53697 2.66211i −0.114242 0.197873i 0.803234 0.595663i \(-0.203111\pi\)
−0.917477 + 0.397790i \(0.869777\pi\)
\(182\) 8.76530 1.54556i 0.649727 0.114564i
\(183\) −6.07013 20.4949i −0.448717 1.51502i
\(184\) 22.2989 8.11612i 1.64389 0.598328i
\(185\) 0 0
\(186\) −3.93118 + 2.90872i −0.288248 + 0.213278i
\(187\) 3.04428 + 3.62804i 0.222620 + 0.265308i
\(188\) 1.82450i 0.133065i
\(189\) 20.0530 11.3428i 1.45864 0.825071i
\(190\) 0 0
\(191\) −3.18718 + 2.67436i −0.230616 + 0.193510i −0.750772 0.660561i \(-0.770318\pi\)
0.520156 + 0.854071i \(0.325874\pi\)
\(192\) 6.02129 13.8468i 0.434549 0.999306i
\(193\) −3.88491 0.685014i −0.279642 0.0493084i 0.0320682 0.999486i \(-0.489791\pi\)
−0.311710 + 0.950177i \(0.600902\pi\)
\(194\) −9.76884 + 3.55557i −0.701362 + 0.255275i
\(195\) 0 0
\(196\) −0.529662 3.00386i −0.0378330 0.214562i
\(197\) 7.54672 4.35710i 0.537681 0.310430i −0.206457 0.978456i \(-0.566193\pi\)
0.744139 + 0.668025i \(0.232860\pi\)
\(198\) −9.01886 13.8898i −0.640943 0.987106i
\(199\) −6.70417 + 11.6120i −0.475246 + 0.823151i −0.999598 0.0283510i \(-0.990974\pi\)
0.524352 + 0.851502i \(0.324308\pi\)
\(200\) 0 0
\(201\) 2.81018 4.24542i 0.198215 0.299449i
\(202\) −9.08002 + 10.8211i −0.638868 + 0.761373i
\(203\) −7.04651 + 8.39770i −0.494568 + 0.589403i
\(204\) 0.262122 0.395996i 0.0183522 0.0277252i
\(205\) 0 0
\(206\) −5.52784 + 9.57450i −0.385143 + 0.667087i
\(207\) −23.9195 + 1.25200i −1.66252 + 0.0870204i
\(208\) −4.53535 + 2.61848i −0.314470 + 0.181559i
\(209\) 4.87865 + 27.6682i 0.337463 + 1.91385i
\(210\) 0 0
\(211\) 3.45959 1.25919i 0.238168 0.0866861i −0.220179 0.975460i \(-0.570664\pi\)
0.458347 + 0.888773i \(0.348442\pi\)
\(212\) −0.940482 0.165832i −0.0645926 0.0113894i
\(213\) −5.23390 + 12.0361i −0.358621 + 0.824697i
\(214\) −12.3760 + 10.3847i −0.846009 + 0.709886i
\(215\) 0 0
\(216\) −10.0311 + 11.7426i −0.682529 + 0.798980i
\(217\) 9.43869i 0.640740i
\(218\) −0.229062 0.272986i −0.0155140 0.0184889i
\(219\) −14.2788 + 10.5650i −0.964871 + 0.713918i
\(220\) 0 0
\(221\) −1.61837 + 0.589038i −0.108863 + 0.0396230i
\(222\) 6.52326 + 22.0248i 0.437812 + 1.47821i
\(223\) 10.3699 1.82849i 0.694417 0.122445i 0.184711 0.982793i \(-0.440865\pi\)
0.509707 + 0.860348i \(0.329754\pi\)
\(224\) 3.00463 + 5.20417i 0.200755 + 0.347718i
\(225\) 0 0
\(226\) 1.37367 2.37927i 0.0913754 0.158267i
\(227\) 9.06486 24.9055i 0.601656 1.65304i −0.146263 0.989246i \(-0.546724\pi\)
0.747919 0.663790i \(-0.231053\pi\)
\(228\) 2.52118 1.25691i 0.166969 0.0832409i
\(229\) 8.45322 + 7.09309i 0.558605 + 0.468725i 0.877842 0.478950i \(-0.158982\pi\)
−0.319238 + 0.947675i \(0.603427\pi\)
\(230\) 0 0
\(231\) 31.9046 + 1.95241i 2.09917 + 0.128459i
\(232\) 2.51335 6.90538i 0.165010 0.453361i
\(233\) 11.6077 + 6.70173i 0.760448 + 0.439045i 0.829457 0.558571i \(-0.188650\pi\)
−0.0690083 + 0.997616i \(0.521984\pi\)
\(234\) 5.86801 1.35433i 0.383604 0.0885356i
\(235\) 0 0
\(236\) 0.341798 + 1.93843i 0.0222492 + 0.126181i
\(237\) −5.82714 + 6.14012i −0.378513 + 0.398844i
\(238\) −2.28853 6.28768i −0.148343 0.407570i
\(239\) 1.52780 8.66459i 0.0988253 0.560466i −0.894683 0.446702i \(-0.852598\pi\)
0.993508 0.113763i \(-0.0362906\pi\)
\(240\) 0 0
\(241\) −11.2282 + 9.42161i −0.723274 + 0.606899i −0.928289 0.371860i \(-0.878720\pi\)
0.205015 + 0.978759i \(0.434276\pi\)
\(242\) 8.38779i 0.539188i
\(243\) 13.1485 8.37353i 0.843479 0.537162i
\(244\) −2.97362 −0.190366
\(245\) 0 0
\(246\) 0.130442 + 1.14520i 0.00831666 + 0.0730155i
\(247\) −10.0613 1.77408i −0.640186 0.112882i
\(248\) 2.16401 + 5.94556i 0.137415 + 0.377544i
\(249\) 4.57388 + 4.34073i 0.289858 + 0.275083i
\(250\) 0 0
\(251\) −1.91159 3.31097i −0.120658 0.208986i 0.799369 0.600840i \(-0.205167\pi\)
−0.920027 + 0.391854i \(0.871834\pi\)
\(252\) −0.720784 3.12299i −0.0454052 0.196730i
\(253\) −28.7795 16.6158i −1.80935 1.04463i
\(254\) 18.9319 + 6.89065i 1.18789 + 0.432358i
\(255\) 0 0
\(256\) −4.36315 3.66112i −0.272697 0.228820i
\(257\) −5.24803 + 6.25436i −0.327363 + 0.390136i −0.904473 0.426530i \(-0.859736\pi\)
0.577110 + 0.816666i \(0.304180\pi\)
\(258\) 0.224772 0.112058i 0.0139937 0.00697644i
\(259\) −41.6614 15.1635i −2.58871 0.942215i
\(260\) 0 0
\(261\) −4.46428 + 5.92350i −0.276332 + 0.366656i
\(262\) −3.89351 + 2.24792i −0.240542 + 0.138877i
\(263\) 27.4441 4.83914i 1.69228 0.298394i 0.757291 0.653077i \(-0.226522\pi\)
0.934987 + 0.354683i \(0.115411\pi\)
\(264\) −20.5448 + 6.08491i −1.26444 + 0.374500i
\(265\) 0 0
\(266\) 6.89266 39.0902i 0.422616 2.39678i
\(267\) −11.8425 16.0052i −0.724746 0.979505i
\(268\) −0.455273 0.542574i −0.0278103 0.0331430i
\(269\) 13.1520 0.801893 0.400947 0.916101i \(-0.368681\pi\)
0.400947 + 0.916101i \(0.368681\pi\)
\(270\) 0 0
\(271\) 8.19664 0.497911 0.248955 0.968515i \(-0.419913\pi\)
0.248955 + 0.968515i \(0.419913\pi\)
\(272\) 2.53068 + 3.01594i 0.153445 + 0.182868i
\(273\) −4.63522 + 10.6593i −0.280536 + 0.645132i
\(274\) 4.26670 24.1977i 0.257761 1.46183i
\(275\) 0 0
\(276\) −0.777987 + 3.24008i −0.0468293 + 0.195030i
\(277\) −28.6993 + 5.06046i −1.72437 + 0.304054i −0.946101 0.323873i \(-0.895015\pi\)
−0.778273 + 0.627926i \(0.783904\pi\)
\(278\) 19.0896 11.0214i 1.14492 0.661017i
\(279\) −0.333823 6.37767i −0.0199855 0.381821i
\(280\) 0 0
\(281\) −22.1793 8.07261i −1.32311 0.481572i −0.418655 0.908145i \(-0.637498\pi\)
