Properties

Label 675.2.u.e.49.20
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.20
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.42910 + 1.70314i) q^{2} +(-1.70215 + 0.320463i) q^{3} +(-0.511048 + 2.89830i) q^{4} +(-2.97833 - 2.44102i) q^{6} +(3.70709 - 0.653660i) q^{7} +(-1.81569 + 1.04829i) q^{8} +(2.79461 - 1.09095i) q^{9} +(5.03989 + 1.83437i) q^{11} +(-0.0589180 - 5.09710i) q^{12} +(-3.93784 + 4.69294i) q^{13} +(6.41109 + 5.37954i) q^{14} +(1.15085 + 0.418876i) q^{16} +(-2.43075 - 1.40339i) q^{17} +(5.85182 + 3.20052i) q^{18} +(-1.71412 - 2.96894i) q^{19} +(-6.10054 + 2.30061i) q^{21} +(4.07833 + 11.2051i) q^{22} +(0.882941 + 0.155686i) q^{23} +(2.75464 - 2.36621i) q^{24} -13.6203 q^{26} +(-4.40722 + 2.75252i) q^{27} +11.0783i q^{28} +(-1.61238 + 1.35294i) q^{29} +(0.576073 - 3.26707i) q^{31} +(2.36543 + 6.49896i) q^{32} +(-9.16647 - 1.50727i) q^{33} +(-1.08362 - 6.14550i) q^{34} +(1.73372 + 8.65714i) q^{36} +(3.00072 + 1.73247i) q^{37} +(2.60687 - 7.16230i) q^{38} +(5.19887 - 9.25000i) q^{39} +(-1.85735 - 1.55850i) q^{41} +(-12.6366 - 7.10225i) q^{42} +(-2.33822 + 6.42421i) q^{43} +(-7.89217 + 13.6696i) q^{44} +(0.996658 + 1.72626i) q^{46} +(-3.55068 + 0.626080i) q^{47} +(-2.09315 - 0.344183i) q^{48} +(6.73741 - 2.45222i) q^{49} +(4.58723 + 1.60982i) q^{51} +(-11.5891 - 13.8114i) q^{52} -7.07162i q^{53} +(-10.9863 - 3.57247i) q^{54} +(-6.04572 + 5.07296i) q^{56} +(3.86912 + 4.50426i) q^{57} +(-4.60850 - 0.812603i) q^{58} +(5.74383 - 2.09058i) q^{59} +(0.0966336 + 0.548037i) q^{61} +(6.38754 - 3.68785i) q^{62} +(9.64675 - 5.87097i) q^{63} +(-6.46348 + 11.1951i) q^{64} +(-10.5327 - 17.7658i) q^{66} +(-10.1805 + 12.1326i) q^{67} +(5.30969 - 6.32784i) q^{68} +(-1.55279 + 0.0179489i) q^{69} +(7.71778 - 13.3676i) q^{71} +(-3.93052 + 4.91040i) q^{72} +(11.2103 - 6.47229i) q^{73} +(1.33771 + 7.58652i) q^{74} +(9.48088 - 3.45076i) q^{76} +(19.8824 + 3.50580i) q^{77} +(23.1837 - 4.36480i) q^{78} +(-7.60758 + 6.38352i) q^{79} +(6.61966 - 6.09755i) q^{81} -5.39058i q^{82} +(-3.07222 - 3.66133i) q^{83} +(-3.55019 - 18.8569i) q^{84} +(-14.2829 + 5.19854i) q^{86} +(2.31093 - 2.81962i) q^{87} +(-11.0738 + 1.95262i) q^{88} +(1.45438 + 2.51905i) q^{89} +(-11.5304 + 19.9712i) q^{91} +(-0.902451 + 2.47946i) q^{92} +(0.0664147 + 5.74565i) q^{93} +(-6.14058 - 5.15256i) q^{94} +(-6.10898 - 10.3042i) q^{96} +(2.18144 - 5.99345i) q^{97} +(13.8049 + 7.97026i) q^{98} +(16.0857 - 0.371923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.42910 + 1.70314i 1.01053 + 1.20430i 0.978803 + 0.204803i \(0.0656555\pi\)
0.0317247 + 0.999497i \(0.489900\pi\)
\(3\) −1.70215 + 0.320463i −0.982735 + 0.185019i
\(4\) −0.511048 + 2.89830i −0.255524 + 1.44915i
\(5\) 0 0
\(6\) −2.97833 2.44102i −1.21590 0.996541i
\(7\) 3.70709 0.653660i 1.40115 0.247060i 0.578534 0.815659i \(-0.303625\pi\)
0.822615 + 0.568598i \(0.192514\pi\)
\(8\) −1.81569 + 1.04829i −0.641945 + 0.370627i
\(9\) 2.79461 1.09095i 0.931536 0.363650i
\(10\) 0 0
\(11\) 5.03989 + 1.83437i 1.51958 + 0.553083i 0.961044 0.276396i \(-0.0891400\pi\)
0.558539 + 0.829478i \(0.311362\pi\)
\(12\) −0.0589180 5.09710i −0.0170082 1.47141i
\(13\) −3.93784 + 4.69294i −1.09216 + 1.30159i −0.141986 + 0.989869i \(0.545349\pi\)
−0.950175 + 0.311718i \(0.899096\pi\)
\(14\) 6.41109 + 5.37954i 1.71343 + 1.43774i
\(15\) 0 0
\(16\) 1.15085 + 0.418876i 0.287713 + 0.104719i
\(17\) −2.43075 1.40339i −0.589544 0.340373i 0.175373 0.984502i \(-0.443887\pi\)
−0.764917 + 0.644129i \(0.777220\pi\)
\(18\) 5.85182 + 3.20052i 1.37929 + 0.754370i
\(19\) −1.71412 2.96894i −0.393246 0.681122i 0.599630 0.800278i \(-0.295315\pi\)
−0.992876 + 0.119156i \(0.961981\pi\)
\(20\) 0 0
\(21\) −6.10054 + 2.30061i −1.33125 + 0.502034i
\(22\) 4.07833 + 11.2051i 0.869503 + 2.38894i
\(23\) 0.882941 + 0.155686i 0.184106 + 0.0324628i 0.264941 0.964265i \(-0.414648\pi\)
−0.0808349 + 0.996728i \(0.525759\pi\)
\(24\) 2.75464 2.36621i 0.562289 0.483001i
\(25\) 0 0
\(26\) −13.6203 −2.67116
\(27\) −4.40722 + 2.75252i −0.848170 + 0.529724i
\(28\) 11.0783i 2.09360i
\(29\) −1.61238 + 1.35294i −0.299411 + 0.251235i −0.780099 0.625656i \(-0.784831\pi\)
0.480688 + 0.876892i \(0.340387\pi\)
\(30\) 0 0
\(31\) 0.576073 3.26707i 0.103466 0.586784i −0.888356 0.459155i \(-0.848152\pi\)
0.991822 0.127629i \(-0.0407366\pi\)
\(32\) 2.36543 + 6.49896i 0.418153 + 1.14887i
\(33\) −9.16647 1.50727i −1.59568 0.262382i
\(34\) −1.08362 6.14550i −0.185839 1.05394i
\(35\) 0 0
\(36\) 1.73372 + 8.65714i 0.288953 + 1.44286i
\(37\) 3.00072 + 1.73247i 0.493316 + 0.284816i 0.725949 0.687749i \(-0.241401\pi\)
−0.232633 + 0.972565i \(0.574734\pi\)
\(38\) 2.60687 7.16230i 0.422889 1.16188i
\(39\) 5.19887 9.25000i 0.832486 1.48119i
\(40\) 0 0
\(41\) −1.85735 1.55850i −0.290069 0.243397i 0.486127 0.873888i \(-0.338409\pi\)
−0.776196 + 0.630491i \(0.782854\pi\)
\(42\) −12.6366 7.10225i −1.94986 1.09590i
\(43\) −2.33822 + 6.42421i −0.356576 + 0.979683i 0.623633 + 0.781717i \(0.285656\pi\)
−0.980209 + 0.197966i \(0.936566\pi\)
\(44\) −7.89217 + 13.6696i −1.18979 + 2.06078i
\(45\) 0 0
\(46\) 0.996658 + 1.72626i 0.146949 + 0.254523i
\(47\) −3.55068 + 0.626080i −0.517919 + 0.0913232i −0.426497 0.904489i \(-0.640252\pi\)
−0.0914225 + 0.995812i \(0.529141\pi\)
\(48\) −2.09315 0.344183i −0.302120 0.0496785i
\(49\) 6.73741 2.45222i 0.962487 0.350316i
\(50\) 0 0
\(51\) 4.58723 + 1.60982i 0.642341 + 0.225420i
\(52\) −11.5891 13.8114i −1.60712 1.91529i
\(53\) 7.07162i 0.971362i −0.874136 0.485681i \(-0.838572\pi\)
0.874136 0.485681i \(-0.161428\pi\)
\(54\) −10.9863 3.57247i −1.49505 0.486151i
\(55\) 0 0
\(56\) −6.04572 + 5.07296i −0.807893 + 0.677903i
\(57\) 3.86912 + 4.50426i 0.512477 + 0.596604i
\(58\) −4.60850 0.812603i −0.605126 0.106700i
\(59\) 5.74383 2.09058i 0.747782 0.272171i 0.0601101 0.998192i \(-0.480855\pi\)
0.687672 + 0.726021i \(0.258633\pi\)
\(60\) 0 0
\(61\) 0.0966336 + 0.548037i 0.0123727 + 0.0701689i 0.990369 0.138453i \(-0.0442131\pi\)
−0.977996 + 0.208622i \(0.933102\pi\)
\(62\) 6.38754 3.68785i 0.811219 0.468357i
\(63\) 9.64675 5.87097i 1.21538 0.739673i
\(64\) −6.46348 + 11.1951i −0.807935 + 1.39938i
\(65\) 0 0
\(66\) −10.5327 17.7658i −1.29649 2.18682i
\(67\) −10.1805 + 12.1326i −1.24375 + 1.48224i −0.428052 + 0.903754i \(0.640800\pi\)
−0.815694 + 0.578484i \(0.803644\pi\)
\(68\) 5.30969 6.32784i 0.643894 0.767363i
\(69\) −1.55279 + 0.0179489i −0.186934 + 0.00216079i
\(70\) 0 0
\(71\) 7.71778 13.3676i 0.915933 1.58644i 0.110402 0.993887i \(-0.464786\pi\)
0.805530 0.592555i \(-0.201881\pi\)
\(72\) −3.93052 + 4.91040i −0.463216 + 0.578696i
\(73\) 11.2103 6.47229i 1.31207 0.757524i 0.329632 0.944110i \(-0.393075\pi\)
0.982439 + 0.186585i \(0.0597421\pi\)
\(74\) 1.33771 + 7.58652i 0.155505 + 0.881915i
\(75\) 0 0
\(76\) 9.48088 3.45076i 1.08753 0.395829i
