Properties

Label 675.2.u.e.49.4
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.4
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30162 - 1.55121i) q^{2} +(-0.933937 + 1.45868i) q^{3} +(-0.364742 + 2.06856i) q^{4} +(3.47836 - 0.449921i) q^{6} +(-0.370230 + 0.0652816i) q^{7} +(0.176186 - 0.101721i) q^{8} +(-1.25552 - 2.72464i) q^{9} +(0.272976 + 0.0993552i) q^{11} +(-2.67673 - 2.46395i) q^{12} +(-0.568702 + 0.677752i) q^{13} +(0.583165 + 0.489333i) q^{14} +(3.56047 + 1.29590i) q^{16} +(-4.02651 - 2.32471i) q^{17} +(-2.59227 + 5.49403i) q^{18} +(1.75100 + 3.03282i) q^{19} +(0.250547 - 0.601018i) q^{21} +(-0.201190 - 0.552766i) q^{22} +(0.537906 + 0.0948473i) q^{23} +(-0.0161677 + 0.352001i) q^{24} +1.79157 q^{26} +(5.14697 + 0.713228i) q^{27} -0.789653i q^{28} +(4.65300 - 3.90433i) q^{29} +(0.953291 - 5.40638i) q^{31} +(-2.76332 - 7.59216i) q^{32} +(-0.399870 + 0.305395i) q^{33} +(1.63488 + 9.27184i) q^{34} +(6.09401 - 1.60333i) q^{36} +(9.48122 + 5.47398i) q^{37} +(2.42541 - 6.66375i) q^{38} +(-0.457496 - 1.46253i) q^{39} +(-7.28901 - 6.11620i) q^{41} +(-1.25842 + 0.393647i) q^{42} +(3.47348 - 9.54330i) q^{43} +(-0.305088 + 0.528427i) q^{44} +(-0.553021 - 0.957860i) q^{46} +(6.23654 - 1.09967i) q^{47} +(-5.21557 + 3.98331i) q^{48} +(-6.44504 + 2.34580i) q^{49} +(7.15152 - 3.70228i) q^{51} +(-1.19454 - 1.42360i) q^{52} -12.2148i q^{53} +(-5.59303 - 8.91238i) q^{54} +(-0.0585889 + 0.0491619i) q^{56} +(-6.05925 - 0.278306i) q^{57} +(-12.1129 - 2.13583i) q^{58} +(1.18778 - 0.432318i) q^{59} +(0.499613 + 2.83345i) q^{61} +(-9.62726 + 5.55830i) q^{62} +(0.642702 + 0.926782i) q^{63} +(-4.39127 + 7.60590i) q^{64} +(0.994211 + 0.222775i) q^{66} +(5.69325 - 6.78495i) q^{67} +(6.27742 - 7.48114i) q^{68} +(-0.640723 + 0.696054i) q^{69} +(5.36876 - 9.29896i) q^{71} +(-0.498359 - 0.352330i) q^{72} +(0.674654 - 0.389512i) q^{73} +(-3.84964 - 21.8324i) q^{74} +(-6.91222 + 2.51584i) q^{76} +(-0.107550 - 0.0189640i) q^{77} +(-1.67321 + 2.61334i) q^{78} +(-5.29571 + 4.44363i) q^{79} +(-5.84732 + 6.84170i) q^{81} +19.2678i q^{82} +(-5.77486 - 6.88221i) q^{83} +(1.15186 + 0.737486i) q^{84} +(-19.3248 + 7.03366i) q^{86} +(1.34958 + 10.4337i) q^{87} +(0.0582011 - 0.0102624i) q^{88} +(3.11061 + 5.38773i) q^{89} +(0.166306 - 0.288050i) q^{91} +(-0.392394 + 1.07809i) q^{92} +(6.99589 + 6.43977i) q^{93} +(-9.82342 - 8.24283i) q^{94} +(13.6553 + 3.05978i) q^{96} +(4.79504 - 13.1743i) q^{97} +(12.0278 + 6.94427i) q^{98} +(-0.0720209 - 0.868504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30162 1.55121i −0.920384 1.09687i −0.995022 0.0996605i \(-0.968224\pi\)
0.0746373 0.997211i \(-0.476220\pi\)
\(3\) −0.933937 + 1.45868i −0.539209 + 0.842172i
\(4\) −0.364742 + 2.06856i −0.182371 + 1.03428i
\(5\) 0 0
\(6\) 3.47836 0.449921i 1.42003 0.183679i
\(7\) −0.370230 + 0.0652816i −0.139934 + 0.0246741i −0.243176 0.969982i \(-0.578189\pi\)
0.103242 + 0.994656i \(0.467078\pi\)
\(8\) 0.176186 0.101721i 0.0622912 0.0359638i
\(9\) −1.25552 2.72464i −0.418508 0.908213i
\(10\) 0 0
\(11\) 0.272976 + 0.0993552i 0.0823054 + 0.0299567i 0.382845 0.923813i \(-0.374944\pi\)
−0.300539 + 0.953769i \(0.597167\pi\)
\(12\) −2.67673 2.46395i −0.772704 0.711280i
\(13\) −0.568702 + 0.677752i −0.157729 + 0.187975i −0.839122 0.543944i \(-0.816930\pi\)
0.681392 + 0.731919i \(0.261375\pi\)
\(14\) 0.583165 + 0.489333i 0.155857 + 0.130780i
\(15\) 0 0
\(16\) 3.56047 + 1.29590i 0.890117 + 0.323976i
\(17\) −4.02651 2.32471i −0.976572 0.563824i −0.0753383 0.997158i \(-0.524004\pi\)
−0.901233 + 0.433334i \(0.857337\pi\)
\(18\) −2.59227 + 5.49403i −0.611005 + 1.29495i
\(19\) 1.75100 + 3.03282i 0.401707 + 0.695777i 0.993932 0.109996i \(-0.0350838\pi\)
−0.592225 + 0.805772i \(0.701750\pi\)
\(20\) 0 0
\(21\) 0.250547 0.601018i 0.0546737 0.131153i
\(22\) −0.201190 0.552766i −0.0428939 0.117850i
\(23\) 0.537906 + 0.0948473i 0.112161 + 0.0197770i 0.229447 0.973321i \(-0.426308\pi\)
−0.117286 + 0.993098i \(0.537419\pi\)
\(24\) −0.0161677 + 0.352001i −0.00330021 + 0.0718519i
\(25\) 0 0
\(26\) 1.79157 0.351356
\(27\) 5.14697 + 0.713228i 0.990535 + 0.137261i
\(28\) 0.789653i 0.149230i
\(29\) 4.65300 3.90433i 0.864040 0.725016i −0.0987944 0.995108i \(-0.531499\pi\)
0.962834 + 0.270092i \(0.0870542\pi\)
\(30\) 0 0
\(31\) 0.953291 5.40638i 0.171216 0.971015i −0.771205 0.636587i \(-0.780346\pi\)
0.942421 0.334428i \(-0.108543\pi\)
\(32\) −2.76332 7.59216i −0.488490 1.34212i
\(33\) −0.399870 + 0.305395i −0.0696085 + 0.0531624i
\(34\) 1.63488 + 9.27184i 0.280379 + 1.59011i
\(35\) 0 0
\(36\) 6.09401 1.60333i 1.01567 0.267222i
\(37\) 9.48122 + 5.47398i 1.55870 + 0.899917i 0.997382 + 0.0723191i \(0.0230400\pi\)
0.561321 + 0.827598i \(0.310293\pi\)
\(38\) 2.42541 6.66375i 0.393453 1.08100i
\(39\) −0.457496 1.46253i −0.0732579 0.234193i
\(40\) 0 0
\(41\) −7.28901 6.11620i −1.13835 0.955190i −0.138968 0.990297i \(-0.544378\pi\)
−0.999384 + 0.0351066i \(0.988823\pi\)
\(42\) −1.25842 + 0.393647i −0.194179 + 0.0607411i
\(43\) 3.47348 9.54330i 0.529701 1.45534i −0.329724 0.944077i \(-0.606956\pi\)
0.859424 0.511263i \(-0.170822\pi\)
\(44\) −0.305088 + 0.528427i −0.0459937 + 0.0796634i
\(45\) 0 0
\(46\) −0.553021 0.957860i −0.0815385 0.141229i
\(47\) 6.23654 1.09967i 0.909693 0.160403i 0.300829 0.953678i \(-0.402737\pi\)
0.608864 + 0.793275i \(0.291626\pi\)
\(48\) −5.21557 + 3.98331i −0.752803 + 0.574941i
\(49\) −6.44504 + 2.34580i −0.920720 + 0.335115i
\(50\) 0 0
\(51\) 7.15152 3.70228i 1.00141 0.518423i
\(52\) −1.19454 1.42360i −0.165653 0.197417i
\(53\) 12.2148i 1.67783i −0.544265 0.838913i \(-0.683191\pi\)
0.544265 0.838913i \(-0.316809\pi\)
\(54\) −5.59303 8.91238i −0.761115 1.21282i
\(55\) 0 0
\(56\) −0.0585889 + 0.0491619i −0.00782927 + 0.00656954i
\(57\) −6.05925 0.278306i −0.802567 0.0368625i
\(58\) −12.1129 2.13583i −1.59050 0.280448i
\(59\) 1.18778 0.432318i 0.154636 0.0562830i −0.263542 0.964648i \(-0.584891\pi\)
0.418179 + 0.908365i \(0.362669\pi\)
\(60\) 0 0
\(61\) 0.499613 + 2.83345i 0.0639690 + 0.362786i 0.999943 + 0.0107158i \(0.00341102\pi\)
−0.935974 + 0.352070i \(0.885478\pi\)
\(62\) −9.62726 + 5.55830i −1.22266 + 0.705905i
\(63\) 0.642702 + 0.926782i 0.0809728 + 0.116764i
\(64\) −4.39127 + 7.60590i −0.548909 + 0.950737i
\(65\) 0 0
\(66\) 0.994211 + 0.222775i 0.122379 + 0.0274217i
\(67\) 5.69325 6.78495i 0.695541 0.828913i −0.296473 0.955041i \(-0.595811\pi\)
0.992014 + 0.126128i \(0.0402550\pi\)
\(68\) 6.27742 7.48114i 0.761249 0.907222i
\(69\) −0.640723 + 0.696054i −0.0771339 + 0.0837951i
\(70\) 0 0
\(71\) 5.36876 9.29896i 0.637154 1.10358i −0.348900 0.937160i \(-0.613445\pi\)
0.986054 0.166424i \(-0.0532219\pi\)
\(72\) −0.498359 0.352330i −0.0587322 0.0415225i
\(73\) 0.674654 0.389512i 0.0789623 0.0455889i −0.459999 0.887919i \(-0.652150\pi\)
0.538961 + 0.842331i \(0.318817\pi\)
\(74\) −3.84964 21.8324i −0.447512 2.53797i
\(75\) 0 0
\(76\) −6.91222 + 2.51584i −0.792886 + 0.288587i