−0.904453 + 0.426574i \(0.859720\pi\)
\(282\) 14.5043 + 9.60089i 0.863720 + 0.571724i
\(283\) 12.6506 15.0763i 0.751997 0.896195i −0.245317 0.969443i \(-0.578892\pi\)
0.997314 + 0.0732477i \(0.0233364\pi\)
\(284\) 1.39871 + 1.17366i 0.0829983 + 0.0696438i
\(285\) 0 0
\(286\) 7.85149 + 2.85771i 0.464268 + 0.168980i
\(287\) −1.92659 1.11232i −0.113723 0.0656581i
\(288\) 2.21427 + 3.41016i 0.130477 + 0.200946i
\(289\) −7.85263 13.6012i −0.461920 0.800068i
\(290\) 0 0
\(291\) 3.16974 13.2010i 0.185814 0.773858i
\(292\) 0.845153 + 2.32204i 0.0494588 + 0.135887i
\(293\) −6.07899 1.07189i −0.355138 0.0626205i −0.00676709 0.999977i \(-0.502154\pi\)
−0.348371 + 0.937357i \(0.613265\pi\)
\(294\) −26.6671 11.5962i −1.55526 0.676306i
\(295\) 0 0
\(296\) 29.7196 1.72742
\(297\) 21.6268 + 0.190848i 1.25491 + 0.0110742i
\(298\) 11.2992i 0.654545i
\(299\) 9.25720 7.76772i 0.535358 0.449219i
\(300\) 0 0
\(301\) −0.0841768 + 0.477390i −0.00485187 + 0.0275163i
\(302\) −5.47666 15.0470i −0.315147 0.865858i
\(303\) −5.23885 17.6882i −0.300964 1.01616i
\(304\) 4.05556 + 23.0002i 0.232603 + 1.31915i
\(305\) 0 0
\(306\) −1.76873 4.16762i −0.101111 0.238247i
\(307\) −10.3432 5.97167i −0.590320 0.340821i 0.174904 0.984585i \(-0.444038\pi\)
−0.765224 + 0.643764i \(0.777372\pi\)
\(308\) 1.52089 4.17861i 0.0866607 0.238098i
\(309\) −6.44179 12.9213i −0.366461 0.735067i
\(310\) 0 0
\(311\) 19.1774 + 16.0917i 1.08745 + 0.912478i 0.996518 0.0833788i \(-0.0265711\pi\)
0.0909314 + 0.995857i \(0.471016\pi\)
\(312\) 0.475927 7.77717i 0.0269440 0.440296i
\(313\) 5.24628 14.4140i 0.296537 0.814729i −0.698535 0.715576i \(-0.746164\pi\)
0.995072 0.0991534i \(-0.0316135\pi\)
\(314\) 8.64453 14.9728i 0.487839 0.844962i
\(315\) 0 0
\(316\) 0.588816 + 1.01986i 0.0331235 + 0.0573716i
\(317\) −0.242608 + 0.0427784i −0.0136262 + 0.00240267i −0.180457 0.983583i \(-0.557758\pi\)
0.166831 + 0.985986i \(0.446647\pi\)
\(318\) −6.26733 + 6.60396i −0.351455 + 0.370332i
\(319\) −9.67037 + 3.51973i −0.541437 + 0.197067i
\(320\) 0 0
\(321\) −2.38773 20.9629i −0.133270 1.17003i
\(322\) 30.1791 + 35.9661i 1.68182 + 2.00431i
\(323\) 7.68055i 0.427358i
\(324\) −0.597483 2.08470i −0.0331935 0.115816i
\(325\) 0 0
\(326\) 15.4625 12.9746i 0.856390 0.718597i
\(327\) 0.462391 0.0526675i 0.0255703 0.00291252i
\(328\) 1.46861 + 0.258955i 0.0810904 + 0.0142984i
\(329\) −31.5474 + 11.4823i −1.73927 + 0.633041i
\(330\) 0 0
\(331\) −4.33167 24.5661i −0.238090 1.35028i −0.836008 0.548718i \(-0.815116\pi\)
0.597918 0.801558i \(-0.295995\pi\)
\(332\) 0.759710 0.438619i 0.0416945 0.0240723i
\(333\) −28.6867 8.77245i −1.57202 0.480727i
\(334\) 10.5597 18.2899i 0.577801 1.00078i
\(335\) 0 0
\(336\) 26.5219 + 1.62301i 1.44689 + 0.0885427i
\(337\) 19.0503 22.7032i 1.03773 1.23672i 0.0667018 0.997773i \(-0.478752\pi\)
0.971032 0.238950i \(-0.0768032\pi\)
\(338\) 9.12976 10.8804i 0.496594 0.591817i
\(339\) 1.60079 + 3.21096i 0.0869431 + 0.174395i
\(340\) 0 0
\(341\) 4.43029 7.67349i 0.239914 0.415543i
\(342\) 3.27481 26.6568i 0.177082 1.44144i
\(343\) 21.7279 12.5446i 1.17319 0.677344i
\(344\) −0.0564271 0.320014i −0.00304235 0.0172540i
\(345\) 0 0
\(346\) −15.9181 + 5.79373i −0.855765 + 0.311473i
\(347\) 29.4330 + 5.18983i 1.58004 + 0.278604i 0.893698 0.448670i \(-0.148102\pi\)
0.686347 + 0.727274i \(0.259213\pi\)
\(348\) 0.613764 + 0.829511i 0.0329012 + 0.0444665i
\(349\) −0.356538 + 0.299171i −0.0190850 + 0.0160142i −0.652280 0.757978i \(-0.726187\pi\)
0.633195 + 0.773992i \(0.281743\pi\)
\(350\) 0 0
\(351\) −2.75500 + 7.36639i −0.147051 + 0.393189i
\(352\) 5.64120i 0.300677i
\(353\) −1.05202 1.25375i −0.0559934 0.0667304i 0.737321 0.675543i \(-0.236091\pi\)
−0.793314 + 0.608812i \(0.791646\pi\)
\(354\) 17.2087 + 7.48321i 0.914631 + 0.397728i
\(355\) 0 0
\(356\) −2.60280 + 0.947342i −0.137948 + 0.0502090i
\(357\) 8.49680 + 2.04019i 0.449699 + 0.107979i
\(358\) −4.84974 + 0.855141i −0.256317 + 0.0451956i
\(359\) −9.42812 16.3300i −0.497597 0.861863i 0.502399 0.864636i \(-0.332451\pi\)
−0.999996 + 0.00277241i \(0.999118\pi\)
\(360\) 0 0
\(361\) −13.2811 + 23.0035i −0.699005 + 1.21071i
\(362\) −1.39439 + 3.83107i −0.0732877 + 0.201356i
\(363\) 9.13414 + 6.04618i 0.479418 + 0.317342i
\(364\) 1.23872 + 1.03941i 0.0649266 + 0.0544799i
\(365\) 0 0
\(366\) −15.6478 + 23.6395i −0.817922 + 1.23566i
\(367\) 3.49800 9.61068i 0.182594 0.501673i −0.814298 0.580446i \(-0.802878\pi\)
0.996893 + 0.0787732i \(0.0251003\pi\)
\(368\) −23.9240 13.8125i −1.24713 0.720029i
\(369\) −1.34113 0.683450i −0.0698164 0.0355790i
\(370\) 0 0
\(371\) −3.05143 17.3055i −0.158422 0.898458i
\(372\) −0.863905 0.207435i −0.0447914 0.0107550i
\(373\) −2.37585 6.52759i −0.123017 0.337986i 0.862864 0.505437i \(-0.168669\pi\)
−0.985880 + 0.167451i \(0.946446\pi\)
\(374\) 1.09075 6.18596i 0.0564014 0.319868i
\(375\) 0 0
\(376\) 17.2396 14.4658i 0.889065 0.746014i
\(377\) 3.74223i 0.192735i
\(378\) −28.6199 10.7037i −1.47205 0.550541i
\(379\) −8.93586 −0.459004 −0.229502 0.973308i \(-0.573710\pi\)
−0.229502 + 0.973308i \(0.573710\pi\)
\(380\) 0 0
\(381\) −21.1505 + 15.6495i −1.08357 + 0.801747i
\(382\) 5.43428 + 0.958210i 0.278042 + 0.0490263i
\(383\) 7.08761 + 19.4731i 0.362160 + 0.995026i 0.978264 + 0.207362i \(0.0664878\pi\)
−0.616104 + 0.787665i \(0.711290\pi\)
