Properties

Label 675.2.u.e.49.15
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.15
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.564301 + 0.672508i) q^{2} +(-0.939248 - 1.45527i) q^{3} +(0.213465 - 1.21062i) q^{4} +(0.448662 - 1.45286i) q^{6} +(0.501180 - 0.0883715i) q^{7} +(2.45517 - 1.41750i) q^{8} +(-1.23563 + 2.73372i) q^{9} +(2.28041 + 0.830001i) q^{11} +(-1.96228 + 0.826424i) q^{12} +(4.07731 - 4.85915i) q^{13} +(0.342247 + 0.287179i) q^{14} +(0.0284139 + 0.0103418i) q^{16} +(-4.96942 - 2.86909i) q^{17} +(-2.53572 + 0.711675i) q^{18} +(1.94493 + 3.36871i) q^{19} +(-0.599337 - 0.646349i) q^{21} +(0.728656 + 2.00197i) q^{22} +(-6.37282 - 1.12370i) q^{23} +(-4.36886 - 2.24156i) q^{24} +5.56865 q^{26} +(5.13886 - 0.769474i) q^{27} -0.625603i q^{28} +(0.324767 - 0.272512i) q^{29} +(1.47718 - 8.37750i) q^{31} +(-1.93017 - 5.30309i) q^{32} +(-0.933994 - 4.09819i) q^{33} +(-0.874759 - 4.96101i) q^{34} +(3.04574 + 2.07943i) q^{36} +(-2.06443 - 1.19190i) q^{37} +(-1.16796 + 3.20895i) q^{38} +(-10.9010 - 1.36964i) q^{39} +(0.938033 + 0.787103i) q^{41} +(0.0964687 - 0.767795i) q^{42} +(0.855127 - 2.34944i) q^{43} +(1.49160 - 2.58353i) q^{44} +(-2.84049 - 4.91988i) q^{46} +(-0.816377 + 0.143949i) q^{47} +(-0.0116376 - 0.0510634i) q^{48} +(-6.33448 + 2.30556i) q^{49} +(0.492208 + 9.92664i) q^{51} +(-5.01222 - 5.97334i) q^{52} +8.88536i q^{53} +(3.41735 + 3.02171i) q^{54} +(1.10522 - 0.927387i) q^{56} +(3.07562 - 5.99445i) q^{57} +(0.366533 + 0.0646297i) q^{58} +(6.58000 - 2.39492i) q^{59} +(0.558258 + 3.16604i) q^{61} +(6.46751 - 3.73402i) q^{62} +(-0.377687 + 1.47928i) q^{63} +(2.50742 - 4.34297i) q^{64} +(2.22901 - 2.94073i) q^{66} +(4.47176 - 5.32923i) q^{67} +(-4.53418 + 5.40363i) q^{68} +(4.35037 + 10.3296i) q^{69} +(-1.59927 + 2.77002i) q^{71} +(0.841362 + 8.46325i) q^{72} +(10.3795 - 5.99262i) q^{73} +(-0.363398 - 2.06093i) q^{74} +(4.49341 - 1.63547i) q^{76} +(1.21624 + 0.214457i) q^{77} +(-5.23035 - 8.10390i) q^{78} +(-2.06451 + 1.73233i) q^{79} +(-5.94646 - 6.75571i) q^{81} +1.07500i q^{82} +(5.03928 + 6.00558i) q^{83} +(-0.910421 + 0.587596i) q^{84} +(2.06257 - 0.750714i) q^{86} +(-0.701616 - 0.216668i) q^{87} +(6.77532 - 1.19467i) q^{88} +(9.24733 + 16.0168i) q^{89} +(1.61406 - 2.79563i) q^{91} +(-2.72075 + 7.47519i) q^{92} +(-13.5790 + 5.71886i) q^{93} +(-0.557490 - 0.467789i) q^{94} +(-5.90453 + 7.78984i) q^{96} +(-2.86117 + 7.86099i) q^{97} +(-5.12506 - 2.95896i) q^{98} +(-5.08672 + 5.20843i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.564301 + 0.672508i 0.399021 + 0.475535i 0.927721 0.373274i \(-0.121765\pi\)
−0.528700 + 0.848809i \(0.677320\pi\)
\(3\) −0.939248 1.45527i −0.542275 0.840201i
\(4\) 0.213465 1.21062i 0.106733 0.605310i
\(5\) 0 0
\(6\) 0.448662 1.45286i 0.183166 0.593129i
\(7\) 0.501180 0.0883715i 0.189428 0.0334013i −0.0781292 0.996943i \(-0.524895\pi\)
0.267557 + 0.963542i \(0.413784\pi\)
\(8\) 2.45517 1.41750i 0.868035 0.501160i
\(9\) −1.23563 + 2.73372i −0.411875 + 0.911240i
\(10\) 0 0
\(11\) 2.28041 + 0.830001i 0.687569 + 0.250255i 0.662094 0.749421i \(-0.269668\pi\)
0.0254752 + 0.999675i \(0.491890\pi\)
\(12\) −1.96228 + 0.826424i −0.566461 + 0.238568i
\(13\) 4.07731 4.85915i 1.13084 1.34769i 0.201059 0.979579i \(-0.435562\pi\)
0.929784 0.368107i \(-0.119994\pi\)
\(14\) 0.342247 + 0.287179i 0.0914694 + 0.0767519i
\(15\) 0 0
\(16\) 0.0284139 + 0.0103418i 0.00710347 + 0.00258545i
\(17\) −4.96942 2.86909i −1.20526 0.695857i −0.243540 0.969891i \(-0.578309\pi\)
−0.961720 + 0.274033i \(0.911642\pi\)
\(18\) −2.53572 + 0.711675i −0.597674 + 0.167743i
\(19\) 1.94493 + 3.36871i 0.446197 + 0.772835i 0.998135 0.0610497i \(-0.0194448\pi\)
−0.551938 + 0.833885i \(0.686111\pi\)
\(20\) 0 0
\(21\) −0.599337 0.646349i −0.130786 0.141045i
\(22\) 0.728656 + 2.00197i 0.155350 + 0.426820i
\(23\) −6.37282 1.12370i −1.32882 0.234308i −0.536238 0.844067i \(-0.680155\pi\)
−0.792586 + 0.609760i \(0.791266\pi\)
\(24\) −4.36886 2.24156i −0.891789 0.457557i
\(25\) 0 0
\(26\) 5.56865 1.09210
\(27\) 5.13886 0.769474i 0.988975 0.148085i
\(28\) 0.625603i 0.118228i
\(29\) 0.324767 0.272512i 0.0603078 0.0506042i −0.612136 0.790753i \(-0.709689\pi\)
0.672443 + 0.740149i \(0.265245\pi\)
\(30\) 0 0
\(31\) 1.47718 8.37750i 0.265309 1.50464i −0.502844 0.864377i \(-0.667713\pi\)
0.768153 0.640266i \(-0.221176\pi\)
\(32\) −1.93017 5.30309i −0.341209 0.937464i
\(33\) −0.933994 4.09819i −0.162588 0.713403i
\(34\) −0.874759 4.96101i −0.150020 0.850806i
\(35\) 0 0
\(36\) 3.04574 + 2.07943i 0.507623 + 0.346571i
\(37\) −2.06443 1.19190i −0.339390 0.195947i 0.320612 0.947210i \(-0.396111\pi\)
−0.660002 + 0.751264i \(0.729445\pi\)
\(38\) −1.16796 + 3.20895i −0.189468 + 0.520560i
\(39\) −10.9010 1.36964i −1.74555 0.219318i
\(40\) 0 0
\(41\) 0.938033 + 0.787103i 0.146496 + 0.122925i 0.713090 0.701072i \(-0.247295\pi\)
−0.566594 + 0.823997i \(0.691739\pi\)