\(77\) 19.8824 + 3.50580i 2.26581 + 0.399523i
\(78\) 23.1837 4.36480i 2.62504 0.494216i
\(79\) −7.60758 + 6.38352i −0.855920 + 0.718202i −0.961085 0.276253i \(-0.910907\pi\)
0.105165 + 0.994455i \(0.466463\pi\)
\(80\) 0 0
\(81\) 6.61966 6.09755i 0.735517 0.677506i
\(82\) 5.39058i 0.595289i
\(83\) −3.07222 3.66133i −0.337220 0.401884i 0.570610 0.821221i \(-0.306707\pi\)
−0.907830 + 0.419338i \(0.862262\pi\)
\(84\) −3.55019 18.8569i −0.387357 2.05746i
\(85\) 0 0
\(86\) −14.2829 + 5.19854i −1.54016 + 0.560573i
\(87\) 2.31093 2.81962i 0.247758 0.302295i
\(88\) −11.0738 + 1.95262i −1.18048 + 0.208150i
\(89\) 1.45438 + 2.51905i 0.154164 + 0.267019i 0.932754 0.360513i \(-0.117398\pi\)
−0.778591 + 0.627532i \(0.784065\pi\)
\(90\) 0 0
\(91\) −11.5304 + 19.9712i −1.20871 + 2.09355i
\(92\) −0.902451 + 2.47946i −0.0940870 + 0.258502i
\(93\) 0.0664147 + 5.74565i 0.00688688 + 0.595796i
\(94\) −6.14058 5.15256i −0.633353 0.531446i
\(95\) 0 0
\(96\) −6.10898 10.3042i −0.623496 1.05166i
\(97\) 2.18144 5.99345i 0.221491 0.608543i −0.778322 0.627865i \(-0.783929\pi\)
0.999813 + 0.0193229i \(0.00615104\pi\)
\(98\) 13.8049 + 7.97026i 1.39451 + 0.805118i
\(99\) 16.0857 0.371923i 1.61667 0.0373797i
\(100\) 0 0
\(101\) 0.799294 + 4.53302i 0.0795328 + 0.451053i 0.998403 + 0.0564928i \(0.0179918\pi\)
−0.918870 + 0.394560i \(0.870897\pi\)
\(102\) 3.81388 + 10.1133i 0.377630 + 1.00136i
\(103\) 3.05797 + 8.40172i 0.301311 + 0.827846i 0.994273 + 0.106871i \(0.0340833\pi\)
−0.692962 + 0.720974i \(0.743695\pi\)
\(104\) 2.23035 12.6490i 0.218704 1.24033i
\(105\) 0 0
\(106\) 12.0439 10.1061i 1.16981 0.981589i
\(107\) 16.5248i 1.59751i −0.601657 0.798754i \(-0.705493\pi\)
0.601657 0.798754i \(-0.294507\pi\)
\(108\) −5.72534 14.1801i −0.550921 1.36448i
\(109\) 6.79600 0.650939 0.325469 0.945553i \(-0.394478\pi\)
0.325469 + 0.945553i \(0.394478\pi\)
\(110\) 0 0
\(111\) −5.66286 1.98729i −0.537495 0.188626i
\(112\) 4.54011 + 0.800545i 0.429000 + 0.0756444i
\(113\) −5.89428 16.1944i −0.554487 1.52344i −0.827520 0.561436i \(-0.810249\pi\)
0.273033 0.962005i \(-0.411973\pi\)
\(114\) −2.14201 + 13.0267i −0.200618 + 1.22006i
\(115\) 0 0
\(116\) −3.09723 5.36457i −0.287571 0.498088i
\(117\) −5.88496 + 17.4109i −0.544065 + 1.60964i
\(118\) 11.7691 + 6.79487i 1.08343 + 0.625518i
\(119\) −9.92836 3.61363i −0.910131 0.331261i
\(120\) 0 0
\(121\) 13.6090 + 11.4193i 1.23719 + 1.03812i
\(122\) −0.795282 + 0.947781i −0.0720015 + 0.0858080i
\(123\) 3.66092 + 2.05758i 0.330094 + 0.185526i
\(124\) 9.17456 + 3.33927i 0.823899 + 0.299875i
\(125\) 0 0
\(126\) 23.7853 + 8.03953i 2.11896 + 0.716218i
\(127\) −4.17046 + 2.40782i −0.370069 + 0.213659i −0.673489 0.739198i \(-0.735205\pi\)
0.303420 + 0.952857i \(0.401872\pi\)
\(128\) −14.6818 + 2.58879i −1.29770 + 0.228819i
\(129\) 1.92128 11.6843i 0.169159 1.02874i
\(130\) 0 0
\(131\) 0.969287 5.49710i 0.0846870 0.480284i −0.912737 0.408548i \(-0.866035\pi\)
0.997424 0.0717355i \(-0.0228538\pi\)
\(132\) 9.05302 25.7969i 0.787965 2.24533i
\(133\) −8.29508 9.88569i −0.719274 0.857198i
\(134\) −35.2125 −3.04190
\(135\) 0 0
\(136\) 5.88467 0.504606
\(137\) −2.67071 3.18283i −0.228174 0.271927i 0.639795 0.768546i \(-0.279019\pi\)
−0.867969 + 0.496618i \(0.834575\pi\)
\(138\) −2.24966 2.61896i −0.191504 0.222941i
\(139\) 1.48337 8.41259i 0.125817 0.713546i −0.855002 0.518625i \(-0.826444\pi\)
0.980819 0.194921i \(-0.0624450\pi\)
\(140\) 0 0
\(141\) 5.84314 2.20354i 0.492081 0.185572i
\(142\) 33.7964 5.95921i 2.83613 0.500086i
\(143\) −28.4549 + 16.4284i −2.37951 + 1.37381i
\(144\) 3.67315 0.0849281i 0.306096 0.00707734i
\(145\) 0 0
\(146\) 27.0439 + 9.84318i 2.23817 + 0.814627i
\(147\) −10.6822 + 6.33312i −0.881054 + 0.522347i
\(148\) −6.55472 + 7.81162i −0.538795 + 0.642111i
\(149\) −8.62380 7.23622i −0.706489 0.592815i 0.217123 0.976144i \(-0.430333\pi\)
−0.923612 + 0.383330i \(0.874777\pi\)
\(150\) 0 0
\(151\) −15.9706 5.81283i −1.29967 0.473042i −0.402781 0.915296i \(-0.631957\pi\)
−0.896890 + 0.442255i \(0.854179\pi\)
\(152\) 6.22464 + 3.59380i 0.504885 + 0.291495i
\(153\) −8.32403 1.27011i −0.672958 0.102682i
\(154\) 22.4431 + 38.8726i 1.80851 + 3.13244i
\(155\) 0 0
\(156\) 24.1524 + 19.7951i 1.93374 + 1.58488i
\(157\) −4.26867 11.7281i −0.340677 0.936002i −0.985199 0.171416i \(-0.945166\pi\)
0.644522 0.764586i \(-0.277056\pi\)
\(158\) −21.7440 3.83406i −1.72986 0.305021i
\(159\) 2.26619 + 12.0369i 0.179721 + 0.954592i
\(160\) 0 0
\(161\) 3.37491 0.265980
\(162\) 19.8451 + 2.56016i 1.55918 + 0.201145i
\(163\) 7.49060i 0.586709i −0.956004 0.293354i \(-0.905228\pi\)
0.956004 0.293354i \(-0.0947716\pi\)
\(164\) 5.46620 4.58668i 0.426838 0.358160i
\(165\) 0 0
\(166\) 1.84523 10.4648i 0.143218 0.812229i
\(167\) −4.28105 11.7621i −0.331277 0.910177i −0.987780 0.155854i \(-0.950187\pi\)
0.656503 0.754324i \(-0.272035\pi\)
\(168\) 8.66501 10.5724i 0.668520 0.815675i
\(169\) −4.25964 24.1576i −0.327664 1.85828i
\(170\) 0 0
\(171\) −8.02926 6.42701i −0.614013 0.491486i
\(172\) −17.4243 10.0600i −1.32859 0.767064i
\(173\) 5.18574 14.2477i 0.394264 1.08323i −0.570771 0.821110i \(-0.693355\pi\)
0.965035 0.262122i \(-0.0844224\pi\)
\(174\) 8.10475 0.0936838i 0.614420 0.00710215i
\(175\) 0 0
\(176\) 5.03179 + 4.22217i 0.379285 + 0.318258i
\(177\) −9.10688 + 5.39916i −0.684515 + 0.405826i
\(178\) −2.21184 + 6.07699i −0.165785 + 0.455490i
\(179\) 4.06134 7.03445i 0.303559 0.525780i −0.673380 0.739296i \(-0.735158\pi\)
0.976939 + 0.213517i \(0.0684917\pi\)
\(180\) 0 0
\(181\) 7.95939 + 13.7861i 0.591617 + 1.02471i 0.994015 + 0.109245i \(0.0348434\pi\)
−0.402398 + 0.915465i \(0.631823\pi\)
\(182\) −50.4917 + 8.90305i −3.74269 + 0.659938i
\(183\) −0.340110 0.901871i −0.0251417 0.0666682i
\(184\) −1.76636 + 0.642901i −0.130218 + 0.0473953i
\(185\) 0 0
\(186\) −9.69072 + 8.32423i −0.710558 + 0.610362i
\(187\) −9.67636 11.5318i −0.707606 0.843292i
\(188\) 10.6109i 0.773878i
\(189\) −14.5388 + 13.0847i −1.05754 + 0.951771i
\(190\) 0 0
\(191\) −13.7721 + 11.5562i −0.996516 + 0.836176i −0.986498 0.163773i \(-0.947633\pi\)
−0.0100183 + 0.999950i \(0.503189\pi\)
\(192\) 7.41418 21.1270i 0.535073 1.52471i
\(193\) 0.956681 + 0.168689i 0.0688634 + 0.0121425i 0.207974 0.978134i \(-0.433313\pi\)
−0.139110 + 0.990277i \(0.544424\pi\)
\(194\) 13.3252 4.84996i 0.956691 0.348207i
\(195\) 0 0
\(196\) 3.66411 + 20.7802i 0.261722 + 1.48430i
\(197\) 7.99649 4.61678i 0.569727 0.328932i −0.187313 0.982300i \(-0.559978\pi\)
0.757040 + 0.653368i \(0.226645\pi\)
\(198\) 23.6215 + 26.8646i 1.67871 + 1.90919i
\(199\) −8.81540 + 15.2687i −0.624907 + 1.08237i 0.363651 + 0.931535i \(0.381530\pi\)
−0.988559 + 0.150836i \(0.951803\pi\)
\(200\) 0 0
\(201\) 13.4406 23.9140i 0.948029 1.68676i
\(202\) −6.57809 + 7.83946i −0.462833 + 0.551583i
\(203\) −5.09286 + 6.06943i −0.357449 + 0.425991i
