Properties

Label 675.2.u.e.49.17
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.17
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.17

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.860644 + 1.02568i) q^{2} +(1.52697 - 0.817526i) q^{3} +(0.0359939 - 0.204131i) q^{4} +(2.15270 + 0.862581i) q^{6} +(-0.340915 + 0.0601126i) q^{7} +(2.55944 - 1.47769i) q^{8} +(1.66330 - 2.49668i) q^{9} +(-0.377953 - 0.137564i) q^{11} +(-0.111921 - 0.341129i) q^{12} +(-0.483102 + 0.575738i) q^{13} +(-0.355063 - 0.297933i) q^{14} +(3.32884 + 1.21160i) q^{16} +(1.16198 + 0.670872i) q^{17} +(3.99230 - 0.442749i) q^{18} +(-1.87243 - 3.24314i) q^{19} +(-0.471425 + 0.370498i) q^{21} +(-0.184187 - 0.506050i) q^{22} +(3.04247 + 0.536470i) q^{23} +(2.70014 - 4.34880i) q^{24} -1.00630 q^{26} +(0.498713 - 5.17216i) q^{27} +0.0717552i q^{28} +(-3.79094 + 3.18098i) q^{29} +(-0.774172 + 4.39054i) q^{31} +(-0.399363 - 1.09724i) q^{32} +(-0.689586 + 0.0989303i) q^{33} +(0.311958 + 1.76920i) q^{34} +(-0.449783 - 0.429397i) q^{36} +(2.16657 + 1.25087i) q^{37} +(1.71492 - 4.71170i) q^{38} +(-0.267003 + 1.27409i) q^{39} +(1.73862 + 1.45887i) q^{41} +(-0.785740 - 0.164663i) q^{42} +(-2.92375 + 8.03293i) q^{43} +(-0.0416850 + 0.0722005i) q^{44} +(2.06824 + 3.58230i) q^{46} +(12.1171 - 2.13658i) q^{47} +(6.07356 - 0.871334i) q^{48} +(-6.46524 + 2.35315i) q^{49} +(2.32278 + 0.0744513i) q^{51} +(0.100137 + 0.119339i) q^{52} -10.1571i q^{53} +(5.73418 - 3.93988i) q^{54} +(-0.783723 + 0.657622i) q^{56} +(-5.51051 - 3.42144i) q^{57} +(-6.52530 - 1.15059i) q^{58} +(-12.7550 + 4.64243i) q^{59} +(2.31667 + 13.1385i) q^{61} +(-5.16956 + 2.98465i) q^{62} +(-0.416963 + 0.951143i) q^{63} +(4.32418 - 7.48970i) q^{64} +(-0.694958 - 0.622148i) q^{66} +(7.89073 - 9.40381i) q^{67} +(0.178770 - 0.213050i) q^{68} +(5.08436 - 1.66813i) q^{69} +(-1.14446 + 1.98226i) q^{71} +(0.567785 - 8.84795i) q^{72} +(-10.8000 + 6.23540i) q^{73} +(0.581658 + 3.29875i) q^{74} +(-0.729423 + 0.265488i) q^{76} +(0.137119 + 0.0241778i) q^{77} +(-1.53659 + 0.822676i) q^{78} +(-9.11223 + 7.64607i) q^{79} +(-3.46686 - 8.30547i) q^{81} +3.03883i q^{82} +(-3.11961 - 3.71780i) q^{83} +(0.0586617 + 0.109568i) q^{84} +(-10.7555 + 3.91468i) q^{86} +(-3.18814 + 7.95646i) q^{87} +(-1.17062 + 0.206412i) q^{88} +(0.197409 + 0.341923i) q^{89} +(0.130088 - 0.225318i) q^{91} +(0.219021 - 0.601754i) q^{92} +(2.40725 + 7.33715i) q^{93} +(12.6200 + 10.5894i) q^{94} +(-1.50684 - 1.34897i) q^{96} +(-5.07158 + 13.9340i) q^{97} +(-7.97784 - 4.60601i) q^{98} +(-0.972102 + 0.714819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.860644 + 1.02568i 0.608567 + 0.725262i 0.979060 0.203573i \(-0.0652555\pi\)
−0.370492 + 0.928836i \(0.620811\pi\)
\(3\) 1.52697 0.817526i 0.881599 0.471999i
\(4\) 0.0359939 0.204131i 0.0179969 0.102066i
\(5\) 0 0
\(6\) 2.15270 + 0.862581i 0.878836 + 0.352147i
\(7\) −0.340915 + 0.0601126i −0.128854 + 0.0227204i −0.237703 0.971338i \(-0.576395\pi\)
0.108849 + 0.994058i \(0.465283\pi\)
\(8\) 2.55944 1.47769i 0.904897 0.522443i
\(9\) 1.66330 2.49668i 0.554434 0.832228i
\(10\) 0 0
\(11\) −0.377953 0.137564i −0.113957 0.0414770i 0.284412 0.958702i \(-0.408202\pi\)
−0.398369 + 0.917225i \(0.630424\pi\)
\(12\) −0.111921 0.341129i −0.0323088 0.0984755i
\(13\) −0.483102 + 0.575738i −0.133988 + 0.159681i −0.828867 0.559446i \(-0.811014\pi\)
0.694878 + 0.719127i \(0.255458\pi\)
\(14\) −0.355063 0.297933i −0.0948945 0.0796260i
\(15\) 0 0
\(16\) 3.32884 + 1.21160i 0.832209 + 0.302899i
\(17\) 1.16198 + 0.670872i 0.281823 + 0.162710i 0.634248 0.773129i \(-0.281310\pi\)
−0.352426 + 0.935840i \(0.614643\pi\)
\(18\) 3.99230 0.442749i 0.940994 0.104357i
\(19\) −1.87243 3.24314i −0.429565 0.744028i 0.567270 0.823532i \(-0.308000\pi\)
−0.996835 + 0.0795040i \(0.974666\pi\)
\(20\) 0 0
\(21\) −0.471425 + 0.370498i −0.102873 + 0.0808492i
\(22\) −0.184187 0.506050i −0.0392688 0.107890i
\(23\) 3.04247 + 0.536470i 0.634399 + 0.111862i 0.481594 0.876395i \(-0.340058\pi\)
0.152806 + 0.988256i \(0.451169\pi\)
\(24\) 2.70014 4.34880i 0.551164 0.887696i
\(25\) 0 0
\(26\) −1.00630 −0.197352
\(27\) 0.498713 5.17216i 0.0959773 0.995384i
\(28\) 0.0717552i 0.0135605i
\(29\) −3.79094 + 3.18098i −0.703960 + 0.590693i −0.922897 0.385046i \(-0.874185\pi\)
0.218937 + 0.975739i \(0.429741\pi\)
\(30\) 0 0
\(31\) −0.774172 + 4.39054i −0.139045 + 0.788565i 0.832912 + 0.553406i \(0.186672\pi\)
−0.971957 + 0.235159i \(0.924439\pi\)
\(32\) −0.399363 1.09724i −0.0705980 0.193966i
\(33\) −0.689586 + 0.0989303i −0.120041 + 0.0172216i
\(34\) 0.311958 + 1.76920i 0.0535003 + 0.303415i
\(35\) 0 0
\(36\) −0.449783 0.429397i −0.0749638 0.0715662i
\(37\) 2.16657 + 1.25087i 0.356181 + 0.205641i 0.667404 0.744696i \(-0.267405\pi\)
−0.311223 + 0.950337i \(0.600739\pi\)
\(38\) 1.71492 4.71170i 0.278196 0.764338i
\(39\) −0.267003 + 1.27409i −0.0427546 + 0.204017i
\(40\) 0 0
\(41\) 1.73862 + 1.45887i 0.271526 + 0.227838i 0.768376 0.639999i \(-0.221065\pi\)
−0.496849 + 0.867837i \(0.665510\pi\)
\(42\) −0.785740 0.164663i −0.121242 0.0254080i
\(43\) −2.92375 + 8.03293i −0.445867 + 1.22501i 0.489709 + 0.871886i \(0.337103\pi\)
−0.935576 + 0.353124i \(0.885119\pi\)
\(44\) −0.0416850 + 0.0722005i −0.00628425 + 0.0108846i
\(45\) 0 0
\(46\) 2.06824 + 3.58230i 0.304946 + 0.528181i
\(47\) 12.1171 2.13658i 1.76746 0.311652i 0.807103 0.590411i \(-0.201034\pi\)
0.960361 + 0.278760i \(0.0899233\pi\)
\(48\) 6.07356 0.871334i 0.876643 0.125766i
\(49\) −6.46524 + 2.35315i −0.923606 + 0.336165i
\(50\) 0 0
\(51\) 2.32278 + 0.0744513i 0.325254 + 0.0104253i
\(52\) 0.100137 + 0.119339i 0.0138866 + 0.0165494i
\(53\) 10.1571i 1.39519i −0.716494 0.697593i \(-0.754254\pi\)
0.716494 0.697593i \(-0.245746\pi\)
\(54\) 5.73418 3.93988i 0.780323 0.536149i
\(55\) 0 0
\(56\) −0.783723 + 0.657622i −0.104729 + 0.0878784i
\(57\) −5.51051 3.42144i −0.729884 0.453180i
\(58\) −6.52530 1.15059i −0.856814 0.151079i
\(59\) −12.7550 + 4.64243i −1.66055 + 0.604392i −0.990450 0.137874i \(-0.955973\pi\)
−0.670105 + 0.742266i \(0.733751\pi\)
\(60\) 0 0
\(61\) 2.31667 + 13.1385i 0.296619 + 1.68221i 0.660546 + 0.750785i \(0.270325\pi\)
−0.363927 + 0.931427i \(0.618564\pi\)
\(62\) −5.16956 + 2.98465i −0.656535 + 0.379051i
\(63\) −0.416963 + 0.951143i −0.0525324 + 0.119833i
\(64\) 4.32418 7.48970i 0.540522 0.936212i
\(65\) 0 0
\(66\) −0.694958 0.622148i −0.0855435 0.0765811i
\(67\) 7.89073 9.40381i 0.964006 1.14886i −0.0248058 0.999692i \(-0.507897\pi\)
0.988812 0.149166i \(-0.0476588\pi\)
\(68\) 0.178770 0.213050i 0.0216791 0.0258361i
\(69\) 5.08436 1.66813i 0.612085 0.200819i
\(70\) 0 0
\(71\) −1.14446 + 1.98226i −0.135822 + 0.235251i −0.925911 0.377741i \(-0.876701\pi\)
0.790089 + 0.612992i \(0.210034\pi\)
\(72\) 0.567785 8.84795i 0.0669141 1.04274i
\(73\) −10.8000 + 6.23540i −1.26405 + 0.729799i −0.973855 0.227169i \(-0.927053\pi\)
−0.290194 + 0.956968i \(0.593720\pi\)
\(74\) 0.581658 + 3.29875i 0.0676164 + 0.383471i