\(42\) 0.0964687 0.767795i 0.0148854 0.118473i
\(43\) 0.855127 2.34944i 0.130406 0.358287i −0.857256 0.514891i \(-0.827832\pi\)
0.987661 + 0.156604i \(0.0500547\pi\)
\(44\) 1.49160 2.58353i 0.224868 0.389482i
\(45\) 0 0
\(46\) −2.84049 4.91988i −0.418808 0.725396i
\(47\) −0.816377 + 0.143949i −0.119081 + 0.0209972i −0.232871 0.972508i \(-0.574812\pi\)
0.113790 + 0.993505i \(0.463701\pi\)
\(48\) −0.0116376 0.0510634i −0.00167974 0.00737037i
\(49\) −6.33448 + 2.30556i −0.904925 + 0.329366i
\(50\) 0 0
\(51\) 0.492208 + 9.92664i 0.0689229 + 1.39001i
\(52\) −5.01222 5.97334i −0.695070 0.828353i
\(53\) 8.88536i 1.22050i 0.792210 + 0.610249i \(0.208931\pi\)
−0.792210 + 0.610249i \(0.791069\pi\)
\(54\) 3.41735 + 3.02171i 0.465042 + 0.411203i
\(55\) 0 0
\(56\) 1.10522 0.927387i 0.147691 0.123927i
\(57\) 3.07562 5.99445i 0.407376 0.793984i
\(58\) 0.366533 + 0.0646297i 0.0481282 + 0.00848630i
\(59\) 6.58000 2.39492i 0.856643 0.311792i 0.123897 0.992295i \(-0.460461\pi\)
0.732746 + 0.680503i \(0.238238\pi\)
\(60\) 0 0
\(61\) 0.558258 + 3.16604i 0.0714776 + 0.405369i 0.999463 + 0.0327541i \(0.0104278\pi\)
−0.927986 + 0.372615i \(0.878461\pi\)
\(62\) 6.46751 3.73402i 0.821375 0.474221i
\(63\) −0.377687 + 1.47928i −0.0475841 + 0.186372i
\(64\) 2.50742 4.34297i 0.313427 0.542871i
\(65\) 0 0
\(66\) 2.22901 2.94073i 0.274372 0.361979i
\(67\) 4.47176 5.32923i 0.546312 0.651070i −0.420278 0.907395i \(-0.638068\pi\)
0.966590 + 0.256326i \(0.0825120\pi\)
\(68\) −4.53418 + 5.40363i −0.549850 + 0.655286i
\(69\) 4.35037 + 10.3296i 0.523723 + 1.24354i
\(70\) 0 0
\(71\) −1.59927 + 2.77002i −0.189799 + 0.328741i −0.945183 0.326541i \(-0.894117\pi\)
0.755384 + 0.655282i \(0.227450\pi\)
\(72\) 0.841362 + 8.46325i 0.0991554 + 0.997404i
\(73\) 10.3795 5.99262i 1.21483 0.701383i 0.251024 0.967981i \(-0.419233\pi\)
0.963808 + 0.266598i \(0.0858994\pi\)
\(74\) −0.363398 2.06093i −0.0422442 0.239579i
\(75\) 0 0
\(76\) 4.49341 1.63547i 0.515429 0.187601i
\(77\) 1.21624 + 0.214457i 0.138604 + 0.0244396i
\(78\) −5.23035 8.10390i −0.592220 0.917585i
\(79\) −2.06451 + 1.73233i −0.232276 + 0.194903i −0.751495 0.659738i \(-0.770667\pi\)
0.519220 + 0.854641i \(0.326223\pi\)
\(80\) 0 0
\(81\) −5.94646 6.75571i −0.660718 0.750634i
\(82\) 1.07500i 0.118714i
\(83\) 5.03928 + 6.00558i 0.553133 + 0.659198i 0.968078 0.250648i \(-0.0806438\pi\)
−0.414945 + 0.909846i \(0.636199\pi\)
\(84\) −0.910421 + 0.587596i −0.0993351 + 0.0641120i
\(85\) 0 0
\(86\) 2.06257 0.750714i 0.222412 0.0809515i
\(87\) −0.701616 0.216668i −0.0752211 0.0232292i
\(88\) 6.77532 1.19467i 0.722252 0.127353i
\(89\) 9.24733 + 16.0168i 0.980215 + 1.69778i 0.661525 + 0.749923i \(0.269909\pi\)
0.318690 + 0.947859i \(0.396757\pi\)
\(90\) 0 0
\(91\) 1.61406 2.79563i 0.169199 0.293061i
\(92\) −2.72075 + 7.47519i −0.283658 + 0.779343i
\(93\) −13.5790 + 5.71886i −1.40807 + 0.593018i
\(94\) −0.557490 0.467789i −0.0575007 0.0482488i
\(95\) 0 0
\(96\) −5.90453 + 7.78984i −0.602629 + 0.795047i
\(97\) −2.86117 + 7.86099i −0.290508 + 0.798163i 0.705485 + 0.708725i \(0.250729\pi\)
−0.995992 + 0.0894380i \(0.971493\pi\)
\(98\) −5.12506 2.95896i −0.517710 0.298900i
\(99\) −5.08672 + 5.20843i −0.511235 + 0.523467i
\(100\) 0 0
\(101\) 0.772822 + 4.38289i 0.0768986 + 0.436114i 0.998813 + 0.0487190i \(0.0155139\pi\)
−0.921914 + 0.387395i \(0.873375\pi\)
\(102\) −6.39799 + 5.93263i −0.633496 + 0.587418i
\(103\) 3.81618 + 10.4849i 0.376019 + 1.03310i 0.972991 + 0.230842i \(0.0741480\pi\)
−0.596972 + 0.802262i \(0.703630\pi\)
\(104\) 3.12269 17.7096i 0.306204 1.73657i
\(105\) 0 0
\(106\) −5.97548 + 5.01402i −0.580390 + 0.487005i
\(107\) 11.5176i 1.11345i −0.830698 0.556724i \(-0.812058\pi\)
0.830698 0.556724i \(-0.187942\pi\)
\(108\) 0.165427 6.38547i 0.0159182 0.614442i
\(109\) 16.8148 1.61057 0.805285 0.592888i \(-0.202012\pi\)
0.805285 + 0.592888i \(0.202012\pi\)
\(110\) 0 0
\(111\) 0.204476 + 4.12379i 0.0194080 + 0.391413i
\(112\) 0.0151544 + 0.00267213i 0.00143195 + 0.000252492i
\(113\) 3.66129 + 10.0593i 0.344425 + 0.946301i 0.984094 + 0.177650i \(0.0568495\pi\)
−0.639668 + 0.768651i \(0.720928\pi\)
\(114\) 5.76689 1.31430i 0.540119 0.123095i
\(115\) 0 0
\(116\) −0.260582 0.451342i −0.0241945 0.0419060i
\(117\) 8.24553 + 17.1503i 0.762300 + 1.58555i
\(118\) 5.32371 + 3.07364i 0.490087 + 0.282952i
\(119\) −2.74412 0.998777i −0.251553 0.0915577i
\(120\) 0 0
\(121\) −3.91512 3.28518i −0.355920 0.298653i
\(122\) −1.81416 + 2.16203i −0.164246 + 0.195741i
\(123\) 0.264402 2.10438i 0.0238404 0.189745i
\(124\) −9.82665 3.57661i −0.882459 0.321189i
\(125\) 0 0
\(126\) −1.20796 + 0.580762i −0.107613 + 0.0517384i
\(127\) −6.74877 + 3.89640i −0.598857 + 0.345750i −0.768592 0.639740i \(-0.779042\pi\)
0.169735 + 0.985490i \(0.445709\pi\)
\(128\) −6.77978 + 1.19546i −0.599253 + 0.105664i
\(129\) −4.22225 + 0.962268i −0.371748 + 0.0847230i