\(204\) −7.01003 + 12.4725i −0.490800 + 0.873248i
\(205\) 0 0
\(206\) −9.93912 + 17.2151i −0.692491 + 1.19943i
\(207\) 2.63732 0.528162i 0.183306 0.0367098i
\(208\) −6.49763 + 3.75141i −0.450530 + 0.260113i
\(209\) −3.19283 18.1075i −0.220853 1.25252i
\(210\) 0 0
\(211\) −4.23225 + 1.54041i −0.291360 + 0.106046i −0.483565 0.875308i \(-0.660658\pi\)
0.192205 + 0.981355i \(0.438436\pi\)
\(212\) 20.4957 + 3.61394i 1.40765 + 0.248207i
\(213\) −8.85298 + 25.2269i −0.606596 + 1.72852i
\(214\) 28.1439 23.6156i 1.92388 1.61433i
\(215\) 0 0
\(216\) 5.11672 9.61780i 0.348149 0.654408i
\(217\) 12.4879i 0.847734i
\(218\) 9.71218 + 11.5745i 0.657792 + 0.783926i
\(219\) −17.0075 + 14.6093i −1.14926 + 0.987204i
\(220\) 0 0
\(221\) 16.1580 5.88101i 1.08690 0.395600i
\(222\) −4.70817 12.4847i −0.315992 0.837917i
\(223\) 24.1963 4.26645i 1.62030 0.285703i 0.711423 0.702764i \(-0.248051\pi\)
0.908878 + 0.417061i \(0.136940\pi\)
\(224\) 13.0170 + 22.5461i 0.869733 + 1.50642i
\(225\) 0 0
\(226\) 19.1578 33.1822i 1.27435 2.20725i
\(227\) −5.81410 + 15.9741i −0.385895 + 1.06024i 0.582936 + 0.812518i \(0.301904\pi\)
−0.968831 + 0.247721i \(0.920318\pi\)
\(228\) −15.0320 + 8.91197i −0.995519 + 0.590210i
\(229\) 11.2404 + 9.43183i 0.742788 + 0.623273i 0.933585 0.358356i \(-0.116663\pi\)
−0.190797 + 0.981630i \(0.561107\pi\)
\(230\) 0 0
\(231\) −34.9662 + 0.404179i −2.30061 + 0.0265930i
\(232\) 1.50930 4.14677i 0.0990905 0.272249i
\(233\) 22.1275 + 12.7753i 1.44962 + 0.836939i 0.998458 0.0555035i \(-0.0176764\pi\)
0.451162 + 0.892442i \(0.351010\pi\)
\(234\) −38.0634 + 14.8591i −2.48828 + 0.971367i
\(235\) 0 0
\(236\) 3.12376 + 17.7157i 0.203339 + 1.15319i
\(237\) 10.9035 13.3036i 0.708261 0.864164i
\(238\) −8.03413 22.0736i −0.520776 1.43082i
\(239\) 1.11927 6.34771i 0.0723998 0.410599i −0.926971 0.375133i \(-0.877597\pi\)
0.999371 0.0354667i \(-0.0112918\pi\)
\(240\) 0 0
\(241\) 2.05438 1.72383i 0.132334 0.111042i −0.574218 0.818702i \(-0.694694\pi\)
0.706552 + 0.707661i \(0.250249\pi\)
\(242\) 39.4975i 2.53900i
\(243\) −9.31359 + 12.5003i −0.597467 + 0.801893i
\(244\) −1.63776 −0.104847
\(245\) 0 0
\(246\) 1.72748 + 9.17555i 0.110140 + 0.585012i
\(247\) 20.6830 + 3.64697i 1.31603 + 0.232051i
\(248\) 2.37887 + 6.53590i 0.151059 + 0.415030i
\(249\) 6.40270 + 5.24759i 0.405754 + 0.332553i
\(250\) 0 0
\(251\) 9.83460 + 17.0340i 0.620755 + 1.07518i 0.989345 + 0.145587i \(0.0465070\pi\)
−0.368591 + 0.929592i \(0.620160\pi\)
\(252\) 12.0859 + 30.9595i 0.761339 + 1.95027i
\(253\) 4.16434 + 2.40428i 0.261810 + 0.151156i
\(254\) −10.0609 3.66186i −0.631275 0.229765i
\(255\) 0 0
\(256\) −5.58555 4.68683i −0.349097 0.292927i
\(257\) −3.56777 + 4.25190i −0.222551 + 0.265226i −0.865754 0.500469i \(-0.833161\pi\)
0.643203 + 0.765696i \(0.277605\pi\)
\(258\) 22.6456 13.4258i 1.40985 0.835855i
\(259\) 12.2564 + 4.46096i 0.761575 + 0.277191i
\(260\) 0 0
\(261\) −3.02996 + 5.53997i −0.187550 + 0.342915i
\(262\) 10.7475 6.20509i 0.663985 0.383352i
\(263\) 13.8789 2.44722i 0.855808 0.150902i 0.271504 0.962437i \(-0.412479\pi\)
0.584303 + 0.811535i \(0.301368\pi\)
\(264\) 18.2236 6.87240i 1.12158 0.422967i
\(265\) 0 0
\(266\) 4.98217 28.2553i 0.305477 1.73244i
\(267\) −3.28283 3.82173i −0.200906 0.233886i
\(268\) −29.9613 35.7065i −1.83018 2.18112i
\(269\) −10.6489 −0.649278 −0.324639 0.945838i \(-0.605243\pi\)
−0.324639 + 0.945838i \(0.605243\pi\)
\(270\) 0 0
\(271\) −18.7000 −1.13595 −0.567973 0.823047i \(-0.692272\pi\)
−0.567973 + 0.823047i \(0.692272\pi\)
\(272\) −2.20958 2.63328i −0.133976 0.159666i
\(273\) 13.2263 37.6889i 0.800495 2.28104i
\(274\) 1.60408 9.09717i 0.0969058 0.549580i
\(275\) 0 0
\(276\) 0.741528 4.50961i 0.0446347 0.271447i
\(277\) −7.24183 + 1.27693i −0.435119 + 0.0767233i −0.386918 0.922114i \(-0.626460\pi\)
−0.0482019 + 0.998838i \(0.515349\pi\)
\(278\) 16.4477 9.49607i 0.986466 0.569536i
\(279\) −1.95431 9.75865i −0.117002 0.584235i
\(280\) 0 0
\(281\) −15.3253 5.57797i −0.914233 0.332754i −0.158291 0.987392i \(-0.550599\pi\)
−0.755942 + 0.654639i \(0.772821\pi\)
\(282\) 12.1034 + 6.80258i 0.720745 + 0.405088i
\(283\) 0.347160 0.413729i 0.0206365 0.0245936i −0.755627 0.655002i \(-0.772668\pi\)
0.776264 + 0.630408i \(0.217112\pi\)
\(284\) 34.7991 + 29.1999i 2.06495 + 1.73270i
\(285\) 0 0
\(286\) −68.6447 24.9846i −4.05905 1.47737i
\(287\) −7.90409 4.56343i −0.466564 0.269371i
\(288\) 13.7005 + 15.5815i 0.807309 + 0.918148i
\(289\) −4.56097 7.89983i −0.268292 0.464696i
\(290\) 0 0
\(291\) −1.79245 + 10.9008i −0.105075 + 0.639016i
\(292\) 13.0296 + 35.7986i 0.762500 + 2.09495i
\(293\) −17.0904 3.01350i −0.998432 0.176051i −0.349532 0.936924i \(-0.613660\pi\)
−0.648900 + 0.760874i \(0.724771\pi\)
\(294\) −26.0521 9.14260i −1.51939 0.533207i
\(295\) 0 0
\(296\) −7.26453 −0.422242
\(297\) −27.2610 + 5.78794i −1.58185 + 0.335850i
\(298\) 25.0288i 1.44988i
\(299\) −4.20751 + 3.53052i −0.243327 + 0.204175i
\(300\) 0 0
\(301\) −4.46875 + 25.3435i −0.257575 + 1.46078i
\(302\) −12.9236 35.5073i −0.743670 2.04322i
\(303\) −2.81318 7.45973i −0.161613 0.428550i
\(304\) −0.729079 4.13481i −0.0418156 0.237148i
\(305\) 0 0
\(306\) −9.73271 15.9921i −0.556382 0.914206i
\(307\) −3.85973 2.22842i −0.220287 0.127182i 0.385796 0.922584i \(-0.373927\pi\)
−0.606083 + 0.795401i \(0.707260\pi\)
\(308\) −20.3217 + 55.8334i −1.15794 + 3.18140i
\(309\) −7.89756 13.3210i −0.449276 0.757804i
\(310\) 0 0
\(311\) −9.04919 7.59317i −0.513133 0.430569i 0.349097 0.937086i \(-0.386488\pi\)
−0.862230 + 0.506517i \(0.830933\pi\)
\(312\) 0.257134 + 22.2451i 0.0145574 + 1.25938i
\(313\) −1.21223 + 3.33057i −0.0685191 + 0.188255i −0.969226 0.246173i \(-0.920827\pi\)
0.900707 + 0.434427i \(0.143049\pi\)
\(314\) 13.8741 24.0307i 0.782964 1.35613i
\(315\) 0 0
\(316\) −14.6135 25.3113i −0.822074 1.42387i
\(317\) 3.82945 0.675236i 0.215084 0.0379250i −0.0650679 0.997881i \(-0.520726\pi\)
0.280151 + 0.959956i \(0.409615\pi\)
\(318\) −17.2619 + 21.0617i −0.968002 + 1.18108i
\(319\) −10.6080 + 3.86099i −0.593933 + 0.216174i
\(320\) 0 0
\(321\) 5.29557 + 28.1276i 0.295570 + 1.56993i
\(322\) 4.82309 + 5.74793i 0.268780 + 0.320320i
\(323\) 9.62234i 0.535402i
\(324\) 14.2896 + 22.3019i 0.793865 + 1.23899i
\(325\) 0 0
\(326\) 12.7575 10.7048i 0.706573 0.592886i
\(327\) −11.5678 + 2.17787i −0.639700 + 0.120436i
\(328\) 5.00614 + 0.882718i 0.276418 + 0.0487399i
\(329\) −12.7534 + 4.64187i −0.703120 + 0.255915i
\(330\) 0 0
\(331\) 3.47191 + 19.6902i 0.190833 + 1.08227i 0.918228 + 0.396051i \(0.129620\pi\)
−0.727395 + 0.686219i \(0.759269\pi\)
\(332\) 12.1817 7.03311i 0.668557 0.385992i
\(333\) 10.2759 + 1.56793i 0.563114 + 0.0859220i
\(334\) 13.9144 24.1004i 0.761362 1.31872i
\(335\) 0 0
\(336\) −7.98448 + 0.0922937i −0.435589 + 0.00503503i
\(337\) 16.7068 19.9104i 0.910078 1.08459i −0.0860160 0.996294i \(-0.527414\pi\)