\(75\) 0 0
\(76\) −0.729423 + 0.265488i −0.0836705 + 0.0304536i
\(77\) 0.137119 + 0.0241778i 0.0156262 + 0.00275532i
\(78\) −1.53659 + 0.822676i −0.173985 + 0.0931498i
\(79\) −9.11223 + 7.64607i −1.02521 + 0.860250i −0.990273 0.139140i \(-0.955566\pi\)
−0.0349328 + 0.999390i \(0.511122\pi\)
\(80\) 0 0
\(81\) −3.46686 8.30547i −0.385207 0.922830i
\(82\) 3.03883i 0.335583i
\(83\) −3.11961 3.71780i −0.342421 0.408082i 0.567160 0.823608i \(-0.308042\pi\)
−0.909581 + 0.415526i \(0.863598\pi\)
\(84\) 0.0586617 + 0.109568i 0.00640052 + 0.0119549i
\(85\) 0 0
\(86\) −10.7555 + 3.91468i −1.15979 + 0.422130i
\(87\) −3.18814 + 7.95646i −0.341804 + 0.853022i
\(88\) −1.17062 + 0.206412i −0.124789 + 0.0220036i
\(89\) 0.197409 + 0.341923i 0.0209253 + 0.0362438i 0.876298 0.481769i \(-0.160005\pi\)
−0.855373 + 0.518012i \(0.826672\pi\)
\(90\) 0 0
\(91\) 0.130088 0.225318i 0.0136369 0.0236198i
\(92\) 0.219021 0.601754i 0.0228345 0.0627372i
\(93\) 2.40725 + 7.33715i 0.249620 + 0.760827i
\(94\) 12.6200 + 10.5894i 1.30165 + 1.09221i
\(95\) 0 0
\(96\) −1.50684 1.34897i −0.153791 0.137678i
\(97\) −5.07158 + 13.9340i −0.514941 + 1.41479i 0.361089 + 0.932531i \(0.382405\pi\)
−0.876030 + 0.482257i \(0.839817\pi\)
\(98\) −7.97784 4.60601i −0.805884 0.465277i
\(99\) −0.972102 + 0.714819i −0.0976999 + 0.0718420i
\(100\) 0 0
\(101\) −2.32075 13.1616i −0.230924 1.30963i −0.851031 0.525116i \(-0.824022\pi\)
0.620107 0.784517i \(-0.287089\pi\)
\(102\) 1.92272 + 2.44649i 0.190378 + 0.242239i
\(103\) 2.46244 + 6.76551i 0.242632 + 0.666625i 0.999908 + 0.0135311i \(0.00430721\pi\)
−0.757277 + 0.653094i \(0.773471\pi\)
\(104\) −0.385705 + 2.18744i −0.0378215 + 0.214496i
\(105\) 0 0
\(106\) 10.4179 8.74166i 1.01188 0.849065i
\(107\) 8.94985i 0.865215i 0.901582 + 0.432607i \(0.142406\pi\)
−0.901582 + 0.432607i \(0.857594\pi\)
\(108\) −1.03785 0.287969i −0.0998672 0.0277098i
\(109\) 7.74154 0.741505 0.370752 0.928732i \(-0.379100\pi\)
0.370752 + 0.928732i \(0.379100\pi\)
\(110\) 0 0
\(111\) 4.33091 + 0.138817i 0.411072 + 0.0131760i
\(112\) −1.20768 0.212947i −0.114115 0.0201216i
\(113\) 1.41376 + 3.88427i 0.132995 + 0.365401i 0.988258 0.152793i \(-0.0488267\pi\)
−0.855263 + 0.518194i \(0.826604\pi\)
\(114\) −1.23330 8.59663i −0.115509 0.805148i
\(115\) 0 0
\(116\) 0.512886 + 0.888345i 0.0476203 + 0.0824808i
\(117\) 0.633893 + 2.16378i 0.0586034 + 0.200041i
\(118\) −15.7391 9.08698i −1.44890 0.836524i
\(119\) −0.436466 0.158861i −0.0400108 0.0145627i
\(120\) 0 0
\(121\) −8.30256 6.96668i −0.754779 0.633334i
\(122\) −11.4820 + 13.6837i −1.03953 + 1.23887i
\(123\) 3.84749 + 0.806296i 0.346917 + 0.0727013i
\(124\) 0.868382 + 0.316065i 0.0779830 + 0.0283835i
\(125\) 0 0
\(126\) −1.33442 + 0.390927i −0.118880 + 0.0348266i
\(127\) 1.96206 1.13280i 0.174105 0.100519i −0.410415 0.911899i \(-0.634616\pi\)
0.584520 + 0.811379i \(0.301283\pi\)
\(128\) 9.10374 1.60524i 0.804665 0.141884i
\(129\) 2.10265 + 14.6563i 0.185128 + 1.29042i
\(130\) 0 0
\(131\) −0.0505139 + 0.286479i −0.00441342 + 0.0250298i −0.986935 0.161119i \(-0.948490\pi\)
0.982522 + 0.186149i \(0.0596007\pi\)
\(132\) −0.00462607 + 0.144327i −0.000402648 + 0.0125620i
\(133\) 0.833294 + 0.993081i 0.0722557 + 0.0861110i
\(134\) 16.4364 1.41989
\(135\) 0 0
\(136\) 3.96537 0.340027
\(137\) 6.21395 + 7.40550i 0.530893 + 0.632694i 0.963120 0.269071i \(-0.0867165\pi\)
−0.432227 + 0.901765i \(0.642272\pi\)
\(138\) 6.08678 + 3.77924i 0.518141 + 0.321710i
\(139\) −0.516258 + 2.92785i −0.0437885 + 0.248337i −0.998843 0.0480940i \(-0.984685\pi\)
0.955054 + 0.296431i \(0.0957964\pi\)
\(140\) 0 0
\(141\) 16.7558 13.1686i 1.41109 1.10899i
\(142\) −3.01813 + 0.532177i −0.253275 + 0.0446593i
\(143\) 0.261790 0.151145i 0.0218920 0.0126393i
\(144\) 8.56183 6.29580i 0.713486 0.524650i
\(145\) 0 0
\(146\) −15.6905 5.71087i −1.29855 0.472635i
\(147\) −7.94849 + 8.87871i −0.655580 + 0.732304i
\(148\) 0.333324 0.397240i 0.0273991 0.0326530i
\(149\) −12.7219 10.6749i −1.04221 0.874522i −0.0499614 0.998751i \(-0.515910\pi\)
−0.992254 + 0.124229i \(0.960354\pi\)
\(150\) 0 0
\(151\) −8.75299 3.18583i −0.712308 0.259259i −0.0396512 0.999214i \(-0.512625\pi\)
−0.672657 + 0.739955i \(0.734847\pi\)
\(152\) −9.58473 5.53375i −0.777424 0.448846i
\(153\) 3.60768 1.78525i 0.291664 0.144329i
\(154\) 0.0932122 + 0.161448i 0.00751125 + 0.0130099i
\(155\) 0 0
\(156\) 0.250470 + 0.100363i 0.0200537 + 0.00803546i
\(157\) −5.25541 14.4391i −0.419427 1.15237i −0.952031 0.306002i \(-0.901008\pi\)
0.532603 0.846365i \(-0.321214\pi\)
\(158\) −15.6848 2.76565i −1.24781 0.220023i
\(159\) −8.30371 15.5096i −0.658527 1.23000i
\(160\) 0 0
\(161\) −1.06947 −0.0842864
\(162\) 5.53499 10.7039i 0.434870 0.840980i
\(163\) 4.28453i 0.335590i 0.985822 + 0.167795i \(0.0536647\pi\)
−0.985822 + 0.167795i \(0.946335\pi\)
\(164\) 0.360381 0.302396i 0.0281411 0.0236131i
\(165\) 0 0
\(166\) 1.12839 6.39941i 0.0875799 0.496690i
\(167\) −4.47320 12.2900i −0.346147 0.951030i −0.983572 0.180518i \(-0.942223\pi\)
0.637425 0.770512i \(-0.280000\pi\)
\(168\) −0.659102 + 1.64489i −0.0508508 + 0.126906i
\(169\) 2.15934 + 12.2462i 0.166103 + 0.942017i
\(170\) 0 0
\(171\) −11.2115 0.719459i −0.857366 0.0550184i
\(172\) 1.53453 + 0.885964i 0.117007 + 0.0675541i
\(173\) 0.375420 1.03146i 0.0285426 0.0784202i −0.924603 0.380932i \(-0.875603\pi\)
0.953146 + 0.302512i \(0.0978253\pi\)
\(174\) −10.9046 + 3.57769i −0.826676 + 0.271224i
\(175\) 0 0
\(176\) −1.09147 0.915853i −0.0822727 0.0690350i
\(177\) −15.6812 + 17.5164i −1.17867 + 1.31661i
\(178\) −0.180803 + 0.496752i −0.0135518 + 0.0372331i
\(179\) 8.45761 14.6490i 0.632151 1.09492i −0.354960 0.934882i \(-0.615505\pi\)
0.987111 0.160037i \(-0.0511612\pi\)
\(180\) 0 0
\(181\) −1.06581 1.84604i −0.0792210 0.137215i 0.823693 0.567036i \(-0.191910\pi\)
−0.902914 + 0.429821i \(0.858577\pi\)
\(182\) 0.343063 0.0604912i 0.0254295 0.00448391i
\(183\) 14.2786 + 18.1682i 1.05550 + 1.34303i
\(184\) 8.57975 3.12277i 0.632508 0.230214i
\(185\) 0 0
\(186\) −5.45376 + 8.78373i −0.399889 + 0.644055i
\(187\) −0.346887 0.413404i −0.0253669 0.0302311i
\(188\) 2.55039i 0.186006i
\(189\) 0.140893 + 1.79325i 0.0102485 + 0.130440i
\(190\) 0 0
\(191\) 10.3330 8.67044i 0.747671 0.627371i −0.187214 0.982319i \(-0.559946\pi\)
0.934886 + 0.354948i \(0.115501\pi\)
\(192\) 0.479884 14.9717i 0.0346326 1.08049i
\(193\) 9.25860 + 1.63254i 0.666448 + 0.117513i 0.496630 0.867963i \(-0.334571\pi\)
0.169819 + 0.985475i \(0.445682\pi\)
\(194\) −18.6566 + 6.79046i −1.33947 + 0.487527i
\(195\) 0 0
\(196\) 0.247644 + 1.40446i 0.0176888 + 0.100318i
\(197\) −7.31619 + 4.22400i −0.521257 + 0.300948i −0.737449 0.675403i \(-0.763970\pi\)
0.216192 + 0.976351i \(0.430636\pi\)
\(198\) −1.56981 0.381857i −0.111561 0.0271374i
\(199\) 6.77278 11.7308i 0.480109 0.831574i −0.519630 0.854391i \(-0.673930\pi\)
0.999740 + 0.0228175i \(0.00726365\pi\)
\(200\) 0 0
\(201\) 4.36108 20.8103i 0.307607 1.46784i