\(130\) 0 0
\(131\) 1.52245 8.63426i 0.133017 0.754378i −0.843203 0.537596i \(-0.819333\pi\)
0.976220 0.216783i \(-0.0695563\pi\)
\(132\) −5.16073 + 0.255892i −0.449184 + 0.0222726i
\(133\) 1.27246 + 1.51645i 0.110336 + 0.131493i
\(134\) 6.10737 0.527597
\(135\) 0 0
\(136\) −16.2677 −1.39494
\(137\) 10.2711 + 12.2406i 0.877519 + 1.04579i 0.998587 + 0.0531421i \(0.0169236\pi\)
−0.121068 + 0.992644i \(0.538632\pi\)
\(138\) −4.49182 + 8.75467i −0.382369 + 0.745247i
\(139\) 0.582428 3.30311i 0.0494009 0.280167i −0.950093 0.311966i \(-0.899013\pi\)
0.999494 + 0.0317992i \(0.0101237\pi\)
\(140\) 0 0
\(141\) 0.976266 + 1.05285i 0.0822164 + 0.0886656i
\(142\) −2.76534 + 0.487603i −0.232062 + 0.0409188i
\(143\) 13.3310 7.69668i 1.11480 0.643629i
\(144\) −0.0633805 + 0.0648970i −0.00528171 + 0.00540808i
\(145\) 0 0
\(146\) 9.88727 + 3.59867i 0.818276 + 0.297828i
\(147\) 9.30486 + 7.05288i 0.767452 + 0.581712i
\(148\) −1.88362 + 2.24481i −0.154833 + 0.184522i
\(149\) 1.64045 + 1.37650i 0.134391 + 0.112767i 0.707505 0.706708i \(-0.249821\pi\)
−0.573114 + 0.819475i \(0.694265\pi\)
\(150\) 0 0
\(151\) −14.8096 5.39026i −1.20519 0.438653i −0.340156 0.940369i \(-0.610480\pi\)
−0.865032 + 0.501716i \(0.832702\pi\)
\(152\) 9.55027 + 5.51385i 0.774629 + 0.447232i
\(153\) 13.9836 10.0399i 1.13051 0.811675i
\(154\) 0.542104 + 0.938952i 0.0436840 + 0.0756629i
\(155\) 0 0
\(156\) −3.98510 + 12.9046i −0.319063 + 1.03319i
\(157\) 7.49385 + 20.5892i 0.598074 + 1.64320i 0.755106 + 0.655602i \(0.227585\pi\)
−0.157032 + 0.987594i \(0.550193\pi\)
\(158\) −2.33002 0.410845i −0.185366 0.0326851i
\(159\) 12.9306 8.34556i 1.02546 0.661846i
\(160\) 0 0
\(161\) −3.29323 −0.259543
\(162\) 1.18767 7.81130i 0.0933125 0.613714i
\(163\) 19.9707i 1.56423i −0.623134 0.782115i \(-0.714141\pi\)
0.623134 0.782115i \(-0.285859\pi\)
\(164\) 1.15312 0.967584i 0.0900436 0.0755556i
\(165\) 0 0
\(166\) −1.19513 + 6.77791i −0.0927600 + 0.526068i
\(167\) −5.92664 16.2833i −0.458617 1.26004i −0.926515 0.376258i \(-0.877211\pi\)
0.467897 0.883783i \(-0.345012\pi\)
\(168\) −2.38767 0.737343i −0.184213 0.0568873i
\(169\) −4.72945 26.8220i −0.363804 2.06323i
\(170\) 0 0
\(171\) −11.6123 + 1.15442i −0.888016 + 0.0882808i
\(172\) −2.66174 1.53676i −0.202956 0.117177i
\(173\) −4.89919 + 13.4604i −0.372478 + 1.02338i 0.601922 + 0.798555i \(0.294402\pi\)
−0.974400 + 0.224821i \(0.927820\pi\)
\(174\) −0.250212 0.594109i −0.0189685 0.0450393i
\(175\) 0 0
\(176\) 0.0562116 + 0.0471671i 0.00423711 + 0.00355535i
\(177\) −9.66551 7.32625i −0.726505 0.550675i
\(178\) −5.55318 + 15.2572i −0.416228 + 1.14358i
\(179\) −12.1807 + 21.0976i −0.910428 + 1.57691i −0.0969684 + 0.995287i \(0.530915\pi\)
−0.813460 + 0.581621i \(0.802419\pi\)
\(180\) 0 0
\(181\) 2.03955 + 3.53261i 0.151599 + 0.262577i 0.931815 0.362933i \(-0.118225\pi\)
−0.780217 + 0.625509i \(0.784891\pi\)
\(182\) 2.79090 0.492110i 0.206875 0.0364776i
\(183\) 4.08310 3.78611i 0.301831 0.279877i
\(184\) −17.2392 + 6.27456i −1.27089 + 0.462567i
\(185\) 0 0
\(186\) −11.5086 5.90481i −0.843852 0.432962i
\(187\) −8.95095 10.6673i −0.654558 0.780072i
\(188\) 1.01905i 0.0743219i
\(189\) 2.50749 0.839774i 0.182393 0.0610845i
\(190\) 0 0
\(191\) 5.70298 4.78537i 0.412653 0.346257i −0.412707 0.910864i \(-0.635417\pi\)
0.825360 + 0.564607i \(0.190972\pi\)
\(192\) −8.67528 + 0.430160i −0.626085 + 0.0310441i
\(193\) 9.10995 + 1.60633i 0.655749 + 0.115626i 0.491616 0.870812i \(-0.336406\pi\)
0.164133 + 0.986438i \(0.447517\pi\)
\(194\) −6.90115 + 2.51181i −0.495473 + 0.180338i
\(195\) 0 0
\(196\) 1.43897 + 8.16081i 0.102784 + 0.582915i
\(197\) −7.82865 + 4.51987i −0.557768 + 0.322028i −0.752249 0.658879i \(-0.771031\pi\)
0.194481 + 0.980906i \(0.437698\pi\)
\(198\) −6.37316 0.481737i −0.452921 0.0342356i
\(199\) −3.66921 + 6.35527i −0.260104 + 0.450513i −0.966269 0.257534i \(-0.917090\pi\)
0.706166 + 0.708047i \(0.250423\pi\)
\(200\) 0 0
\(201\) −11.9556 1.50214i −0.843281 0.105953i
\(202\) −2.51143 + 2.99300i −0.176703 + 0.210587i
\(203\) 0.138684 0.165278i 0.00973374 0.0116002i
\(204\) 12.1225 + 1.52311i 0.848742 + 0.106639i
\(205\) 0 0
\(206\) −4.89768 + 8.48303i −0.341238 + 0.591041i
\(207\) 10.9463 16.0330i 0.760820 1.11437i
\(208\) 0.166105 0.0959005i 0.0115173 0.00664950i
\(209\) 1.63919 + 9.29633i 0.113385 + 0.643041i
\(210\) 0 0
\(211\) 15.6493 5.69586i 1.07734 0.392119i 0.258423 0.966032i \(-0.416797\pi\)
0.818917 + 0.573913i \(0.194575\pi\)
\(212\) 10.7568 + 1.89671i 0.738780 + 0.130267i
\(213\) 5.53325 0.274364i 0.379132 0.0187991i
\(214\) 7.74568 6.49940i 0.529484 0.444290i
\(215\) 0 0
\(216\) 11.5261 9.17350i 0.784250 0.624178i
\(217\) 4.32917i 0.293883i
\(218\) 9.48864 + 11.3081i 0.642652 + 0.765882i
\(219\) −18.4698 9.47646i −1.24808 0.640360i
\(220\) 0 0
\(221\) −34.2032 + 12.4490i −2.30076 + 0.837407i
\(222\) −2.65790 + 2.46457i −0.178386 + 0.165411i