\(77\) −0.107550 0.0189640i −0.0122565 0.00216115i
\(78\) −1.67321 + 2.61334i −0.189454 + 0.295902i
\(79\) −5.29571 + 4.44363i −0.595813 + 0.499947i −0.890097 0.455771i \(-0.849363\pi\)
0.294283 + 0.955718i \(0.404919\pi\)
\(80\) 0 0
\(81\) −5.84732 + 6.84170i −0.649702 + 0.760189i
\(82\) 19.2678i 2.12777i
\(83\) −5.77486 6.88221i −0.633874 0.755421i 0.349516 0.936931i \(-0.386346\pi\)
−0.983389 + 0.181509i \(0.941902\pi\)
\(84\) 1.15186 + 0.737486i 0.125678 + 0.0804664i
\(85\) 0 0
\(86\) −19.3248 + 7.03366i −2.08385 + 0.758459i
\(87\) 1.34958 + 10.4337i 0.144690 + 1.11861i
\(88\) 0.0582011 0.0102624i 0.00620426 0.00109398i
\(89\) 3.11061 + 5.38773i 0.329724 + 0.571099i 0.982457 0.186489i \(-0.0597110\pi\)
−0.652733 + 0.757588i \(0.726378\pi\)
\(90\) 0 0
\(91\) 0.166306 0.288050i 0.0174336 0.0301959i
\(92\) −0.392394 + 1.07809i −0.0409099 + 0.112399i
\(93\) 6.99589 + 6.43977i 0.725440 + 0.667773i
\(94\) −9.82342 8.24283i −1.01321 0.850183i
\(95\) 0 0
\(96\) 13.6553 + 3.05978i 1.39369 + 0.312288i
\(97\) 4.79504 13.1743i 0.486863 1.33765i −0.416643 0.909070i \(-0.636794\pi\)
0.903506 0.428575i \(-0.140984\pi\)
\(98\) 12.0278 + 6.94427i 1.21499 + 0.701477i
\(99\) −0.0720209 0.868504i −0.00723838 0.0872880i
\(100\) 0 0
\(101\) −0.698390 3.96077i −0.0694924 0.394111i −0.999638 0.0269191i \(-0.991430\pi\)
0.930145 0.367192i \(-0.119681\pi\)
\(102\) −15.0516 6.27455i −1.49033 0.621273i
\(103\) −0.176280 0.484326i −0.0173694 0.0477221i 0.930705 0.365771i \(-0.119195\pi\)
−0.948074 + 0.318049i \(0.896972\pi\)
\(104\) −0.0312556 + 0.177260i −0.00306487 + 0.0173817i
\(105\) 0 0
\(106\) −18.9477 + 15.8990i −1.84036 + 1.54425i
\(107\) 17.9687i 1.73710i 0.495598 + 0.868552i \(0.334949\pi\)
−0.495598 + 0.868552i \(0.665051\pi\)
\(108\) −3.35267 + 10.3867i −0.322611 + 0.999456i
\(109\) 1.10502 0.105842 0.0529209 0.998599i \(-0.483147\pi\)
0.0529209 + 0.998599i \(0.483147\pi\)
\(110\) 0 0
\(111\) −16.8397 + 8.71775i −1.59835 + 0.827453i
\(112\) −1.40279 0.247350i −0.132551 0.0233724i
\(113\) 3.10537 + 8.53194i 0.292129 + 0.802618i 0.995755 + 0.0920470i \(0.0293410\pi\)
−0.703626 + 0.710571i \(0.748437\pi\)
\(114\) 7.45513 + 9.76142i 0.698237 + 0.914241i
\(115\) 0 0
\(116\) 6.37918 + 11.0491i 0.592292 + 1.02588i
\(117\) 2.56065 + 0.698573i 0.236732 + 0.0645831i
\(118\) −2.21666 1.27979i −0.204060 0.117814i
\(119\) 1.64250 + 0.597820i 0.150567 + 0.0548020i
\(120\) 0 0
\(121\) −8.36184 7.01642i −0.760168 0.637856i
\(122\) 3.74497 4.46308i 0.339053 0.404068i
\(123\) 15.7291 4.92022i 1.41824 0.443641i
\(124\) 10.8357 + 3.94387i 0.973074 + 0.354170i
\(125\) 0 0
\(126\) 0.601080 2.20328i 0.0535484 0.196284i
\(127\) 9.35175 5.39923i 0.829833 0.479105i −0.0239622 0.999713i \(-0.507628\pi\)
0.853796 + 0.520608i \(0.174295\pi\)
\(128\) 1.60079 0.282262i 0.141491 0.0249487i
\(129\) 10.6767 + 13.9796i 0.940028 + 1.23083i
\(130\) 0 0
\(131\) 2.14908 12.1880i 0.187766 1.06487i −0.734584 0.678518i \(-0.762623\pi\)
0.922350 0.386356i \(-0.126266\pi\)
\(132\) −0.485876 0.938545i −0.0422901 0.0816898i
\(133\) −0.846260 1.00853i −0.0733801 0.0874510i
\(134\) −17.9353 −1.54938
\(135\) 0 0
\(136\) −0.945886 −0.0811091
\(137\) 10.6051 + 12.6386i 0.906052 + 1.07979i 0.996475 + 0.0838872i \(0.0267335\pi\)
−0.0904234 + 0.995903i \(0.528822\pi\)
\(138\) 1.91370 + 0.0878978i 0.162905 + 0.00748236i
\(139\) 2.14103 12.1424i 0.181600 1.02990i −0.748647 0.662969i \(-0.769296\pi\)
0.930247 0.366935i \(-0.119593\pi\)
\(140\) 0 0
\(141\) −4.22046 + 10.1242i −0.355427 + 0.852609i
\(142\) −21.4127 + 3.77564i −1.79692 + 0.316845i
\(143\) −0.222580 + 0.128507i −0.0186131 + 0.0107463i
\(144\) −0.939380 11.3280i −0.0782817 0.944003i
\(145\) 0 0
\(146\) −1.48236 0.539534i −0.122681 0.0446522i
\(147\) 2.59747 11.5921i 0.214236 0.956101i
\(148\) −14.7814 + 17.6158i −1.21503 + 1.44801i
\(149\) 7.81833 + 6.56036i 0.640503 + 0.537446i 0.904173 0.427167i \(-0.140488\pi\)
−0.263670 + 0.964613i \(0.584933\pi\)
\(150\) 0 0
\(151\) 16.7786 + 6.10690i 1.36542 + 0.496972i 0.917726 0.397214i \(-0.130023\pi\)
0.447695 + 0.894187i \(0.352245\pi\)
\(152\) 0.617003 + 0.356227i 0.0500456 + 0.0288938i
\(153\) −1.27861 + 13.8895i −0.103369 + 1.12290i
\(154\) 0.110572 + 0.191517i 0.00891016 + 0.0154329i
\(155\) 0 0
\(156\) 3.19220 0.412907i 0.255581 0.0330590i
\(157\) −3.95020 10.8531i −0.315260 0.866170i −0.991572 0.129555i \(-0.958645\pi\)
0.676312 0.736615i \(-0.263577\pi\)
\(158\) 13.7860 + 2.43084i 1.09675 + 0.193387i
\(159\) 17.8175 + 11.4078i 1.41302 + 0.904699i
\(160\) 0 0
\(161\) −0.205341 −0.0161831
\(162\) 18.2239 + 0.165131i 1.43180 + 0.0129739i
\(163\) 6.26212i 0.490487i 0.969461 + 0.245244i \(0.0788679\pi\)
−0.969461 + 0.245244i \(0.921132\pi\)
\(164\) 15.3103 12.8469i 1.19553 1.00317i
\(165\) 0 0
\(166\) −3.15908 + 17.9161i −0.245192 + 1.39056i
\(167\) −5.35688 14.7179i −0.414528 1.13891i −0.954757 0.297388i \(-0.903884\pi\)
0.540229 0.841518i \(-0.318338\pi\)
\(168\) −0.0169934 0.131377i −0.00131107 0.0101360i
\(169\) 2.12150 + 12.0316i 0.163192 + 0.925509i
\(170\) 0 0
\(171\) 6.06492 8.57862i 0.463796 0.656023i
\(172\) 18.4739 + 10.6659i 1.40862 + 0.813270i
\(173\) −3.11962 + 8.57107i −0.237180 + 0.651647i 0.762807 + 0.646626i \(0.223820\pi\)
−0.999987 + 0.00502090i \(0.998402\pi\)
\(174\) 14.4282 15.6741i 1.09380 1.18825i
\(175\) 0 0
\(176\) 0.843168 + 0.707502i 0.0635562 + 0.0533300i
\(177\) −0.478700 + 2.13636i −0.0359813 + 0.160579i
\(178\) 4.30868 11.8380i 0.322949 0.887295i
\(179\) −1.32110 + 2.28821i −0.0987437 + 0.171029i −0.911165 0.412042i \(-0.864816\pi\)
0.812421 + 0.583071i \(0.198149\pi\)
\(180\) 0 0
\(181\) 3.54912 + 6.14725i 0.263804 + 0.456922i 0.967250 0.253827i \(-0.0816895\pi\)
−0.703446 + 0.710749i \(0.748356\pi\)
\(182\) −0.663294 + 0.116957i −0.0491666 + 0.00866940i
\(183\) −4.59972 1.91748i −0.340021 0.141744i
\(184\) 0.104420 0.0380056i 0.00769791 0.00280181i
\(185\) 0 0
\(186\) 0.883443 19.2342i 0.0647772 1.41032i
\(187\) −0.868169 1.03464i −0.0634868 0.0756606i
\(188\) 13.3017i 0.970128i
\(189\) −1.95213 + 0.0719439i −0.141996 + 0.00523315i
\(190\) 0 0
\(191\) 3.97951 3.33921i 0.287948 0.241617i −0.487359 0.873202i \(-0.662040\pi\)
0.775307 + 0.631585i \(0.217595\pi\)
\(192\) −6.99344 13.5089i −0.504708 0.974921i
\(193\) −3.86223 0.681015i −0.278009 0.0490205i 0.0329051 0.999458i \(-0.489524\pi\)
−0.310914 + 0.950438i \(0.600635\pi\)
\(194\) −26.6774 + 9.70978i −1.91533 + 0.697121i
\(195\) 0 0
\(196\) −2.50165 14.1875i −0.178689 1.01340i
\(197\) −8.98212 + 5.18583i −0.639950 + 0.369475i −0.784595 0.620008i \(-0.787129\pi\)
0.144646 + 0.989484i \(0.453796\pi\)
\(198\) −1.25349 + 1.24218i −0.0890816 + 0.0882780i
\(199\) 5.95479 10.3140i 0.422124 0.731140i −0.574023 0.818839i \(-0.694618\pi\)
0.996147 + 0.0876991i \(0.0279514\pi\)
\(200\) 0 0
\(201\) 4.57997 + 14.6414i 0.323046 + 1.03272i
\(202\) −5.23494 + 6.23876i −0.368329 + 0.438958i