0.996094 0.0882954i \(-0.0281419\pi\)
\(338\) 35.0563 41.7784i 1.90681 2.27245i
\(339\) 15.2226 + 25.6763i 0.826779 + 1.39455i
\(340\) 0 0
\(341\) 8.89636 15.4089i 0.481765 0.834441i
\(342\) −0.528549 22.8598i −0.0285806 1.23612i
\(343\) 0.553536 0.319584i 0.0298881 0.0172559i
\(344\) −2.48895 14.1155i −0.134195 0.761059i
\(345\) 0 0
\(346\) 31.6767 11.5294i 1.70295 0.619824i
\(347\) −20.5622 3.62567i −1.10384 0.194636i −0.408102 0.912936i \(-0.633809\pi\)
−0.695733 + 0.718300i \(0.744920\pi\)
\(348\) 6.99109 + 8.13873i 0.374762 + 0.436282i
\(349\) 8.83183 7.41078i 0.472757 0.396690i −0.375042 0.927008i \(-0.622372\pi\)
0.847799 + 0.530318i \(0.177927\pi\)
\(350\) 0 0
\(351\) 4.43752 31.5218i 0.236857 1.68251i
\(352\) 37.0931i 1.97707i
\(353\) −6.80132 8.10550i −0.361998 0.431412i 0.554049 0.832484i \(-0.313082\pi\)
−0.916047 + 0.401072i \(0.868638\pi\)
\(354\) −22.2102 7.79432i −1.18046 0.414263i
\(355\) 0 0
\(356\) −8.04423 + 2.92786i −0.426343 + 0.155176i
\(357\) 18.0576 + 2.96925i 0.955707 + 0.157150i
\(358\) 17.7847 3.13592i 0.939951 0.165739i
\(359\) −9.71352 16.8243i −0.512660 0.887953i −0.999892 0.0146804i \(-0.995327\pi\)
0.487232 0.873272i \(-0.338006\pi\)
\(360\) 0 0
\(361\) 3.62359 6.27624i 0.190715 0.330328i
\(362\) −12.1048 + 33.2576i −0.636213 + 1.74798i
\(363\) −26.8241 15.0762i −1.40790 0.791296i
\(364\) −51.9898 43.6247i −2.72501 2.28655i
\(365\) 0 0
\(366\) 1.04996 1.86812i 0.0548822 0.0976482i
\(367\) −4.08698 + 11.2289i −0.213339 + 0.586143i −0.999491 0.0318889i \(-0.989848\pi\)
0.786153 + 0.618032i \(0.212070\pi\)
\(368\) 0.950921 + 0.549014i 0.0495702 + 0.0286194i
\(369\) −6.89080 2.32912i −0.358721 0.121249i
\(370\) 0 0
\(371\) −4.62244 26.2152i −0.239985 1.36102i
\(372\) −16.6865 2.74381i −0.865157 0.142260i
\(373\) 9.52781 + 26.1774i 0.493331 + 1.35542i 0.897614 + 0.440782i \(0.145299\pi\)
−0.404283 + 0.914634i \(0.632479\pi\)
\(374\) 5.81180 32.9603i 0.300521 1.70434i
\(375\) 0 0
\(376\) 5.79063 4.85892i 0.298629 0.250579i
\(377\) 12.8945i 0.664098i
\(378\) −43.0624 6.06216i −2.21489 0.311804i
\(379\) −19.6724 −1.01050 −0.505251 0.862973i \(-0.668600\pi\)
−0.505251 + 0.862973i \(0.668600\pi\)
\(380\) 0 0
\(381\) 6.32713 5.43494i 0.324148 0.278440i
\(382\) −39.3636 6.94086i −2.01401 0.355125i
\(383\) 1.76754 + 4.85629i 0.0903173 + 0.248145i 0.976624 0.214953i \(-0.0689600\pi\)
−0.886307 + 0.463098i \(0.846738\pi\)
\(384\) 24.1609 9.11146i 1.23296 0.464967i
\(385\) 0 0
\(386\) 1.07989 + 1.87043i 0.0549652 + 0.0952025i
\(387\) 0.474081 + 20.5040i 0.0240989 + 1.04228i
\(388\) 16.2560 + 9.38540i 0.825273 + 0.476472i
\(389\) 8.84157 + 3.21807i 0.448285 + 0.163162i 0.556291 0.830988i \(-0.312224\pi\)
−0.108005 + 0.994150i \(0.534446\pi\)
\(390\) 0 0
\(391\) −1.92772 1.61755i −0.0974890 0.0818030i
\(392\) −9.66244 + 11.5152i −0.488027 + 0.581608i
\(393\) 0.111748 + 9.66749i 0.00563693 + 0.487660i
\(394\) 19.2908 + 7.02128i 0.971857 + 0.353727i
\(395\) 0 0
\(396\) −7.14263 + 46.8113i −0.358931 + 2.35235i
\(397\) −6.95786 + 4.01712i −0.349205 + 0.201614i −0.664335 0.747435i \(-0.731285\pi\)
0.315130 + 0.949048i \(0.397952\pi\)
\(398\) −38.6029 + 6.80673i −1.93499 + 0.341190i
\(399\) 17.2874 + 14.1686i 0.865454 + 0.709319i
\(400\) 0 0
\(401\) −1.68169 + 9.53732i −0.0839794 + 0.476271i 0.913593 + 0.406630i \(0.133296\pi\)
−0.997572 + 0.0696405i \(0.977815\pi\)
\(402\) 59.9369 11.2843i 2.98938 0.562810i
\(403\) 13.0637 + 15.5687i 0.650749 + 0.775532i
\(404\) −13.5465 −0.673965
\(405\) 0 0
\(406\) −17.6153 −0.874232
\(407\) 11.9453 + 14.2359i 0.592107 + 0.705646i
\(408\) −10.0166 + 1.88582i −0.495894 + 0.0933619i
\(409\) −2.41577 + 13.7005i −0.119452 + 0.677446i 0.864997 + 0.501776i \(0.167320\pi\)
−0.984449 + 0.175669i \(0.943791\pi\)
\(410\) 0 0
\(411\) 5.56592 + 4.56178i 0.274546 + 0.225016i
\(412\) −25.9135 + 4.56924i −1.27666 + 0.225110i
\(413\) 19.9264 11.5045i 0.980512 0.566099i
\(414\) 4.66853 + 3.73692i 0.229446 + 0.183660i
\(415\) 0 0
\(416\) −39.8139 14.4911i −1.95204 0.710484i
\(417\) 0.171015 + 14.7948i 0.00837465 + 0.724505i
\(418\) 26.2766 31.3152i 1.28523 1.53168i
\(419\) 23.8549 + 20.0166i 1.16539 + 0.977876i 0.999965 0.00834704i \(-0.00265698\pi\)
0.165422 + 0.986223i \(0.447101\pi\)
\(420\) 0 0
\(421\) −14.6085 5.31705i −0.711974 0.259137i −0.0394593 0.999221i \(-0.512564\pi\)
−0.672515 + 0.740084i \(0.734786\pi\)
\(422\) −8.67186 5.00670i −0.422139 0.243722i
\(423\) −9.23972 + 5.62326i −0.449251 + 0.273412i
\(424\) 7.41313 + 12.8399i 0.360013 + 0.623561i
\(425\) 0 0
\(426\) −55.6167 + 20.9739i −2.69464 + 1.01619i
\(427\) 0.716460 + 1.96846i 0.0346719 + 0.0952603i
\(428\) 47.8937 + 8.44495i 2.31503 + 0.408202i
\(429\) 43.1696 37.0823i 2.08425 1.79035i
\(430\) 0 0
\(431\) 5.10872 0.246078 0.123039 0.992402i \(-0.460736\pi\)
0.123039 + 0.992402i \(0.460736\pi\)
\(432\) −6.22502 + 1.32167i −0.299502 + 0.0635888i
\(433\) 9.22565i 0.443356i −0.975120 0.221678i \(-0.928847\pi\)
0.975120 0.221678i \(-0.0711534\pi\)
\(434\) 21.2686 17.8465i 1.02093 0.856658i
\(435\) 0 0
\(436\) −3.47308 + 19.6968i −0.166331 + 0.943308i
\(437\) −1.05124 2.88827i −0.0502878 0.138165i
\(438\) −49.1871 8.08797i −2.35025 0.386458i
\(439\) 2.32033 + 13.1592i 0.110743 + 0.628057i 0.988770 + 0.149445i \(0.0477487\pi\)
−0.878027 + 0.478612i \(0.841140\pi\)
\(440\) 0 0
\(441\) 16.1532 14.2032i 0.769198 0.676340i
\(442\) 33.1075 + 19.1147i 1.57477 + 0.909191i
\(443\) −2.63433 + 7.23777i −0.125161 + 0.343877i −0.986409 0.164308i \(-0.947461\pi\)
0.861248 + 0.508184i \(0.169683\pi\)
\(444\) 8.65377 15.3971i 0.410690 0.730712i
\(445\) 0 0
\(446\) 41.8453 + 35.1124i 1.98143 + 1.66262i
\(447\) 16.9979 + 9.55351i 0.803973 + 0.451865i
\(448\) −16.6429 + 45.7261i −0.786305 + 2.16035i
\(449\) −16.9493 + 29.3570i −0.799886 + 1.38544i 0.119805 + 0.992797i \(0.461773\pi\)
−0.919690 + 0.392645i \(0.871560\pi\)
\(450\) 0 0
\(451\) −6.50196 11.2617i −0.306165 0.530294i
\(452\) 49.9485 8.80726i 2.34938 0.414259i
\(453\) 29.0471 + 4.77630i 1.36475 + 0.224410i
\(454\) −35.5151 + 12.9264i −1.66680 + 0.606667i
\(455\) 0 0
\(456\) −11.7469 4.12240i −0.550100 0.193049i
\(457\) −16.4891 19.6509i −0.771325 0.919230i 0.227182 0.973852i \(-0.427049\pi\)
−0.998507 + 0.0546225i \(0.982604\pi\)
\(458\) 32.6230i 1.52437i
\(459\) 14.5757 0.505628i 0.680337 0.0236007i
\(460\) 0 0
\(461\) 11.2323 9.42502i 0.523140 0.438967i −0.342585 0.939487i \(-0.611302\pi\)
0.865725 + 0.500520i \(0.166858\pi\)
\(462\) −50.6586 58.9746i −2.35685 2.74375i
\(463\) 0.536066 + 0.0945229i 0.0249131 + 0.00439285i 0.186091 0.982533i \(-0.440418\pi\)
−0.161178 + 0.986925i \(0.551529\pi\)
\(464\) −2.42232 + 0.881652i −0.112453 + 0.0409297i
\(465\) 0 0
\(466\) 9.86433 + 55.9434i 0.456956 + 2.59153i
\(467\) 35.6559 20.5859i 1.64996 0.952604i 0.672872 0.739759i \(-0.265060\pi\)