\(384\) −14.6999 + 4.35378i −0.750150 + 0.222178i
\(385\) 0 0
\(386\) 2.61600 + 4.53104i 0.133151 + 0.230624i
\(387\) −0.0399937 + 0.325547i −0.00203300 + 0.0165485i
\(388\) −1.63566 0.944347i −0.0830379 0.0479419i
\(389\) 5.25158 + 1.91142i 0.266266 + 0.0969127i 0.471703 0.881758i \(-0.343639\pi\)
−0.205437 + 0.978670i \(0.565862\pi\)
\(390\) 0 0
\(391\) −6.95936 5.83960i −0.351950 0.295321i
\(392\) −24.1839 + 28.8212i −1.22147 + 1.45569i
\(393\) 0.358624 5.86032i 0.0180902 0.295614i
\(394\) −10.8605 3.95291i −0.547146 0.199145i
\(395\) 0 0
\(396\) 0.879871 2.87726i 0.0442152 0.144588i
\(397\) −11.7572 + 6.78805i −0.590079 + 0.340682i −0.765129 0.643877i \(-0.777325\pi\)
0.175050 + 0.984560i \(0.443991\pi\)
\(398\) 17.5132 3.08804i 0.877856 0.154790i
\(399\) 37.6000 + 35.6834i 1.88236 + 1.78641i
\(400\) 0 0
\(401\) −3.34334 + 18.9610i −0.166958 + 0.946868i 0.780064 + 0.625700i \(0.215187\pi\)
−0.947022 + 0.321168i \(0.895925\pi\)
\(402\) −6.70907 + 0.764180i −0.334618 + 0.0381138i
\(403\) 2.07111 + 2.46826i 0.103169 + 0.122953i
\(404\) −2.56640 −0.127683
\(405\) 0 0
\(406\) 14.5393 0.721575
\(407\) −26.7526 31.8826i −1.32608 1.58036i
\(408\) −5.82001 + 0.662914i −0.288133 + 0.0328191i
\(409\) −1.49345 + 8.46979i −0.0738464 + 0.418804i 0.925364 + 0.379079i \(0.123759\pi\)
−0.999211 + 0.0397248i \(0.987352\pi\)
\(410\) 0 0
\(411\) 23.2752 + 22.0888i 1.14808 + 1.08956i
\(412\) −1.97807 + 0.348787i −0.0974524 + 0.0171835i
\(413\) −31.3664 + 18.1094i −1.54344 + 0.891104i
\(414\) 21.6639 + 23.2348i 1.06472 + 1.14193i
\(415\) 0 0
\(416\) −1.92766 0.701612i −0.0945114 0.0343994i
\(417\) −1.75831 + 28.7327i −0.0861046 + 1.40705i
\(418\) 23.9516 28.5444i 1.17151 1.39615i
\(419\) −22.8459 19.1700i −1.11609 0.936515i −0.117694 0.993050i \(-0.537550\pi\)
−0.998401 + 0.0565354i \(0.981995\pi\)
\(420\) 0 0
\(421\) 3.86135 + 1.40541i 0.188190 + 0.0684957i 0.434396 0.900722i \(-0.356962\pi\)
−0.246206 + 0.969218i \(0.579184\pi\)
\(422\) −4.22871 2.44145i −0.205850 0.118848i
\(423\) −20.9103 + 8.87430i −1.01670 + 0.431483i
\(424\) 5.88978 + 10.2014i 0.286033 + 0.495423i
\(425\) 0 0
\(426\) 16.6906 4.94339i 0.808662 0.239508i
\(427\) −18.7142 51.4168i −0.905643 2.48823i
\(428\) −2.89057 0.509685i −0.139721 0.0246366i
\(429\) −8.77159 + 6.49019i −0.423496 + 0.313349i
\(430\) 0 0
\(431\) 38.4602 1.85256 0.926281 0.376833i \(-0.122987\pi\)
0.926281 + 0.376833i \(0.122987\pi\)
\(432\) 17.9781 + 0.158650i 0.864972 + 0.00763305i
\(433\) 13.0726i 0.628230i 0.949385 + 0.314115i \(0.101708\pi\)
−0.949385 + 0.314115i \(0.898292\pi\)
\(434\) −9.58967 + 8.04669i −0.460319 + 0.386253i
\(435\) 0 0
\(436\) 0.0112424 0.0637590i 0.000538415 0.00305350i
\(437\) −18.4323 50.6423i −0.881735 2.42255i
\(438\) 22.9070 + 5.50027i 1.09454 + 0.262813i
\(439\) −1.34135 7.60717i −0.0640191 0.363071i −0.999941 0.0108629i \(-0.996542\pi\)
0.935922 0.352208i \(-0.114569\pi\)
\(440\) 0 0
\(441\) 31.8506 20.6811i 1.51669 0.984812i
\(442\) 1.97815 + 1.14209i 0.0940912 + 0.0543236i
\(443\) −7.44827 + 20.4640i −0.353878 + 0.972272i 0.627234 + 0.778831i \(0.284187\pi\)
−0.981112 + 0.193441i \(0.938035\pi\)
\(444\) −2.30349 + 3.47994i −0.109319 + 0.165151i
\(445\) 0 0
\(446\) −10.6983 8.97692i −0.506578 0.425069i
\(447\) 12.3046 + 8.14481i 0.581988 + 0.385236i
\(448\) 13.2198 36.3211i 0.624577 1.71601i
\(449\) 15.4280 26.7221i 0.728093 1.26109i −0.229595 0.973286i \(-0.573740\pi\)
0.957688 0.287808i \(-0.0929267\pi\)
\(450\) 0 0
\(451\) −1.04419 1.80859i −0.0491691 0.0851634i
\(452\) 0.491552 0.0866738i 0.0231206 0.00407679i
\(453\) 20.3336 + 4.88238i 0.955358 + 0.229394i
\(454\) −33.0319 + 12.0226i −1.55026 + 0.564250i
\(455\) 0 0
\(456\) −31.8659 13.8569i −1.49226 0.648910i
\(457\) 20.8765 + 24.8797i 0.976564 + 1.16382i 0.986482 + 0.163872i \(0.0523986\pi\)
−0.00991784 + 0.999951i \(0.503157\pi\)
\(458\) 14.6355i 0.683870i
\(459\) 5.81340 + 1.07804i 0.271346 + 0.0503185i
\(460\) 0 0
\(461\) 19.5612 16.4138i 0.911056 0.764467i −0.0612635 0.998122i \(-0.519513\pi\)
0.972320 + 0.233655i \(0.0750685\pi\)
\(462\) −25.2157 34.0794i −1.17314 1.58552i
\(463\) 9.28198 + 1.63666i 0.431370 + 0.0760622i 0.385117 0.922868i \(-0.374161\pi\)
0.0462526 + 0.998930i \(0.485272\pi\)
\(464\) −8.03886 + 2.92591i −0.373195 + 0.135832i
\(465\) 0 0
\(466\) −3.08692 17.5068i −0.142999 0.810986i
\(467\) −33.4955 + 19.3386i −1.54999 + 0.894885i −0.551845 + 0.833947i \(0.686076\pi\)
−0.998142 + 0.0609381i \(0.980591\pi\)
\(468\) 0.873759 + 0.658514i 0.0403895 + 0.0304398i
\(469\) 6.51642 11.2868i 0.300900 0.521175i
\(470\) 0 0
\(471\) 10.0738 + 20.2065i 0.464176 + 0.931068i
\(472\) 15.6062 18.5987i 0.718332 0.856075i
\(473\) −0.292510 + 0.348600i −0.0134496 + 0.0160286i
\(474\) 11.2061 + 0.685761i 0.514713 + 0.0314981i
\(475\) 0 0
\(476\) 0.607826 1.05279i 0.0278596 0.0482543i
\(477\) −2.67389 11.5853i −0.122429 0.530456i
\(478\) −10.1057 + 5.83451i −0.462223 + 0.266864i
\(479\) −6.46290 36.6529i −0.295297 1.67471i −0.665992 0.745959i \(-0.731991\pi\)
0.370695 0.928755i \(-0.379120\pi\)
\(480\) 0 0
\(481\) 14.2219 5.17636i 0.648464 0.236022i
\(482\) 19.1446 + 3.37571i 0.872014 + 0.153760i
\(483\) −60.9204 + 6.93900i −2.77198 + 0.315735i
\(484\) 1.16736 0.979534i 0.0530620 0.0445243i
\(485\) 0 0
\(486\) −19.7169 6.22024i −0.894376 0.282156i