\(203\) −1.46780 + 1.74926i −0.103019 + 0.122774i
\(204\) 5.04991 + 16.1437i 0.353565 + 1.13028i
\(205\) 0 0
\(206\) −0.521842 + 0.903856i −0.0363584 + 0.0629747i
\(207\) −0.416929 1.58468i −0.0289786 0.110143i
\(208\) −2.90315 + 1.67613i −0.201297 + 0.116219i
\(209\) 0.176655 + 1.00186i 0.0122195 + 0.0693000i
\(210\) 0 0
\(211\) −2.30091 + 0.837462i −0.158401 + 0.0576532i −0.420004 0.907522i \(-0.637971\pi\)
0.261603 + 0.965176i \(0.415749\pi\)
\(212\) 25.2669 + 4.45524i 1.73534 + 0.305987i
\(213\) 8.55017 + 16.5160i 0.585848 + 1.13166i
\(214\) 27.8733 23.3885i 1.90538 1.59880i
\(215\) 0 0
\(216\) 0.979375 0.397895i 0.0666380 0.0270733i
\(217\) 2.06384i 0.140103i
\(218\) −1.43832 1.71412i −0.0974152 0.116095i
\(219\) −0.0619094 + 1.34789i −0.00418345 + 0.0910818i
\(220\) 0 0
\(221\) 3.86546 1.40691i 0.260019 0.0946391i
\(222\) 35.4419 + 14.7747i 2.37871 + 0.991611i
\(223\) −17.7446 + 3.12885i −1.18826 + 0.209523i −0.732619 0.680639i \(-0.761702\pi\)
−0.455645 + 0.890162i \(0.650591\pi\)
\(224\) 1.51869 + 2.63045i 0.101472 + 0.175755i
\(225\) 0 0
\(226\) 9.19282 15.9224i 0.611497 1.05914i
\(227\) −1.82862 + 5.02409i −0.121370 + 0.333460i −0.985468 0.169863i \(-0.945667\pi\)
0.864098 + 0.503324i \(0.167890\pi\)
\(228\) 2.78576 12.4324i 0.184491 0.823355i
\(229\) −16.5031 13.8477i −1.09055 0.915083i −0.0937994 0.995591i \(-0.529901\pi\)
−0.996754 + 0.0805082i \(0.974346\pi\)
\(230\) 0 0
\(231\) 0.128107 0.139171i 0.00842885 0.00915675i
\(232\) 0.422641 1.16120i 0.0277477 0.0762363i
\(233\) 22.1390 + 12.7820i 1.45038 + 0.837375i 0.998502 0.0547064i \(-0.0174223\pi\)
0.451874 + 0.892082i \(0.350756\pi\)
\(234\) −2.24936 4.88138i −0.147045 0.319106i
\(235\) 0 0
\(236\) 0.461039 + 2.61468i 0.0300111 + 0.170201i
\(237\) −1.53599 11.8748i −0.0997735 0.771353i
\(238\) −1.21056 3.32599i −0.0784691 0.215592i
\(239\) −1.60685 + 9.11290i −0.103939 + 0.589465i 0.887700 + 0.460421i \(0.152302\pi\)
−0.991639 + 0.129043i \(0.958809\pi\)
\(240\) 0 0
\(241\) −22.0268 + 18.4827i −1.41887 + 1.19058i −0.466933 + 0.884293i \(0.654641\pi\)
−0.951940 + 0.306283i \(0.900914\pi\)
\(242\) 22.1037i 1.42088i
\(243\) −4.51886 14.9191i −0.289885 0.957062i
\(244\) −6.04338 −0.386888
\(245\) 0 0
\(246\) −28.1056 17.9949i −1.79195 1.14731i
\(247\) −3.05130 0.538026i −0.194149 0.0342338i
\(248\) −0.381986 1.04950i −0.0242562 0.0666432i
\(249\) 15.4323 1.99615i 0.977985 0.126501i
\(250\) 0 0
\(251\) 5.86206 + 10.1534i 0.370010 + 0.640876i 0.989567 0.144076i \(-0.0460210\pi\)
−0.619557 + 0.784952i \(0.712688\pi\)
\(252\) −2.15152 + 0.991429i −0.135533 + 0.0624541i
\(253\) 0.137412 + 0.0793348i 0.00863901 + 0.00498774i
\(254\) −20.5478 7.47878i −1.28928 0.469260i
\(255\) 0 0
\(256\) 10.9342 + 9.17485i 0.683385 + 0.573428i
\(257\) −2.37109 + 2.82575i −0.147904 + 0.176265i −0.834910 0.550387i \(-0.814480\pi\)
0.687006 + 0.726652i \(0.258925\pi\)
\(258\) 7.78827 34.7578i 0.484876 2.16393i
\(259\) −3.86758 1.40769i −0.240320 0.0874693i
\(260\) 0 0
\(261\) −16.4798 7.77576i −1.02008 0.481308i
\(262\) −21.7035 + 12.5305i −1.34085 + 0.774138i
\(263\) −21.7759 + 3.83968i −1.34276 + 0.236765i −0.798421 0.602099i \(-0.794331\pi\)
−0.544340 + 0.838864i \(0.683220\pi\)
\(264\) −0.0393865 + 0.0944815i −0.00242407 + 0.00581494i
\(265\) 0 0
\(266\) −0.462939 + 2.62546i −0.0283846 + 0.160977i
\(267\) −10.7641 0.494404i −0.658754 0.0302570i
\(268\) 11.9585 + 14.2516i 0.730480 + 0.870553i
\(269\) −25.3331 −1.54459 −0.772294 0.635265i \(-0.780891\pi\)
−0.772294 + 0.635265i \(0.780891\pi\)
\(270\) 0 0
\(271\) 28.7783 1.74816 0.874079 0.485783i \(-0.161466\pi\)
0.874079 + 0.485783i \(0.161466\pi\)
\(272\) −11.3237 13.4950i −0.686598 0.818255i
\(273\) 0.264855 + 0.511609i 0.0160298 + 0.0309640i
\(274\) 5.80140 32.9014i 0.350475 1.98764i
\(275\) 0 0
\(276\) −1.20613 1.57925i −0.0726004 0.0950598i
\(277\) −19.4258 + 3.42530i −1.16718 + 0.205806i −0.723466 0.690360i \(-0.757452\pi\)
−0.443719 + 0.896166i \(0.646341\pi\)
\(278\) −21.6222 + 12.4836i −1.29681 + 0.748715i
\(279\) −15.9273 + 4.19047i −0.953544 + 0.250877i
\(280\) 0 0
\(281\) −8.19525 2.98283i −0.488887 0.177940i 0.0858017 0.996312i \(-0.472655\pi\)
−0.574689 + 0.818372i \(0.694877\pi\)
\(282\) 21.1982 6.63100i 1.26233 0.394870i
\(283\) 4.77449 5.69001i 0.283814 0.338236i −0.605236 0.796046i \(-0.706921\pi\)
0.889050 + 0.457810i \(0.151366\pi\)
\(284\) 17.2772 + 14.4973i 1.02521 + 0.860257i
\(285\) 0 0
\(286\) 0.489056 + 0.178002i 0.0289185 + 0.0105255i
\(287\) 3.09789 + 1.78857i 0.182862 + 0.105576i
\(288\) −17.2165 + 17.0612i −1.01449 + 1.00534i
\(289\) 2.30851 + 3.99846i 0.135795 + 0.235204i
\(290\) 0 0
\(291\) 14.7389 + 19.2984i 0.864007 + 1.13129i
\(292\) 0.559652 + 1.53763i 0.0327512 + 0.0899831i
\(293\) −1.86471 0.328799i −0.108937 0.0192086i 0.118914 0.992905i \(-0.462059\pi\)
−0.227851 + 0.973696i \(0.573170\pi\)
\(294\) −21.3627 + 11.0593i −1.24590 + 0.644991i
\(295\) 0 0
\(296\) 2.22728 0.129458
\(297\) 1.33414 + 0.706072i 0.0774145 + 0.0409705i
\(298\) 20.6670i 1.19721i
\(299\) −0.370191 + 0.310627i −0.0214087 + 0.0179640i
\(300\) 0 0
\(301\) −0.662985 + 3.75998i −0.0382138 + 0.216721i
\(302\) −12.3662 33.9759i −0.711597 1.95510i
\(303\) 6.42976 + 2.68037i 0.369380 + 0.153983i
\(304\) 2.30413 + 13.0674i 0.132151 + 0.749466i
\(305\) 0 0
\(306\) 23.2098 16.0955i 1.32682 0.920117i
\(307\) −12.3183 7.11195i −0.703040 0.405900i 0.105439 0.994426i \(-0.466375\pi\)
−0.808479 + 0.588525i \(0.799709\pi\)
\(308\) 0.0784561 0.215556i 0.00447045 0.0122825i
\(309\) 0.871114 + 0.195193i 0.0495559 + 0.0111041i
\(310\) 0 0
\(311\) 11.2222 + 9.41658i 0.636355 + 0.533965i 0.902896 0.429858i \(-0.141436\pi\)
−0.266541 + 0.963824i \(0.585881\pi\)
\(312\) −0.229375 0.211141i −0.0129858 0.0119535i
\(313\) 8.84996 24.3151i 0.500229 1.37437i −0.390822 0.920466i \(-0.627809\pi\)
0.891051 0.453902i \(-0.149968\pi\)
\(314\) −11.6938 + 20.2542i −0.659917 + 1.14301i
\(315\) 0 0
\(316\) −7.26032 12.5752i −0.408425 0.707413i
\(317\) −17.9868 + 3.17156i −1.01024 + 0.178133i −0.654187 0.756333i \(-0.726989\pi\)
−0.356053 + 0.934466i \(0.615878\pi\)
\(318\) −5.49568 42.4873i −0.308182 2.38257i
\(319\) 1.65807 0.603489i 0.0928342 0.0337889i
\(320\) 0 0
\(321\) −26.2107 16.7817i −1.46294 0.936661i
\(322\) 0.267276 + 0.318527i 0.0148947 + 0.0177508i
\(323\) 16.2822i 0.905968i
\(324\) −12.0197 14.5910i −0.667760 0.810609i
\(325\) 0 0
\(326\) 9.71387 8.15090i 0.538001 0.451437i
\(327\) −1.03202 + 1.61188i −0.0570709 + 0.0891371i
\(328\) −1.90637 0.336144i −0.105262 0.0185605i
\(329\) −2.23717 + 0.814263i −0.123339 + 0.0448918i
\(330\) 0 0
\(331\) −5.49188 31.1460i −0.301861 1.71194i −0.637923 0.770100i \(-0.720206\pi\)
0.336062 0.941840i \(-0.390905\pi\)
\(332\) 16.3426 9.43539i 0.896916 0.517835i
\(333\) 3.01074 32.7056i 0.164987 1.79226i
\(334\) −15.8580 + 27.4668i −0.867709 + 1.50292i
\(335\) 0 0
\(336\) 1.67093 1.81522i 0.0911565 0.0990285i