\(202\) 11.5022 13.7078i 0.809295 0.964480i
\(203\) 1.10117 1.31233i 0.0772872 0.0921073i
\(204\) 0.0988035 0.471471i 0.00691763 0.0330096i
\(205\) 0 0
\(206\) −4.81993 + 8.34836i −0.335820 + 0.581658i
\(207\) 6.39994 6.70378i 0.444827 0.465945i
\(208\) −2.30573 + 1.33121i −0.159874 + 0.0923031i
\(209\) 0.261552 + 1.48333i 0.0180919 + 0.102604i
\(210\) 0 0
\(211\) −10.4837 + 3.81575i −0.721726 + 0.262687i −0.676658 0.736297i \(-0.736573\pi\)
−0.0450677 + 0.998984i \(0.514350\pi\)
\(212\) −2.07338 0.365594i −0.142401 0.0251091i
\(213\) −0.127008 + 3.96248i −0.00870247 + 0.271505i
\(214\) −9.17964 + 7.70264i −0.627508 + 0.526541i
\(215\) 0 0
\(216\) −6.36644 13.9748i −0.433181 0.950863i
\(217\) 1.54334i 0.104769i
\(218\) 6.66271 + 7.94031i 0.451256 + 0.537785i
\(219\) −11.3938 + 18.3506i −0.769920 + 1.24002i
\(220\) 0 0
\(221\) −0.947603 + 0.344899i −0.0637427 + 0.0232004i
\(222\) 3.58499 + 4.56158i 0.240609 + 0.306153i
\(223\) 18.9381 3.33930i 1.26819 0.223616i 0.501231 0.865314i \(-0.332881\pi\)
0.766957 + 0.641698i \(0.221770\pi\)
\(224\) 0.202107 + 0.350059i 0.0135038 + 0.0233893i
\(225\) 0 0
\(226\) −2.76726 + 4.79303i −0.184075 + 0.318828i
\(227\) 5.28423 14.5183i 0.350727 0.963614i −0.631411 0.775449i \(-0.717524\pi\)
0.982137 0.188165i \(-0.0602540\pi\)
\(228\) −0.896766 + 1.00172i −0.0593898 + 0.0663403i
\(229\) 9.01052 + 7.56072i 0.595432 + 0.499627i 0.889974 0.456012i \(-0.150723\pi\)
−0.294542 + 0.955639i \(0.595167\pi\)
\(230\) 0 0
\(231\) 0.229143 0.0751796i 0.0150765 0.00494646i
\(232\) −5.00217 + 13.7433i −0.328408 + 0.902295i
\(233\) −13.9975 8.08145i −0.917006 0.529434i −0.0343274 0.999411i \(-0.510929\pi\)
−0.882679 + 0.469977i \(0.844262\pi\)
\(234\) −1.67378 + 2.51241i −0.109418 + 0.164241i
\(235\) 0 0
\(236\) 0.488564 + 2.77079i 0.0318028 + 0.180363i
\(237\) −7.66327 + 19.1248i −0.497783 + 1.24229i
\(238\) −0.212702 0.584395i −0.0137875 0.0378807i
\(239\) 3.74110 21.2168i 0.241992 1.37240i −0.585386 0.810755i \(-0.699057\pi\)
0.827377 0.561647i \(-0.189832\pi\)
\(240\) 0 0
\(241\) 3.36630 2.82466i 0.216842 0.181952i −0.527896 0.849309i \(-0.677019\pi\)
0.744738 + 0.667357i \(0.232574\pi\)
\(242\) 14.5116i 0.932839i
\(243\) −12.0837 9.84799i −0.775173 0.631749i
\(244\) 2.76537 0.177034
\(245\) 0 0
\(246\) 2.48432 + 4.64021i 0.158395 + 0.295849i
\(247\) 2.77178 + 0.488739i 0.176364 + 0.0310977i
\(248\) 4.50643 + 12.3813i 0.286158 + 0.786214i
\(249\) −7.80296 3.12663i −0.494492 0.198142i
\(250\) 0 0
\(251\) 2.98966 + 5.17825i 0.188706 + 0.326848i 0.944819 0.327593i \(-0.106237\pi\)
−0.756113 + 0.654441i \(0.772904\pi\)
\(252\) 0.179150 + 0.119350i 0.0112854 + 0.00751837i
\(253\) −1.07611 0.621293i −0.0676546 0.0390604i
\(254\) 2.85052 + 1.03750i 0.178857 + 0.0650988i
\(255\) 0 0
\(256\) −3.76852 3.16216i −0.235532 0.197635i
\(257\) −11.3252 + 13.4968i −0.706446 + 0.841909i −0.993239 0.116083i \(-0.962966\pi\)
0.286794 + 0.957992i \(0.407411\pi\)
\(258\) −13.2230 + 14.7705i −0.823228 + 0.919571i
\(259\) −0.813808 0.296202i −0.0505676 0.0184051i
\(260\) 0 0
\(261\) 1.63642 + 14.7557i 0.101292 + 0.913355i
\(262\) −0.337309 + 0.194745i −0.0208390 + 0.0120314i
\(263\) −3.99237 + 0.703963i −0.246180 + 0.0434082i −0.295377 0.955381i \(-0.595445\pi\)
0.0491964 + 0.998789i \(0.484334\pi\)
\(264\) −1.61876 + 1.27220i −0.0996279 + 0.0782985i
\(265\) 0 0
\(266\) −0.301409 + 1.70938i −0.0184806 + 0.104809i
\(267\) 0.580970 + 0.360720i 0.0355548 + 0.0220757i
\(268\) −1.63559 1.94922i −0.0999098 0.119068i
\(269\) 13.0325 0.794604 0.397302 0.917688i \(-0.369946\pi\)
0.397302 + 0.917688i \(0.369946\pi\)
\(270\) 0 0
\(271\) −5.58778 −0.339434 −0.169717 0.985493i \(-0.554285\pi\)
−0.169717 + 0.985493i \(0.554285\pi\)
\(272\) 3.05523 + 3.64108i 0.185250 + 0.220773i
\(273\) 0.0144367 0.450406i 0.000873751 0.0272598i
\(274\) −2.24764 + 12.7470i −0.135785 + 0.770074i
\(275\) 0 0
\(276\) −0.157511 1.09792i −0.00948106 0.0660869i
\(277\) 18.9280 3.33752i 1.13728 0.200532i 0.426862 0.904317i \(-0.359619\pi\)
0.710413 + 0.703785i \(0.248508\pi\)
\(278\) −3.44734 + 1.99032i −0.206758 + 0.119372i
\(279\) 9.67412 + 9.23566i 0.579175 + 0.552924i
\(280\) 0 0
\(281\) 10.9339 + 3.97961i 0.652261 + 0.237404i 0.646892 0.762582i \(-0.276069\pi\)
0.00536937 + 0.999986i \(0.498291\pi\)
\(282\) 27.9275 + 5.85260i 1.66306 + 0.348517i
\(283\) 18.1048 21.5765i 1.07622 1.28259i 0.119105 0.992882i \(-0.461998\pi\)
0.957115 0.289707i \(-0.0935580\pi\)
\(284\) 0.363447 + 0.304969i 0.0215666 + 0.0180966i
\(285\) 0 0
\(286\) 0.380334 + 0.138430i 0.0224896 + 0.00818554i
\(287\) −0.680418 0.392840i −0.0401638 0.0231886i
\(288\) −3.40372 0.827958i −0.200566 0.0487879i
\(289\) −7.59986 13.1633i −0.447051 0.774315i
\(290\) 0 0
\(291\) 3.64728 + 25.4231i 0.213807 + 1.49033i
\(292\) 0.884106 + 2.42906i 0.0517384 + 0.142150i
\(293\) −0.0818497 0.0144323i −0.00478171 0.000843144i 0.171257 0.985226i \(-0.445217\pi\)
−0.176039 + 0.984383i \(0.556328\pi\)
\(294\) −15.9475 0.511161i −0.930077 0.0298115i
\(295\) 0 0
\(296\) 7.39358 0.429743
\(297\) −0.899991 + 1.88623i −0.0522228 + 0.109450i
\(298\) 22.2358i 1.28809i
\(299\) −1.77869 + 1.49250i −0.102864 + 0.0863134i
\(300\) 0 0
\(301\) 0.513870 2.91430i 0.0296190 0.167978i
\(302\) −4.26558 11.7196i −0.245457 0.674387i
\(303\) −14.3037 18.2002i −0.821728 1.04558i
\(304\) −2.30363 13.0645i −0.132122 0.749302i
\(305\) 0 0
\(306\) 4.93602 + 2.16385i 0.282173 + 0.123699i
\(307\) −13.9629 8.06146i −0.796902 0.460092i 0.0454847 0.998965i \(-0.485517\pi\)
−0.842387 + 0.538873i \(0.818850\pi\)
\(308\) 0.00987089 0.0271201i 0.000562446 0.00154531i
\(309\) 9.29107 + 8.31764i 0.528550 + 0.473174i
\(310\) 0 0
\(311\) 25.8269 + 21.6714i 1.46451 + 1.22887i 0.921056 + 0.389431i \(0.127328\pi\)
0.543454 + 0.839439i \(0.317116\pi\)
\(312\) 1.19933 + 3.65549i 0.0678986 + 0.206951i
\(313\) −8.53543 + 23.4509i −0.482451 + 1.32552i 0.424935 + 0.905224i \(0.360297\pi\)
−0.907386 + 0.420299i \(0.861925\pi\)
\(314\) 10.2868 17.8173i 0.580519 1.00549i
\(315\) 0 0
\(316\) 1.23282 + 2.13530i 0.0693514 + 0.120120i
\(317\) 15.4564 2.72538i 0.868119 0.153073i 0.278188 0.960527i \(-0.410266\pi\)
0.589931 + 0.807454i \(0.299155\pi\)
\(318\) 8.76134 21.8652i 0.491311 1.22614i
\(319\) 1.87038 0.680763i 0.104721 0.0381154i
\(320\) 0 0
\(321\) 7.31674 + 13.6662i 0.408381 + 0.762772i
\(322\) −0.920437 1.09693i −0.0512939 0.0611297i
\(323\) 5.02464i 0.279578i
\(324\) −1.82019 + 0.408749i −0.101122 + 0.0227083i
\(325\) 0 0
\(326\) −4.39454 + 3.68746i −0.243391 + 0.204229i
\(327\) 11.8211 6.32891i 0.653710 0.349990i
\(328\) 6.60565 + 1.16475i 0.364736 + 0.0643128i
\(329\) −4.00248 + 1.45678i −0.220664 + 0.0803150i
\(330\) 0 0
\(331\) 5.25148 + 29.7826i 0.288647 + 1.63700i 0.691959 + 0.721937i \(0.256748\pi\)
−0.403312 + 0.915063i \(0.632141\pi\)
\(332\) −0.871206 + 0.502991i −0.0478136 + 0.0276052i
\(333\) 6.72667 3.32866i 0.368619 0.182410i
\(334\) 8.75574 15.1654i 0.479093 0.829813i
\(335\) 0 0