\(223\) −8.34872 + 1.47210i −0.559072 + 0.0985794i −0.446042 0.895012i \(-0.647167\pi\)
−0.113030 + 0.993592i \(0.536056\pi\)
\(224\) −1.43600 2.48723i −0.0959470 0.166185i
\(225\) 0 0
\(226\) −4.69890 + 8.13874i −0.312566 + 0.541381i
\(227\) −3.31658 + 9.11223i −0.220129 + 0.604800i −0.999770 0.0214263i \(-0.993179\pi\)
0.779641 + 0.626227i \(0.215401\pi\)
\(228\) −6.60047 5.00301i −0.437127 0.331333i
\(229\) −0.120012 0.100702i −0.00793060 0.00665457i 0.638814 0.769361i \(-0.279425\pi\)
−0.646744 + 0.762707i \(0.723870\pi\)
\(230\) 0 0
\(231\) −0.830262 1.97139i −0.0546272 0.129708i
\(232\) 0.411076 1.12942i 0.0269884 0.0741501i
\(233\) 14.1015 + 8.14148i 0.923818 + 0.533366i 0.884851 0.465874i \(-0.154260\pi\)
0.0389667 + 0.999241i \(0.487593\pi\)
\(234\) −6.88077 + 15.2231i −0.449810 + 0.995168i
\(235\) 0 0
\(236\) −1.49474 8.47711i −0.0972995 0.551813i
\(237\) 4.46010 + 1.37734i 0.289715 + 0.0894676i
\(238\) −0.876823 2.40905i −0.0568360 0.156156i
\(239\) 3.50159 19.8585i 0.226499 1.28454i −0.633299 0.773907i \(-0.718300\pi\)
0.859798 0.510634i \(-0.170589\pi\)
\(240\) 0 0
\(241\) 20.2060 16.9549i 1.30158 1.09216i 0.311716 0.950175i \(-0.399096\pi\)
0.989869 0.141984i \(-0.0453481\pi\)
\(242\) 4.48678i 0.288421i
\(243\) −4.24618 + 14.9990i −0.272393 + 0.962186i
\(244\) 3.95204 0.253003
\(245\) 0 0
\(246\) 1.56441 1.00969i 0.0997434 0.0643755i
\(247\) 24.2991 + 4.28460i 1.54612 + 0.272622i
\(248\) −8.24833 22.6621i −0.523770 1.43905i
\(249\) 4.00661 12.9742i 0.253908 0.822209i
\(250\) 0 0
\(251\) −10.6490 18.4446i −0.672160 1.16422i −0.977290 0.211905i \(-0.932033\pi\)
0.305130 0.952311i \(-0.401300\pi\)
\(252\) 1.71022 + 0.773011i 0.107734 + 0.0486951i
\(253\) −13.6000 7.85194i −0.855022 0.493647i
\(254\) −6.42871 2.33986i −0.403373 0.146816i
\(255\) 0 0
\(256\) −12.3130 10.3318i −0.769560 0.645737i
\(257\) −7.40277 + 8.82228i −0.461772 + 0.550319i −0.945807 0.324730i \(-0.894726\pi\)
0.484034 + 0.875049i \(0.339171\pi\)
\(258\) −3.02976 2.29649i −0.188624 0.142973i
\(259\) −1.13998 0.414918i −0.0708348 0.0257818i
\(260\) 0 0
\(261\) 0.343681 + 1.22455i 0.0212733 + 0.0757975i
\(262\) 6.66573 3.84846i 0.411810 0.237759i
\(263\) 10.6545 1.87867i 0.656983 0.115844i 0.164789 0.986329i \(-0.447306\pi\)
0.492195 + 0.870485i \(0.336195\pi\)
\(264\) −8.10228 8.73784i −0.498661 0.537777i
\(265\) 0 0
\(266\) −0.301779 + 1.71147i −0.0185033 + 0.104937i
\(267\) 14.6233 28.5012i 0.894932 1.74424i
\(268\) −5.49712 6.55121i −0.335790 0.400179i
\(269\) 27.5918 1.68230 0.841152 0.540798i \(-0.181878\pi\)
0.841152 + 0.540798i \(0.181878\pi\)
\(270\) 0 0
\(271\) 22.2930 1.35421 0.677103 0.735889i \(-0.263235\pi\)
0.677103 + 0.735889i \(0.263235\pi\)
\(272\) −0.111529 0.132915i −0.00676242 0.00805914i
\(273\) −5.58439 + 0.276899i −0.337983 + 0.0167587i
\(274\) −2.43592 + 13.8148i −0.147159 + 0.834582i
\(275\) 0 0
\(276\) 13.4339 3.06164i 0.808625 0.184289i
\(277\) −20.1680 + 3.55616i −1.21178 + 0.213669i −0.742783 0.669532i \(-0.766495\pi\)
−0.468994 + 0.883201i \(0.655383\pi\)
\(278\) 2.55004 1.47226i 0.152941 0.0883006i
\(279\) 21.0765 + 14.3896i 1.26182 + 0.861486i
\(280\) 0 0
\(281\) 14.8184 + 5.39346i 0.883993 + 0.321747i 0.743820 0.668380i \(-0.233012\pi\)
0.140173 + 0.990127i \(0.455234\pi\)
\(282\) −0.157139 + 1.25067i −0.00935749 + 0.0744763i
\(283\) −6.78999 + 8.09200i −0.403623 + 0.481019i −0.929121 0.369776i \(-0.879435\pi\)
0.525498 + 0.850795i \(0.323879\pi\)
\(284\) 3.01206 + 2.52742i 0.178733 + 0.149975i
\(285\) 0 0
\(286\) 12.6988 + 4.62199i 0.750896 + 0.273304i
\(287\) 0.539681 + 0.311585i 0.0318564 + 0.0183923i
\(288\) 16.8821 + 1.27610i 0.994790 + 0.0751946i
\(289\) 7.96339 + 13.7930i 0.468435 + 0.811353i
\(290\) 0 0
\(291\) 14.1272 3.21965i 0.828152 0.188739i
\(292\) −5.03913 13.8449i −0.294893 0.810211i
\(293\) −16.2482 2.86499i −0.949229 0.167375i −0.322463 0.946582i \(-0.604511\pi\)
−0.626766 + 0.779207i \(0.715622\pi\)
\(294\) 0.507624 + 10.2375i 0.0296052 + 0.597066i
\(295\) 0 0
\(296\) −6.75804 −0.392803
\(297\) 12.3574 + 2.51055i 0.717048 + 0.145677i
\(298\) 1.87998i 0.108904i
\(299\) −31.4442 + 26.3848i −1.81846 + 1.52587i
\(300\) 0 0
\(301\) 0.220949 1.25306i 0.0127353 0.0722253i
\(302\) −4.73209 13.0013i −0.272301 0.748142i
\(303\) 5.65242 5.24129i 0.324723 0.301104i
\(304\) 0.0204243 + 0.115832i 0.00117142 + 0.00664343i
\(305\) 0 0
\(306\) 14.6429 + 3.73860i 0.837078 + 0.213721i
\(307\) 12.4125 + 7.16633i 0.708416 + 0.409004i 0.810474 0.585774i \(-0.199209\pi\)
−0.102058 + 0.994778i \(0.532543\pi\)
\(308\) 0.519251 1.42663i 0.0295871 0.0812898i
\(309\) 11.6740 15.4015i 0.664109 0.876158i
\(310\) 0 0
\(311\) 24.3502 + 20.4322i 1.38077 + 1.15861i 0.968926 + 0.247352i \(0.0795605\pi\)
0.411846 + 0.911253i \(0.364884\pi\)
\(312\) −28.7053 + 12.0894i −1.62512 + 0.684427i
\(313\) −5.83964 + 16.0443i −0.330076 + 0.906876i 0.658015 + 0.753005i \(0.271396\pi\)