\(337\) −4.92591 + 5.87047i −0.268332 + 0.319785i −0.883338 0.468737i \(-0.844709\pi\)
0.615006 + 0.788522i \(0.289154\pi\)
\(338\) 15.9022 18.9515i 0.864965 1.03083i
\(339\) −15.3456 3.43854i −0.833461 0.186756i
\(340\) 0 0
\(341\) 0.797378 1.38110i 0.0431804 0.0747907i
\(342\) −21.2015 + 1.75814i −1.14644 + 0.0950691i
\(343\) 4.51204 2.60503i 0.243627 0.140658i
\(344\) −0.358777 2.03472i −0.0193439 0.109705i
\(345\) 0 0
\(346\) 17.3561 6.31710i 0.933069 0.339609i
\(347\) 3.49638 + 0.616506i 0.187695 + 0.0330958i 0.266706 0.963778i \(-0.414065\pi\)
−0.0790102 + 0.996874i \(0.525176\pi\)
\(348\) −22.0749 1.01391i −1.18334 0.0543515i
\(349\) 3.58455 3.00779i 0.191876 0.161003i −0.541788 0.840515i \(-0.682253\pi\)
0.733665 + 0.679511i \(0.237808\pi\)
\(350\) 0 0
\(351\) −3.41048 + 3.08276i −0.182038 + 0.164545i
\(352\) 2.34703i 0.125097i
\(353\) −10.0759 12.0080i −0.536286 0.639120i 0.428065 0.903748i \(-0.359195\pi\)
−0.964351 + 0.264628i \(0.914751\pi\)
\(354\) 3.93703 2.03817i 0.209251 0.108327i
\(355\) 0 0
\(356\) −12.2794 + 4.46934i −0.650807 + 0.236874i
\(357\) −2.40602 + 1.83756i −0.127340 + 0.0972539i
\(358\) 5.26907 0.929080i 0.278479 0.0491034i
\(359\) 1.36397 + 2.36247i 0.0719876 + 0.124686i 0.899772 0.436360i \(-0.143732\pi\)
−0.827785 + 0.561046i \(0.810399\pi\)
\(360\) 0 0
\(361\) 3.36800 5.83355i 0.177263 0.307029i
\(362\) 4.91608 13.5068i 0.258383 0.709902i
\(363\) 18.0442 5.64440i 0.947074 0.296254i
\(364\) 0.535189 + 0.449077i 0.0280516 + 0.0235380i
\(365\) 0 0
\(366\) 3.01266 + 9.63096i 0.157474 + 0.503418i
\(367\) 10.9091 29.9725i 0.569450 1.56455i −0.235916 0.971773i \(-0.575809\pi\)
0.805366 0.592778i \(-0.201969\pi\)
\(368\) 1.79228 + 1.03478i 0.0934293 + 0.0539414i
\(369\) −7.51293 + 27.5390i −0.391107 + 1.43362i
\(370\) 0 0
\(371\) 0.797399 + 4.52228i 0.0413989 + 0.234785i
\(372\) −15.8727 + 12.1225i −0.822962 + 0.628525i
\(373\) 2.11873 + 5.82118i 0.109704 + 0.301409i 0.982381 0.186888i \(-0.0598403\pi\)
−0.872677 + 0.488298i \(0.837618\pi\)
\(374\) −0.474924 + 2.69343i −0.0245577 + 0.139274i
\(375\) 0 0
\(376\) 0.986932 0.828134i 0.0508971 0.0427078i
\(377\) 5.37398i 0.276774i
\(378\) 2.65253 + 2.93451i 0.136431 + 0.150935i
\(379\) −24.4506 −1.25595 −0.627973 0.778235i \(-0.716115\pi\)
−0.627973 + 0.778235i \(0.716115\pi\)
\(380\) 0 0
\(381\) −0.858161 + 18.6838i −0.0439649 + 0.957200i
\(382\) −10.3596 1.82668i −0.530045 0.0934612i
\(383\) −2.55465 7.01885i −0.130537 0.358647i 0.857155 0.515058i \(-0.172230\pi\)
−0.987692 + 0.156411i \(0.950007\pi\)
\(384\) −1.08330 + 2.59866i −0.0552821 + 0.132612i
\(385\) 0 0
\(386\) 3.97075 + 6.87755i 0.202106 + 0.350058i
\(387\) −30.3631 + 2.51787i −1.54344 + 0.127990i
\(388\) 25.5028 + 14.7240i 1.29471 + 0.747500i
\(389\) 26.7061 + 9.72022i 1.35405 + 0.492835i 0.914210 0.405240i \(-0.132812\pi\)
0.439842 + 0.898075i \(0.355034\pi\)
\(390\) 0 0
\(391\) −1.94539 1.63238i −0.0983826 0.0825528i
\(392\) −0.896909 + 1.06889i −0.0453007 + 0.0539873i
\(393\) 15.7714 + 14.5177i 0.795562 + 0.732320i
\(394\) 19.7356 + 7.18318i 0.994266 + 0.361883i
\(395\) 0 0
\(396\) 1.82282 + 0.167801i 0.0916001 + 0.00843231i
\(397\) 25.1031 14.4933i 1.25989 0.727396i 0.286834 0.957980i \(-0.407397\pi\)
0.973052 + 0.230585i \(0.0740639\pi\)
\(398\) −23.7501 + 4.18777i −1.19048 + 0.209914i
\(399\) 2.26149 0.292520i 0.113216 0.0146443i
\(400\) 0 0
\(401\) 5.27642 29.9241i 0.263492 1.49434i −0.509804 0.860291i \(-0.670282\pi\)
0.773296 0.634046i \(-0.218607\pi\)
\(402\) 16.7505 26.1620i 0.835437 1.30484i
\(403\) 3.12205 + 3.72071i 0.155520 + 0.185342i
\(404\) 8.44780 0.420294
\(405\) 0 0
\(406\) 4.62398 0.229484
\(407\) 2.04428 + 2.43627i 0.101331 + 0.120762i
\(408\) 0.883398 1.37975i 0.0437347 0.0683078i
\(409\) 0.726985 4.12294i 0.0359471 0.203866i −0.961545 0.274649i \(-0.911438\pi\)
0.997492 + 0.0707824i \(0.0225496\pi\)
\(410\) 0 0
\(411\) −28.3402 + 3.66577i −1.39792 + 0.180819i
\(412\) 1.06615 0.187992i 0.0525256 0.00926168i
\(413\) −0.411531 + 0.237598i −0.0202501 + 0.0116914i
\(414\) −1.91549 + 2.70940i −0.0941414 + 0.133160i
\(415\) 0 0
\(416\) 6.71711 + 2.44483i 0.329333 + 0.119868i
\(417\) 15.7123 + 14.4633i 0.769436 + 0.708271i
\(418\) 1.32416 1.57807i 0.0647666 0.0771858i
\(419\) 17.7641 + 14.9058i 0.867832 + 0.728197i 0.963640 0.267203i \(-0.0860993\pi\)
−0.0958087 + 0.995400i \(0.530544\pi\)
\(420\) 0 0
\(421\) 6.96568 + 2.53530i 0.339487 + 0.123563i 0.506137 0.862453i \(-0.331073\pi\)
−0.166651 + 0.986016i \(0.553295\pi\)
\(422\) 4.29399 + 2.47913i 0.209028 + 0.120682i
\(423\) −10.8263 15.6117i −0.526394 0.759065i
\(424\) −1.24250 2.15207i −0.0603411 0.104514i
\(425\) 0 0
\(426\) 14.4907 34.7606i 0.702075 1.68416i
\(427\) −0.369944 1.01641i −0.0179029 0.0491877i
\(428\) −37.1694 6.55396i −1.79665 0.316798i
\(429\) 0.0204250 0.444692i 0.000986129 0.0214699i
\(430\) 0 0
\(431\) 3.55875 0.171419 0.0857095 0.996320i \(-0.472684\pi\)
0.0857095 + 0.996320i \(0.472684\pi\)
\(432\) 17.4014 + 9.20941i 0.837223 + 0.443088i
\(433\) 39.5383i 1.90009i 0.312111 + 0.950046i \(0.398964\pi\)
−0.312111 + 0.950046i \(0.601036\pi\)
\(434\) 3.20145 2.68633i 0.153674 0.128948i
\(435\) 0 0
\(436\) −0.403048 + 2.28580i −0.0193025 + 0.109470i
\(437\) 0.654218 + 1.79745i 0.0312955 + 0.0859837i
\(438\) 2.17144 1.65840i 0.103755 0.0792415i
\(439\) 0.368776 + 2.09143i 0.0176007 + 0.0998186i 0.992343 0.123516i \(-0.0394169\pi\)
−0.974742 + 0.223334i \(0.928306\pi\)
\(440\) 0 0
\(441\) 14.4834 + 14.6152i 0.689684 + 0.695962i
\(442\) −7.21377 4.16487i −0.343124 0.198103i
\(443\) −5.55606 + 15.2652i −0.263977 + 0.725270i 0.734913 + 0.678161i \(0.237223\pi\)
−0.998890 + 0.0471084i \(0.984999\pi\)
\(444\) −11.8910 38.0136i −0.564323 1.80404i
\(445\) 0 0
\(446\) 27.9502 + 23.4530i 1.32348 + 1.11053i
\(447\) −16.8713 + 5.27752i −0.797987 + 0.249618i
\(448\) 1.12926 3.10260i 0.0533523 0.146584i
\(449\) 17.8132 30.8534i 0.840658 1.45606i −0.0486805 0.998814i \(-0.515502\pi\)
0.889339 0.457249i \(-0.151165\pi\)
\(450\) 0 0
\(451\) −1.38205 2.39378i −0.0650781 0.112719i
\(452\) −18.7815 + 3.31168i −0.883406 + 0.155768i
\(453\) −24.5782 + 18.7712i −1.15478 + 0.881947i
\(454\) 10.1736 3.70288i 0.477470 0.173785i
\(455\) 0 0
\(456\) −1.09587 + 0.567320i −0.0513186 + 0.0265672i
\(457\) 16.5710 + 19.7485i 0.775157 + 0.923796i 0.998704 0.0508970i \(-0.0162080\pi\)
−0.223547 + 0.974693i \(0.571764\pi\)
\(458\) 43.6242i 2.03842i
\(459\) −19.0663 14.8370i −0.889938 0.692532i
\(460\) 0 0
\(461\) −26.3039 + 22.0716i −1.22509 + 1.02798i −0.226551 + 0.973999i \(0.572745\pi\)
−0.998542 + 0.0539762i \(0.982810\pi\)
\(462\) −0.382630 0.0175745i −0.0178016 0.000817639i
\(463\) 29.0659 + 5.12509i 1.35080 + 0.238183i 0.801778 0.597622i \(-0.203888\pi\)
0.549026 + 0.835805i \(0.314999\pi\)
\(464\) 21.6265 7.87140i 1.00398 0.365421i
\(465\) 0 0
\(466\) −8.98908 50.9796i −0.416411 2.36158i