\(336\) −2.01819 + 0.662148i −0.110101 + 0.0361232i
\(337\) 4.43304 5.28309i 0.241483 0.287788i −0.631667 0.775240i \(-0.717629\pi\)
0.873150 + 0.487452i \(0.162073\pi\)
\(338\) −10.7022 + 12.7544i −0.582125 + 0.693749i
\(339\) 5.33427 + 4.77540i 0.289718 + 0.259364i
\(340\) 0 0
\(341\) 0.896579 1.55292i 0.0485525 0.0840953i
\(342\) −8.91120 12.1186i −0.481862 0.655298i
\(343\) 4.16122 2.40248i 0.224685 0.129722i
\(344\) 4.38704 + 24.8802i 0.236534 + 1.34145i
\(345\) 0 0
\(346\) 1.38104 0.502659i 0.0742453 0.0270231i
\(347\) 34.9269 + 6.15856i 1.87497 + 0.330609i 0.990668 0.136298i \(-0.0435204\pi\)
0.884307 + 0.466906i \(0.154631\pi\)
\(348\) 1.50941 + 0.937182i 0.0809129 + 0.0502382i
\(349\) −18.7347 + 15.7203i −1.00285 + 0.841488i −0.987376 0.158392i \(-0.949369\pi\)
−0.0154704 + 0.999880i \(0.504925\pi\)
\(350\) 0 0
\(351\) 2.73688 + 2.78581i 0.146084 + 0.148696i
\(352\) 0.469642i 0.0250320i
\(353\) −5.96325 7.10672i −0.317392 0.378253i 0.583635 0.812016i \(-0.301630\pi\)
−0.901027 + 0.433763i \(0.857185\pi\)
\(354\) −31.4621 1.00845i −1.67219 0.0535983i
\(355\) 0 0
\(356\) 0.0769027 0.0279903i 0.00407584 0.00148348i
\(357\) −0.796345 + 0.114246i −0.0421471 + 0.00604656i
\(358\) 22.3041 3.93282i 1.17881 0.207856i
\(359\) −3.57306 6.18872i −0.188579 0.326628i 0.756198 0.654343i \(-0.227055\pi\)
−0.944777 + 0.327715i \(0.893721\pi\)
\(360\) 0 0
\(361\) 2.48802 4.30937i 0.130948 0.226809i
\(362\) 0.976152 2.68196i 0.0513054 0.140961i
\(363\) −18.3732 3.85037i −0.964345 0.202092i
\(364\) −0.0413122 0.0346650i −0.00216535 0.00181694i
\(365\) 0 0
\(366\) −6.34593 + 30.2816i −0.331707 + 1.58284i
\(367\) −3.94110 + 10.8281i −0.205724 + 0.565222i −0.999050 0.0435748i \(-0.986125\pi\)
0.793326 + 0.608797i \(0.208348\pi\)
\(368\) 9.47791 + 5.47207i 0.494070 + 0.285252i
\(369\) 6.53419 1.91423i 0.340156 0.0996510i
\(370\) 0 0
\(371\) 0.610570 + 3.46272i 0.0316992 + 0.179775i
\(372\) 1.58439 0.227302i 0.0821467 0.0117851i
\(373\) −10.5687 29.0373i −0.547227 1.50349i −0.837439 0.546531i \(-0.815948\pi\)
0.290213 0.956962i \(-0.406274\pi\)
\(374\) 0.125472 0.711588i 0.00648801 0.0367954i
\(375\) 0 0
\(376\) 27.8558 23.3738i 1.43655 1.20541i
\(377\) 3.71932i 0.191555i
\(378\) −1.71803 + 1.68786i −0.0883661 + 0.0868142i
\(379\) 2.84713 0.146247 0.0731236 0.997323i \(-0.476703\pi\)
0.0731236 + 0.997323i \(0.476703\pi\)
\(380\) 0 0
\(381\) 2.06992 3.33379i 0.106045 0.170795i
\(382\) 17.7861 + 3.13617i 0.910017 + 0.160461i
\(383\) 11.9857 + 32.9304i 0.612439 + 1.68266i 0.724769 + 0.688992i \(0.241947\pi\)
−0.112329 + 0.993671i \(0.535831\pi\)
\(384\) 12.5889 9.89370i 0.642422 0.504886i
\(385\) 0 0
\(386\) 6.29390 + 10.9014i 0.320351 + 0.554864i
\(387\) 15.1926 + 20.6608i 0.772284 + 1.05025i
\(388\) 2.66183 + 1.53681i 0.135134 + 0.0780196i
\(389\) 17.3917 + 6.33006i 0.881795 + 0.320947i 0.742934 0.669365i \(-0.233434\pi\)
0.138861 + 0.990312i \(0.455656\pi\)
\(390\) 0 0
\(391\) 3.17540 + 2.66448i 0.160587 + 0.134748i
\(392\) −13.0701 + 15.5764i −0.660141 + 0.786726i
\(393\) 0.157071 + 0.478742i 0.00792316 + 0.0241494i
\(394\) −10.6291 3.86867i −0.535486 0.194901i
\(395\) 0 0
\(396\) 0.110927 + 0.224165i 0.00557430 + 0.0112647i
\(397\) −25.5478 + 14.7500i −1.28221 + 0.740284i −0.977252 0.212083i \(-0.931975\pi\)
−0.304957 + 0.952366i \(0.598642\pi\)
\(398\) 17.8609 3.14937i 0.895288 0.157863i
\(399\) 2.08429 + 0.835169i 0.104345 + 0.0418107i
\(400\) 0 0
\(401\) 4.06740 23.0673i 0.203116 1.15193i −0.697261 0.716817i \(-0.745598\pi\)
0.900377 0.435111i \(-0.143291\pi\)
\(402\) 25.0979 13.4372i 1.25177 0.670185i
\(403\) −2.15380 2.56680i −0.107288 0.127861i
\(404\) −2.77024 −0.137824
\(405\) 0 0
\(406\) 2.29374 0.113836
\(407\) −0.646786 0.770809i −0.0320600 0.0382076i
\(408\) 6.05501 3.24179i 0.299768 0.160493i
\(409\) −1.34566 + 7.63161i −0.0665386 + 0.377359i 0.933295 + 0.359111i \(0.116920\pi\)
−0.999833 + 0.0182481i \(0.994191\pi\)
\(410\) 0 0
\(411\) 15.5427 + 6.22793i 0.766666 + 0.307201i
\(412\) 1.46968 0.259145i 0.0724062 0.0127672i
\(413\) 4.06929 2.34941i 0.200237 0.115607i
\(414\) 12.3840 + 0.794697i 0.608639 + 0.0390572i
\(415\) 0 0
\(416\) 0.824656 + 0.300150i 0.0404321 + 0.0147161i
\(417\) 1.60528 + 4.89280i 0.0786109 + 0.239602i
\(418\) −1.29632 + 1.54489i −0.0634049 + 0.0755630i
\(419\) 13.6412 + 11.4463i 0.666415 + 0.559189i 0.912002 0.410186i \(-0.134536\pi\)
−0.245587 + 0.969375i \(0.578981\pi\)
\(420\) 0 0
\(421\) −28.5312 10.3845i −1.39053 0.506110i −0.465175 0.885219i \(-0.654009\pi\)
−0.925352 + 0.379108i \(0.876231\pi\)
\(422\) −12.9364 7.46885i −0.629736 0.363578i
\(423\) 14.8201 33.8064i 0.720576 1.64372i
\(424\) −15.0091 25.9965i −0.728905 1.26250i
\(425\) 0 0
\(426\) −4.17353 + 3.28002i −0.202208 + 0.158917i
\(427\) −1.57958 4.33985i −0.0764411 0.210020i
\(428\) 1.82694 + 0.322140i 0.0883087 + 0.0155712i
\(429\) 0.276182 0.444814i 0.0133342 0.0214758i
\(430\) 0 0
\(431\) −22.4604 −1.08188 −0.540939 0.841062i \(-0.681931\pi\)
−0.540939 + 0.841062i \(0.681931\pi\)
\(432\) 7.92672 16.6131i 0.381374 0.799296i
\(433\) 9.65028i 0.463763i 0.972744 + 0.231882i \(0.0744882\pi\)
−0.972744 + 0.231882i \(0.925512\pi\)
\(434\) 1.58297 1.32827i 0.0759849 0.0637589i
\(435\) 0 0
\(436\) 0.278648 1.58029i 0.0133448 0.0756821i
\(437\) −3.95697 10.8717i −0.189287 0.520063i
\(438\) −28.6278 + 4.10704i −1.36789 + 0.196242i
\(439\) −5.34208 30.2964i −0.254963 1.44597i −0.796167 0.605077i \(-0.793142\pi\)
0.541203 0.840892i \(-0.317969\pi\)
\(440\) 0 0
\(441\) −4.87856 + 20.0557i −0.232312 + 0.955031i
\(442\) −1.16930 0.675098i −0.0556181 0.0321111i
\(443\) −5.84380 + 16.0557i −0.277647 + 0.762830i 0.719981 + 0.693994i \(0.244151\pi\)
−0.997628 + 0.0688358i \(0.978072\pi\)
\(444\) 0.184223 0.879077i 0.00874284 0.0417192i
\(445\) 0 0
\(446\) 19.7240 + 16.5504i 0.933958 + 0.783684i
\(447\) −28.1530 5.89985i −1.33159 0.279053i
\(448\) −1.02395 + 2.81329i −0.0483773 + 0.132915i
\(449\) 3.63246 6.29160i 0.171426 0.296919i −0.767492 0.641058i \(-0.778496\pi\)
0.938919 + 0.344139i \(0.111829\pi\)
\(450\) 0 0
\(451\) −0.456427 0.790555i −0.0214923 0.0372258i
\(452\) 0.843788 0.148783i 0.0396884 0.00699814i
\(453\) −15.9701 + 2.29112i −0.750340 + 0.107646i
\(454\) 19.4389 7.07519i 0.912314 0.332055i
\(455\) 0 0
\(456\) −19.1596 0.614118i −0.897231 0.0287587i
\(457\) −6.41352 7.64333i −0.300012 0.357540i 0.594887 0.803809i \(-0.297197\pi\)
−0.894899 + 0.446269i \(0.852752\pi\)
\(458\) 15.7490i 0.735901i
\(459\) 4.04936 5.67540i 0.189008 0.264905i
\(460\) 0 0
\(461\) 4.66867 3.91748i 0.217441 0.182455i −0.527560 0.849518i \(-0.676893\pi\)
0.745002 + 0.667063i \(0.232449\pi\)
\(462\) 0.274321 + 0.170324i 0.0127626 + 0.00792419i
\(463\) 24.9689 + 4.40269i 1.16040 + 0.204611i 0.720514 0.693441i \(-0.243906\pi\)
0.439891 + 0.898051i \(0.355017\pi\)
\(464\) −16.4735 + 5.99586i −0.764762 + 0.278351i
\(465\) 0 0
\(466\) −3.75791 21.3121i −0.174082 0.987266i