0.977086 0.212845i \(-0.0682730\pi\)
\(468\) −47.4545 25.9542i −2.19359 1.19973i
\(469\) −29.8094 + 51.6314i −1.37647 + 2.38412i
\(470\) 0 0
\(471\) 11.0243 + 18.5949i 0.507973 + 0.856810i
\(472\) −8.23749 + 9.81706i −0.379161 + 0.451867i
\(473\) −23.5687 + 28.0881i −1.08369 + 1.29149i
\(474\) 38.2402 0.442023i 1.75643 0.0203028i
\(475\) 0 0
\(476\) 15.5472 26.9286i 0.712607 1.23427i
\(477\) −7.71479 19.7624i −0.353236 0.904859i
\(478\) 12.4106 7.16525i 0.567647 0.327731i
\(479\) −1.02370 5.80571i −0.0467742 0.265270i 0.952448 0.304701i \(-0.0985565\pi\)
−0.999222 + 0.0394312i \(0.987445\pi\)
\(480\) 0 0
\(481\) −19.9467 + 7.26002i −0.909493 + 0.331028i
\(482\) 5.87183 + 1.03536i 0.267455 + 0.0471595i
\(483\) −5.74459 + 1.08153i −0.261388 + 0.0492115i
\(484\) −40.0516 + 33.6073i −1.82053 + 1.52760i
\(485\) 0 0
\(486\) −34.5998 + 2.00186i −1.56948 + 0.0908060i
\(487\) 11.9102i 0.539704i −0.962902 0.269852i \(-0.913025\pi\)
0.962902 0.269852i \(-0.0869748\pi\)
\(488\) −0.749960 0.893767i −0.0339491 0.0404589i
\(489\) 2.40046 + 12.7501i 0.108552 + 0.576579i
\(490\) 0 0
\(491\) −35.0462 + 12.7558i −1.58161 + 0.575661i −0.975554 0.219758i \(-0.929473\pi\)
−0.606060 + 0.795419i \(0.707251\pi\)
\(492\) −7.83440 + 9.55892i −0.353202 + 0.430949i
\(493\) 5.81800 1.02587i 0.262029 0.0462029i
\(494\) 23.3468 + 40.4379i 1.05042 + 1.81939i
\(495\) 0 0
\(496\) 2.03147 3.51861i 0.0912158 0.157990i
\(497\) 19.8727 54.5997i 0.891411 2.44913i
\(498\) 0.212734 + 18.4040i 0.00953286 + 0.824704i
\(499\) 14.2032 + 11.9179i 0.635821 + 0.533517i 0.902732 0.430204i \(-0.141558\pi\)
−0.266911 + 0.963721i \(0.586003\pi\)
\(500\) 0 0
\(501\) 11.0563 + 18.6489i 0.493958 + 0.833170i
\(502\) −14.9566 + 41.0930i −0.667548 + 1.83407i
\(503\) 29.8502 + 17.2340i 1.33096 + 0.768428i 0.985446 0.169987i \(-0.0543727\pi\)
0.345510 + 0.938415i \(0.387706\pi\)
\(504\) −11.3611 + 20.7725i −0.506062 + 0.925281i
\(505\) 0 0
\(506\) 1.85644 + 10.5284i 0.0825289 + 0.468044i
\(507\) 14.9921 + 39.7547i 0.665824 + 1.76557i
\(508\) −4.84727 13.3178i −0.215063 0.590880i
\(509\) −4.38600 + 24.8743i −0.194406 + 1.10253i 0.718856 + 0.695159i \(0.244666\pi\)
−0.913262 + 0.407373i \(0.866445\pi\)
\(510\) 0 0
\(511\) 37.3271 31.3211i 1.65125 1.38556i
\(512\) 13.6056i 0.601287i
\(513\) 15.7266 + 8.36663i 0.694346 + 0.369396i
\(514\) −12.3403 −0.544307
\(515\) 0 0
\(516\) 32.8826 + 11.5397i 1.44758 + 0.508005i
\(517\) −19.0435 3.35788i −0.837531 0.147679i
\(518\) 9.91801 + 27.2495i 0.435772 + 1.19727i
\(519\) −4.26103 + 25.9135i −0.187038 + 1.13748i
\(520\) 0 0
\(521\) 5.72752 + 9.92036i 0.250927 + 0.434619i 0.963781 0.266693i \(-0.0859311\pi\)
−0.712854 + 0.701312i \(0.752598\pi\)
\(522\) −13.7655 + 2.75674i −0.602497 + 0.120659i
\(523\) −25.0507 14.4630i −1.09539 0.632424i −0.160384 0.987055i \(-0.551273\pi\)
−0.935006 + 0.354631i \(0.884607\pi\)
\(524\) 15.4369 + 5.61857i 0.674364 + 0.245448i
\(525\) 0 0
\(526\) 24.0023 + 20.1403i 1.04655 + 0.878158i
\(527\) −5.98528 + 7.13298i −0.260723 + 0.310718i
\(528\) −9.91789 5.57425i −0.431621 0.242588i
\(529\) −20.8576 7.59154i −0.906851 0.330067i
\(530\) 0 0
\(531\) 13.7710 12.1086i 0.597611 0.525468i
\(532\) 32.8909 18.9896i 1.42600 0.823302i
\(533\) 14.6279 2.57929i 0.633604 0.111722i
\(534\) 1.81743 11.0527i 0.0786480 0.478299i
\(535\) 0 0
\(536\) 5.76612 32.7013i 0.249059 1.41248i
\(537\) −4.65872 + 13.2752i −0.201039 + 0.572866i
\(538\) −15.2184 18.1366i −0.656113 0.781925i
\(539\) 38.4540 1.65633
\(540\) 0 0
\(541\) 13.9635 0.600338 0.300169 0.953886i \(-0.402957\pi\)
0.300169 + 0.953886i \(0.402957\pi\)
\(542\) −26.7242 31.8487i −1.14790 1.36802i
\(543\) −17.9660 20.9152i −0.770994 0.897558i
\(544\) 3.37084 19.1170i 0.144524 0.819634i
\(545\) 0 0
\(546\) 83.0912 31.3350i 3.55597 1.34101i
\(547\) −18.7679 + 3.30929i −0.802457 + 0.141495i −0.559811 0.828620i \(-0.689126\pi\)
−0.242646 + 0.970115i \(0.578015\pi\)
\(548\) 10.5897 6.11394i 0.452367 0.261174i
\(549\) 0.867933 + 1.42612i 0.0370425 + 0.0608655i
\(550\) 0 0
\(551\) 6.78062 + 2.46794i 0.288864 + 0.105138i
\(552\) 2.80057 1.66036i 0.119200 0.0706698i
\(553\) −24.0294 + 28.6371i −1.02183 + 1.21777i
\(554\) −12.5241 10.5090i −0.532098 0.446483i
\(555\) 0 0
\(556\) 23.6241 + 8.59848i 1.00189 + 0.364657i
\(557\) 25.4546 + 14.6962i 1.07855 + 0.622700i 0.930504 0.366281i \(-0.119369\pi\)
0.148044 + 0.988981i \(0.452702\pi\)
\(558\) 13.8274 17.2746i 0.585361 0.731291i
\(559\) −20.9409 36.2707i −0.885705 1.53409i
\(560\) 0 0
\(561\) 20.1661 + 16.5280i 0.851414 + 0.697811i
\(562\) −12.4014 34.0727i −0.523123 1.43727i
\(563\) −25.1141 4.42830i −1.05844 0.186631i −0.382773 0.923842i \(-0.625031\pi\)
−0.675662 + 0.737212i \(0.736142\pi\)
\(564\) 3.40039 + 18.0613i 0.143182 + 0.760517i
\(565\) 0 0
\(566\) 1.20076 0.0504719
\(567\) 20.5539 26.9312i 0.863185 1.13100i
\(568\) 32.3620i 1.35788i
\(569\) 7.32350 6.14515i 0.307017 0.257618i −0.476241 0.879315i \(-0.658001\pi\)
0.783258 + 0.621697i \(0.213556\pi\)
\(570\) 0 0
\(571\) 5.37062 30.4583i 0.224754 1.27464i −0.638402 0.769703i \(-0.720404\pi\)
0.863156 0.504938i \(-0.168485\pi\)
\(572\) −33.0727 90.8664i −1.38284 3.79931i
\(573\) 19.7389 24.0838i 0.824603 1.00611i
\(574\) −3.52360 19.9834i −0.147072 0.834089i
\(575\) 0 0
\(576\) −5.84962 + 38.3372i −0.243734 + 1.59738i
\(577\) 31.5221 + 18.1993i 1.31228 + 0.757647i 0.982474 0.186400i \(-0.0596821\pi\)
0.329810 + 0.944047i \(0.393015\pi\)
\(578\) 6.93641 19.0576i 0.288516 0.792692i
\(579\) −1.68247 + 0.0194479i −0.0699211 + 0.000808226i
\(580\) 0 0
\(581\) −13.7823 11.5647i −0.571785 0.479785i
\(582\) −21.1272 + 12.5256i −0.875749 + 0.519202i
\(583\) 12.9720 35.6402i 0.537244 1.47607i
\(584\) −13.5697 + 23.5034i −0.561518 + 0.972578i
\(585\) 0 0
\(586\) −19.2915 33.4139i −0.796926 1.38032i
\(587\) 39.7946 7.01686i 1.64250 0.289617i 0.725415 0.688312i \(-0.241648\pi\)
0.917083 + 0.398696i \(0.130537\pi\)
\(588\) −12.8961 34.1968i −0.531828 1.41025i
\(589\) −10.6872 + 3.88983i −0.440359 + 0.160278i
\(590\) 0 0
\(591\) −12.1317 + 10.4210i −0.499032 + 0.428663i
\(592\) 2.72770 + 3.25074i 0.112108 + 0.133605i
\(593\) 11.8336i 0.485946i −0.970033 0.242973i \(-0.921877\pi\)
0.970033 0.242973i \(-0.0781226\pi\)
\(594\) −48.8165 38.1577i −2.00296 1.56563i
\(595\) 0 0
\(596\) 25.3799 21.2963i 1.03960 0.872330i
\(597\) 10.1121 28.8146i 0.413859 1.17930i
\(598\) −12.0259 2.12049i −0.491776 0.0867135i
\(599\) −8.76898 + 3.19165i −0.358291 + 0.130407i −0.514893 0.857255i \(-0.672168\pi\)
0.156602 + 0.987662i \(0.449946\pi\)
\(600\) 0 0
\(601\) 3.42397 + 19.4183i 0.139667 + 0.792088i 0.971496 + 0.237057i \(0.0761827\pi\)
−0.831829 + 0.555032i \(0.812706\pi\)
\(602\) −49.5498 + 28.6076i −2.01950 + 1.16596i
\(603\) −15.2144 + 45.0124i −0.619578 + 1.83305i
\(604\) 25.0091 43.3170i 1.01761 1.76254i
\(605\) 0 0