\(467\) 14.4100 8.31964i 0.666817 0.384987i −0.128053 0.991767i \(-0.540873\pi\)
0.794869 + 0.606780i \(0.207539\pi\)
\(468\) −2.37902 + 5.04205i −0.109970 + 0.233069i
\(469\) −1.66488 + 2.88366i −0.0768770 + 0.133155i
\(470\) 0 0
\(471\) 19.5205 + 4.37400i 0.899455 + 0.201543i
\(472\) 0.165295 0.196991i 0.00760833 0.00906725i
\(473\) 1.89635 2.25999i 0.0871944 0.103914i
\(474\) −16.4211 + 17.8392i −0.754245 + 0.819380i
\(475\) 0 0
\(476\) −1.83571 + 3.17955i −0.0841397 + 0.145734i
\(477\) −33.2808 + 15.3359i −1.52382 + 0.702184i
\(478\) 16.2275 9.36897i 0.742230 0.428527i
\(479\) −0.965663 5.47655i −0.0441223 0.250230i 0.954767 0.297356i \(-0.0961048\pi\)
−0.998889 + 0.0471262i \(0.984994\pi\)
\(480\) 0 0
\(481\) −9.10199 + 3.31285i −0.415015 + 0.151053i
\(482\) 57.3411 + 10.1108i 2.61182 + 0.460534i
\(483\) 0.191775 0.299528i 0.00872609 0.0136290i
\(484\) 17.5638 14.7378i 0.798354 0.669898i
\(485\) 0 0
\(486\) −17.2608 + 26.4287i −0.782968 + 1.19883i
\(487\) 17.5069i 0.793314i −0.917967 0.396657i \(-0.870170\pi\)
0.917967 0.396657i \(-0.129830\pi\)
\(488\) 0.376246 + 0.448393i 0.0170319 + 0.0202978i
\(489\) −9.13446 5.84843i −0.413075 0.264475i
\(490\) 0 0
\(491\) 25.2199 9.17930i 1.13816 0.414256i 0.296911 0.954905i \(-0.404044\pi\)
0.841248 + 0.540649i \(0.181821\pi\)
\(492\) 4.44068 + 34.3311i 0.200201 + 1.54777i
\(493\) −27.8118 + 4.90396i −1.25258 + 0.220863i
\(494\) 3.13704 + 5.43351i 0.141142 + 0.244465i
\(495\) 0 0
\(496\) 10.4003 18.0139i 0.466988 0.808847i
\(497\) −1.38063 + 3.79324i −0.0619295 + 0.170150i
\(498\) −23.1835 21.3406i −1.03888 0.956294i
\(499\) −4.46524 3.74678i −0.199892 0.167729i 0.537347 0.843361i \(-0.319426\pi\)
−0.737239 + 0.675632i \(0.763871\pi\)
\(500\) 0 0
\(501\) 26.4718 + 5.93160i 1.18267 + 0.265004i
\(502\) 8.11986 22.3091i 0.362407 0.995705i
\(503\) −26.4175 15.2521i −1.17790 0.680059i −0.222369 0.974963i \(-0.571379\pi\)
−0.955527 + 0.294904i \(0.904712\pi\)
\(504\) 0.207508 + 0.0979097i 0.00924316 + 0.00436124i
\(505\) 0 0
\(506\) −0.0557931 0.316419i −0.00248031 0.0140665i
\(507\) −19.5317 8.14218i −0.867433 0.361607i
\(508\) 7.75764 + 21.3139i 0.344190 + 0.945654i
\(509\) 5.46355 30.9853i 0.242167 1.37340i −0.584813 0.811168i \(-0.698832\pi\)
0.826980 0.562231i \(-0.190057\pi\)
\(510\) 0 0
\(511\) −0.224349 + 0.188252i −0.00992464 + 0.00832776i
\(512\) 32.1543i 1.42103i
\(513\) 6.84925 + 16.8587i 0.302402 + 0.744330i
\(514\) 7.46958 0.329469
\(515\) 0 0
\(516\) −32.8117 + 16.9863i −1.44446 + 0.747782i
\(517\) 1.81168 + 0.319449i 0.0796778 + 0.0140493i
\(518\) 2.85051 + 7.83171i 0.125244 + 0.344106i
\(519\) −9.58897 12.5554i −0.420909 0.551120i
\(520\) 0 0
\(521\) −4.14101 7.17245i −0.181421 0.314231i 0.760944 0.648818i \(-0.224736\pi\)
−0.942365 + 0.334587i \(0.891403\pi\)
\(522\) 9.38864 + 35.6848i 0.410930 + 1.56188i
\(523\) 15.4347 + 8.91120i 0.674910 + 0.389660i 0.797935 0.602744i \(-0.205926\pi\)
−0.123024 + 0.992404i \(0.539259\pi\)
\(524\) 24.4278 + 8.89098i 1.06713 + 0.388404i
\(525\) 0 0
\(526\) 34.3001 + 28.7812i 1.49556 + 1.25492i
\(527\) −16.4067 + 19.5527i −0.714686 + 0.851730i
\(528\) −1.81949 + 0.569154i −0.0791831 + 0.0247693i
\(529\) −21.3326 7.76443i −0.927504 0.337584i
\(530\) 0 0
\(531\) −2.66920 2.69350i −0.115834 0.116888i
\(532\) 2.39488 1.38268i 0.103831 0.0599469i
\(533\) 8.29054 1.46185i 0.359103 0.0633196i
\(534\) 13.2439 + 17.3409i 0.573118 + 0.750416i
\(535\) 0 0
\(536\) 0.312899 1.77454i 0.0135152 0.0766483i
\(537\) −2.10396 4.06412i −0.0907925 0.175380i
\(538\) 32.9741 + 39.2970i 1.42161 + 1.69421i
\(539\) −1.99241 −0.0858191
\(540\) 0 0
\(541\) −34.8916 −1.50011 −0.750054 0.661376i \(-0.769973\pi\)
−0.750054 + 0.661376i \(0.769973\pi\)
\(542\) −37.4584 44.6412i −1.60898 1.91750i
\(543\) −12.2816 0.564101i −0.527052 0.0242079i
\(544\) −6.52300 + 36.9938i −0.279671 + 1.58610i
\(545\) 0 0
\(546\) 0.448872 1.07677i 0.0192099 0.0460814i
\(547\) 24.4154 4.30509i 1.04393 0.184072i 0.374711 0.927142i \(-0.377742\pi\)
0.669214 + 0.743069i \(0.266631\pi\)
\(548\) −30.0118 + 17.3273i −1.28204 + 0.740187i
\(549\) 7.09285 4.91873i 0.302715 0.209926i
\(550\) 0 0
\(551\) 19.9885 + 7.27523i 0.851540 + 0.309935i
\(552\) −0.0420831 + 0.187810i −0.00179117 + 0.00799373i
\(553\) 1.67054 1.99088i 0.0710388 0.0846607i
\(554\) 30.5984 + 25.6751i 1.30000 + 1.09083i
\(555\) 0 0
\(556\) 24.3363 + 8.85768i 1.03209 + 0.375649i
\(557\) 27.0026 + 15.5900i 1.14414 + 0.660568i 0.947452 0.319898i \(-0.103649\pi\)
0.196686 + 0.980467i \(0.436982\pi\)
\(558\) 27.2316 + 19.2522i 1.15281 + 0.815012i
\(559\) 4.49262 + 7.78145i 0.190018 + 0.329120i
\(560\) 0 0
\(561\) 2.32003 0.300093i 0.0979519 0.0126699i
\(562\) 6.04011 + 16.5951i 0.254787 + 0.700020i
\(563\) −11.3381 1.99921i −0.477844 0.0842567i −0.0704615 0.997514i \(-0.522447\pi\)
−0.407382 + 0.913258i \(0.633558\pi\)
\(564\) −19.4030 12.4230i −0.817015 0.523102i
\(565\) 0 0
\(566\) −15.0410 −0.632219
\(567\) 1.71822 2.91473i 0.0721584 0.122407i
\(568\) 2.18446i 0.0916580i
\(569\) −0.688909 + 0.578063i −0.0288805 + 0.0242337i −0.657114 0.753791i \(-0.728223\pi\)
0.628233 + 0.778025i \(0.283778\pi\)
\(570\) 0 0
\(571\) 7.41437 42.0490i 0.310282 1.75969i −0.287256 0.957854i \(-0.592743\pi\)
0.597538 0.801841i \(-0.296146\pi\)
\(572\) −0.184639 0.507292i −0.00772015 0.0212109i
\(573\) 1.15424 + 8.92347i 0.0482190 + 0.372783i
\(574\) −1.25783 7.13351i −0.0525008 0.297747i
\(575\) 0 0
\(576\) 26.2367 + 2.41524i 1.09319 + 0.100635i
\(577\) −10.7781 6.22274i −0.448698 0.259056i 0.258582 0.965989i \(-0.416745\pi\)
−0.707280 + 0.706933i \(0.750078\pi\)
\(578\) 3.19765 8.78546i 0.133005 0.365427i
\(579\) 4.60046 4.99775i 0.191189 0.207699i
\(580\) 0 0
\(581\) 2.58731 + 2.17101i 0.107340 + 0.0900688i
\(582\) 10.7515 47.9822i 0.445664 1.98893i
\(583\) 1.21360 3.33434i 0.0502622 0.138094i
\(584\) 0.0792431 0.137253i 0.00327910 0.00567957i
\(585\) 0 0
\(586\) 1.91711 + 3.32053i 0.0791950 + 0.137170i
\(587\) 10.8379 1.91101i 0.447327 0.0788758i 0.0545530 0.998511i \(-0.482627\pi\)
0.392774 + 0.919635i \(0.371516\pi\)
\(588\) 23.0315 + 9.60115i 0.949804 + 0.395945i
\(589\) 18.0658 6.57541i 0.744388 0.270935i
\(590\) 0 0
\(591\) 0.824242 17.9453i 0.0339048 0.738172i
\(592\) 26.6638 + 31.7767i 1.09588 + 1.30601i
\(593\) 9.57442i 0.393174i −0.980486 0.196587i \(-0.937014\pi\)
0.980486 0.196587i \(-0.0629859\pi\)
\(594\) −0.641273 2.98856i −0.0263117 0.122622i
\(595\) 0 0
\(596\) −16.4222 + 13.7798i −0.672678 + 0.564444i
\(597\) 9.48348 + 18.3188i 0.388133 + 0.749738i
\(598\) 0.963696 + 0.169926i 0.0394085 + 0.00694878i
\(599\) 30.9256 11.2560i 1.26359 0.459908i 0.378616 0.925554i \(-0.376400\pi\)
0.884971 + 0.465646i \(0.154178\pi\)
\(600\) 0 0
\(601\) −2.22127 12.5974i −0.0906074 0.513860i −0.996005 0.0892957i \(-0.971538\pi\)
0.905398 0.424564i \(-0.139573\pi\)
\(602\) 6.69547 3.86563i 0.272887 0.157551i
\(603\) −25.6345 6.99338i −1.04392 0.284793i