\(467\) 23.9220 13.8113i 1.10698 0.639113i 0.168932 0.985628i \(-0.445968\pi\)
0.938044 + 0.346515i \(0.112635\pi\)
\(468\) 0.464511 0.0515146i 0.0214720 0.00238126i
\(469\) −2.12478 + 3.68023i −0.0981134 + 0.169937i
\(470\) 0 0
\(471\) −19.8292 17.7517i −0.913683 0.817957i
\(472\) −25.7854 + 30.7299i −1.18687 + 1.41446i
\(473\) 2.21008 2.63387i 0.101619 0.121105i
\(474\) −26.2112 + 8.59964i −1.20392 + 0.394995i
\(475\) 0 0
\(476\) −0.0481385 + 0.0833784i −0.00220643 + 0.00382164i
\(477\) −25.3591 16.8943i −1.16111 0.773538i
\(478\) 24.9813 14.4230i 1.14262 0.659692i
\(479\) 4.94905 + 28.0675i 0.226128 + 1.28244i 0.860517 + 0.509422i \(0.170141\pi\)
−0.634389 + 0.773014i \(0.718748\pi\)
\(480\) 0 0
\(481\) −1.76684 + 0.643079i −0.0805611 + 0.0293219i
\(482\) 5.79437 + 1.02170i 0.263926 + 0.0465374i
\(483\) −1.63306 + 0.874323i −0.0743068 + 0.0397831i
\(484\) −1.72096 + 1.44406i −0.0782254 + 0.0656389i
\(485\) 0 0
\(486\) −0.298959 20.8696i −0.0135611 0.946666i
\(487\) 24.3015i 1.10121i −0.834767 0.550603i \(-0.814398\pi\)
0.834767 0.550603i \(-0.185602\pi\)
\(488\) 25.3440 + 30.2038i 1.14727 + 1.36726i
\(489\) 3.50272 + 6.54237i 0.158398 + 0.295856i
\(490\) 0 0
\(491\) 14.9080 5.42607i 0.672789 0.244875i 0.0170405 0.999855i \(-0.494576\pi\)
0.655748 + 0.754980i \(0.272353\pi\)
\(492\) 0.303076 0.756372i 0.0136637 0.0340999i
\(493\) −6.53904 + 1.15301i −0.294504 + 0.0519289i
\(494\) 1.88422 + 3.26357i 0.0847753 + 0.146835i
\(495\) 0 0
\(496\) −7.89666 + 13.6774i −0.354571 + 0.614134i
\(497\) 0.271004 0.744578i 0.0121562 0.0333989i
\(498\) −3.50867 10.6942i −0.157227 0.479219i
\(499\) −26.8594 22.5377i −1.20239 1.00893i −0.999558 0.0297149i \(-0.990540\pi\)
−0.202835 0.979213i \(-0.565015\pi\)
\(500\) 0 0
\(501\) −16.8779 15.1096i −0.754048 0.675046i
\(502\) −2.73817 + 7.52305i −0.122210 + 0.335770i
\(503\) 6.27881 + 3.62507i 0.279958 + 0.161634i 0.633405 0.773821i \(-0.281657\pi\)
−0.353446 + 0.935455i \(0.614990\pi\)
\(504\) 0.338306 + 3.05053i 0.0150694 + 0.135881i
\(505\) 0 0
\(506\) −0.288904 1.63845i −0.0128433 0.0728382i
\(507\) 13.3089 + 16.9343i 0.591067 + 0.752081i
\(508\) −0.160617 0.441292i −0.00712623 0.0195791i
\(509\) 6.17449 35.0173i 0.273679 1.55211i −0.469446 0.882961i \(-0.655546\pi\)
0.743126 0.669152i \(-0.233343\pi\)
\(510\) 0 0
\(511\) 3.30707 2.77496i 0.146296 0.122757i
\(512\) 25.0751i 1.10817i
\(513\) −17.7079 + 8.06712i −0.781822 + 0.356172i
\(514\) −23.5903 −1.04052
\(515\) 0 0
\(516\) 3.06749 + 0.0983216i 0.135039 + 0.00432837i
\(517\) −4.87361 0.859349i −0.214341 0.0377941i
\(518\) −0.396592 1.08963i −0.0174253 0.0478755i
\(519\) −0.269987 1.88192i −0.0118511 0.0826073i
\(520\) 0 0
\(521\) −19.0101 32.9265i −0.832849 1.44254i −0.895770 0.444519i \(-0.853375\pi\)
0.0629204 0.998019i \(-0.479959\pi\)
\(522\) −13.7262 + 14.3778i −0.600779 + 0.629301i
\(523\) 13.9242 + 8.03916i 0.608864 + 0.351528i 0.772521 0.634990i \(-0.218996\pi\)
−0.163657 + 0.986517i \(0.552329\pi\)
\(524\) 0.0566611 + 0.0206230i 0.00247525 + 0.000900918i
\(525\) 0 0
\(526\) −4.15805 3.48902i −0.181300 0.152128i
\(527\) −3.84507 + 4.58237i −0.167494 + 0.199611i
\(528\) −2.41538 0.506177i −0.105116 0.0220285i
\(529\) −12.6441 4.60207i −0.549743 0.200090i
\(530\) 0 0
\(531\) −9.62467 + 39.5669i −0.417675 + 1.71706i
\(532\) 0.232712 0.134356i 0.0100894 0.00582509i
\(533\) −1.67986 + 0.296204i −0.0727627 + 0.0128300i
\(534\) 0.130026 + 0.906339i 0.00562680 + 0.0392211i
\(535\) 0 0
\(536\) 6.29990 35.7285i 0.272114 1.54324i
\(537\) 0.938599 29.2830i 0.0405036 1.26365i
\(538\) 11.2163 + 13.3671i 0.483570 + 0.576297i
\(539\) 2.76726 0.119194
\(540\) 0 0
\(541\) −17.0592 −0.733433 −0.366717 0.930333i \(-0.619518\pi\)
−0.366717 + 0.930333i \(0.619518\pi\)
\(542\) −4.80909 5.73125i −0.206568 0.246178i
\(543\) −3.13665 1.94752i −0.134606 0.0835762i
\(544\) 0.272054 1.54290i 0.0116642 0.0661511i
\(545\) 0 0
\(546\) 0.474395 0.372832i 0.0203022 0.0159557i
\(547\) 18.3900 3.24265i 0.786298 0.138646i 0.233938 0.972251i \(-0.424839\pi\)
0.552360 + 0.833606i \(0.313727\pi\)
\(548\) 1.73536 1.00191i 0.0741308 0.0427994i
\(549\) 36.6560 + 16.0693i 1.56444 + 0.685820i
\(550\) 0 0
\(551\) 17.4146 + 6.33841i 0.741888 + 0.270025i
\(552\) 10.5481 11.7826i 0.448957 0.501499i
\(553\) 2.64687 3.15442i 0.112556 0.134140i
\(554\) 19.7135 + 16.5416i 0.837547 + 0.702786i
\(555\) 0 0
\(556\) 0.579083 + 0.210769i 0.0245586 + 0.00893860i
\(557\) 4.66802 + 2.69508i 0.197790 + 0.114194i 0.595624 0.803263i \(-0.296905\pi\)
−0.397834 + 0.917457i \(0.630238\pi\)
\(558\) −1.14682 + 17.8711i −0.0485486 + 0.756545i
\(559\) −3.21240 5.56403i −0.135870 0.235334i
\(560\) 0 0
\(561\) −0.867657 0.347668i −0.0366325 0.0146786i
\(562\) 5.32840 + 14.6396i 0.224765 + 0.617536i
\(563\) −0.845464 0.149078i −0.0356321 0.00628289i 0.155804 0.987788i \(-0.450203\pi\)
−0.191436 + 0.981505i \(0.561314\pi\)
\(564\) −2.08501 3.89438i −0.0877947 0.163983i
\(565\) 0 0
\(566\) 37.7123 1.58517
\(567\) 1.68117 + 2.62306i 0.0706025 + 0.110158i
\(568\) 6.76462i 0.283837i
\(569\) −22.5944 + 18.9589i −0.947206 + 0.794800i −0.978825 0.204700i \(-0.934378\pi\)
0.0316187 + 0.999500i \(0.489934\pi\)
\(570\) 0 0
\(571\) 2.15888 12.2436i 0.0903464 0.512380i −0.905728 0.423860i \(-0.860675\pi\)
0.996074 0.0885205i \(-0.0282139\pi\)
\(572\) −0.0214305 0.0588798i −0.000896054 0.00246189i
\(573\) 8.68995 21.6871i 0.363028 0.905990i
\(574\) −0.182672 1.03598i −0.00762458 0.0432411i
\(575\) 0 0
\(576\) −11.5070 23.2537i −0.479458 0.968905i
\(577\) −28.9597 16.7199i −1.20561 0.696057i −0.243810 0.969823i \(-0.578397\pi\)
−0.961796 + 0.273766i \(0.911731\pi\)
\(578\) 6.96055 19.1240i 0.289521 0.795452i
\(579\) 15.4723 5.07630i 0.643006 0.210964i
\(580\) 0 0
\(581\) 1.28701 + 1.07993i 0.0533941 + 0.0448030i
\(582\) −22.9368 + 25.6212i −0.950762 + 1.06203i
\(583\) −1.39725 + 3.83891i −0.0578681 + 0.158991i
\(584\) −18.4280 + 31.9182i −0.762556 + 1.32079i
\(585\) 0 0
\(586\) −0.0556406 0.0963723i −0.00229849 0.00398110i
\(587\) −21.6109 + 3.81058i −0.891977 + 0.157280i −0.600809 0.799392i \(-0.705155\pi\)
−0.291168 + 0.956672i \(0.594044\pi\)
\(588\) 1.52633 + 1.94211i 0.0629446 + 0.0800914i
\(589\) 15.6887 5.71024i 0.646444 0.235286i
\(590\) 0 0
\(591\) −7.71840 + 12.4311i −0.317493 + 0.511348i
\(592\) 5.69660 + 6.78894i 0.234129 + 0.279024i
\(593\) 11.2798i 0.463205i 0.972811 + 0.231602i \(0.0743968\pi\)
−0.972811 + 0.231602i \(0.925603\pi\)
\(594\) −2.70923 + 0.700273i −0.111161 + 0.0287325i
\(595\) 0 0
\(596\) −2.63699 + 2.21270i −0.108015 + 0.0906356i
\(597\) 0.751622 23.4495i 0.0307618 0.959726i
\(598\) −3.06164 0.539850i −0.125200 0.0220761i
\(599\) 5.06912 1.84501i 0.207119 0.0753850i −0.236378 0.971661i \(-0.575960\pi\)
0.443496 + 0.896276i \(0.353738\pi\)
\(600\) 0 0
\(601\) 1.30738 + 7.41452i 0.0533291 + 0.302445i 0.999793 0.0203664i \(-0.00648328\pi\)
−0.946463 + 0.322811i \(0.895372\pi\)
\(602\) 3.43139 1.98111i 0.139853 0.0807441i
\(603\) −10.3537 35.3420i −0.421634 1.43924i