−0.988091 + 0.153871i \(0.950826\pi\)
\(314\) −9.61761 + 16.6582i −0.542753 + 0.940076i
\(315\) 0 0
\(316\) 1.65650 + 2.86914i 0.0931852 + 0.161401i
\(317\) −13.4455 + 2.37080i −0.755173 + 0.133157i −0.537964 0.842968i \(-0.680806\pi\)
−0.217209 + 0.976125i \(0.569695\pi\)
\(318\) 12.9092 + 3.98653i 0.723913 + 0.223553i
\(319\) 0.966788 0.351882i 0.0541297 0.0197016i
\(320\) 0 0
\(321\) −16.7612 + 10.8179i −0.935520 + 0.603795i
\(322\) −1.85837 2.21472i −0.103563 0.123422i
\(323\) 22.3207i 1.24196i
\(324\) −9.44796 + 5.75680i −0.524887 + 0.319822i
\(325\) 0 0
\(326\) 13.4305 11.2695i 0.743846 0.624161i
\(327\) −15.7933 24.4701i −0.873372 1.35320i
\(328\) 3.41875 + 0.602818i 0.188769 + 0.0332851i
\(329\) −0.396431 + 0.144289i −0.0218559 + 0.00795491i
\(330\) 0 0
\(331\) 4.91646 + 27.8827i 0.270233 + 1.53257i 0.753707 + 0.657211i \(0.228264\pi\)
−0.483474 + 0.875359i \(0.660625\pi\)
\(332\) 8.34619 4.81867i 0.458057 0.264459i
\(333\) 5.80917 4.17083i 0.318341 0.228560i
\(334\) 7.60625 13.1744i 0.416196 0.720872i
\(335\) 0 0
\(336\) −0.0103451 0.0245635i −0.000564369 0.00134005i
\(337\) −11.1428 + 13.2795i −0.606987 + 0.723379i −0.978775 0.204938i \(-0.934301\pi\)
0.371787 + 0.928318i \(0.378745\pi\)
\(338\) 15.3692 18.3163i 0.835975 0.996276i
\(339\) 11.2002 14.7764i 0.608310 0.802542i
\(340\) 0 0
\(341\) 10.3219 17.8781i 0.558963 0.968152i
\(342\) −7.32921 7.15794i −0.396318 0.387057i
\(343\) −6.05608 + 3.49648i −0.326997 + 0.188792i
\(344\) −1.23084 6.98043i −0.0663623 0.376359i
\(345\) 0 0
\(346\) −11.8168 + 4.30098i −0.635278 + 0.231222i
\(347\) 3.31767 + 0.584994i 0.178102 + 0.0314041i 0.261988 0.965071i \(-0.415622\pi\)
−0.0838860 + 0.996475i \(0.526733\pi\)
\(348\) −0.412073 + 0.803140i −0.0220894 + 0.0430528i
\(349\) −5.25034 + 4.40556i −0.281045 + 0.235824i −0.772402 0.635133i \(-0.780945\pi\)
0.491358 + 0.870958i \(0.336501\pi\)
\(350\) 0 0
\(351\) 17.2138 28.1079i 0.918802 1.50029i
\(352\) 13.6953i 0.729960i
\(353\) −19.5969 23.3547i −1.04304 1.24304i −0.969330 0.245763i \(-0.920961\pi\)
−0.0737074 0.997280i \(-0.523483\pi\)
\(354\) −0.527300 10.6344i −0.0280257 0.565209i
\(355\) 0 0
\(356\) 21.3643 7.77597i 1.13231 0.412126i
\(357\) 1.12392 + 4.93153i 0.0594840 + 0.261004i
\(358\) −21.0619 + 3.71378i −1.11316 + 0.196279i
\(359\) −7.50154 12.9931i −0.395916 0.685747i 0.597301 0.802017i \(-0.296240\pi\)
−0.993218 + 0.116270i \(0.962906\pi\)
\(360\) 0 0
\(361\) 1.93452 3.35069i 0.101817 0.176352i
\(362\) −1.22479 + 3.36507i −0.0643733 + 0.176864i
\(363\) −1.10355 + 8.78316i −0.0579214 + 0.460996i
\(364\) −3.03990 2.55078i −0.159334 0.133697i
\(365\) 0 0
\(366\) 4.85029 + 0.609409i 0.253529 + 0.0318543i
\(367\) −5.67728 + 15.5982i −0.296351 + 0.814219i 0.698751 + 0.715365i \(0.253740\pi\)
−0.995102 + 0.0988534i \(0.968483\pi\)
\(368\) −0.169455 0.0978351i −0.00883347 0.00510000i
\(369\) −3.31078 + 1.59176i −0.172352 + 0.0828635i
\(370\) 0 0
\(371\) 0.785213 + 4.45316i 0.0407662 + 0.231197i
\(372\) 4.02473 + 17.6598i 0.208673 + 0.915616i
\(373\) 2.39142 + 6.57037i 0.123823 + 0.340201i 0.986080 0.166269i \(-0.0531722\pi\)
−0.862257 + 0.506470i \(0.830950\pi\)
\(374\) 2.12283 12.0392i 0.109769 0.622531i
\(375\) 0 0
\(376\) −1.80030 + 1.51063i −0.0928434 + 0.0779048i
\(377\) 2.68921i 0.138501i
\(378\) 1.97974 + 1.21243i 0.101827 + 0.0623604i
\(379\) 13.7794 0.707801 0.353901 0.935283i \(-0.384855\pi\)
0.353901 + 0.935283i \(0.384855\pi\)
\(380\) 0 0
\(381\) 12.0091 + 6.16160i 0.615245 + 0.315668i
\(382\) 6.43640 + 1.13491i 0.329315 + 0.0580671i
\(383\) 3.50965 + 9.64267i 0.179335 + 0.492718i 0.996491 0.0836981i \(-0.0266732\pi\)
−0.817157 + 0.576416i \(0.804451\pi\)
\(384\) 8.10761 + 8.74358i 0.413740 + 0.446194i
\(385\) 0 0
\(386\) 4.06049 + 7.03297i 0.206673 + 0.357969i
\(387\) 5.36610 + 5.24071i 0.272774 + 0.266400i
\(388\) 8.90592 + 5.14184i 0.452130 + 0.261037i
\(389\) −36.0005 13.1031i −1.82530 0.664354i −0.994112 0.108358i \(-0.965441\pi\)
−0.831185 0.555996i \(-0.812337\pi\)
\(390\) 0 0
\(391\) 28.4452 + 23.8683i 1.43853 + 1.20707i
\(392\) −12.2841 + 14.6396i −0.620442 + 0.739414i
\(393\) −13.9951 + 5.89413i −0.705961 + 0.297320i
\(394\) −7.45737 2.71426i −0.375697 0.136742i
\(395\) 0 0
\(396\) 5.21960 + 7.26991i 0.262295 + 0.365327i
\(397\) 27.6975 15.9911i 1.39010 0.802573i 0.396771 0.917917i \(-0.370131\pi\)
0.993326 + 0.115345i \(0.0367973\pi\)
\(398\) −6.34451 + 1.11871i −0.318022 + 0.0560758i
\(399\) 1.01170 3.27609i 0.0506483 0.164010i
\(400\) 0 0
\(401\) −0.893312 + 5.06623i −0.0446099 + 0.252995i −0.998955 0.0457121i \(-0.985444\pi\)
0.954345 + 0.298707i \(0.0965554\pi\)
\(402\) −5.73634 8.88788i −0.286103 0.443287i
\(403\) −34.6846 41.3355i −1.72776 2.05907i
\(404\) 5.47099 0.272192
\(405\) 0 0
\(406\) 0.189410 0.00940028
\(407\) −3.71846 4.43149i −0.184317 0.219661i
\(408\) 15.2794 + 23.6739i 0.756444 + 1.17203i