\(604\) −18.7523 + 32.4800i −0.763021 + 1.32159i
\(605\) 0 0
\(606\) −4.21128 13.4627i −0.171072 0.546886i
\(607\) −24.0848 + 28.7032i −0.977573 + 1.16503i 0.00870958 + 0.999962i \(0.497228\pi\)
−0.986283 + 0.165064i \(0.947217\pi\)
\(608\) 18.1871 21.6745i 0.737583 0.879018i
\(609\) −1.18078 3.77475i −0.0478477 0.152961i
\(610\) 0 0
\(611\) −2.80143 + 4.85221i −0.113334 + 0.196300i
\(612\) −28.2649 7.71096i −1.14254 0.311697i
\(613\) 2.26483 1.30760i 0.0914758 0.0528136i −0.453564 0.891224i \(-0.649848\pi\)
0.545040 + 0.838410i \(0.316514\pi\)
\(614\) 5.00156 + 28.3653i 0.201847 + 1.14473i
\(615\) 0 0
\(616\) −0.0208779 + 0.00759892i −0.000841193 + 0.000306169i
\(617\) 6.35172 + 1.11998i 0.255711 + 0.0450887i 0.300034 0.953929i \(-0.403002\pi\)
−0.0443232 + 0.999017i \(0.514113\pi\)
\(618\) −0.831075 1.60535i −0.0334307 0.0645766i
\(619\) 0.0522006 0.0438015i 0.00209812 0.00176053i −0.641738 0.766924i \(-0.721786\pi\)
0.643836 + 0.765163i \(0.277342\pi\)
\(620\) 0 0
\(621\) 2.70094 + 0.871826i 0.108385 + 0.0349852i
\(622\) 29.6649i 1.18945i
\(623\) −1.50336 1.79164i −0.0602309 0.0717804i
\(624\) 0.266407 5.80018i 0.0106648 0.232193i
\(625\) 0 0
\(626\) −49.2370 + 17.9208i −1.96791 + 0.716260i
\(627\) −1.62638 0.677989i −0.0649514 0.0270763i
\(628\) 23.8910 4.21263i 0.953355 0.168102i
\(629\) −25.4508 44.0821i −1.01479 1.75767i
\(630\) 0 0
\(631\) −22.5451 + 39.0492i −0.897506 + 1.55453i −0.0668329 + 0.997764i \(0.521289\pi\)
−0.830673 + 0.556761i \(0.812044\pi\)
\(632\) −0.481019 + 1.32159i −0.0191339 + 0.0525700i
\(633\) 0.927309 4.13843i 0.0368572 0.164488i
\(634\) 28.3317 + 23.7732i 1.12520 + 0.944153i
\(635\) 0 0
\(636\) −30.0965 + 32.6956i −1.19340 + 1.29646i
\(637\) 2.07543 5.70220i 0.0822316 0.225930i
\(638\) −3.09432 1.78651i −0.122505 0.0707284i
\(639\) −32.0769 2.95286i −1.26894 0.116813i
\(640\) 0 0
\(641\) 6.39211 + 36.2514i 0.252473 + 1.43185i 0.802477 + 0.596683i \(0.203515\pi\)
−0.550004 + 0.835162i \(0.685374\pi\)
\(642\) 8.08451 + 62.5017i 0.319070 + 2.46675i
\(643\) 1.67760 + 4.60918i 0.0661582 + 0.181768i 0.968366 0.249533i \(-0.0802770\pi\)
−0.902208 + 0.431301i \(0.858055\pi\)
\(644\) 0.0748965 0.424759i 0.00295134 0.0167379i
\(645\) 0 0
\(646\) −25.2572 + 21.1933i −0.993730 + 0.833838i
\(647\) 37.6519i 1.48025i −0.672469 0.740125i \(-0.734766\pi\)
0.672469 0.740125i \(-0.265234\pi\)
\(648\) −0.334271 + 1.80021i −0.0131314 + 0.0707188i
\(649\) 0.367190 0.0144135
\(650\) 0 0
\(651\) −3.01049 1.92750i −0.117990 0.0755445i
\(652\) −12.9536 2.28406i −0.507300 0.0894507i
\(653\) 7.83944 + 21.5387i 0.306781 + 0.842874i 0.993279 + 0.115743i \(0.0369247\pi\)
−0.686498 + 0.727132i \(0.740853\pi\)
\(654\) 3.84366 0.497172i 0.150299 0.0194410i
\(655\) 0 0
\(656\) −18.0263 31.2224i −0.703807 1.21903i
\(657\) −1.90832 1.34915i −0.0744508 0.0526353i
\(658\) 4.17504 + 2.41046i 0.162760 + 0.0939694i
\(659\) −4.41936 1.60852i −0.172154 0.0626589i 0.254505 0.967071i \(-0.418087\pi\)
−0.426659 + 0.904412i \(0.640310\pi\)
\(660\) 0 0
\(661\) −25.3416 21.2641i −0.985675 0.827079i −0.000739053 1.00000i \(-0.500235\pi\)
−0.984936 + 0.172920i \(0.944680\pi\)
\(662\) −41.1657 + 49.0593i −1.59995 + 1.90675i
\(663\) −1.55785 + 6.95245i −0.0605020 + 0.270011i
\(664\) −1.71752 0.625125i −0.0666526 0.0242596i
\(665\) 0 0
\(666\) −54.6521 + 37.9000i −2.11773 + 1.46859i
\(667\) 2.87319 1.65884i 0.111250 0.0642304i
\(668\) 32.3987 5.71277i 1.25354 0.221034i
\(669\) 12.0083 28.8059i 0.464268 1.11370i
\(670\) 0 0
\(671\) −0.145135 + 0.823103i −0.00560288 + 0.0317755i
\(672\) −5.25537 0.241383i −0.202730 0.00931155i
\(673\) −28.5883 34.0702i −1.10200 1.31331i −0.945497 0.325631i \(-0.894423\pi\)
−0.156500 0.987678i \(-0.550021\pi\)
\(674\) 15.5180 0.597731
\(675\) 0 0
\(676\) −25.6619 −0.986996
\(677\) 5.51191 + 6.56883i 0.211840 + 0.252461i 0.861492 0.507770i \(-0.169530\pi\)
−0.649653 + 0.760231i \(0.725086\pi\)
\(678\) 14.6403 + 28.2800i 0.562257 + 1.08609i
\(679\) −0.915233 + 5.19055i −0.0351234 + 0.199195i
\(680\) 0 0
\(681\) −5.62075 7.35956i −0.215388 0.282019i
\(682\) −3.18026 + 0.560765i −0.121778 + 0.0214728i
\(683\) 38.0739 21.9820i 1.45686 0.841117i 0.458002 0.888951i \(-0.348565\pi\)
0.998855 + 0.0478347i \(0.0152321\pi\)
\(684\) 15.5332 + 15.6746i 0.593928 + 0.599334i
\(685\) 0 0
\(686\) −9.91390 3.60836i −0.378514 0.137768i
\(687\) 35.6123 11.1399i 1.35869 0.425013i
\(688\) 24.7344 29.4773i 0.942991 1.12381i
\(689\) 8.27859 + 6.94656i 0.315389 + 0.264643i
\(690\) 0 0
\(691\) 20.7711 + 7.56005i 0.790169 + 0.287598i 0.705406 0.708803i \(-0.250765\pi\)
0.0847628 + 0.996401i \(0.472987\pi\)
\(692\) −16.5919 9.57933i −0.630729 0.364152i
\(693\) 0.0833617 + 0.316845i 0.00316665 + 0.0120359i
\(694\) −3.59462 6.22607i −0.136450 0.236338i
\(695\) 0 0
\(696\) 1.29910 + 1.70098i 0.0492423 + 0.0644756i
\(697\) 15.1309 + 41.5717i 0.573123 + 1.57464i
\(698\) −9.33144 1.64538i −0.353200 0.0622787i
\(699\) −39.3213 + 20.3563i −1.48727 + 0.769947i
\(700\) 0 0
\(701\) −0.728282 −0.0275068 −0.0137534 0.999905i \(-0.504378\pi\)
−0.0137534 + 0.999905i \(0.504378\pi\)
\(702\) 9.22116 + 1.27780i 0.348030 + 0.0482274i
\(703\) 38.3398i 1.44601i
\(704\) −1.95440 + 1.63993i −0.0736591 + 0.0618073i
\(705\) 0 0
\(706\) −5.51192 + 31.2596i −0.207444 + 1.17647i
\(707\) 0.517130 + 1.42080i 0.0194487 + 0.0534348i
\(708\) −4.24458 1.76944i −0.159521 0.0664996i
\(709\) −2.85514 16.1923i −0.107227 0.608115i −0.990307 0.138893i \(-0.955646\pi\)
0.883080 0.469222i \(-0.155465\pi\)
\(710\) 0 0
\(711\) 18.7562 + 8.84981i 0.703411 + 0.331894i
\(712\) 1.09609 + 0.632829i 0.0410778 + 0.0237163i
\(713\) 1.02556 2.81771i 0.0384076 0.105524i
\(714\) 5.98216 + 1.34044i 0.223877 + 0.0501646i
\(715\) 0 0
\(716\) −4.25144 3.56738i −0.158884 0.133319i
\(717\) −11.7922 10.8548i −0.440386 0.405379i
\(718\) 1.88931 5.19084i 0.0705085 0.193720i
\(719\) −18.6844 + 32.3624i −0.696811 + 1.20691i 0.272755 + 0.962083i \(0.412065\pi\)
−0.969566 + 0.244829i \(0.921268\pi\)
\(720\) 0 0
\(721\) 0.0968819 + 0.167804i 0.00360807 + 0.00624936i
\(722\) −13.4329 + 2.36859i −0.499922 + 0.0881497i
\(723\) −6.38878 49.3919i −0.237601 1.83690i
\(724\) −14.0105 + 5.09939i −0.520694 + 0.189517i
\(725\) 0 0
\(726\) −32.2423 20.6435i −1.19662 0.766150i
\(727\) 3.26002 + 3.88514i 0.120907 + 0.144092i 0.823103 0.567893i \(-0.192241\pi\)
−0.702195 + 0.711984i \(0.747797\pi\)
\(728\) 0.0676673i 0.00250792i
\(729\) 25.9826 + 7.34192i 0.962319 + 0.271923i
\(730\) 0 0
\(731\) −36.1714 + 30.3514i −1.33785 + 1.12259i
\(732\) 5.64413 8.81539i 0.208613 0.325826i
\(733\) −24.6950 4.35439i −0.912129 0.160833i −0.302159 0.953257i \(-0.597707\pi\)
−0.609970 + 0.792424i \(0.708819\pi\)
\(734\) −60.6931 + 22.0905i −2.24022 + 0.815375i
\(735\) 0 0
\(736\) −0.766310 4.34596i −0.0282466 0.160194i
\(737\) 2.22824 1.28647i 0.0820783 0.0473879i
\(738\) 52.4977 24.1911i 1.93247 0.890487i