\(487\) 38.1901i 1.73056i 0.501290 + 0.865279i \(0.332859\pi\)
−0.501290 + 0.865279i \(0.667141\pi\)
\(488\) 23.5767 + 28.0976i 1.06727 + 1.27192i
\(489\) 2.98321 + 26.1909i 0.134905 + 1.18439i
\(490\) 0 0
\(491\) −0.225443 + 0.0820546i −0.0101741 + 0.00370307i −0.347102 0.937827i \(-0.612834\pi\)
0.336928 + 0.941530i \(0.390612\pi\)
\(492\) −0.144149 + 0.151892i −0.00649876 + 0.00684782i
\(493\) −2.77059 + 0.488529i −0.124781 + 0.0220023i
\(494\) 6.77503 + 11.7347i 0.304823 + 0.527969i
\(495\) 0 0
\(496\) 3.68285 6.37888i 0.165365 0.286420i
\(497\) −11.4911 + 31.5714i −0.515445 + 1.41617i
\(498\) 0.510835 8.34761i 0.0228911 0.374065i
\(499\) 15.4596 + 12.9721i 0.692067 + 0.580713i 0.919504 0.393080i \(-0.128590\pi\)
−0.227438 + 0.973793i \(0.573035\pi\)
\(500\) 0 0
\(501\) 12.3056 + 24.6832i 0.549774 + 1.10277i
\(502\) −1.73426 + 4.76484i −0.0774037 + 0.212665i
\(503\) 18.7357 + 10.8170i 0.835382 + 0.482308i 0.855692 0.517486i \(-0.173132\pi\)
−0.0203102 + 0.999794i \(0.506465\pi\)
\(504\) −23.7941 + 31.5716i −1.05988 + 1.40631i
\(505\) 0 0
\(506\) 7.65351 + 43.4052i 0.340240 + 1.92960i
\(507\) 5.26755 + 17.7851i 0.233940 + 0.789863i
\(508\) 1.25189 + 3.43953i 0.0555434 + 0.152604i
\(509\) 3.61621 20.5086i 0.160286 0.909026i −0.793507 0.608561i \(-0.791747\pi\)
0.953793 0.300465i \(-0.0971418\pi\)
\(510\) 0 0
\(511\) −34.8315 + 29.2271i −1.54085 + 1.29293i
\(512\) 25.2569i 1.11621i
\(513\) 26.6682 + 22.7813i 1.17743 + 1.00582i
\(514\) 10.8285 0.477623
\(515\) 0 0
\(516\) 0.0418447 + 0.0181962i 0.00184211 + 0.000801043i
\(517\) −31.0371 5.47267i −1.36501 0.240688i
\(518\) 20.1112 + 55.2551i 0.883635 + 2.42777i
\(519\) 5.16504 21.5108i 0.226720 0.944221i
\(520\) 0 0
\(521\) 4.03581 + 6.99023i 0.176812 + 0.306247i 0.940787 0.338999i \(-0.110088\pi\)
−0.763975 + 0.645246i \(0.776755\pi\)
\(522\) 9.82416 0.514220i 0.429992 0.0225068i
\(523\) −17.8186 10.2876i −0.779154 0.449845i 0.0569761 0.998376i \(-0.481854\pi\)
−0.836131 + 0.548531i \(0.815187\pi\)
\(524\) −0.767539 0.279361i −0.0335301 0.0122040i
\(525\) 0 0
\(526\) −28.3133 23.7577i −1.23452 1.03588i
\(527\) 1.55702 1.85558i 0.0678247 0.0808303i
\(528\) 20.8000 + 13.7682i 0.905205 + 0.599185i
\(529\) 38.2883 + 13.9358i 1.66471 + 0.605904i
\(530\) 0 0
\(531\) −20.5536 + 13.3458i −0.891951 + 0.579157i
\(532\) 6.24528 3.60571i 0.270767 0.156327i
\(533\) 0.747886 0.131872i 0.0323945 0.00571203i
\(534\) −6.16532 + 25.6767i −0.266799 + 1.11114i
\(535\) 0 0
\(536\) −1.51707 + 8.60371i −0.0655273 + 0.371624i
\(537\) 2.56461 5.89768i 0.110671 0.254504i
\(538\) −11.2124 13.3624i −0.483400 0.576094i
\(539\) 52.6882 2.26944
\(540\) 0 0
\(541\) −36.3288 −1.56190 −0.780949 0.624595i \(-0.785264\pi\)
−0.780949 + 0.624595i \(0.785264\pi\)
\(542\) −6.98782 8.32776i −0.300152 0.357708i
\(543\) −3.16683 4.28002i −0.135902 0.183673i
\(544\) −0.267797 + 1.51875i −0.0114817 + 0.0651159i
\(545\) 0 0
\(546\) 14.7815 4.37794i 0.632588 0.187359i
\(547\) −12.7434 + 2.24700i −0.544868 + 0.0960749i −0.439306 0.898338i \(-0.644775\pi\)
−0.105563 + 0.994413i \(0.533664\pi\)
\(548\) 3.86596 2.23201i 0.165145 0.0953468i
\(549\) −14.4636 34.0802i −0.617290 1.45451i
\(550\) 0 0
\(551\) −15.6826 5.70800i −0.668101 0.243169i
\(552\) 36.7837 18.3382i 1.56562 0.780525i
\(553\) −13.9287 + 16.5996i −0.592310 + 0.705887i
\(554\) 29.6082 + 24.8442i 1.25793 + 1.05553i
\(555\) 0 0
\(556\) 3.76318 + 1.36969i 0.159594 + 0.0580876i
\(557\) 14.3505 + 8.28524i 0.608049 + 0.351057i 0.772201 0.635378i \(-0.219156\pi\)
−0.164153 + 0.986435i \(0.552489\pi\)
\(558\) −6.19510 + 5.77627i −0.262260 + 0.244529i
\(559\) −0.0827402 0.143310i −0.00349954 0.00606138i
\(560\) 0 0
\(561\) 5.95014 + 5.64684i 0.251215 + 0.238410i
\(562\) 10.7066 + 29.4162i 0.451631 + 1.24085i
\(563\) −9.99530 1.76244i −0.421252 0.0742781i −0.0409958 0.999159i \(-0.513053\pi\)
−0.380256 + 0.924881i \(0.624164\pi\)
\(564\) 0.357634 + 3.13983i 0.0150591 + 0.132211i
\(565\) 0 0
\(566\) −26.1024 −1.09716
\(567\) 32.2863 23.4509i 1.35590 0.984846i
\(568\) 22.5218i 0.944996i
\(569\) −21.4282 + 17.9804i −0.898317 + 0.753777i −0.969861 0.243660i \(-0.921652\pi\)
0.0715441 + 0.997437i \(0.477207\pi\)
\(570\) 0 0
\(571\) −3.43834 + 19.4998i −0.143890 + 0.816041i 0.824362 + 0.566064i \(0.191534\pi\)
−0.968252 + 0.249978i \(0.919577\pi\)
\(572\) 0.519185 + 1.42645i 0.0217082 + 0.0596428i
\(573\) −4.96067 + 5.22711i −0.207235 + 0.218366i
\(574\) 0.512351 + 2.90569i 0.0213851 + 0.121281i
\(575\) 0 0
\(576\) 7.64797 25.0095i 0.318665 1.04206i
\(577\) −2.70975 1.56447i −0.112808 0.0651299i 0.442534 0.896752i \(-0.354080\pi\)
−0.555343 + 0.831622i \(0.687413\pi\)
\(578\) −7.12418 + 19.5735i −0.296327 + 0.814151i
\(579\) −6.81990 0.417346i −0.283426 0.0173443i
\(580\) 0 0
\(581\) 12.3653 + 10.3757i 0.513000 + 0.430458i
\(582\) −16.1145 + 8.03372i −0.667966 + 0.333009i
\(583\) 5.64204 15.5014i 0.233669 0.642001i
\(584\) 15.2399 26.3964i 0.630633 1.09229i
\(585\) 0 0
\(586\) 4.09344 + 7.09004i 0.169098 + 0.292887i
\(587\) 43.3925 7.65127i 1.79100 0.315802i 0.823244 0.567688i \(-0.192162\pi\)
0.967757 + 0.251887i \(0.0810510\pi\)
\(588\) −1.50032 5.06559i −0.0618720 0.208902i
\(589\) 13.5028 4.91461i 0.556372 0.202503i
\(590\) 0 0
\(591\) 12.1333 8.97752i 0.499095 0.369286i
\(592\) −22.2391 26.5036i −0.914023 1.08929i