\(409\) −4.07496 + 23.1102i −0.201494 + 1.14273i 0.701369 + 0.712799i \(0.252573\pi\)
−0.902863 + 0.429929i \(0.858538\pi\)
\(410\) 0 0
\(411\) 8.16630 26.4442i 0.402814 1.30440i
\(412\) 13.5078 2.38179i 0.665482 0.117342i
\(413\) 3.08612 1.78177i 0.151858 0.0876752i
\(414\) 16.9594 1.68599i 0.833507 0.0828618i
\(415\) 0 0
\(416\) −33.6384 12.2434i −1.64926 0.600281i
\(417\) −5.35397 + 2.25485i −0.262185 + 0.110421i
\(418\) −5.32686 + 6.34831i −0.260545 + 0.310506i
\(419\) 7.14090 + 5.99192i 0.348856 + 0.292725i 0.800330 0.599559i \(-0.204657\pi\)
−0.451475 + 0.892284i \(0.649102\pi\)
\(420\) 0 0
\(421\) −22.7017 8.26276i −1.10641 0.402702i −0.276738 0.960945i \(-0.589253\pi\)
−0.829677 + 0.558243i \(0.811476\pi\)
\(422\) 12.6614 + 7.31007i 0.616348 + 0.355849i
\(423\) 0.615219 2.40961i 0.0299130 0.117159i
\(424\) 12.5950 + 21.8151i 0.611665 + 1.05943i
\(425\) 0 0
\(426\) 3.30693 + 3.56633i 0.160221 + 0.172789i
\(427\) 0.559575 + 1.53742i 0.0270797 + 0.0744009i
\(428\) −13.9434 2.45860i −0.673982 0.118841i
\(429\) −23.7219 12.1712i −1.14530 0.587630i
\(430\) 0 0
\(431\) −10.5453 −0.507950 −0.253975 0.967211i \(-0.581738\pi\)
−0.253975 + 0.967211i \(0.581738\pi\)
\(432\) 0.153973 + 0.0312814i 0.00740802 + 0.00150503i
\(433\) 4.12615i 0.198290i 0.995073 + 0.0991451i \(0.0316108\pi\)
−0.995073 + 0.0991451i \(0.968389\pi\)
\(434\) 2.91141 2.44296i 0.139752 0.117266i
\(435\) 0 0
\(436\) 3.58938 20.3564i 0.171900 0.974894i
\(437\) −8.60924 23.6537i −0.411836 1.13151i
\(438\) −4.04956 17.7687i −0.193495 0.849021i
\(439\) 2.08794 + 11.8413i 0.0996517 + 0.565153i 0.993222 + 0.116230i \(0.0370811\pi\)
−0.893571 + 0.448923i \(0.851808\pi\)
\(440\) 0 0
\(441\) 1.52428 20.1655i 0.0725847 0.960262i
\(442\) −27.6729 15.9770i −1.31627 0.759948i
\(443\) 11.5970 31.8626i 0.550992 1.51384i −0.281367 0.959600i \(-0.590788\pi\)
0.832359 0.554237i \(-0.186990\pi\)
\(444\) 5.03599 + 0.632742i 0.238998 + 0.0300286i
\(445\) 0 0
\(446\) −5.70120 4.78387i −0.269960 0.226523i
\(447\) 0.462392 3.68018i 0.0218704 0.174066i
\(448\) 0.872871 2.39819i 0.0412393 0.113304i
\(449\) −0.297582 + 0.515427i −0.0140438 + 0.0243245i −0.872962 0.487788i \(-0.837804\pi\)
0.858918 + 0.512113i \(0.171137\pi\)
\(450\) 0 0
\(451\) 1.48580 + 2.57349i 0.0699638 + 0.121181i
\(452\) 12.9596 2.28512i 0.609567 0.107483i
\(453\) 6.06562 + 26.6148i 0.284988 + 1.25047i
\(454\) −7.99960 + 2.91162i −0.375440 + 0.136649i
\(455\) 0 0
\(456\) −0.945929 19.0771i −0.0442972 0.893367i
\(457\) 5.70374 + 6.79746i 0.266810 + 0.317972i 0.882770 0.469806i \(-0.155676\pi\)
−0.615960 + 0.787778i \(0.711232\pi\)
\(458\) 0.137535i 0.00642659i
\(459\) −27.7448 10.9200i −1.29502 0.509704i
\(460\) 0 0
\(461\) −19.2142 + 16.1226i −0.894895 + 0.750906i −0.969186 0.246331i \(-0.920775\pi\)
0.0742911 + 0.997237i \(0.476331\pi\)
\(462\) 0.857259 1.67082i 0.0398833 0.0777335i
\(463\) 11.2994 + 1.99238i 0.525126 + 0.0925939i 0.429926 0.902864i \(-0.358540\pi\)
0.0952002 + 0.995458i \(0.469651\pi\)
\(464\) 0.0120462 0.00438444i 0.000559229 0.000203543i
\(465\) 0 0
\(466\) 2.48226 + 14.0776i 0.114989 + 0.652132i
\(467\) −0.568149 + 0.328021i −0.0262908 + 0.0151790i −0.513088 0.858336i \(-0.671498\pi\)
0.486797 + 0.873515i \(0.338165\pi\)
\(468\) 22.5227 6.32122i 1.04111 0.292198i
\(469\) 1.77020 3.06608i 0.0817403 0.141578i
\(470\) 0 0
\(471\) 22.9243 30.2439i 1.05629 1.39357i
\(472\) 12.7602 15.2071i 0.587338 0.699962i
\(473\) 3.90008 4.64793i 0.179326 0.213712i
\(474\) 1.59057 + 3.77669i 0.0730575 + 0.173469i
\(475\) 0 0
\(476\) −1.79491 + 3.10888i −0.0822697 + 0.142495i
\(477\) −24.2901 10.9790i −1.11217 0.502693i
\(478\) 15.3310 8.85134i 0.701223 0.404851i
\(479\) −3.87971 22.0029i −0.177269 1.00534i −0.935493 0.353346i \(-0.885044\pi\)
0.758224 0.651994i \(-0.226067\pi\)
\(480\) 0 0
\(481\) −14.2089 + 5.17162i −0.647871 + 0.235806i
\(482\) 22.8046 + 4.02106i 1.03872 + 0.183154i
\(483\) 3.09316 + 4.79254i 0.140744 + 0.218068i
\(484\) −4.81285 + 4.03846i −0.218766 + 0.183566i
\(485\) 0 0
\(486\) −12.4831 + 5.60836i −0.566244 + 0.254401i
\(487\) 28.3011i 1.28245i −0.767354 0.641224i \(-0.778427\pi\)
0.767354 0.641224i \(-0.221573\pi\)
\(488\) 5.85846 + 6.98184i 0.265200 + 0.316053i
\(489\) −29.0628 + 18.7575i −1.31427 + 0.848243i
\(490\) 0 0
\(491\) −40.2634 + 14.6547i −1.81706 + 0.661357i −0.821184 + 0.570664i \(0.806686\pi\)
−0.995879 + 0.0906928i \(0.971092\pi\)
\(492\) −2.49116 0.769302i −0.112310 0.0346828i
\(493\) −2.39577 + 0.422438i −0.107900 + 0.0190257i
\(494\) 10.8306 + 18.7592i 0.487293 + 0.844015i
\(495\) 0 0
\(496\) 0.128611 0.222761i 0.00577480 0.0100022i
\(497\) −0.556732 + 1.52961i −0.0249729 + 0.0686124i
\(498\) 10.9862 4.62691i 0.492304 0.207337i
\(499\) 3.09802 + 2.59955i 0.138686 + 0.116372i 0.709492 0.704714i \(-0.248924\pi\)
−0.570805 + 0.821085i \(0.693369\pi\)
\(500\) 0 0