\(606\) 8.68462 15.4519i 0.352788 0.627692i
\(607\) −23.2154 + 27.6671i −0.942285 + 1.12297i 0.0499698 + 0.998751i \(0.484087\pi\)
−0.992255 + 0.124221i \(0.960357\pi\)
\(608\) 15.2404 18.1628i 0.618081 0.736600i
\(609\) 6.72376 11.9631i 0.272461 0.484771i
\(610\) 0 0
\(611\) 11.0439 19.1285i 0.446786 0.773857i
\(612\) 7.93514 23.4764i 0.320759 0.948978i
\(613\) −3.39263 + 1.95873i −0.137027 + 0.0791125i −0.566946 0.823755i \(-0.691875\pi\)
0.429919 + 0.902867i \(0.358542\pi\)
\(614\) −1.72065 9.75829i −0.0694398 0.393813i
\(615\) 0 0
\(616\) −39.7754 + 14.4771i −1.60260 + 0.583298i
\(617\) 36.1192 + 6.36880i 1.45411 + 0.256398i 0.844180 0.536060i \(-0.180088\pi\)
0.609926 + 0.792458i \(0.291199\pi\)
\(618\) 11.4011 32.4877i 0.458618 1.30685i
\(619\) −8.22380 + 6.90059i −0.330543 + 0.277358i −0.792921 0.609325i \(-0.791441\pi\)
0.462378 + 0.886683i \(0.346996\pi\)
\(620\) 0 0
\(621\) −4.31985 + 1.74417i −0.173350 + 0.0699912i
\(622\) 26.2634i 1.05307i
\(623\) 7.03811 + 8.38770i 0.281976 + 0.336046i
\(624\) 9.85773 8.46770i 0.394625 0.338979i
\(625\) 0 0
\(626\) −7.40481 + 2.69513i −0.295956 + 0.107719i
\(627\) 11.2374 + 29.7984i 0.448780 + 1.19003i
\(628\) 36.1729 6.37827i 1.44346 0.254521i
\(629\) −4.86267 8.42239i −0.193887 0.335823i
\(630\) 0 0
\(631\) −1.62045 + 2.80670i −0.0645090 + 0.111733i −0.896476 0.443092i \(-0.853881\pi\)
0.831967 + 0.554825i \(0.187215\pi\)
\(632\) 7.12126 19.5655i 0.283268 0.778273i
\(633\) 6.71027 3.97829i 0.266709 0.158123i
\(634\) 6.62270 + 5.55711i 0.263021 + 0.220701i
\(635\) 0 0
\(636\) −36.0448 + 0.416646i −1.42927 + 0.0165211i
\(637\) −15.0228 + 41.2747i −0.595223 + 1.63536i
\(638\) −21.7357 12.5491i −0.860524 0.496824i
\(639\) 6.98480 45.7769i 0.276314 1.81091i
\(640\) 0 0
\(641\) 0.522380 + 2.96256i 0.0206328 + 0.117014i 0.993385 0.114834i \(-0.0366337\pi\)
−0.972752 + 0.231849i \(0.925523\pi\)
\(642\) −40.3372 + 49.2162i −1.59198 + 1.94241i
\(643\) 12.9452 + 35.5666i 0.510509 + 1.40261i 0.880708 + 0.473659i \(0.157067\pi\)
−0.370200 + 0.928952i \(0.620711\pi\)
\(644\) −1.72474 + 9.78150i −0.0679644 + 0.385445i
\(645\) 0 0
\(646\) −16.3882 + 13.7513i −0.644784 + 0.541038i
\(647\) 13.1670i 0.517650i 0.965924 + 0.258825i \(0.0833353\pi\)
−0.965924 + 0.258825i \(0.916665\pi\)
\(648\) −5.62726 + 18.0106i −0.221060 + 0.707524i
\(649\) 32.7831 1.28685
\(650\) 0 0
\(651\) 4.00191 + 21.2562i 0.156847 + 0.833097i
\(652\) 21.7100 + 3.82806i 0.850229 + 0.149918i
\(653\) −6.72520 18.4773i −0.263177 0.723074i −0.998949 0.0458437i \(-0.985402\pi\)
0.735771 0.677230i \(-0.236820\pi\)
\(654\) −20.2408 16.5891i −0.791476 0.648687i
\(655\) 0 0
\(656\) −1.48471 2.57160i −0.0579683 0.100404i
\(657\) 24.2675 30.3174i 0.946767 1.18280i
\(658\) −26.1317 15.0872i −1.01872 0.588158i
\(659\) −17.4856 6.36425i −0.681143 0.247916i −0.0218050 0.999762i \(-0.506941\pi\)
−0.659338 + 0.751846i \(0.729164\pi\)
\(660\) 0 0
\(661\) −26.9451 22.6096i −1.04804 0.879412i −0.0551562 0.998478i \(-0.517566\pi\)
−0.992886 + 0.119066i \(0.962010\pi\)
\(662\) −28.5734 + 34.0524i −1.11054 + 1.32348i
\(663\) −25.6186 + 15.1884i −0.994943 + 0.589868i
\(664\) 9.41637 + 3.42728i 0.365426 + 0.133004i
\(665\) 0 0
\(666\) 12.0149 + 19.7420i 0.465567 + 0.764985i
\(667\) −1.63427 + 0.943545i −0.0632791 + 0.0365342i
\(668\) 36.2779 6.39677i 1.40363 0.247498i
\(669\) −39.8183 + 15.0161i −1.53947 + 0.580557i
\(670\) 0 0
\(671\) −0.518279 + 2.93930i −0.0200079 + 0.113471i
\(672\) −29.3820 34.2053i −1.13343 1.31950i
\(673\) −14.8063 17.6455i −0.570741 0.680183i 0.401042 0.916060i \(-0.368648\pi\)
−0.971783 + 0.235877i \(0.924204\pi\)
\(674\) 57.7859 2.22583
\(675\) 0 0
\(676\) 72.1928 2.77665
\(677\) 7.97061 + 9.49900i 0.306335 + 0.365076i 0.897146 0.441734i \(-0.145636\pi\)
−0.590811 + 0.806810i \(0.701192\pi\)
\(678\) −21.9756 + 62.6203i −0.843970 + 2.40492i
\(679\) 4.16911 23.6442i 0.159996 0.907380i
\(680\) 0 0
\(681\) 4.77734 29.0535i 0.183068 1.11333i
\(682\) 38.9574 6.86923i 1.49175 0.263037i
\(683\) −5.03898 + 2.90926i −0.192811 + 0.111320i −0.593298 0.804983i \(-0.702174\pi\)
0.400487 + 0.916303i \(0.368841\pi\)
\(684\) 22.7307 19.9867i 0.869131 0.764210i
\(685\) 0 0
\(686\) 1.33535 + 0.486029i 0.0509841 + 0.0185567i
\(687\) −22.1554 12.4522i −0.845281 0.475082i
\(688\) −5.38189 + 6.41389i −0.205183 + 0.244527i
\(689\) 33.1867 + 27.8469i 1.26431 + 1.06088i
\(690\) 0 0
\(691\) −4.15074 1.51075i −0.157902 0.0574715i 0.261860 0.965106i \(-0.415664\pi\)
−0.419762 + 0.907634i \(0.637886\pi\)
\(692\) 38.6439 + 22.3111i 1.46902 + 0.848140i
\(693\) 59.3881 11.8933i 2.25597 0.451790i
\(694\) −23.2104 40.2017i −0.881057 1.52603i
\(695\) 0 0
\(696\) −1.24017 + 7.54209i −0.0470084 + 0.285882i
\(697\) 2.32756 + 6.39492i 0.0881626 + 0.242225i
\(698\) 25.2432 + 4.45105i 0.955468 + 0.168475i
\(699\) −41.7583 14.6544i −1.57944 0.554281i
\(700\) 0 0
\(701\) 45.9990 1.73736 0.868678 0.495376i \(-0.164970\pi\)
0.868678 + 0.495376i \(0.164970\pi\)
\(702\) 60.0277 37.4902i 2.26560 1.41498i
\(703\) 11.8786i 0.448011i
\(704\) −53.1111 + 44.5655i −2.00170 + 1.67962i
\(705\) 0 0
\(706\) 4.08500 23.1672i 0.153741 0.871908i
\(707\) 5.92611 + 16.2819i 0.222874 + 0.612343i
\(708\) −10.9943 29.1537i −0.413192 1.09566i
\(709\) 1.65171 + 9.36728i 0.0620311 + 0.351796i 0.999987 + 0.00504202i \(0.00160493\pi\)
−0.937956 + 0.346754i \(0.887284\pi\)
\(710\) 0 0
\(711\) −14.2961 + 26.1389i −0.536146 + 0.980286i
\(712\) −5.28141 3.04922i −0.197929 0.114274i
\(713\) 1.01728 2.79495i 0.0380973 0.104672i
\(714\) 20.7490 + 34.9979i 0.776513 + 1.30976i
\(715\) 0 0
\(716\) 18.3124 + 15.3659i 0.684367 + 0.574252i
\(717\) 0.129039 + 11.1634i 0.00481907 + 0.416906i
\(718\) 14.7725 40.5871i 0.551305 1.51470i
\(719\) 9.60533 16.6369i 0.358218 0.620452i −0.629445 0.777045i \(-0.716718\pi\)
0.987663 + 0.156593i \(0.0500510\pi\)
\(720\) 0 0
\(721\) 16.8281 + 29.1471i 0.626710 + 1.08549i
\(722\) 15.8678 2.79792i 0.590537 0.104128i
\(723\) −2.94443 + 3.59256i −0.109505 + 0.133609i
\(724\) −44.0238 + 16.0233i −1.63613 + 0.595503i
\(725\) 0 0
\(726\) −12.6575 67.2305i −0.469763 2.49516i
\(727\) −22.6474 26.9901i −0.839944 1.00101i −0.999904 0.0138826i \(-0.995581\pi\)
0.159960 0.987124i \(-0.448864\pi\)
\(728\) 48.3487i 1.79192i
\(729\) 11.8472 24.2620i 0.438786 0.898592i
\(730\) 0 0
\(731\) 14.6993 12.3342i 0.543675 0.456197i
\(732\) 2.78771 0.524841i 0.103037 0.0193987i
\(733\) −15.2083 2.68164i −0.561732 0.0990485i −0.114430 0.993431i \(-0.536504\pi\)
−0.447302 + 0.894383i \(0.647615\pi\)
\(734\) −24.9651 + 9.08654i −0.921477 + 0.335390i
\(735\) 0 0
\(736\) 1.07673 + 6.10647i 0.0396890 + 0.225087i
\(737\) −73.5643 + 42.4724i −2.70977 + 1.56449i
\(738\) −5.88085 15.0645i −0.216477 0.554533i
\(739\) 6.55875 11.3601i 0.241268 0.417888i −0.719808 0.694173i \(-0.755770\pi\)
0.961076 + 0.276285i \(0.0891035\pi\)