\(593\) 10.1063i 0.415015i 0.978233 + 0.207507i \(0.0665351\pi\)
−0.978233 + 0.207507i \(0.933465\pi\)
\(594\) −18.2434 22.1354i −0.748537 0.908228i
\(595\) 0 0
\(596\) 1.57256 1.31953i 0.0644144 0.0540501i
\(597\) −9.26122 + 21.2974i −0.379036 + 0.871647i
\(598\) −15.7839 2.78313i −0.645453 0.113811i
\(599\) −1.62169 + 0.590247i −0.0662605 + 0.0241169i −0.374938 0.927050i \(-0.622336\pi\)
0.308677 + 0.951167i \(0.400114\pi\)
\(600\) 0 0
\(601\) 3.60539 + 20.4472i 0.147067 + 0.834058i 0.965684 + 0.259719i \(0.0836299\pi\)
−0.818617 + 0.574339i \(0.805259\pi\)
\(602\) 0.556789 0.321462i 0.0226930 0.0131018i
\(603\) 4.00393 7.85688i 0.163053 0.319957i
\(604\) 1.45458 2.51941i 0.0591862 0.102513i
\(605\) 0 0
\(606\) −13.5049 + 20.4022i −0.548598 + 0.828783i
\(607\) −1.30168 + 1.55129i −0.0528337 + 0.0629648i −0.791814 0.610762i \(-0.790863\pi\)
0.738980 + 0.673727i \(0.235308\pi\)
\(608\) −5.88050 + 7.00810i −0.238486 + 0.284216i
\(609\) −10.4804 + 15.8330i −0.424687 + 0.641587i
\(610\) 0 0
\(611\) 5.73024 9.92506i 0.231821 0.401525i
\(612\) 0.373470 0.732859i 0.0150966 0.0296241i
\(613\) −26.8891 + 15.5244i −1.08604 + 0.627027i −0.932520 0.361119i \(-0.882395\pi\)
−0.153522 + 0.988145i \(0.549062\pi\)
\(614\) 2.75064 + 15.5997i 0.111007 + 0.629551i
\(615\) 0 0
\(616\) −51.5420 + 18.7598i −2.07669 + 0.755852i
\(617\) −8.34783 1.47195i −0.336071 0.0592584i 0.00306626 0.999995i \(-0.499024\pi\)
−0.339137 + 0.940737i \(0.610135\pi\)
\(618\) −7.63621 + 17.5605i −0.307174 + 0.706388i
\(619\) 32.3309 27.1288i 1.29949 1.09040i 0.309255 0.950979i \(-0.399920\pi\)
0.990233 0.139421i \(-0.0445241\pi\)
\(620\) 0 0
\(621\) −40.9182 + 6.84325i −1.64199 + 0.274610i
\(622\) 33.2027i 1.33131i
\(623\) −32.7610 39.0430i −1.31254 1.56422i
\(624\) −7.29171 + 5.39522i −0.291902 + 0.215982i
\(625\) 0 0
\(626\) −19.1172 + 6.95808i −0.764076 + 0.278101i
\(627\) 13.8192 + 46.6586i 0.551887 + 1.86336i
\(628\) 3.09333 0.545438i 0.123437 0.0217654i
\(629\) −5.68895 9.85355i −0.226833 0.392887i
\(630\) 0 0
\(631\) 14.3615 24.8748i 0.571721 0.990250i −0.424668 0.905349i \(-0.639609\pi\)
0.996389 0.0849008i \(-0.0270573\pi\)
\(632\) 4.96811 13.6498i 0.197621 0.542959i
\(633\) 5.70687 2.84511i 0.226828 0.113083i
\(634\) 0.250291 + 0.210019i 0.00994034 + 0.00834094i
\(635\) 0 0
\(636\) −1.65100 0.101034i −0.0654666 0.00400625i
\(637\) −6.55298 + 18.0042i −0.259638 + 0.713351i
\(638\) 11.8202 + 6.82442i 0.467968 + 0.270181i
\(639\) −6.64785 + 21.7391i −0.262985 + 0.859985i
\(640\) 0 0
\(641\) −3.15096 17.8700i −0.124456 0.705822i −0.981630 0.190796i \(-0.938893\pi\)
0.857174 0.515026i \(-0.172218\pi\)
\(642\) −19.2626 + 20.2972i −0.760235 + 0.801069i
\(643\) 5.45343 + 14.9832i 0.215062 + 0.590879i 0.999573 0.0292372i \(-0.00930781\pi\)
−0.784510 + 0.620116i \(0.787086\pi\)
\(644\) −1.48120 + 8.40031i −0.0583675 + 0.331018i
\(645\) 0 0
\(646\) 7.80341 6.54784i 0.307021 0.257621i
\(647\) 13.7644i 0.541133i 0.962701 + 0.270567i \(0.0872110\pi\)
−0.962701 + 0.270567i \(0.912789\pi\)
\(648\) −14.9610 + 22.1743i −0.587723 + 0.871090i
\(649\) −34.0004 −1.33463
\(650\) 0 0
\(651\) −1.85015 16.2433i −0.0725131 0.636624i
\(652\) 3.61146 + 0.636797i 0.141436 + 0.0249389i
\(653\) −5.80905 15.9602i −0.227326 0.624573i 0.772621 0.634867i \(-0.218945\pi\)
−0.999947 + 0.0102948i \(0.996723\pi\)
\(654\) −0.447708 0.424887i −0.0175068 0.0166144i
\(655\) 0 0
\(656\) −0.868024 1.50346i −0.0338907 0.0587003i
\(657\) −22.5018 + 20.9805i −0.877877 + 0.818527i
\(658\) 38.5609 + 22.2631i 1.50326 + 0.867907i
\(659\) −10.6118 3.86239i −0.413378 0.150457i 0.126955 0.991908i \(-0.459480\pi\)
−0.540333 + 0.841451i \(0.681702\pi\)
\(660\) 0 0
\(661\) −2.63000 2.20683i −0.102295 0.0858358i 0.590206 0.807253i \(-0.299047\pi\)
−0.692501 + 0.721417i \(0.743491\pi\)
\(662\) −21.2662 + 25.3441i −0.826535 + 0.985027i
\(663\) −2.66962 + 1.33092i −0.103680 + 0.0516885i
\(664\) −10.1679 3.70083i −0.394592 0.143620i
\(665\) 0 0
\(666\) 15.5433 + 36.6243i 0.602289 + 1.41916i
\(667\) 17.0957 9.87018i 0.661946 0.382175i
\(668\) 3.77865 0.666279i 0.146201 0.0257791i
\(669\) 17.4873 5.17936i 0.676099 0.200246i
\(670\) 0 0
\(671\) 8.91950 50.5850i 0.344334 1.95281i
\(672\) 6.19084 + 8.36702i 0.238817 + 0.322765i
\(673\) 16.8397 + 20.0688i 0.649123 + 0.773595i 0.985782 0.168032i \(-0.0537412\pi\)
−0.336658 + 0.941627i \(0.609297\pi\)
\(674\) −39.3071 −1.51405
\(675\) 0 0
\(676\) 2.58045 0.0992482
\(677\) 12.1532 + 14.4837i 0.467087 + 0.556653i 0.947237 0.320534i \(-0.103862\pi\)
−0.480150 + 0.877186i \(0.659418\pi\)
\(678\) 1.89761 4.36381i 0.0728772 0.167591i
\(679\) 6.03484 34.2253i 0.231596 1.31345i
\(680\) 0 0
\(681\) 10.7180 44.6373i 0.410715 1.71051i
\(682\) −11.5732 + 2.04066i −0.443159 + 0.0781409i
\(683\) 21.1745 12.2251i 0.810222 0.467782i −0.0368112 0.999322i \(-0.511720\pi\)
0.847033 + 0.531541i \(0.178387\pi\)
\(684\) 4.09238 2.65724i 0.156476 0.101602i
\(685\) 0 0
\(686\) −31.2687 11.3809i −1.19385 0.434524i
\(687\) 15.9377 + 10.5497i 0.608062 + 0.402496i
\(688\) −0.243160 + 0.289787i −0.00927039 + 0.0110480i
\(689\) 4.59528 + 3.85590i 0.175066 + 0.146898i
\(690\) 0 0
\(691\) 17.7400 + 6.45685i 0.674863 + 0.245630i 0.656640 0.754204i \(-0.271977\pi\)
0.0182226 + 0.999834i \(0.494199\pi\)
\(692\) −2.66527 1.53880i −0.101318 0.0584962i
\(693\) 55.2880 2.89391i 2.10022 0.109931i