\(501\) −18.1300 + 23.9189i −0.809991 + 1.06862i
\(502\) 6.39492 17.5699i 0.285419 0.784183i
\(503\) −20.7321 11.9697i −0.924399 0.533702i −0.0393633 0.999225i \(-0.512533\pi\)
−0.885036 + 0.465523i \(0.845866\pi\)
\(504\) 1.16958 + 4.16726i 0.0520974 + 0.185624i
\(505\) 0 0
\(506\) −2.39398 13.5769i −0.106425 0.603569i
\(507\) −34.5912 + 32.0752i −1.53625 + 1.42451i
\(508\) 3.27644 + 9.00195i 0.145369 + 0.399397i
\(509\) 4.85069 27.5096i 0.215003 1.21934i −0.665898 0.746043i \(-0.731951\pi\)
0.880901 0.473300i \(-0.156937\pi\)
\(510\) 0 0
\(511\) 4.67243 3.92064i 0.206696 0.173439i
\(512\) 0.342088i 0.0151183i
\(513\) 12.5868 + 15.8148i 0.555723 + 0.698239i
\(514\) −10.1105 −0.445953
\(515\) 0 0
\(516\) 0.263639 + 5.31695i 0.0116060 + 0.234066i
\(517\) −1.98115 0.349331i −0.0871310 0.0153635i
\(518\) −0.364256 1.00078i −0.0160045 0.0439719i
\(519\) 24.1901 5.51302i 1.06183 0.241995i
\(520\) 0 0
\(521\) −6.07222 10.5174i −0.266029 0.460775i 0.701804 0.712370i \(-0.252378\pi\)
−0.967833 + 0.251595i \(0.919045\pi\)
\(522\) −0.629577 + 0.922142i −0.0275559 + 0.0403610i
\(523\) −19.4691 11.2405i −0.851324 0.491512i 0.00977335 0.999952i \(-0.496889\pi\)
−0.861097 + 0.508440i \(0.830222\pi\)
\(524\) −10.1278 3.68622i −0.442436 0.161033i
\(525\) 0 0
\(526\) 7.27576 + 6.10509i 0.317238 + 0.266195i
\(527\) −31.3765 + 37.3931i −1.36678 + 1.62887i
\(528\) 0.0158443 0.126105i 0.000689534 0.00548800i
\(529\) 17.7371 + 6.45579i 0.771180 + 0.280687i
\(530\) 0 0
\(531\) −1.58336 + 20.9471i −0.0687119 + 0.909027i
\(532\) 2.10748 1.21675i 0.0913706 0.0527529i
\(533\) 7.64931 1.34878i 0.331328 0.0584221i
\(534\) 27.4192 6.24895i 1.18655 0.270419i
\(535\) 0 0
\(536\) 3.42478 19.4229i 0.147928 0.838941i
\(537\) 42.1434 2.08966i 1.81862 0.0901756i
\(538\) 15.5701 + 18.5557i 0.671276 + 0.799995i
\(539\) −16.3588 −0.704624
\(540\) 0 0
\(541\) −22.1510 −0.952347 −0.476173 0.879351i \(-0.657977\pi\)
−0.476173 + 0.879351i \(0.657977\pi\)
\(542\) 12.5800 + 14.9922i 0.540357 + 0.643972i
\(543\) 3.22525 6.28609i 0.138409 0.269762i
\(544\) −5.62326 + 31.8911i −0.241095 + 1.36732i
\(545\) 0 0
\(546\) −3.33750 3.59929i −0.142832 0.154036i
\(547\) 9.43459 1.66357i 0.403394 0.0711292i 0.0317297 0.999496i \(-0.489898\pi\)
0.371664 + 0.928367i \(0.378787\pi\)
\(548\) 17.0113 9.82146i 0.726685 0.419552i
\(549\) −9.34486 2.38591i −0.398829 0.101828i
\(550\) 0 0
\(551\) 1.54966 + 0.564031i 0.0660179 + 0.0240285i
\(552\) 25.3231 + 19.1943i 1.07782 + 0.816966i
\(553\) −0.881604 + 1.05065i −0.0374896 + 0.0446784i
\(554\) −13.7724 11.5564i −0.585132 0.490984i
\(555\) 0 0
\(556\) −3.87449 1.41020i −0.164315 0.0598058i
\(557\) 0.0783859 + 0.0452561i 0.00332132 + 0.00191756i 0.501660 0.865065i \(-0.332723\pi\)
−0.498338 + 0.866983i \(0.666056\pi\)
\(558\) 2.21635 + 22.2942i 0.0938255 + 0.943790i
\(559\) −7.92967 13.7346i −0.335389 0.580911i
\(560\) 0 0
\(561\) −7.11668 + 23.0453i −0.300467 + 0.972975i
\(562\) 4.73491 + 13.0090i 0.199730 + 0.548753i
\(563\) −14.4906 2.55509i −0.610707 0.107684i −0.140263 0.990114i \(-0.544795\pi\)
−0.470443 + 0.882430i \(0.655906\pi\)
\(564\) 1.48299 0.957142i 0.0624453 0.0403029i
\(565\) 0 0
\(566\) −9.27354 −0.389796
\(567\) −3.57726 2.86033i −0.150231 0.120122i
\(568\) 9.06785i 0.380479i
\(569\) 5.30885 4.45466i 0.222559 0.186749i −0.524690 0.851293i \(-0.675819\pi\)
0.747249 + 0.664544i \(0.231374\pi\)
\(570\) 0 0
\(571\) −5.14921 + 29.2026i −0.215488 + 1.22209i 0.664570 + 0.747226i \(0.268615\pi\)
−0.880058 + 0.474866i \(0.842497\pi\)
\(572\) −6.47205 17.7818i −0.270610 0.743495i
\(573\) −12.3205 3.80473i −0.514697 0.158945i
\(574\) 0.0949993 + 0.538768i 0.00396519 + 0.0224877i
\(575\) 0 0
\(576\) 8.77425 + 12.2209i 0.365594 + 0.509202i
\(577\) 3.98675 + 2.30175i 0.165970 + 0.0958231i 0.580684 0.814129i \(-0.302785\pi\)
−0.414714 + 0.909952i \(0.636118\pi\)
\(578\) −4.78215 + 13.1389i −0.198911 + 0.546505i
\(579\) −6.21886 14.7662i −0.258447 0.613662i
\(580\) 0 0
\(581\) 3.05631 + 2.56455i 0.126797 + 0.106395i
\(582\) 10.1373 + 7.68382i 0.420203 + 0.318505i
\(583\) −7.37486 + 20.2623i −0.305435 + 0.839177i
\(584\) 16.9890 29.4259i 0.703011 1.21765i
\(585\) 0 0
\(586\) −7.24214 12.5438i −0.299170 0.518178i
\(587\) −9.60364 + 1.69338i −0.396384 + 0.0698933i −0.368288 0.929712i \(-0.620056\pi\)
−0.0280969 + 0.999605i \(0.508945\pi\)
\(588\) 10.5246 9.75911i 0.434028 0.402459i
\(589\) 31.0944 11.3174i 1.28122 0.466327i
\(590\) 0 0
\(591\) 13.9307 + 7.14752i 0.573032 + 0.294010i
\(592\) −0.0463320 0.0552163i −0.00190423 0.00226938i
\(593\) 1.52185i 0.0624948i −0.999512 0.0312474i \(-0.990052\pi\)
0.999512 0.0312474i \(-0.00994798\pi\)
\(594\) 5.28492 + 9.72714i 0.216843 + 0.399110i
\(595\) 0 0
\(596\) 2.01660 1.69213i 0.0826032 0.0693123i
\(597\) 12.6949 0.629473i 0.519569 0.0257626i
\(598\) −35.4880 6.25749i −1.45121 0.255888i