\(739\) 23.1354 40.0717i 0.851050 1.47406i −0.0292117 0.999573i \(-0.509300\pi\)
0.880262 0.474489i \(-0.157367\pi\)
\(740\) 0 0
\(741\) 3.63453 3.94840i 0.133518 0.145048i
\(742\) 5.97709 7.12322i 0.219426 0.261502i
\(743\) −21.0629 + 25.1018i −0.772723 + 0.920896i −0.998580 0.0532649i \(-0.983037\pi\)
0.225857 + 0.974160i \(0.427482\pi\)
\(744\) 1.88764 + 0.422968i 0.0692042 + 0.0155068i
\(745\) 0 0
\(746\) 6.27208 10.8636i 0.229637 0.397743i
\(747\) −11.5011 + 24.3752i −0.420802 + 0.891842i
\(748\) 2.45688 1.41848i 0.0898323 0.0518647i
\(749\) −1.17303 6.65257i −0.0428615 0.243080i
\(750\) 0 0
\(751\) 11.8075 4.29756i 0.430860 0.156820i −0.117481 0.993075i \(-0.537482\pi\)
0.548341 + 0.836255i \(0.315260\pi\)
\(752\) 23.6301 + 4.16662i 0.861700 + 0.151941i
\(753\) −20.2854 0.931722i −0.739240 0.0339538i
\(754\) 8.33617 6.99488i 0.303585 0.254738i
\(755\) 0 0
\(756\) 0.563203 4.06432i 0.0204835 0.147818i
\(757\) 35.3551i 1.28500i 0.766285 + 0.642501i \(0.222103\pi\)
−0.766285 + 0.642501i \(0.777897\pi\)
\(758\) 31.8254 + 37.9281i 1.15595 + 1.37761i
\(759\) −0.244059 + 0.126347i −0.00885876 + 0.00458611i
\(760\) 0 0
\(761\) 4.34791 1.58251i 0.157612 0.0573660i −0.262009 0.965065i \(-0.584385\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(762\) 30.0995 22.9880i 1.09039 0.832768i
\(763\) −0.409113 + 0.0721376i −0.0148109 + 0.00261156i
\(764\) 5.45584 + 9.44980i 0.197386 + 0.341882i
\(765\) 0 0
\(766\) −7.56253 + 13.0987i −0.273245 + 0.473275i
\(767\) −0.382490 + 1.05088i −0.0138109 + 0.0379452i
\(768\) −23.5950 + 7.38076i −0.851412 + 0.266330i
\(769\) 10.2592 + 8.60849i 0.369956 + 0.310430i 0.808744 0.588161i \(-0.200148\pi\)
−0.438788 + 0.898591i \(0.644592\pi\)
\(770\) 0 0
\(771\) −1.90743 6.09774i −0.0686946 0.219605i
\(772\) 2.81744 7.74084i 0.101402 0.278599i
\(773\) −20.2297 11.6796i −0.727612 0.420087i 0.0899361 0.995948i \(-0.471334\pi\)
−0.817548 + 0.575861i \(0.804667\pi\)
\(774\) 43.4270 + 43.8222i 1.56095 + 1.57516i
\(775\) 0 0
\(776\) −0.495282 2.80888i −0.0177796 0.100833i
\(777\) 5.66545 4.32690i 0.203247 0.155227i
\(778\) −19.6831 54.0788i −0.705672 1.93882i
\(779\) 5.78629 32.8157i 0.207316 1.17574i
\(780\) 0 0
\(781\) 2.38944 2.00498i 0.0855010 0.0717438i
\(782\) 5.14244i 0.183893i
\(783\) 26.7335 16.7768i 0.955378 0.599555i
\(784\) −25.9873 −0.928118
\(785\) 0 0
\(786\) 1.99161 43.3613i 0.0710385 1.54664i
\(787\) −44.8881 7.91498i −1.60009 0.282139i −0.698786 0.715331i \(-0.746276\pi\)
−0.901301 + 0.433193i \(0.857387\pi\)
\(788\) −7.45102 20.4715i −0.265432 0.729267i
\(789\) 14.7365 35.3503i 0.524632 1.25850i
\(790\) 0 0
\(791\) −1.70668 2.95606i −0.0606827 0.105105i
\(792\) −0.101034 0.145692i −0.00359010 0.00517695i
\(793\) −2.20451 1.27277i −0.0782844 0.0451975i
\(794\) −55.1567 20.0754i −1.95744 0.712449i
\(795\) 0 0
\(796\) 19.1631 + 16.0798i 0.679219 + 0.569932i
\(797\) −19.1281 + 22.7960i −0.677553 + 0.807477i −0.989791 0.142528i \(-0.954477\pi\)
0.312238 + 0.950004i \(0.398922\pi\)
\(798\) −3.39736 3.12729i −0.120265 0.110705i
\(799\) −27.6679 10.0703i −0.978820 0.356261i
\(800\) 0 0
\(801\) 10.7742 15.2397i 0.380687 0.538469i
\(802\) −53.2864 + 30.7649i −1.88161 + 1.08635i
\(803\) 0.222864 0.0392970i 0.00786472 0.00138676i
\(804\) −31.9570 + 4.13360i −1.12704 + 0.145781i
\(805\) 0 0
\(806\) 1.70789 9.68591i 0.0601578 0.341172i
\(807\) 23.6595 36.9531i 0.832855 1.30081i
\(808\) −0.525940 0.626791i −0.0185025 0.0220504i
\(809\) −6.39776 −0.224933 −0.112467 0.993656i \(-0.535875\pi\)
−0.112467 + 0.993656i \(0.535875\pi\)
\(810\) 0 0
\(811\) 6.93453 0.243504 0.121752 0.992561i \(-0.461149\pi\)
0.121752 + 0.992561i \(0.461149\pi\)
\(812\) −3.08307 3.67426i −0.108194 0.128941i
\(813\) −26.8771 + 41.9785i −0.942622 + 1.47225i
\(814\) 1.11830 6.34221i 0.0391965 0.222294i
\(815\) 0 0
\(816\) 30.2606 3.91416i 1.05933 0.137023i
\(817\) 35.0252 6.17588i 1.22538 0.216067i
\(818\) −7.34180 + 4.23879i −0.256700 + 0.148206i
\(819\) −0.993634 0.0914697i −0.0347204 0.00319621i
\(820\) 0 0
\(821\) 5.29886 + 1.92863i 0.184932 + 0.0673096i 0.432826 0.901477i \(-0.357516\pi\)
−0.247895 + 0.968787i \(0.579739\pi\)
\(822\) 42.5746 + 39.1902i 1.48496 + 1.36692i
\(823\) −16.0888 + 19.1739i −0.560821 + 0.668360i −0.969720 0.244219i \(-0.921468\pi\)
0.408899 + 0.912580i \(0.365913\pi\)
\(824\) −0.0803243 0.0674001i −0.00279823 0.00234799i
\(825\) 0 0
\(826\) 0.904222 + 0.329110i 0.0314619 + 0.0114512i
\(827\) −9.91448 5.72413i −0.344760 0.199048i 0.317615 0.948220i \(-0.397118\pi\)
−0.662375 + 0.749172i \(0.730451\pi\)
\(828\) 3.43008 0.284440i 0.119203 0.00988498i
\(829\) 11.2450 + 19.4769i 0.390555 + 0.676461i 0.992523 0.122059i \(-0.0389498\pi\)
−0.601968 + 0.798520i \(0.705617\pi\)
\(830\) 0 0
\(831\) 13.1461 31.5352i 0.456032 1.09394i
\(832\) −2.65759 7.30168i −0.0921355 0.253140i
\(833\) 31.4043 + 5.53743i 1.08809 + 0.191860i
\(834\) 1.98415 43.1988i 0.0687057 1.49585i
\(835\) 0 0
\(836\) −2.13683 −0.0739039
\(837\) 8.76254 27.1466i 0.302878 0.938323i
\(838\) 46.9575i 1.62212i
\(839\) −37.2179 + 31.2296i −1.28491 + 1.07816i −0.292358 + 0.956309i \(0.594440\pi\)
−0.992548 + 0.121855i \(0.961116\pi\)
\(840\) 0 0
\(841\) 1.37081 7.77424i 0.0472693 0.268077i
\(842\) −5.13389 14.1052i −0.176925 0.486099i
\(843\) 12.0048 9.16851i 0.413469 0.315780i
\(844\) −0.893098 5.06501i −0.0307417 0.174345i
\(845\) 0 0
\(846\) −10.1252 + 37.1144i −0.348112 + 1.27602i
\(847\) 3.55385 + 2.05182i 0.122112 + 0.0705013i
\(848\) 15.8292 43.4903i 0.543576 1.49346i
\(849\) 3.84087 + 12.2786i 0.131818 + 0.421400i
\(850\) 0 0
\(851\) 4.58081 + 3.84376i 0.157028 + 0.131762i
\(852\) −37.2828 + 11.6624i −1.27729 + 0.399549i
\(853\) −0.331738 + 0.911444i −0.0113585 + 0.0312072i −0.945242 0.326369i \(-0.894175\pi\)
0.933884 + 0.357577i \(0.116397\pi\)
\(854\) −1.09514 + 1.89684i −0.0374751 + 0.0649087i
\(855\) 0 0
\(856\) 1.82780 + 3.16584i 0.0624729 + 0.108206i
\(857\) 25.2108 4.44534i 0.861184 0.151850i 0.274422 0.961609i \(-0.411514\pi\)
0.586762 + 0.809759i \(0.300402\pi\)
\(858\) −0.716396 + 0.547136i −0.0244573 + 0.0186789i
\(859\) 11.4897 4.18192i 0.392025 0.142685i −0.138484 0.990365i \(-0.544223\pi\)
0.530509 + 0.847679i \(0.322001\pi\)
\(860\) 0 0
\(861\) −5.50219 + 2.84843i −0.187514 + 0.0970744i
\(862\) −4.63214 5.52037i −0.157771 0.188025i
\(863\) 8.39103i 0.285634i 0.989749 + 0.142817i \(0.0456161\pi\)
−0.989749 + 0.142817i \(0.954384\pi\)
\(864\) −8.80779 41.0475i −0.299647 1.39646i
\(865\) 0 0
\(866\) 61.3323 51.4639i 2.08416 1.74881i
\(867\) −7.98850 0.366918i −0.271304 0.0124612i
\(868\) −4.26917 0.752769i −0.144905 0.0255507i
\(869\) −1.88710 + 0.686848i −0.0640154 + 0.0232997i
\(870\) 0 0
\(871\) 1.36075 + 7.71722i 0.0461074 + 0.261488i
\(872\) 0.194689 0.112404i 0.00659302 0.00380648i
\(873\) −41.9154 + 3.47585i −1.41862 + 0.117640i
\(874\) 1.93668 3.35443i 0.0655091 0.113465i
\(875\) 0 0