\(694\) −19.8194 34.3282i −0.752334 1.30308i
\(695\) 0 0
\(696\) 2.97171 12.3763i 0.112642 0.469122i
\(697\) −0.195265 0.536487i −0.00739620 0.0203209i
\(698\) 0.607913 + 0.107191i 0.0230098 + 0.00405725i
\(699\) 21.2897 + 9.25785i 0.805250 + 0.350164i
\(700\) 0 0
\(701\) −21.8730 −0.826131 −0.413066 0.910701i \(-0.635542\pi\)
−0.413066 + 0.910701i \(0.635542\pi\)
\(702\) 9.83292 3.48094i 0.371120 0.131380i
\(703\) 67.4954i 2.54564i
\(704\) 27.7957 23.3234i 1.04759 0.879034i
\(705\) 0 0
\(706\) −0.376934 + 2.13770i −0.0141861 + 0.0804533i
\(707\) −16.1514 44.3755i −0.607435 1.66891i
\(708\) 0.968175 + 3.26890i 0.0363863 + 0.122853i
\(709\) 5.59910 + 31.7541i 0.210279 + 1.19255i 0.888914 + 0.458074i \(0.151461\pi\)
−0.678636 + 0.734475i \(0.737428\pi\)
\(710\) 0 0
\(711\) −8.82449 + 11.7089i −0.330944 + 0.439118i
\(712\) 29.5880 + 17.0826i 1.10886 + 0.640198i
\(713\) −5.81315 + 15.9715i −0.217704 + 0.598138i
\(714\) −5.17088 10.3720i −0.193515 0.388163i
\(715\) 0 0
\(716\) −0.685371 0.575094i −0.0256135 0.0214923i
\(717\) 0.930816 15.2106i 0.0347620 0.568049i
\(718\) −8.55352 + 23.5006i −0.319214 + 0.877035i
\(719\) −21.9733 + 38.0589i −0.819467 + 1.41936i 0.0866093 + 0.996242i \(0.472397\pi\)
−0.906076 + 0.423115i \(0.860937\pi\)
\(720\) 0 0
\(721\) −18.4796 32.0077i −0.688218 1.19203i
\(722\) 34.6939 6.11747i 1.29117 0.227669i
\(723\) −17.4761 + 18.4148i −0.649944 + 0.684854i
\(724\) −0.696024 + 0.253332i −0.0258675 + 0.00941501i
\(725\) 0 0
\(726\) −1.64416 14.4347i −0.0610203 0.535724i
\(727\) 5.71575 + 6.81176i 0.211985 + 0.252634i 0.861551 0.507671i \(-0.169494\pi\)
−0.649565 + 0.760306i \(0.725049\pi\)
\(728\) 19.9457i 0.739237i
\(729\) 20.9863 16.9875i 0.777269 0.629168i
\(730\) 0 0
\(731\) −0.0952994 + 0.0799657i −0.00352478 + 0.00295764i
\(732\) −5.11737 + 0.582882i −0.189143 + 0.0215439i
\(733\) 1.67268 + 0.294938i 0.0617818 + 0.0108938i 0.204454 0.978876i \(-0.434458\pi\)
−0.142672 + 0.989770i \(0.545569\pi\)
\(734\) −12.7465 + 4.63936i −0.470483 + 0.171242i
\(735\) 0 0
\(736\) −1.87906 10.6567i −0.0692629 0.392809i
\(737\) 10.5955 6.11730i 0.390289 0.225334i
\(738\) 0.448960 + 1.94524i 0.0165265 + 0.0716052i
\(739\) 20.4924 35.4939i 0.753826 1.30566i −0.192130 0.981369i \(-0.561540\pi\)
0.945956 0.324295i \(-0.105127\pi\)
\(740\) 0 0
\(741\) −17.6625 1.08086i −0.648848 0.0397065i
\(742\) −14.9809 + 17.8536i −0.549967 + 0.655426i
\(743\) 34.2019 40.7602i 1.25475 1.49535i 0.460614 0.887600i \(-0.347629\pi\)
0.794131 0.607747i \(-0.207926\pi\)
\(744\) 4.88953 + 9.80767i 0.179259 + 0.359567i
\(745\) 0 0
\(746\) −4.60655 + 7.97877i −0.168658 + 0.292124i
\(747\) 8.72215 + 6.57351i 0.319127 + 0.240512i
\(748\) 0.988304 0.570598i 0.0361360 0.0208631i
\(749\) −9.37857 53.1885i −0.342685 1.94347i
\(750\) 0 0
\(751\) 15.4986 5.64104i 0.565554 0.205845i −0.0433900 0.999058i \(-0.513816\pi\)
0.608944 + 0.793214i \(0.291594\pi\)
\(752\) −25.8007 4.54937i −0.940856 0.165898i
\(753\) −3.93870 5.32321i −0.143534 0.193989i
\(754\) −3.80210 + 3.19034i −0.138464 + 0.116185i
\(755\) 0 0
\(756\) −1.85258 5.23314i −0.0673775 0.190327i
\(757\) 5.75782i 0.209271i 0.994511 + 0.104636i \(0.0333677\pi\)
−0.994511 + 0.104636i \(0.966632\pi\)
\(758\) 7.61802 + 9.07880i 0.276699 + 0.329757i
\(759\) −52.7843 22.9533i −1.91595 0.833152i
\(760\) 0 0
\(761\) −35.1758 + 12.8029i −1.27512 + 0.464106i −0.888816 0.458265i \(-0.848471\pi\)
−0.386305 + 0.922371i \(0.626249\pi\)
\(762\) 33.9311 + 8.14730i 1.22919 + 0.295145i
\(763\) 1.17321 0.206869i 0.0424730 0.00748914i
\(764\) 0.501262 + 0.868212i 0.0181350 + 0.0314108i
\(765\) 0 0
\(766\) 13.7422 23.8022i 0.496526 0.860008i
\(767\) 4.22873 11.6183i 0.152690 0.419514i
\(768\) −8.22630 5.44525i −0.296841 0.196489i
\(769\) −13.8998 11.6633i −0.501239 0.420589i 0.356795 0.934183i \(-0.383870\pi\)
−0.858034 + 0.513593i \(0.828314\pi\)
\(770\) 0 0
\(771\) −7.80549 + 11.7920i −0.281108 + 0.424678i
\(772\) −0.325105 + 0.893218i −0.0117008 + 0.0321476i
\(773\) −19.1897 11.0792i −0.690206 0.398490i 0.113483 0.993540i \(-0.463799\pi\)
−0.803689 + 0.595049i \(0.797132\pi\)
\(774\) 0.364850 0.236903i 0.0131143 0.00851530i
\(775\) 0 0
\(776\) 4.04540 + 22.9426i 0.145221 + 0.823591i
\(777\) −74.6684 17.9289i −2.67871 0.643195i
\(778\) −2.53509 6.96511i −0.0908874 0.249711i
\(779\) 0.588106 3.33531i 0.0210711 0.119500i
\(780\) 0 0
\(781\) −24.1609 + 20.2734i −0.864546 + 0.725440i
\(782\) 12.0491i 0.430874i
\(783\) −6.52158 + 11.0690i −0.233062 + 0.395573i
\(784\) 43.7991 1.56425
\(785\) 0 0
\(786\) −6.25980 + 4.63169i −0.223280 + 0.165207i
\(787\) 11.4591 + 2.02055i 0.408473 + 0.0720248i 0.374109 0.927385i \(-0.377949\pi\)
0.0343635 + 0.999409i \(0.489060\pi\)
\(788\) −0.718160 1.97313i −0.0255834 0.0702898i
\(789\) 46.2807 13.7073i 1.64764 0.487994i
\(790\) 0 0
\(791\) 4.59221 + 7.95394i 0.163280 + 0.282810i
\(792\) −34.1632 + 14.4988i −1.21394 + 0.515192i
\(793\) 16.1761 + 9.33929i 0.574431 + 0.331648i
\(794\) 16.9199 + 6.15835i 0.600466 + 0.218552i
\(795\) 0 0
\(796\) 2.47498 + 2.07675i 0.0877233 + 0.0736086i
\(797\) −34.9669 + 41.6719i −1.23859 + 1.47610i −0.414090 + 0.910236i \(0.635900\pi\)
−0.824501 + 0.565860i \(0.808544\pi\)
\(798\) 4.19937 68.6224i 0.148656 2.42921i
\(799\) −8.09614 2.94675i −0.286421 0.104249i
\(800\) 0 0
\(801\) −23.5173 25.2225i −0.830942 0.891192i