\(740\) 0 0
\(741\) −36.3742 + 0.420454i −1.33624 + 0.0154458i
\(742\) 38.0421 45.3368i 1.39657 1.66437i
\(743\) 9.43078 11.2392i 0.345982 0.412325i −0.564790 0.825234i \(-0.691043\pi\)
0.910772 + 0.412909i \(0.135487\pi\)
\(744\) −6.14371 10.3627i −0.225239 0.379916i
\(745\) 0 0
\(746\) −30.9676 + 53.6374i −1.13380 + 1.96380i
\(747\) −12.5800 6.88035i −0.460278 0.251739i
\(748\) 38.3678 22.1517i 1.40287 0.809945i
\(749\) −10.8016 61.2588i −0.394681 2.23835i
\(750\) 0 0
\(751\) −13.7050 + 4.98820i −0.500101 + 0.182022i −0.579739 0.814802i \(-0.696846\pi\)
0.0796384 + 0.996824i \(0.474623\pi\)
\(752\) −4.34855 0.766767i −0.158575 0.0279611i
\(753\) −22.1987 25.8428i −0.808966 0.941764i
\(754\) 21.9610 18.4275i 0.799774 0.671090i
\(755\) 0 0
\(756\) −30.4933 48.8246i −1.10903 1.77573i
\(757\) 13.5259i 0.491607i 0.969320 + 0.245803i \(0.0790518\pi\)
−0.969320 + 0.245803i \(0.920948\pi\)
\(758\) −28.1138 33.5047i −1.02114 1.21695i
\(759\) −7.85879 2.75792i −0.285256 0.100106i
\(760\) 0 0
\(761\) −31.9148 + 11.6160i −1.15691 + 0.421081i −0.847993 0.530008i \(-0.822189\pi\)
−0.308918 + 0.951089i \(0.599967\pi\)
\(762\) 18.2986 + 3.00888i 0.662887 + 0.109000i
\(763\) 25.1934 4.44227i 0.912062 0.160821i
\(764\) −26.4551 45.8215i −0.957111 1.65776i
\(765\) 0 0
\(766\) −5.74493 + 9.95050i −0.207573 + 0.359526i
\(767\) −12.8073 + 35.1878i −0.462445 + 1.27056i
\(768\) 11.0094 + 6.18771i 0.397267 + 0.223280i
\(769\) 1.51739 + 1.27324i 0.0547184 + 0.0459142i 0.669737 0.742599i \(-0.266407\pi\)
−0.615018 + 0.788513i \(0.710851\pi\)
\(770\) 0 0
\(771\) 4.71029 8.38070i 0.169637 0.301824i
\(772\) −0.977821 + 2.68654i −0.0351925 + 0.0966907i
\(773\) −46.5224 26.8597i −1.67329 0.966077i −0.965775 0.259382i \(-0.916481\pi\)
−0.707519 0.706694i \(-0.750186\pi\)
\(774\) −34.2437 + 30.1098i −1.23086 + 1.08227i
\(775\) 0 0
\(776\) 2.32206 + 13.1691i 0.0833571 + 0.472742i
\(777\) −22.2918 3.66549i −0.799712 0.131499i
\(778\) 7.15469 + 19.6574i 0.256508 + 0.704750i
\(779\) −1.44338 + 8.18582i −0.0517145 + 0.293287i
\(780\) 0 0
\(781\) 63.4178 53.2139i 2.26927 1.90414i
\(782\) 5.59482i 0.200070i
\(783\) 3.38209 10.4008i 0.120866 0.371695i
\(784\) 8.78093 0.313605
\(785\) 0 0
\(786\) −16.3054 + 14.0062i −0.581593 + 0.499583i
\(787\) −16.6884 2.94262i −0.594877 0.104893i −0.131900 0.991263i \(-0.542108\pi\)
−0.462977 + 0.886370i \(0.653219\pi\)
\(788\) 9.29421 + 25.5356i 0.331093 + 0.909669i
\(789\) −22.8396 + 8.61319i −0.813112 + 0.306638i
\(790\) 0 0
\(791\) −32.4363 56.1812i −1.15330 1.99757i
\(792\) −28.8168 + 17.5378i −1.02396 + 0.623179i
\(793\) −2.95243 1.70459i −0.104844 0.0605316i
\(794\) −16.7852 6.10931i −0.595684 0.216811i
\(795\) 0 0
\(796\) −39.7482 33.3527i −1.40884 1.18216i
\(797\) −0.104393 + 0.124410i −0.00369778 + 0.00440684i −0.767890 0.640582i \(-0.778693\pi\)
0.764192 + 0.644988i \(0.223138\pi\)
\(798\) 0.574388 + 49.6913i 0.0203331 + 1.75905i
\(799\) 9.50945 + 3.46116i 0.336420 + 0.122447i
\(800\) 0 0
\(801\) 6.81257 + 5.45312i 0.240710 + 0.192676i
\(802\) −18.6467 + 10.7657i −0.658437 + 0.380149i
\(803\) 68.3714 12.0557i 2.41277 0.425437i
\(804\) 62.4411 + 51.1762i 2.20213 + 1.80485i
\(805\) 0 0
\(806\) −7.84629 + 44.4985i −0.276374 + 1.56739i
\(807\) 18.1261 3.41259i 0.638068 0.120129i
\(808\) −6.20321 7.39269i −0.218228 0.260074i
\(809\) 24.6513 0.866695 0.433347 0.901227i \(-0.357332\pi\)
0.433347 + 0.901227i \(0.357332\pi\)
\(810\) 0 0
\(811\) −9.59786 −0.337026 −0.168513 0.985699i \(-0.553897\pi\)
−0.168513 + 0.985699i \(0.553897\pi\)
\(812\) −14.9883 17.8624i −0.525987 0.626847i
\(813\) 31.8302 5.99266i 1.11633 0.210172i
\(814\) −7.17457 + 40.6890i −0.251469 + 1.42615i
\(815\) 0 0
\(816\) 4.60491 + 3.77414i 0.161204 + 0.132121i
\(817\) 23.0811 4.06982i 0.807506 0.142385i
\(818\) −26.7862 + 15.4650i −0.936557 + 0.540722i
\(819\) −10.4353 + 68.3906i −0.364638 + 2.38976i
\(820\) 0 0
\(821\) −7.75048 2.82094i −0.270493 0.0984516i 0.203212 0.979135i \(-0.434862\pi\)
−0.473706 + 0.880683i \(0.657084\pi\)
\(822\) 0.184932 + 15.9988i 0.00645024 + 0.558021i
\(823\) 2.77633 3.30870i 0.0967768 0.115334i −0.715482 0.698631i \(-0.753793\pi\)
0.812259 + 0.583297i \(0.198237\pi\)
\(824\) −14.3598 12.0493i −0.500247 0.419757i
\(825\) 0 0
\(826\) 48.0705 + 17.4962i 1.67259 + 0.608772i
\(827\) 9.89730 + 5.71421i 0.344163 + 0.198703i 0.662111 0.749405i \(-0.269661\pi\)
−0.317948 + 0.948108i \(0.602994\pi\)
\(828\) 0.182974 + 7.91366i 0.00635880 + 0.275019i
\(829\) 14.4282 + 24.9904i 0.501113 + 0.867954i 0.999999 + 0.00128593i \(0.000409323\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(830\) 0 0
\(831\) 11.9175 4.49426i 0.413412 0.155904i
\(832\) −27.0856 74.4171i −0.939025 2.57995i
\(833\) −19.8184 3.49452i −0.686666 0.121078i
\(834\) −24.9532 + 21.4346i −0.864059 + 0.742219i
\(835\) 0 0
\(836\) 54.1125 1.87152
\(837\) 6.45382 + 15.9844i 0.223077 + 0.552501i
\(838\) 69.2339i 2.39165i
\(839\) 14.9031 12.5052i 0.514513 0.431728i −0.348201 0.937420i \(-0.613207\pi\)
0.862714 + 0.505692i \(0.168763\pi\)
\(840\) 0 0
\(841\) −4.26650 + 24.1965i −0.147121 + 0.834363i
\(842\) −11.8213 32.4789i −0.407390 1.11930i
\(843\) 27.8735 + 4.58332i 0.960015 + 0.157858i
\(844\) −2.30169 13.0536i −0.0792276 0.449322i
\(845\) 0 0
\(846\) −22.7817 7.70031i −0.783251 0.264742i
\(847\) 57.9144 + 33.4369i 1.98996 + 1.14890i
\(848\) 2.96213 8.13839i 0.101720 0.279473i
\(849\) −0.458332 + 0.815479i −0.0157299 + 0.0279872i
\(850\) 0 0
\(851\) 2.37974 + 1.99684i 0.0815764 + 0.0684507i
\(852\) −68.5907 38.5508i −2.34988 1.32073i
\(853\) −0.256981 + 0.706049i −0.00879885 + 0.0241746i −0.944014 0.329905i \(-0.892983\pi\)
0.935215 + 0.354079i \(0.115206\pi\)
\(854\) −2.32866 + 4.03335i −0.0796850 + 0.138019i
\(855\) 0 0
\(856\) 17.3228 + 30.0039i 0.592080 + 1.02551i
\(857\) −35.8762 + 6.32595i −1.22551 + 0.216090i −0.748695 0.662914i \(-0.769319\pi\)
−0.476813 + 0.879005i \(0.658208\pi\)
\(858\) 124.850 + 20.5294i 4.26231 + 0.700863i
\(859\) 27.3052 9.93826i 0.931640 0.339089i 0.168781 0.985654i \(-0.446017\pi\)
0.762859 + 0.646564i \(0.223795\pi\)
\(860\) 0 0
\(861\) 14.9163 + 5.23466i 0.508347 + 0.178397i
\(862\) 7.30088 + 8.70085i 0.248669 + 0.296352i
\(863\) 2.49689i 0.0849951i 0.999097 + 0.0424975i \(0.0135315\pi\)
−0.999097 + 0.0424975i \(0.986469\pi\)
\(864\) −28.3135 22.1315i −0.963246 0.752928i
\(865\) 0 0
\(866\) 15.7125 13.1844i 0.533934 0.448024i
\(867\) 10.2950 + 11.9850i 0.349638 + 0.407034i
\(868\) 36.1937 + 6.38192i 1.22849 + 0.216616i
\(869\) −50.0511 + 18.2171i −1.69787 + 0.617973i
\(870\) 0 0
\(871\) −16.8486 95.5529i −0.570891 3.23769i
\(872\) −12.3395 + 7.12419i −0.417867 + 0.241256i
\(873\) −0.442292 19.1292i −0.0149693 0.647424i
\(874\) 3.41678 5.91804i 0.115574 0.200181i
\(875\) 0 0
\(876\) −33.6504 56.7589i −1.13694 1.91771i