\(876\) −2.76560 0.619695i −0.0934409 0.0209375i
\(877\) −26.8393 + 31.9858i −0.906298 + 1.08008i 0.0901543 + 0.995928i \(0.471264\pi\)
−0.996453 + 0.0841564i \(0.973180\pi\)
\(878\) 2.76425 3.29430i 0.0932888 0.111177i
\(879\) 2.22113 2.41295i 0.0749170 0.0813867i
\(880\) 0 0
\(881\) 5.65176 9.78914i 0.190413 0.329805i −0.754974 0.655754i \(-0.772351\pi\)
0.945387 + 0.325950i \(0.105684\pi\)
\(882\) 3.81941 41.4902i 0.128606 1.39705i
\(883\) −21.3019 + 12.2986i −0.716865 + 0.413882i −0.813598 0.581428i \(-0.802494\pi\)
0.0967330 + 0.995310i \(0.469161\pi\)
\(884\) 1.50038 + 8.50908i 0.0504632 + 0.286191i
\(885\) 0 0
\(886\) 30.9113 11.2508i 1.03849 0.377978i
\(887\) 9.16975 + 1.61687i 0.307890 + 0.0542893i 0.325458 0.945556i \(-0.394481\pi\)
−0.0175685 + 0.999846i \(0.505593\pi\)
\(888\) −2.08014 + 3.24890i −0.0698048 + 0.109026i
\(889\) −3.10983 + 2.60946i −0.104300 + 0.0875184i
\(890\) 0 0
\(891\) −2.27594 + 1.28666i −0.0762468 + 0.0431047i
\(892\) 37.8468i 1.26721i
\(893\) 14.2553 + 16.9888i 0.477035 + 0.568508i
\(894\) 30.1466 + 19.3017i 1.00825 + 0.645544i
\(895\) 0 0
\(896\) −0.574234 + 0.209004i −0.0191838 + 0.00698234i
\(897\) −0.107372 0.830099i −0.00358505 0.0277162i
\(898\) −71.0462 + 12.5274i −2.37084 + 0.418043i
\(899\) −16.6726 28.8778i −0.556063 0.963130i
\(900\) 0 0
\(901\) −28.3957 + 49.1828i −0.945999 + 1.63852i
\(902\) −1.91435 + 5.25964i −0.0637409 + 0.175127i
\(903\) −4.86543 4.47867i −0.161911 0.149041i
\(904\) 1.41500 + 1.18733i 0.0470623 + 0.0394899i
\(905\) 0 0
\(906\) 61.1095 + 13.6930i 2.03023 + 0.454918i
\(907\) −4.95182 + 13.6050i −0.164423 + 0.451747i −0.994353 0.106119i \(-0.966158\pi\)
0.829931 + 0.557866i \(0.188380\pi\)
\(908\) −9.72563 5.61510i −0.322757 0.186344i
\(909\) −9.91481 + 6.87570i −0.328854 + 0.228052i
\(910\) 0 0
\(911\) 3.83154 + 21.7298i 0.126945 + 0.719939i 0.980134 + 0.198337i \(0.0635541\pi\)
−0.853189 + 0.521602i \(0.825335\pi\)
\(912\) −21.2131 8.84311i −0.702437 0.292825i
\(913\) −0.892616 2.45244i −0.0295413 0.0811640i
\(914\) 9.06499 51.4101i 0.299843 1.70049i
\(915\) 0 0
\(916\) 34.6642 29.0867i 1.14534 0.961051i
\(917\) 4.65267i 0.153645i
\(918\) 1.80172 + 48.8879i 0.0594657 + 1.61354i
\(919\) 23.3762 0.771109 0.385554 0.922685i \(-0.374010\pi\)
0.385554 + 0.922685i \(0.374010\pi\)
\(920\) 0 0
\(921\) 21.8786 11.3263i 0.720923 0.373216i
\(922\) 68.4753 + 12.0740i 2.25511 + 0.397637i
\(923\) 3.24917 + 8.92702i 0.106948 + 0.293837i
\(924\) 0.241156 + 0.315759i 0.00793345 + 0.0103877i
\(925\) 0 0
\(926\) −29.8826 51.7582i −0.982003 1.70088i
\(927\) −1.09829 + 1.08838i −0.0360726 + 0.0357472i
\(928\) −42.5000 24.5374i −1.39513 0.805479i
\(929\) 8.18841 + 2.98034i 0.268653 + 0.0977817i 0.472834 0.881151i \(-0.343231\pi\)
−0.204181 + 0.978933i \(0.565453\pi\)
\(930\) 0 0
\(931\) −18.3997 15.4391i −0.603024 0.505998i
\(932\) −34.5153 + 41.1337i −1.13059 + 1.34738i
\(933\) −24.2167 + 7.57523i −0.792819 + 0.248002i
\(934\) −31.6619 11.5240i −1.03601 0.377076i
\(935\) 0 0
\(936\) 0.522210 0.137393i 0.0170690 0.00449084i
\(937\) 35.2473 20.3500i 1.15148 0.664806i 0.202231 0.979338i \(-0.435181\pi\)
0.949247 + 0.314532i \(0.101847\pi\)
\(938\) 6.64020 1.17085i 0.216810 0.0382295i
\(939\) 27.2027 + 35.6180i 0.887727 + 1.16235i
\(940\) 0 0
\(941\) 7.07254 40.1103i 0.230558 1.30756i −0.621211 0.783643i \(-0.713359\pi\)
0.851769 0.523917i \(-0.175530\pi\)
\(942\) −18.6232 35.9736i −0.606778 1.17208i
\(943\) −3.34069 3.98129i −0.108788 0.129648i
\(944\) 4.78931 0.155879
\(945\) 0 0
\(946\) −5.97404 −0.194233
\(947\) 12.0921 + 14.4108i 0.392940 + 0.468288i 0.925854 0.377882i \(-0.123347\pi\)
−0.532914 + 0.846170i \(0.678903\pi\)
\(948\) 25.1240 + 1.15396i 0.815990 + 0.0374790i
\(949\) −0.119684 + 0.678764i −0.00388512 + 0.0220336i
\(950\) 0 0
\(951\) 12.1722 29.1991i 0.394712 0.946847i
\(952\) 0.350196 0.0617490i 0.0113499 0.00200130i
\(953\) 35.4426 20.4628i 1.14810 0.662855i 0.199675 0.979862i \(-0.436011\pi\)
0.948423 + 0.317007i \(0.102678\pi\)
\(954\) 67.1082 + 31.6640i 2.17271 + 1.02516i
\(955\) 0 0
\(956\) −18.2645 6.64772i −0.590715 0.215003i
\(957\) −0.668235 + 2.98223i −0.0216010 + 0.0964017i
\(958\) −7.23835 + 8.62633i −0.233860 + 0.278704i
\(959\) −4.75139 3.98689i −0.153430 0.128743i
\(960\) 0 0
\(961\) 0.810279 + 0.294918i 0.0261380 + 0.00951347i
\(962\) 16.9863 + 9.80702i 0.547659 + 0.316191i
\(963\) 48.9583 22.5602i 1.57766 0.726992i
\(964\) −30.1984 52.3052i −0.972625 1.68464i
\(965\) 0 0
\(966\) −0.714249 + 0.0923872i −0.0229806 + 0.00297251i
\(967\) −13.1096 36.0183i −0.421576 1.15827i −0.950805 0.309791i \(-0.899741\pi\)
0.529229 0.848479i \(-0.322481\pi\)
\(968\) −2.18696 0.385620i −0.0702915 0.0123943i
\(969\) 23.7506 + 15.2066i 0.762981 + 0.488506i
\(970\) 0 0
\(971\) 50.2132 1.61142 0.805709 0.592312i \(-0.201785\pi\)
0.805709 + 0.592312i \(0.201785\pi\)
\(972\) 32.5092 3.90588i 1.04273 0.125281i
\(973\) 4.63525i 0.148599i
\(974\) −27.1569 + 22.7874i −0.870164 + 0.730154i
\(975\) 0 0
\(976\) −1.89302 + 10.7359i −0.0605941 + 0.343646i
\(977\) 6.87174 + 18.8800i 0.219847 + 0.604023i 0.999761 0.0218628i \(-0.00695969\pi\)
−0.779914 + 0.625886i \(0.784737\pi\)
\(978\) 2.81746 + 21.7819i 0.0900924 + 0.696508i
\(979\) 0.313823 + 1.77978i 0.0100298 + 0.0568820i
\(980\) 0 0
\(981\) −1.38738 3.01079i −0.0442957 0.0961270i
\(982\) −47.0658 27.1734i −1.50193 0.867139i
\(983\) −16.0497 + 44.0962i −0.511906 + 1.40645i 0.367342 + 0.930086i \(0.380268\pi\)
−0.879248 + 0.476364i \(0.841954\pi\)
\(984\) 2.27076 2.46685i 0.0723891 0.0786404i
\(985\) 0 0
\(986\) 43.8074 + 36.7588i 1.39511 + 1.17064i
\(987\) 0.901621 4.02379i 0.0286989 0.128079i
\(988\) 2.22587 6.11554i 0.0708145 0.194561i
\(989\) 2.77356 4.80395i 0.0881941 0.152757i
\(990\) 0 0
\(991\) −2.41568 4.18408i −0.0767367 0.132912i 0.825103 0.564982i \(-0.191117\pi\)
−0.901840 + 0.432070i \(0.857783\pi\)
\(992\) −43.6803 + 7.70202i −1.38685 + 0.244539i
\(993\) 50.5613 + 21.0775i 1.60451 + 0.668874i
\(994\) 7.68116 2.79571i 0.243632 0.0886747i
\(995\) 0 0
\(996\) −1.49967 + 32.6507i −0.0475190 + 1.03458i
\(997\) −10.2563 12.2229i −0.324819 0.387104i 0.578780 0.815484i \(-0.303529\pi\)
−0.903599 + 0.428380i \(0.859085\pi\)
\(998\) 11.8034i 0.373630i
\(999\) 44.8953 + 34.9367i 1.42043 + 1.10535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.4 132
5.2 odd 4 675.2.l.g.76.10 yes 66
5.3 odd 4 675.2.l.f.76.2 66
5.4 even 2 inner 675.2.u.e.49.19 132
27.16 even 9 inner 675.2.u.e.124.19 132
135.43 odd 36 675.2.l.f.151.2 yes 66
135.97 odd 36 675.2.l.g.151.10 yes 66
135.124 even 18 inner 675.2.u.e.124.4 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.2 66 5.3 odd 4
675.2.l.f.151.2 yes 66 135.43 odd 36
675.2.l.g.76.10 yes 66 5.2 odd 4
675.2.l.g.151.10 yes 66 135.97 odd 36
675.2.u.e.49.4 132 1.1 even 1 trivial
675.2.u.e.49.19 132 5.4 even 2 inner
675.2.u.e.124.4 132 135.124 even 18 inner
675.2.u.e.124.19 132 27.16 even 9 inner