\(604\) −0.965381 + 1.67209i −0.0392808 + 0.0680363i
\(605\) 0 0
\(606\) 6.35711 30.3349i 0.258240 1.23227i
\(607\) −13.9285 + 16.5993i −0.565339 + 0.673745i −0.970667 0.240427i \(-0.922713\pi\)
0.405329 + 0.914171i \(0.367157\pi\)
\(608\) −2.81073 + 3.34969i −0.113990 + 0.135848i
\(609\) 0.608601 2.90413i 0.0246618 0.117681i
\(610\) 0 0
\(611\) −4.62369 + 8.00847i −0.187055 + 0.323988i
\(612\) −0.234570 0.800699i −0.00948193 0.0323663i
\(613\) −32.4185 + 18.7168i −1.30937 + 0.755965i −0.981991 0.188928i \(-0.939499\pi\)
−0.327379 + 0.944893i \(0.606165\pi\)
\(614\) −3.74861 21.2594i −0.151281 0.857960i
\(615\) 0 0
\(616\) 0.386675 0.140738i 0.0155796 0.00567050i
\(617\) 36.6531 + 6.46292i 1.47560 + 0.260187i 0.852817 0.522210i \(-0.174892\pi\)
0.622780 + 0.782397i \(0.286003\pi\)
\(618\) −0.534901 + 16.6882i −0.0215169 + 0.671296i
\(619\) 7.26024 6.09206i 0.291814 0.244861i −0.485114 0.874451i \(-0.661222\pi\)
0.776927 + 0.629591i \(0.216777\pi\)
\(620\) 0 0
\(621\) 4.29203 15.4686i 0.172233 0.620735i
\(622\) 45.1414i 1.81000i
\(623\) −0.0878537 0.104700i −0.00351979 0.00419472i
\(624\) −2.43249 + 3.91772i −0.0973774 + 0.156834i
\(625\) 0 0
\(626\) −31.3990 + 11.4283i −1.25496 + 0.456766i
\(627\) 1.61205 + 2.05119i 0.0643789 + 0.0819164i
\(628\) −3.13664 + 0.553074i −0.125166 + 0.0220701i
\(629\) 1.67834 + 2.90698i 0.0669199 + 0.115909i
\(630\) 0 0
\(631\) 9.32426 16.1501i 0.371193 0.642925i −0.618556 0.785740i \(-0.712282\pi\)
0.989749 + 0.142815i \(0.0456155\pi\)
\(632\) −12.0236 + 33.0347i −0.478275 + 1.31405i
\(633\) −12.8888 + 14.3972i −0.512285 + 0.572238i
\(634\) 16.0978 + 13.5077i 0.639327 + 0.536459i
\(635\) 0 0
\(636\) −3.46489 + 1.13679i −0.137392 + 0.0450768i
\(637\) 1.76857 4.85910i 0.0700732 0.192524i
\(638\) 2.30798 + 1.33251i 0.0913737 + 0.0527546i
\(639\) 3.04549 + 6.15444i 0.120478 + 0.243466i
\(640\) 0 0
\(641\) −4.29405 24.3528i −0.169605 0.961876i −0.944189 0.329405i \(-0.893152\pi\)
0.774584 0.632471i \(-0.217959\pi\)
\(642\) −7.71997 + 19.2663i −0.304683 + 0.760381i
\(643\) −2.70994 7.44549i −0.106870 0.293622i 0.874719 0.484631i \(-0.161046\pi\)
−0.981588 + 0.191009i \(0.938824\pi\)
\(644\) −0.0384945 + 0.218313i −0.00151690 + 0.00860274i
\(645\) 0 0
\(646\) 5.15365 4.32443i 0.202768 0.170142i
\(647\) 3.79376i 0.149148i −0.997215 0.0745741i \(-0.976240\pi\)
0.997215 0.0745741i \(-0.0237597\pi\)
\(648\) −21.1461 16.1344i −0.830698 0.633818i
\(649\) 5.45940 0.214300
\(650\) 0 0
\(651\) −1.26172 2.35664i −0.0494508 0.0923641i
\(652\) 0.874607 + 0.154217i 0.0342522 + 0.00603959i
\(653\) −5.05580 13.8907i −0.197849 0.543585i 0.800604 0.599194i \(-0.204512\pi\)
−0.998453 + 0.0556090i \(0.982290\pi\)
\(654\) 16.6652 + 6.67770i 0.651661 + 0.261119i
\(655\) 0 0
\(656\) 4.02001 + 6.96286i 0.156955 + 0.271854i
\(657\) −2.39588 + 37.3356i −0.0934722 + 1.45660i
\(658\) −4.93889 2.85147i −0.192538 0.111162i
\(659\) 38.5064 + 14.0152i 1.49999 + 0.545953i 0.956059 0.293174i \(-0.0947114\pi\)
0.543935 + 0.839127i \(0.316934\pi\)
\(660\) 0 0
\(661\) 12.0162 + 10.0828i 0.467375 + 0.392174i 0.845836 0.533443i \(-0.179102\pi\)
−0.378461 + 0.925617i \(0.623547\pi\)
\(662\) −26.0276 + 31.0185i −1.01159 + 1.20557i
\(663\) −1.16500 + 1.30134i −0.0452449 + 0.0505400i
\(664\) −13.4782 4.90566i −0.523055 0.190377i
\(665\) 0 0
\(666\) 9.20340 + 4.03459i 0.356624 + 0.156337i
\(667\) −13.2403 + 7.64431i −0.512668 + 0.295989i
\(668\) −2.66978 + 0.470755i −0.103297 + 0.0182141i
\(669\) 26.1880 20.5814i 1.01249 0.795723i
\(670\) 0 0
\(671\) 0.931786 5.28442i 0.0359712 0.204003i
\(672\) 0.594794 + 0.369304i 0.0229447 + 0.0142462i
\(673\) −15.3802 18.3294i −0.592861 0.706545i 0.383292 0.923627i \(-0.374790\pi\)
−0.976153 + 0.217083i \(0.930346\pi\)
\(674\) 9.23400 0.355681
\(675\) 0 0
\(676\) 2.57756 0.0991369
\(677\) −16.4295 19.5799i −0.631437 0.752518i 0.351554 0.936167i \(-0.385653\pi\)
−0.982992 + 0.183650i \(0.941209\pi\)
\(678\) −0.307102 + 9.58115i −0.0117942 + 0.367962i
\(679\) 0.891367 5.05520i 0.0342075 0.194001i
\(680\) 0 0
\(681\) −3.80021 26.4891i −0.145625 1.01506i
\(682\) 2.36443 0.416913i 0.0905386 0.0159644i
\(683\) −37.4638 + 21.6297i −1.43351 + 0.827639i −0.997387 0.0722470i \(-0.976983\pi\)
−0.436126 + 0.899886i \(0.643650\pi\)
\(684\) −0.550410 + 2.26273i −0.0210454 + 0.0865175i
\(685\) 0 0
\(686\) 6.04549 + 2.20038i 0.230818 + 0.0840109i
\(687\) 19.9399 + 4.17869i 0.760756 + 0.159427i
\(688\) −19.4654 + 23.1979i −0.742110 + 0.884412i
\(689\) 5.84784 + 4.90692i 0.222785 + 0.186939i
\(690\) 0 0
\(691\) −42.4251 15.4415i −1.61393 0.587422i −0.631716 0.775200i \(-0.717649\pi\)
−0.982211 + 0.187778i \(0.939871\pi\)
\(692\) −0.197040 0.113761i −0.00749033 0.00432454i
\(693\) 0.288435 0.302128i 0.0109567 0.0114769i
\(694\) 23.7430 + 41.1240i 0.901270 + 1.56105i
\(695\) 0 0
\(696\) 3.59737 + 25.0751i 0.136358 + 0.950471i
\(697\) 1.04153 + 2.86158i 0.0394507 + 0.108390i
\(698\) −32.2479 5.68617i −1.22060 0.215225i
\(699\) −27.9806 0.896855i −1.05832 0.0339222i
\(700\) 0 0
\(701\) −52.1690 −1.97039 −0.985197 0.171425i \(-0.945163\pi\)
−0.985197 + 0.171425i \(0.945163\pi\)
\(702\) −0.501854 + 5.20475i −0.0189413 + 0.196441i
\(703\) 9.36864i 0.353345i
\(704\) −2.66464 + 2.23590i −0.100428 + 0.0842687i
\(705\) 0 0
\(706\) 2.15696 12.2327i 0.0811782 0.460384i
\(707\) 1.58236 + 4.34750i 0.0595108 + 0.163505i
\(708\) 3.01122 + 3.83150i 0.113168 + 0.143997i
\(709\) −0.837721 4.75095i −0.0314613 0.178426i 0.965028 0.262147i \(-0.0844306\pi\)
−0.996489 + 0.0837213i \(0.973319\pi\)
\(710\) 0 0
\(711\) 3.93343 + 35.4681i 0.147515 + 1.33016i
\(712\) 1.01051 + 0.583420i 0.0378706 + 0.0218646i
\(713\) −4.71079 + 12.9428i −0.176421 + 0.484711i
\(714\) −0.802550 0.718467i −0.0300347 0.0268879i
\(715\) 0 0
\(716\) −2.68590 2.25374i −0.100377 0.0842261i
\(717\) −11.6328 35.4560i −0.434433 1.32413i
\(718\) 3.27249 8.99108i 0.122128 0.335544i
\(719\) 4.65459 8.06199i 0.173587 0.300662i −0.766084 0.642740i \(-0.777798\pi\)
0.939671 + 0.342078i \(0.111131\pi\)
\(720\) 0 0
\(721\) −1.24618 2.15844i −0.0464100 0.0803846i
\(722\) 6.56131 1.15694i 0.244187 0.0430567i
\(723\) 2.83102 7.06522i 0.105287 0.262758i
\(724\) −0.415197 + 0.151119i −0.0154307 + 0.00561630i
\(725\) 0 0
\(726\) −11.8636 22.1588i −0.440299 0.822390i
\(727\) −4.22289 5.03265i −0.156618 0.186651i 0.682029 0.731325i \(-0.261098\pi\)
−0.838648 + 0.544674i \(0.816653\pi\)
\(728\) 0.768918i 0.0284980i
\(729\) −26.5026 5.15885i −0.981577 0.191068i
\(730\) 0 0
\(731\) −8.78641 + 7.37268i −0.324977 + 0.272688i
\(732\) 4.22264 2.26076i 0.156073 0.0835601i
\(733\) −14.8900 2.62552i −0.549976 0.0969756i −0.108247 0.994124i \(-0.534524\pi\)
−0.441729 + 0.897148i \(0.645635\pi\)
\(734\) −14.4980 + 5.27684i −0.535131 + 0.194772i
\(735\) 0 0
\(736\) −0.626414 3.55257i −0.0230899 0.130949i
\(737\) −4.27594 + 2.46872i −0.157506 + 0.0909364i
\(738\) 7.58700 + 5.05449i 0.279281 + 0.186058i