\(802\) 22.1146 12.7679i 0.780893 0.450849i
\(803\) −42.0359 + 7.41206i −1.48341 + 0.261566i
\(804\) −0.889845 0.844486i −0.0313824 0.0297827i
\(805\) 0 0
\(806\) 0.742069 4.20848i 0.0261383 0.148238i
\(807\) 22.6336 2.57803i 0.796741 0.0907509i
\(808\) 20.3480 + 24.2497i 0.715838 + 0.853103i
\(809\) 9.51410 0.334498 0.167249 0.985915i \(-0.446512\pi\)
0.167249 + 0.985915i \(0.446512\pi\)
\(810\) 0 0
\(811\) −16.3207 −0.573098 −0.286549 0.958066i \(-0.592508\pi\)
−0.286549 + 0.958066i \(0.592508\pi\)
\(812\) 1.69792 + 2.02350i 0.0595852 + 0.0710109i
\(813\) 14.1058 1.60669i 0.494712 0.0563490i
\(814\) −9.58534 + 54.3611i −0.335966 + 1.90536i
\(815\) 0 0
\(816\) 4.94628 + 4.69415i 0.173154 + 0.164328i
\(817\) −0.726774 + 0.128150i −0.0254266 + 0.00448340i
\(818\) 9.87847 5.70334i 0.345393 0.199413i
\(819\) −5.88744 + 19.2525i −0.205724 + 0.672735i
\(820\) 0 0
\(821\) 15.3844 + 5.59945i 0.536918 + 0.195422i 0.596224 0.802818i \(-0.296667\pi\)
−0.0593069 + 0.998240i \(0.518889\pi\)
\(822\) 2.59950 42.4787i 0.0906679 1.48161i
\(823\) −1.36101 + 1.62199i −0.0474419 + 0.0565391i −0.789244 0.614080i \(-0.789527\pi\)
0.741802 + 0.670619i \(0.233972\pi\)
\(824\) 18.9790 + 15.9253i 0.661164 + 0.554783i
\(825\) 0 0
\(826\) 45.1396 + 16.4295i 1.57061 + 0.571654i
\(827\) 16.4944 + 9.52304i 0.573566 + 0.331148i 0.758572 0.651589i \(-0.225897\pi\)
−0.185006 + 0.982737i \(0.559231\pi\)
\(828\) −0.703742 + 5.72843i −0.0244567 + 0.199077i
\(829\) 14.7459 + 25.5407i 0.512148 + 0.887066i 0.999901 + 0.0140841i \(0.00448326\pi\)
−0.487753 + 0.872982i \(0.662183\pi\)
\(830\) 0 0
\(831\) −48.3973 + 14.3342i −1.67889 + 0.497249i
\(832\) 4.51284 + 12.3989i 0.156454 + 0.429855i
\(833\) 14.1850 + 2.50119i 0.491480 + 0.0866611i
\(834\) 30.6913 22.7088i 1.06275 0.786342i
\(835\) 0 0
\(836\) 6.76974 0.234136
\(837\) −1.82462 10.9101i −0.0630681 0.377107i
\(838\) 39.5542i 1.36638i
\(839\) −20.6987 + 17.3682i −0.714597 + 0.599618i −0.925885 0.377806i \(-0.876679\pi\)
0.211288 + 0.977424i \(0.432234\pi\)
\(840\) 0 0
\(841\) −3.97427 + 22.5392i −0.137044 + 0.777214i
\(842\) −1.86399 5.12126i −0.0642372 0.176490i
\(843\) −39.7513 9.54481i −1.36911 0.328741i
\(844\) −0.154046 0.873641i −0.00530250 0.0300719i
\(845\) 0 0
\(846\) 26.8428 + 13.6793i 0.922874 + 0.470303i
\(847\) 24.2838 + 14.0203i 0.834401 + 0.481742i
\(848\) 4.69016 12.8861i 0.161061 0.442511i
\(849\) 18.8154 28.4250i 0.645743 0.975542i
\(850\) 0 0
\(851\) 61.1576 + 51.3174i 2.09646 + 1.75914i
\(852\) 2.63713 + 1.74560i 0.0903467 + 0.0598034i
\(853\) −2.29637 + 6.30921i −0.0786260 + 0.216023i −0.972777 0.231742i \(-0.925558\pi\)
0.894151 + 0.447765i \(0.147780\pi\)
\(854\) −36.2850 + 62.8475i −1.24165 + 2.15060i
\(855\) 0 0
\(856\) 18.1022 + 31.3539i 0.618721 + 1.07166i
\(857\) −6.45695 + 1.13853i −0.220565 + 0.0388916i −0.282839 0.959168i \(-0.591276\pi\)
0.0622733 + 0.998059i \(0.480165\pi\)
\(858\) 14.0720 + 3.37887i 0.480409 + 0.115353i
\(859\) −46.0053 + 16.7446i −1.56968 + 0.571317i −0.972928 0.231109i \(-0.925765\pi\)
−0.596752 + 0.802426i \(0.703542\pi\)
\(860\) 0 0
\(861\) −3.53355 1.53657i −0.120423 0.0523662i
\(862\) −32.7882 39.0754i −1.11677 1.33091i
\(863\) 24.9816i 0.850383i 0.905103 + 0.425192i \(0.139793\pi\)
−0.905103 + 0.425192i \(0.860207\pi\)
\(864\) 4.47904 + 5.43460i 0.152380 + 0.184889i
\(865\) 0 0
\(866\) 13.2817 11.1447i 0.451332 0.378712i
\(867\) −16.1798 21.8673i −0.549496 0.742652i
\(868\) −2.23978 0.394934i −0.0760231 0.0134049i
\(869\) −19.1153 + 6.95739i −0.648442 + 0.236013i
\(870\) 0 0
\(871\) 0.772563 + 4.38142i 0.0261773 + 0.148459i
\(872\) −0.691592 + 0.399291i −0.0234203 + 0.0135217i
\(873\) 2.86725 23.3393i 0.0970417 0.789915i
\(874\) −35.7384 + 61.9007i −1.20887 + 2.09382i
\(875\) 0 0
\(876\) 1.90960 + 3.83039i 0.0645195 + 0.129417i
\(877\) −2.52652 + 3.01099i −0.0853144 + 0.101674i −0.807013 0.590534i \(-0.798917\pi\)
0.721699 + 0.692208i \(0.243362\pi\)
\(878\) −6.58533 + 7.84809i −0.222244 + 0.264860i
\(879\) −10.6716 0.653051i −0.359944 0.0220269i
\(880\) 0 0
\(881\) 6.07726 10.5261i 0.204748 0.354634i −0.745304 0.666724i \(-0.767696\pi\)
0.950052 + 0.312090i \(0.101029\pi\)
\(882\) −48.1652 14.7290i −1.62181 0.495951i
\(883\) 15.1061 8.72154i 0.508362 0.293503i −0.223798 0.974636i \(-0.571846\pi\)
0.732160 + 0.681132i \(0.238512\pi\)
\(884\) 0.0720616 + 0.408682i 0.00242369 + 0.0137454i
\(885\) 0 0
\(886\) 27.1411 9.87856i 0.911823 0.331877i
\(887\) 38.5770 + 6.80216i 1.29529 + 0.228394i 0.778460 0.627695i \(-0.216001\pi\)
0.516828 + 0.856089i \(0.327113\pi\)
\(888\) 51.1452 5.82557i 1.71632 0.195493i
\(889\) −51.5942 + 43.2927i −1.73041 + 1.45199i
\(890\) 0 0
\(891\) 37.2555 3.91080i 1.24811 0.131017i
\(892\) 2.53725i 0.0849535i
\(893\) −32.8527 39.1524i −1.09937 1.31018i
\(894\) −2.21484 19.4451i −0.0740754 0.650340i
\(895\) 0 0
\(896\) −36.8786 + 13.4227i −1.23203 + 0.448421i
\(897\) 14.4083 15.1822i 0.481080 0.506920i
\(898\) −40.3023 + 7.10638i −1.34491 + 0.237143i
\(899\) 2.63169 + 4.55823i 0.0877719 + 0.152025i
\(900\) 0 0
\(901\) 2.25485 3.90551i 0.0751199 0.130111i
\(902\) −0.947327 + 2.60276i −0.0315426 + 0.0866625i
\(903\) −0.0512849 + 0.838052i −0.00170665 + 0.0278886i
\(904\) −4.71630 3.95744i −0.156862 0.131623i
\(905\) 0 0
\(906\) −12.3744 24.8212i −0.411112 0.824630i