\(877\) 23.2839 27.7487i 0.786241 0.937006i −0.212956 0.977062i \(-0.568309\pi\)
0.999197 + 0.0400561i \(0.0127537\pi\)
\(878\) −19.0960 + 22.7577i −0.644459 + 0.768037i
\(879\) 30.0561 0.347422i 1.01377 0.0117183i
\(880\) 0 0
\(881\) −5.21700 + 9.03610i −0.175765 + 0.304434i −0.940426 0.339999i \(-0.889573\pi\)
0.764661 + 0.644433i \(0.222907\pi\)
\(882\) 47.2744 + 7.21330i 1.59181 + 0.242885i
\(883\) −23.3890 + 13.5036i −0.787102 + 0.454434i −0.838941 0.544222i \(-0.816825\pi\)
0.0518393 + 0.998655i \(0.483492\pi\)
\(884\) 8.78745 + 49.8361i 0.295554 + 1.67617i
\(885\) 0 0
\(886\) −16.0916 + 5.85688i −0.540609 + 0.196766i
\(887\) −12.0663 2.12762i −0.405148 0.0714384i −0.0326390 0.999467i \(-0.510391\pi\)
−0.372509 + 0.928029i \(0.621502\pi\)
\(888\) 12.3653 2.32801i 0.414952 0.0781229i
\(889\) −13.8864 + 11.6521i −0.465735 + 0.390798i
\(890\) 0 0
\(891\) 44.5475 18.5881i 1.49240 0.622724i
\(892\) 72.3084i 2.42106i
\(893\) 7.94508 + 9.46858i 0.265872 + 0.316854i
\(894\) 8.02081 + 42.6027i 0.268256 + 1.42485i
\(895\) 0 0
\(896\) −52.7344 + 19.1938i −1.76173 + 0.641218i
\(897\) 6.03040 7.35781i 0.201349 0.245670i
\(898\) −74.2212 + 13.0872i −2.47679 + 0.436726i
\(899\) 3.49132 + 6.04714i 0.116442 + 0.201684i
\(900\) 0 0
\(901\) −9.92428 + 17.1894i −0.330626 + 0.572660i
\(902\) 9.88830 27.1679i 0.329244 0.904592i
\(903\) −0.515196 44.5705i −0.0171446 1.48321i
\(904\) 27.6787 + 23.2252i 0.920578 + 0.772457i
\(905\) 0 0
\(906\) 33.3766 + 56.2971i 1.10886 + 1.87035i
\(907\) −1.54965 + 4.25762i −0.0514552 + 0.141372i −0.962758 0.270365i \(-0.912856\pi\)
0.911303 + 0.411737i \(0.135078\pi\)
\(908\) −43.3265 25.0146i −1.43784 0.830137i
\(909\) 7.17901 + 11.7960i 0.238113 + 0.391250i
\(910\) 0 0
\(911\) 2.98118 + 16.9071i 0.0987710 + 0.560158i 0.993526 + 0.113601i \(0.0362387\pi\)
−0.894755 + 0.446557i \(0.852650\pi\)
\(912\) 2.56605 + 6.80442i 0.0849706 + 0.225317i
\(913\) −8.76742 24.0883i −0.290159 0.797206i
\(914\) 9.90363 56.1663i 0.327583 1.85781i
\(915\) 0 0
\(916\) −33.0807 + 27.7580i −1.09302 + 0.917150i
\(917\) 21.0118i 0.693872i
\(918\) 21.6914 + 24.1019i 0.715922 + 0.795481i
\(919\) 42.1043 1.38889 0.694447 0.719544i \(-0.255649\pi\)
0.694447 + 0.719544i \(0.255649\pi\)
\(920\) 0 0
\(921\) 7.28395 + 2.55619i 0.240014 + 0.0842294i
\(922\) 32.1042 + 5.66084i 1.05730 + 0.186430i
\(923\) 32.3419 + 88.8586i 1.06455 + 2.92482i
\(924\) 16.6980 101.549i 0.549323 3.34072i
\(925\) 0 0
\(926\) 0.605108 + 1.04808i 0.0198851 + 0.0344420i
\(927\) 17.7117 + 20.1434i 0.581728 + 0.661596i
\(928\) −12.6067 7.27848i −0.413835 0.238928i
\(929\) −24.1410 8.78662i −0.792042 0.288280i −0.0858572 0.996307i \(-0.527363\pi\)
−0.706185 + 0.708028i \(0.749585\pi\)
\(930\) 0 0
\(931\) −18.8292 15.7996i −0.617102 0.517810i
\(932\) −48.3349 + 57.6033i −1.58326 + 1.88686i
\(933\) 17.8364 + 10.0248i 0.583937 + 0.328196i
\(934\) 86.0166 + 31.3075i 2.81455 + 1.02441i
\(935\) 0 0
\(936\) −7.56641 37.7821i −0.247316 1.23495i
\(937\) 38.5244 22.2421i 1.25854 0.726617i 0.285748 0.958305i \(-0.407758\pi\)
0.972790 + 0.231688i \(0.0744248\pi\)
\(938\) −130.536 + 23.0170i −4.26215 + 0.751533i
\(939\) 0.996066 6.05759i 0.0325054 0.197682i
\(940\) 0 0
\(941\) −3.84491 + 21.8056i −0.125341 + 0.710842i 0.855764 + 0.517366i \(0.173087\pi\)
−0.981105 + 0.193476i \(0.938024\pi\)
\(942\) −15.9149 + 45.3500i −0.518535 + 1.47758i
\(943\) −1.39729 1.66523i −0.0455021 0.0542273i
\(944\) 7.48598 0.243648
\(945\) 0 0
\(946\) −81.5201 −2.65045
\(947\) 17.6914 + 21.0838i 0.574894 + 0.685131i 0.972628 0.232369i \(-0.0746478\pi\)
−0.397734 + 0.917501i \(0.630203\pi\)
\(948\) 32.9857 + 38.4005i 1.07133 + 1.24719i
\(949\) −13.7705 + 78.0963i −0.447009 + 2.53511i
\(950\) 0 0
\(951\) −6.30190 + 2.37655i −0.204353 + 0.0770649i
\(952\) 21.8150 3.84657i 0.707028 0.124668i
\(953\) 4.40592 2.54376i 0.142722 0.0824005i −0.426939 0.904281i \(-0.640408\pi\)
0.569661 + 0.821880i \(0.307075\pi\)
\(954\) 22.6329 41.3818i 0.732767 1.33979i
\(955\) 0 0
\(956\) 17.8256 + 6.48798i 0.576520 + 0.209836i
\(957\) 16.8190 9.97144i 0.543682 0.322331i
\(958\) 8.42495 10.0405i 0.272198 0.324393i
\(959\) −11.9811 10.0533i −0.386888 0.324638i
\(960\) 0 0
\(961\) 18.7886 + 6.83848i 0.606083 + 0.220596i
\(962\) −40.8707 23.5967i −1.31773 0.760789i
\(963\) −18.0277 46.1802i −0.580934 1.48814i
\(964\) 3.94628 + 6.83516i 0.127101 + 0.220146i
\(965\) 0 0
\(966\) −10.0516 8.23821i −0.323405 0.265060i
\(967\) −4.00003 10.9900i −0.128632 0.353414i 0.858612 0.512626i \(-0.171327\pi\)
−0.987245 + 0.159211i \(0.949105\pi\)
\(968\) −36.6807 6.46780i −1.17896 0.207883i
\(969\) −3.08360 16.3786i −0.0990596 0.526158i
\(970\) 0 0
\(971\) 9.40243 0.301738 0.150869 0.988554i \(-0.451793\pi\)
0.150869 + 0.988554i \(0.451793\pi\)
\(972\) −31.4699 33.3818i −1.00940 1.07072i
\(973\) 32.1558i 1.03087i
\(974\) 20.2848 17.0209i 0.649966 0.545386i
\(975\) 0 0
\(976\) −0.118348 + 0.671186i −0.00378823 + 0.0214841i
\(977\) 12.9578 + 35.6014i 0.414558 + 1.13899i 0.954740 + 0.297441i \(0.0961331\pi\)
−0.540182 + 0.841548i \(0.681645\pi\)
\(978\) −18.2847 + 22.3095i −0.584679 + 0.713379i
\(979\) 2.70902 + 15.3636i 0.0865806 + 0.491023i
\(980\) 0 0
\(981\) 18.9921 7.41409i 0.606373 0.236714i
\(982\) −71.8095 41.4592i −2.29153 1.32302i
\(983\) −19.6332 + 53.9418i −0.626202 + 1.72048i 0.0650694 + 0.997881i \(0.479273\pi\)
−0.691271 + 0.722595i \(0.742949\pi\)
\(984\) −8.80406 + 0.101767i −0.280663 + 0.00324422i
\(985\) 0 0
\(986\) 10.0617 + 8.44278i 0.320430 + 0.268873i
\(987\) 20.2207 11.9882i 0.643631 0.381587i
\(988\) −21.1400 + 58.0817i −0.672554 + 1.84783i
\(989\) −3.06467 + 5.30817i −0.0974510 + 0.168790i
\(990\) 0 0
\(991\) 13.9592 + 24.1781i 0.443430 + 0.768043i 0.997941 0.0641332i \(-0.0204282\pi\)
−0.554512 + 0.832176i \(0.687095\pi\)
\(992\) 22.5952 3.98415i 0.717400 0.126497i
\(993\) −12.2197 32.4030i −0.387780 1.02828i
\(994\) 121.391 44.1827i 3.85029 1.40139i
\(995\) 0 0
\(996\) −18.4812 + 15.8752i −0.585599 + 0.503024i
\(997\) −12.6888 15.1219i −0.401858 0.478916i 0.526727 0.850034i \(-0.323419\pi\)
−0.928586 + 0.371118i \(0.878974\pi\)
\(998\) 41.2218i 1.30485i
\(999\) −17.9935 + 0.624190i −0.569289 + 0.0197485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.20 132
5.2 odd 4 675.2.l.g.76.2 yes 66
5.3 odd 4 675.2.l.f.76.10 66
5.4 even 2 inner 675.2.u.e.49.3 132
27.16 even 9 inner 675.2.u.e.124.3 132
135.43 odd 36 675.2.l.f.151.10 yes 66
135.97 odd 36 675.2.l.g.151.2 yes 66
135.124 even 18 inner 675.2.u.e.124.20 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.10 66 5.3 odd 4
675.2.l.f.151.10 yes 66 135.43 odd 36
675.2.l.g.76.2 yes 66 5.2 odd 4
675.2.l.g.151.2 yes 66 135.97 odd 36
675.2.u.e.49.3 132 5.4 even 2 inner
675.2.u.e.49.20 132 1.1 even 1 trivial
675.2.u.e.124.3 132 27.16 even 9 inner
675.2.u.e.124.20 132 135.124 even 18 inner