\(739\) −19.1802 + 33.2210i −0.705554 + 1.22206i 0.260937 + 0.965356i \(0.415968\pi\)
−0.966491 + 0.256700i \(0.917365\pi\)
\(740\) 0 0
\(741\) 4.63199 1.51971i 0.170160 0.0558279i
\(742\) −3.02614 + 3.60641i −0.111093 + 0.132396i
\(743\) 16.4495 19.6038i 0.603474 0.719192i −0.374661 0.927162i \(-0.622241\pi\)
0.978135 + 0.207970i \(0.0666855\pi\)
\(744\) 17.0032 + 15.2218i 0.623369 + 0.558059i
\(745\) 0 0
\(746\) 20.6869 35.8308i 0.757403 1.31186i
\(747\) −14.4710 + 1.60485i −0.529467 + 0.0587183i
\(748\) −0.0968746 + 0.0559306i −0.00354209 + 0.00204502i
\(749\) −0.537998 3.05114i −0.0196580 0.111486i
\(750\) 0 0
\(751\) 40.5586 14.7621i 1.48000 0.538677i 0.529207 0.848493i \(-0.322490\pi\)
0.950797 + 0.309816i \(0.100267\pi\)
\(752\) 42.9246 + 7.56876i 1.56530 + 0.276004i
\(753\) 8.79849 + 5.46292i 0.320635 + 0.199080i
\(754\) 3.81482 3.20102i 0.138928 0.116574i
\(755\) 0 0
\(756\) 0.371130 + 0.0357852i 0.0134978 + 0.00130150i
\(757\) 40.4910i 1.47167i −0.677161 0.735835i \(-0.736790\pi\)
0.677161 0.735835i \(-0.263210\pi\)
\(758\) 2.45037 + 2.92023i 0.0890013 + 0.106068i
\(759\) −2.15112 0.0689492i −0.0780807 0.00250270i
\(760\) 0 0
\(761\) −10.7121 + 3.89889i −0.388314 + 0.141335i −0.528797 0.848748i \(-0.677357\pi\)
0.140483 + 0.990083i \(0.455134\pi\)
\(762\) 5.20085 0.746132i 0.188407 0.0270295i
\(763\) −2.63921 + 0.465364i −0.0955457 + 0.0168473i
\(764\) −1.39798 2.42138i −0.0505772 0.0876023i
\(765\) 0 0
\(766\) −23.4605 + 40.6348i −0.847662 + 1.46819i
\(767\) 3.48912 9.58628i 0.125985 0.346141i
\(768\) −8.33958 1.74768i −0.300929 0.0630638i
\(769\) 5.73459 + 4.81189i 0.206795 + 0.173521i 0.740303 0.672274i \(-0.234682\pi\)
−0.533508 + 0.845795i \(0.679127\pi\)
\(770\) 0 0
\(771\) −6.25925 + 29.8680i −0.225421 + 1.07567i
\(772\) 0.666505 1.83121i 0.0239880 0.0659066i
\(773\) −3.97889 2.29721i −0.143111 0.0826250i 0.426735 0.904377i \(-0.359664\pi\)
−0.569846 + 0.821752i \(0.692997\pi\)
\(774\) −8.11590 + 33.3643i −0.291720 + 1.19926i
\(775\) 0 0
\(776\) 7.60984 + 43.1575i 0.273177 + 1.54927i
\(777\) −1.48482 + 0.213017i −0.0532675 + 0.00764194i
\(778\) 8.47548 + 23.2862i 0.303861 + 0.834850i
\(779\) 1.47590 8.37022i 0.0528795 0.299894i
\(780\) 0 0
\(781\) 0.705237 0.591764i 0.0252354 0.0211750i
\(782\) 5.55010i 0.198471i
\(783\) 14.5619 + 21.1938i 0.520401 + 0.757403i
\(784\) −24.3728 −0.870457
\(785\) 0 0
\(786\) −0.355853 + 0.573130i −0.0126928 + 0.0204429i
\(787\) −6.94491 1.22457i −0.247559 0.0436514i 0.0484915 0.998824i \(-0.484559\pi\)
−0.296051 + 0.955172i \(0.595670\pi\)
\(788\) 0.598914 + 1.64550i 0.0213354 + 0.0586186i
\(789\) −5.52074 + 4.33880i −0.196544 + 0.154465i
\(790\) 0 0
\(791\) −0.715465 1.23922i −0.0254390 0.0440617i
\(792\) −1.43175 + 3.26600i −0.0508750 + 0.116052i
\(793\) −8.68353 5.01344i −0.308361 0.178032i
\(794\) −37.1164 13.5092i −1.31721 0.479425i
\(795\) 0 0
\(796\) −2.15084 1.80477i −0.0762346 0.0639684i
\(797\) −15.8724 + 18.9160i −0.562230 + 0.670040i −0.970017 0.243037i \(-0.921856\pi\)
0.407787 + 0.913077i \(0.366301\pi\)
\(798\) 0.937217 + 2.85659i 0.0331771 + 0.101122i
\(799\) 15.5133 + 5.64637i 0.548820 + 0.199754i
\(800\) 0 0
\(801\) 1.18202 + 0.0758522i 0.0417648 + 0.00268011i
\(802\) 27.1602 15.6810i 0.959060 0.553714i
\(803\) 4.93967 0.870997i 0.174317 0.0307368i
\(804\) −4.09105 1.63927i −0.144280 0.0578128i
\(805\) 0 0
\(806\) 0.779048 4.41820i 0.0274408 0.155625i
\(807\) 19.9003 10.6544i 0.700522 0.375053i
\(808\) −25.3887 30.2570i −0.893171 1.06444i
\(809\) −31.8679 −1.12042 −0.560208 0.828352i \(-0.689279\pi\)
−0.560208 + 0.828352i \(0.689279\pi\)
\(810\) 0 0
\(811\) −3.58217 −0.125787 −0.0628936 0.998020i \(-0.520033\pi\)
−0.0628936 + 0.998020i \(0.520033\pi\)
\(812\) −0.228252 0.272020i −0.00801006 0.00954602i
\(813\) −8.53240 + 4.56816i −0.299244 + 0.160212i
\(814\) 0.233948 1.32678i 0.00819987 0.0465038i
\(815\) 0 0
\(816\) 7.64194 + 3.06211i 0.267521 + 0.107195i
\(817\) 31.5264 5.55896i 1.10297 0.194483i
\(818\) −8.98570 + 5.18789i −0.314177 + 0.181390i
\(819\) −0.346174 0.699560i −0.0120963 0.0244446i
\(820\) 0 0
\(821\) −19.9338 7.25531i −0.695694 0.253212i −0.0301230 0.999546i \(-0.509590\pi\)
−0.665571 + 0.746334i \(0.731812\pi\)
\(822\) 6.98892 + 21.3018i 0.243767 + 0.742987i
\(823\) 18.9052 22.5304i 0.658995 0.785359i −0.328246 0.944592i \(-0.606458\pi\)
0.987241 + 0.159233i \(0.0509021\pi\)
\(824\) 16.2998 + 13.6772i 0.567830 + 0.476466i
\(825\) 0 0
\(826\) 5.91195 + 2.15177i 0.205703 + 0.0748697i
\(827\) 6.74365 + 3.89345i 0.234500 + 0.135388i 0.612646 0.790357i \(-0.290105\pi\)
−0.378146 + 0.925746i \(0.623438\pi\)
\(828\) −1.13809 1.54772i −0.0395515 0.0537871i
\(829\) 14.0422 + 24.3217i 0.487704 + 0.844728i 0.999900 0.0141403i \(-0.00450114\pi\)
−0.512196 + 0.858869i \(0.671168\pi\)
\(830\) 0 0
\(831\) 26.1741 20.5705i 0.907970 0.713582i
\(832\) 2.22309 + 6.10788i 0.0770716 + 0.211753i
\(833\) −9.09117 1.60302i −0.314990 0.0555413i
\(834\) −3.63685 + 5.85746i −0.125934 + 0.202827i
\(835\) 0 0
\(836\) 0.312209 0.0107980
\(837\) 22.3225 + 6.19376i 0.771580 + 0.214088i
\(838\) 23.8426i 0.823630i
\(839\) 25.5662 21.4526i 0.882643 0.740625i −0.0840781 0.996459i \(-0.526795\pi\)
0.966721 + 0.255834i \(0.0823501\pi\)
\(840\) 0 0
\(841\) −0.783180 + 4.44164i −0.0270062 + 0.153160i
\(842\) −13.9041 38.2012i −0.479167 1.31650i
\(843\) 19.9492 2.86198i 0.687087 0.0985718i
\(844\) 0.401565 + 2.27739i 0.0138224 + 0.0783910i
\(845\) 0 0
\(846\) 47.4292 13.8947i 1.63065 0.477709i
\(847\) 3.24926 + 1.87596i 0.111646 + 0.0644587i
\(848\) 12.3063 33.8114i 0.422601 1.16109i
\(849\) 10.0063 47.7479i 0.343414 1.63870i
\(850\) 0 0
\(851\) 5.92066 + 4.96803i 0.202958 + 0.170302i
\(852\) 0.804295 + 0.168551i 0.0275547 + 0.00577447i
\(853\) −8.16758 + 22.4403i −0.279653 + 0.768340i 0.717749 + 0.696302i \(0.245172\pi\)
−0.997402 + 0.0720379i \(0.977050\pi\)
\(854\) 3.09183 5.35521i 0.105800 0.183251i
\(855\) 0 0
\(856\) 13.2251 + 22.9066i 0.452025 + 0.782930i
\(857\) −54.6748 + 9.64065i −1.86766 + 0.329318i −0.988974 0.148087i \(-0.952688\pi\)
−0.878683 + 0.477406i \(0.841577\pi\)
\(858\) 0.693930 0.0995535i 0.0236904 0.00339870i
\(859\) −12.9170 + 4.70141i −0.440723 + 0.160410i −0.552844 0.833284i \(-0.686458\pi\)
0.112122 + 0.993695i \(0.464235\pi\)
\(860\) 0 0
\(861\) −1.36014 0.0435961i −0.0463534 0.00148575i
\(862\) −19.3304 23.0370i −0.658395 0.784645i
\(863\) 14.2240i 0.484192i 0.970252 + 0.242096i \(0.0778349\pi\)
−0.970252 + 0.242096i \(0.922165\pi\)
\(864\) −5.87427 + 1.51836i −0.199847 + 0.0516557i
\(865\) 0 0
\(866\) −9.89806 + 8.30546i −0.336350 + 0.282231i
\(867\) −22.3662 13.8870i −0.759595 0.471627i
\(868\) −0.315044 0.0555508i −0.0106933 0.00188552i
\(869\) 4.49581 1.63634i 0.152510 0.0555091i
\(870\) 0 0
\(871\) 1.60211 + 9.08599i 0.0542853 + 0.307867i
\(872\) 19.8140 11.4396i 0.670986 0.387394i
\(873\) 26.3533 + 35.8386i 0.891926 + 1.21295i
\(874\) 7.74528 13.4152i 0.261988 0.453776i
\(875\) 0 0