\(907\) −10.1184 + 27.8001i −0.335977 + 0.923088i 0.650546 + 0.759466i \(0.274540\pi\)
−0.986523 + 0.163622i \(0.947682\pi\)
\(908\) −5.53073 3.19317i −0.183544 0.105969i
\(909\) −12.4829 29.4131i −0.414030 0.975571i
\(910\) 0 0
\(911\) −8.01745 45.4692i −0.265630 1.50646i −0.767235 0.641366i \(-0.778368\pi\)
0.501605 0.865097i \(-0.332743\pi\)
\(912\) 11.4878 + 38.7867i 0.380398 + 1.28436i
\(913\) 5.18268 + 14.2393i 0.171522 + 0.471252i
\(914\) 7.47996 42.4210i 0.247415 1.40316i
\(915\) 0 0
\(916\) 2.03688 1.70914i 0.0673003 0.0564716i
\(917\) 15.0297i 0.496323i
\(918\) −3.86077 6.82545i −0.127424 0.225273i
\(919\) −3.32517 −0.109687 −0.0548435 0.998495i \(-0.517466\pi\)
−0.0548435 + 0.998495i \(0.517466\pi\)
\(920\) 0 0
\(921\) −18.9705 8.24933i −0.625098 0.271825i
\(922\) −33.3527 5.88098i −1.09841 0.193680i
\(923\) −3.92270 10.7775i −0.129117 0.354746i
\(924\) 1.79825 7.48919i 0.0591582 0.246376i
\(925\) 0 0
\(926\) −6.25025 10.8257i −0.205396 0.355756i
\(927\) −13.6186 20.9739i −0.447295 0.688872i
\(928\) −2.90205 1.67550i −0.0952645 0.0550010i
\(929\) −5.41753 1.97182i −0.177743 0.0646933i 0.251615 0.967827i \(-0.419038\pi\)
−0.429359 + 0.903134i \(0.641260\pi\)
\(930\) 0 0
\(931\) 65.4549 + 54.9232i 2.14520 + 1.80004i
\(932\) 2.07600 2.47408i 0.0680016 0.0810411i
\(933\) 36.1571 + 23.9335i 1.18373 + 0.783549i
\(934\) 48.2036 + 17.5447i 1.57727 + 0.574079i
\(935\) 0 0
\(936\) −0.705430 13.4772i −0.0230577 0.440516i
\(937\) 23.1923 13.3901i 0.757661 0.437436i −0.0707946 0.997491i \(-0.522553\pi\)
0.828455 + 0.560055i \(0.189220\pi\)
\(938\) −17.0227 + 3.00156i −0.555811 + 0.0980045i
\(939\) 6.20304 25.8338i 0.202429 0.843055i
\(940\) 0 0
\(941\) −7.05048 + 39.9852i −0.229839 + 1.30348i 0.623376 + 0.781922i \(0.285761\pi\)
−0.853215 + 0.521559i \(0.825351\pi\)
\(942\) 11.9416 27.4614i 0.389080 0.894742i
\(943\) 2.57499 + 3.06875i 0.0838532 + 0.0999324i
\(944\) −28.2642 −0.919920
\(945\) 0 0
\(946\) 0.603547 0.0196230
\(947\) −4.53195 5.40097i −0.147269 0.175508i 0.687367 0.726310i \(-0.258766\pi\)
−0.834636 + 0.550802i \(0.814322\pi\)
\(948\) 1.21322 + 1.63968i 0.0394035 + 0.0532544i
\(949\) 2.69533 15.2860i 0.0874942 0.496204i
\(950\) 0 0
\(951\) −0.409125 + 0.121174i −0.0132668 + 0.00392933i
\(952\) −14.7669 + 2.60381i −0.478599 + 0.0843899i
\(953\) −18.5197 + 10.6923i −0.599911 + 0.346359i −0.769007 0.639241i \(-0.779249\pi\)
0.169095 + 0.985600i \(0.445915\pi\)
\(954\) −9.49110 + 12.5934i −0.307286 + 0.407727i
\(955\) 0 0
\(956\) −1.99216 0.725088i −0.0644311 0.0234510i
\(957\) −15.9520 + 7.95275i −0.515656 + 0.257076i
\(958\) −31.7294 + 37.8137i −1.02513 + 1.22170i
\(959\) 62.9237 + 52.7993i 2.03191 + 1.70498i
\(960\) 0 0
\(961\) 24.8720 + 9.05266i 0.802322 + 0.292021i
\(962\) −17.3837 10.0365i −0.560472 0.323589i
\(963\) −8.21819 35.6075i −0.264828 1.14744i
\(964\) 1.76591 + 3.05865i 0.0568763 + 0.0985126i
\(965\) 0 0
\(966\) 58.9860 + 55.9793i 1.89784 + 1.80110i
\(967\) −11.2223 30.8331i −0.360886 0.991527i −0.978717 0.205216i \(-0.934210\pi\)
0.617831 0.786311i \(-0.288012\pi\)
\(968\) −18.5111 3.26401i −0.594970 0.104909i
\(969\) 1.50552 + 13.2176i 0.0483644 + 0.424612i
\(970\) 0 0
\(971\) 2.11522 0.0678807 0.0339404 0.999424i \(-0.489194\pi\)
0.0339404 + 0.999424i \(0.489194\pi\)
\(972\) −1.43686 3.47048i −0.0460873 0.111316i
\(973\) 73.6892i 2.36237i
\(974\) 38.8010 32.5579i 1.24326 1.04322i
\(975\) 0 0
\(976\) 7.41468 42.0507i 0.237338 1.34601i
\(977\) −6.16678 16.9431i −0.197293 0.542058i 0.801112 0.598514i \(-0.204242\pi\)
−0.998405 + 0.0564564i \(0.982020\pi\)
\(978\) 24.0666 25.3592i 0.769564 0.810899i
\(979\) −8.30826 47.1185i −0.265533 1.50591i
\(980\) 0 0
\(981\) 0.785415 0.181274i 0.0250764 0.00578762i
\(982\) 0.275562 + 0.159096i 0.00879355 + 0.00507696i
\(983\) 6.30480 17.3223i 0.201092 0.552496i −0.797624 0.603155i \(-0.793910\pi\)
0.998716 + 0.0506592i \(0.0161322\pi\)
\(984\) 2.57812 + 0.157769i 0.0821876 + 0.00502950i
\(985\) 0 0
\(986\) 2.85833 + 2.39842i 0.0910278 + 0.0763814i
\(987\) −52.0400 + 25.9441i −1.65645 + 0.825808i
\(988\) −0.841971 + 2.31330i −0.0267867 + 0.0735958i
\(989\) 0.436456 0.755965i 0.0138785 0.0240383i
\(990\) 0 0
\(991\) −17.5641 30.4220i −0.557943 0.966386i −0.997668 0.0682536i \(-0.978257\pi\)
0.439725 0.898133i \(-0.355076\pi\)
\(992\) 2.84139 0.501014i 0.0902143 0.0159072i
\(993\) −12.2699 41.4273i −0.389372 1.31466i
\(994\) 41.8728 15.2405i 1.32813 0.483398i
\(995\) 0 0
\(996\) 1.22143 0.903746i 0.0387024 0.0286363i
\(997\) −11.3032 13.4706i −0.357976 0.426620i 0.556758 0.830674i \(-0.312045\pi\)
−0.914735 + 0.404055i \(0.867600\pi\)
\(998\) 26.7659i 0.847261i
\(999\) −51.0872 9.47361i −1.61633 0.299732i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.7 132
5.2 odd 4 675.2.l.g.76.8 yes 66
5.3 odd 4 675.2.l.f.76.4 66
5.4 even 2 inner 675.2.u.e.49.16 132
27.16 even 9 inner 675.2.u.e.124.16 132
135.43 odd 36 675.2.l.f.151.4 yes 66
135.97 odd 36 675.2.l.g.151.8 yes 66
135.124 even 18 inner 675.2.u.e.124.7 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.4 66 5.3 odd 4
675.2.l.f.151.4 yes 66 135.43 odd 36
675.2.l.g.76.8 yes 66 5.2 odd 4
675.2.l.g.151.8 yes 66 135.97 odd 36
675.2.u.e.49.7 132 1.1 even 1 trivial
675.2.u.e.49.16 132 5.4 even 2 inner
675.2.u.e.124.7 132 135.124 even 18 inner
675.2.u.e.124.16 132 27.16 even 9 inner