\(876\) 3.33583 + 2.98633i 0.112707 + 0.100899i
\(877\) 16.9111 20.1538i 0.571046 0.680546i −0.400799 0.916166i \(-0.631268\pi\)
0.971845 + 0.235620i \(0.0757120\pi\)
\(878\) 26.4767 31.5537i 0.893545 1.06489i
\(879\) −0.136781 + 0.0448765i −0.00461351 + 0.00151365i
\(880\) 0 0
\(881\) −17.3061 + 29.9751i −0.583058 + 1.00989i 0.412057 + 0.911158i \(0.364811\pi\)
−0.995115 + 0.0987274i \(0.968523\pi\)
\(882\) −24.7693 + 12.2570i −0.834026 + 0.412714i
\(883\) 10.9832 6.34115i 0.369614 0.213397i −0.303676 0.952775i \(-0.598214\pi\)
0.673290 + 0.739379i \(0.264881\pi\)
\(884\) 0.0362969 + 0.205850i 0.00122080 + 0.00692347i
\(885\) 0 0
\(886\) −21.4974 + 7.82441i −0.722219 + 0.262866i
\(887\) 21.1857 + 3.73561i 0.711347 + 0.125430i 0.517601 0.855622i \(-0.326825\pi\)
0.193746 + 0.981052i \(0.437936\pi\)
\(888\) 11.2898 6.04445i 0.378861 0.202838i
\(889\) −0.600801 + 0.504132i −0.0201502 + 0.0169080i
\(890\) 0 0
\(891\) 0.167779 + 3.61599i 0.00562080 + 0.121140i
\(892\) 3.98605i 0.133463i
\(893\) −29.6177 35.2970i −0.991118 1.18117i
\(894\) −18.1784 33.9535i −0.607975 1.13557i
\(895\) 0 0
\(896\) −3.00711 + 1.09450i −0.100460 + 0.0365646i
\(897\) −1.49586 + 3.73313i −0.0499452 + 0.124646i
\(898\) 9.57940 1.68911i 0.319669 0.0563662i
\(899\) −11.0314 19.1069i −0.367917 0.637251i
\(900\) 0 0
\(901\) 6.81412 11.8024i 0.227011 0.393195i
\(902\) 0.418032 1.14853i 0.0139189 0.0382420i
\(903\) −1.59785 4.87017i −0.0531732 0.162069i
\(904\) 9.35818 + 7.85244i 0.311248 + 0.261168i
\(905\) 0 0
\(906\) −16.0945 14.4083i −0.534704 0.478683i
\(907\) 9.72036 26.7065i 0.322759 0.886774i −0.667131 0.744940i \(-0.732478\pi\)
0.989891 0.141833i \(-0.0452997\pi\)
\(908\) −2.77344 1.60125i −0.0920399 0.0531392i
\(909\) −36.7206 16.0976i −1.21795 0.533924i
\(910\) 0 0
\(911\) 0.330416 + 1.87388i 0.0109472 + 0.0620845i 0.989792 0.142520i \(-0.0455204\pi\)
−0.978845 + 0.204604i \(0.934409\pi\)
\(912\) −14.1982 18.0659i −0.470149 0.598222i
\(913\) 0.667629 + 1.83430i 0.0220953 + 0.0607064i
\(914\) 2.31982 13.1564i 0.0767330 0.435174i
\(915\) 0 0
\(916\) 1.86770 1.56719i 0.0617107 0.0517814i
\(917\) 0.100702i 0.00332546i
\(918\) 9.30618 0.731174i 0.307150 0.0241323i
\(919\) 44.1735 1.45715 0.728575 0.684966i \(-0.240183\pi\)
0.728575 + 0.684966i \(0.240183\pi\)
\(920\) 0 0
\(921\) −27.9114 0.894636i −0.919711 0.0294792i
\(922\) 8.03612 + 1.41699i 0.264656 + 0.0466659i
\(923\) −0.588372 1.61654i −0.0193665 0.0532091i
\(924\) −0.00709876 0.0494813i −0.000233532 0.00162782i
\(925\) 0 0
\(926\) 16.9736 + 29.3992i 0.557788 + 0.966117i
\(927\) 20.9871 + 5.10513i 0.689307 + 0.167675i
\(928\) 5.00425 + 2.88921i 0.164273 + 0.0948429i
\(929\) −46.6343 16.9735i −1.53002 0.556883i −0.566396 0.824133i \(-0.691663\pi\)
−0.963627 + 0.267250i \(0.913885\pi\)
\(930\) 0 0
\(931\) 19.7373 + 16.5616i 0.646865 + 0.542784i
\(932\) −2.15350 + 2.56644i −0.0705403 + 0.0840666i
\(933\) 57.1539 + 11.9774i 1.87114 + 0.392123i
\(934\) 34.7543 + 12.6495i 1.13719 + 0.413905i
\(935\) 0 0
\(936\) 4.81980 + 4.60135i 0.157540 + 0.150400i
\(937\) −2.62661 + 1.51647i −0.0858076 + 0.0495410i −0.542290 0.840191i \(-0.682443\pi\)
0.456482 + 0.889733i \(0.349109\pi\)
\(938\) −5.60341 + 0.988033i −0.182958 + 0.0322604i
\(939\) 6.13835 + 42.7868i 0.200317 + 1.39630i
\(940\) 0 0
\(941\) 1.59606 9.05168i 0.0520299 0.295076i −0.947678 0.319227i \(-0.896577\pi\)
0.999708 + 0.0241502i \(0.00768801\pi\)
\(942\) 1.14160 35.6163i 0.0371953 1.16044i
\(943\) 4.50706 + 5.37130i 0.146770 + 0.174914i
\(944\) −48.0839 −1.56500
\(945\) 0 0
\(946\) 4.60358 0.149675
\(947\) 7.86967 + 9.37871i 0.255730 + 0.304767i 0.878600 0.477558i \(-0.158478\pi\)
−0.622870 + 0.782325i \(0.714034\pi\)
\(948\) 3.62815 + 2.25269i 0.117837 + 0.0731640i
\(949\) 1.62756 9.23033i 0.0528327 0.299629i
\(950\) 0 0
\(951\) 21.3735 16.7976i 0.693082 0.544700i
\(952\) −1.35185 + 0.238368i −0.0438138 + 0.00772556i
\(953\) 51.2135 29.5681i 1.65897 0.957805i 0.685774 0.727814i \(-0.259464\pi\)
0.973193 0.229991i \(-0.0738697\pi\)
\(954\) −4.49705 40.5502i −0.145597 1.31286i
\(955\) 0 0
\(956\) −4.19636 1.52735i −0.135720 0.0493980i
\(957\) 2.29948 2.56860i 0.0743317 0.0830309i
\(958\) −24.5288 + 29.2322i −0.792488 + 0.944451i
\(959\) −2.56359 2.15111i −0.0827828 0.0694630i
\(960\) 0 0
\(961\) 10.4529 + 3.80456i 0.337191 + 0.122728i
\(962\) −2.18021 1.25875i −0.0702929 0.0405836i
\(963\) 22.3449 + 14.8863i 0.720056 + 0.479704i
\(964\) −0.455436 0.788838i −0.0146686 0.0254067i
\(965\) 0 0
\(966\) −2.30226 0.922508i −0.0740739 0.0296812i
\(967\) 5.11684 + 14.0584i 0.164546 + 0.452087i 0.994373 0.105934i \(-0.0337831\pi\)
−0.829827 + 0.558021i \(0.811561\pi\)
\(968\) −31.5445 5.56214i −1.01388 0.178774i
\(969\) −4.10778 7.67250i −0.131961 0.246476i
\(970\) 0 0
\(971\) 16.4454 0.527757 0.263878 0.964556i \(-0.414998\pi\)
0.263878 + 0.964556i \(0.414998\pi\)
\(972\) −2.44522 + 2.11220i −0.0784306 + 0.0677490i
\(973\) 1.02918i 0.0329940i
\(974\) 24.9255 20.9150i 0.798664 0.670158i
\(975\) 0 0
\(976\) −8.20675 + 46.5428i −0.262692 + 1.48980i
\(977\) −15.1521 41.6300i −0.484758 1.33186i −0.905371 0.424622i \(-0.860407\pi\)
0.420613 0.907240i \(-0.361815\pi\)
\(978\) −3.69576 + 9.22330i −0.118177 + 0.294929i
\(979\) −0.0275753 0.156387i −0.000881309 0.00499815i
\(980\) 0 0
\(981\) 12.8765 19.3282i 0.411115 0.617101i
\(982\) 18.3959 + 10.6209i 0.587036 + 0.338925i
\(983\) −8.82999 + 24.2602i −0.281633 + 0.773780i 0.715535 + 0.698577i \(0.246183\pi\)
−0.997168 + 0.0752034i \(0.976039\pi\)
\(984\) 11.0389 3.62174i 0.351906 0.115457i
\(985\) 0 0
\(986\) −6.81040 5.71461i −0.216887 0.181990i
\(987\) −4.92072 + 5.49660i −0.156628 + 0.174959i
\(988\) 0.199534 0.548214i 0.00634801 0.0174410i
\(989\) −13.2048 + 22.8715i −0.419890 + 0.727270i
\(990\) 0 0
\(991\) −6.60807 11.4455i −0.209912 0.363579i 0.741774 0.670649i \(-0.233984\pi\)
−0.951687 + 0.307071i \(0.900651\pi\)
\(992\) 5.12666 0.903968i 0.162771 0.0287010i
\(993\) 32.3669 + 41.1840i 1.02713 + 1.30694i
\(994\) 0.996935 0.362854i 0.0316208 0.0115090i
\(995\) 0 0
\(996\) −0.919101 + 1.48029i −0.0291228 + 0.0469047i
\(997\) 15.5008 + 18.4731i 0.490914 + 0.585049i 0.953450 0.301552i \(-0.0975046\pi\)
−0.462535 + 0.886601i \(0.653060\pi\)
\(998\) 46.9461i 1.48605i
\(999\) 7.55019 10.5820i 0.238877 0.334800i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.17 132
5.2 odd 4 675.2.l.g.76.3 yes 66
5.3 odd 4 675.2.l.f.76.9 66
5.4 even 2 inner 675.2.u.e.49.6 132
27.16 even 9 inner 675.2.u.e.124.6 132
135.43 odd 36 675.2.l.f.151.9 yes 66
135.97 odd 36 675.2.l.g.151.3 yes 66
135.124 even 18 inner 675.2.u.e.124.17 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.9 66 5.3 odd 4
675.2.l.f.151.9 yes 66 135.43 odd 36
675.2.l.g.76.3 yes 66 5.2 odd 4
675.2.l.g.151.3 yes 66 135.97 odd 36
675.2.u.e.49.6 132 5.4 even 2 inner
675.2.u.e.49.17 132 1.1 even 1 trivial
675.2.u.e.124.6 132 27.16 even 9 inner
675.2.u.e.124.17 132 135.124 even 18 inner