\(599\) −24.2758 + 8.83566i −0.991881 + 0.361015i −0.786448 0.617656i \(-0.788082\pi\)
−0.205433 + 0.978671i \(0.565860\pi\)
\(600\) 0 0
\(601\) −2.97450 16.8692i −0.121332 0.688109i −0.983419 0.181348i \(-0.941954\pi\)
0.862087 0.506761i \(-0.169157\pi\)
\(602\) 0.967376 0.558515i 0.0394273 0.0227634i
\(603\) 9.04322 + 18.8095i 0.368268 + 0.765981i
\(604\) −9.68689 + 16.7782i −0.394154 + 0.682695i
\(605\) 0 0
\(606\) 6.71448 + 0.843633i 0.272757 + 0.0342703i
\(607\) −8.08708 + 9.63781i −0.328244 + 0.391187i −0.904776 0.425889i \(-0.859962\pi\)
0.576531 + 0.817075i \(0.304406\pi\)
\(608\) 14.1106 16.8163i 0.572259 0.681991i
\(609\) −0.370783 0.0465866i −0.0150249 0.00188779i
\(610\) 0 0
\(611\) −2.62915 + 4.55382i −0.106364 + 0.184228i
\(612\) −9.16946 19.0720i −0.370653 0.770942i
\(613\) −20.4069 + 11.7819i −0.824226 + 0.475867i −0.851872 0.523750i \(-0.824532\pi\)
0.0276453 + 0.999618i \(0.491199\pi\)
\(614\) 2.18495 + 12.3914i 0.0881773 + 0.500078i
\(615\) 0 0
\(616\) 3.29008 1.19749i 0.132561 0.0482483i
\(617\) 11.4279 + 2.01505i 0.460071 + 0.0811229i 0.398880 0.917003i \(-0.369399\pi\)
0.0611910 + 0.998126i \(0.480510\pi\)
\(618\) 16.9452 0.840222i 0.681638 0.0337987i
\(619\) 15.1620 12.7224i 0.609411 0.511357i −0.285044 0.958514i \(-0.592008\pi\)
0.894455 + 0.447158i \(0.147564\pi\)
\(620\) 0 0
\(621\) −33.6137 0.870823i −1.34887 0.0349449i
\(622\) 27.9056i 1.11891i
\(623\) 6.05001 + 7.21012i 0.242388 + 0.288867i
\(624\) −0.295575 0.151653i −0.0118325 0.00607097i
\(625\) 0 0
\(626\) −14.0852 + 5.12660i −0.562959 + 0.204900i
\(627\) 11.9891 11.1170i 0.478797 0.443972i
\(628\) 26.5254 4.67714i 1.05848 0.186638i
\(629\) 6.83933 + 11.8461i 0.272702 + 0.472334i
\(630\) 0 0
\(631\) −7.28122 + 12.6114i −0.289861 + 0.502054i −0.973776 0.227508i \(-0.926942\pi\)
0.683916 + 0.729561i \(0.260276\pi\)
\(632\) −2.61317 + 7.17962i −0.103946 + 0.285590i
\(633\) −22.9876 17.4241i −0.913673 0.692545i
\(634\) −9.18168 7.70434i −0.364651 0.305979i
\(635\) 0 0
\(636\) −7.34307 17.4355i −0.291172 0.691364i
\(637\) −14.6246 + 40.1807i −0.579446 + 1.59202i
\(638\) 0.782203 + 0.451605i 0.0309677 + 0.0178792i
\(639\) −5.59637 7.79468i −0.221389 0.308353i
\(640\) 0 0
\(641\) 3.38084 + 19.1737i 0.133535 + 0.757315i 0.975869 + 0.218358i \(0.0700702\pi\)
−0.842334 + 0.538957i \(0.818819\pi\)
\(642\) −16.7335 5.16751i −0.660418 0.203945i
\(643\) −1.08118 2.97050i −0.0426374 0.117145i 0.916547 0.399928i \(-0.130965\pi\)
−0.959184 + 0.282782i \(0.908743\pi\)
\(644\) −0.702989 + 3.98685i −0.0277017 + 0.157104i
\(645\) 0 0
\(646\) 15.0109 12.5956i 0.590594 0.495567i
\(647\) 18.5045i 0.727489i 0.931499 + 0.363744i \(0.118502\pi\)
−0.931499 + 0.363744i \(0.881498\pi\)
\(648\) −24.1758 8.15736i −0.949714 0.320451i
\(649\) 16.9929 0.667029
\(650\) 0 0
\(651\) −6.30012 + 4.06617i −0.246921 + 0.159366i
\(652\) −24.1770 4.26306i −0.946844 0.166954i
\(653\) 3.88059 + 10.6618i 0.151859 + 0.417230i 0.992173 0.124870i \(-0.0398515\pi\)
−0.840314 + 0.542100i \(0.817629\pi\)
\(654\) 7.54418 24.4297i 0.295001 0.955276i
\(655\) 0 0
\(656\) 0.0185131 + 0.0320656i 0.000722815 + 0.00125195i
\(657\) 3.55695 + 35.7794i 0.138770 + 1.39589i
\(658\) −0.320742 0.185180i −0.0125038 0.00721908i
\(659\) 24.1280 + 8.78187i 0.939893 + 0.342093i 0.766124 0.642693i \(-0.222183\pi\)
0.173769 + 0.984786i \(0.444405\pi\)
\(660\) 0 0
\(661\) −6.15873 5.16779i −0.239547 0.201004i 0.515109 0.857125i \(-0.327752\pi\)
−0.754655 + 0.656121i \(0.772196\pi\)
\(662\) −15.9770 + 19.0406i −0.620962 + 0.740033i
\(663\) 50.2419 + 38.0823i 1.95123 + 1.47899i
\(664\) 20.8852 + 7.60159i 0.810502 + 0.294999i
\(665\) 0 0
\(666\) 6.08304 + 1.55311i 0.235713 + 0.0601819i
\(667\) −2.37590 + 1.37173i −0.0919954 + 0.0531135i
\(668\) −20.9781 + 3.69900i −0.811665 + 0.143118i
\(669\) 9.98383 + 10.7670i 0.385997 + 0.416275i
\(670\) 0 0
\(671\) −1.35476 + 7.68321i −0.0522999 + 0.296607i
\(672\) −2.27083 + 4.42590i −0.0875992 + 0.170733i
\(673\) 8.78341 + 10.4677i 0.338576 + 0.403499i 0.908288 0.418346i \(-0.137390\pi\)
−0.569712 + 0.821844i \(0.692945\pi\)
\(674\) −15.2185 −0.586193
\(675\) 0 0
\(676\) −33.4809 −1.28773
\(677\) −28.2299 33.6430i −1.08496 1.29301i −0.953404 0.301698i \(-0.902447\pi\)
−0.131558 0.991308i \(-0.541998\pi\)
\(678\) 16.2575 0.806121i 0.624366 0.0309589i
\(679\) −0.739271 + 4.19262i −0.0283706 + 0.160898i
\(680\) 0 0
\(681\) 16.3759 3.73213i 0.627524 0.143015i
\(682\) 17.8478 3.14705i 0.683428 0.120507i
\(683\) −3.72885 + 2.15285i −0.142681 + 0.0823767i −0.569641 0.821894i \(-0.692918\pi\)
0.426960 + 0.904270i \(0.359584\pi\)
\(684\) −1.08126 + 14.3045i −0.0413429 + 0.546948i
\(685\) 0 0
\(686\) −5.76886 2.09969i −0.220256 0.0801667i
\(687\) −0.0338276 + 0.269234i −0.00129060 + 0.0102719i
\(688\) 0.0485949 0.0579132i 0.00185266 0.00220792i
\(689\) 43.1753 + 36.2284i 1.64485 + 1.38019i
\(690\) 0 0
\(691\) 21.9927 + 8.00468i 0.836641 + 0.304512i 0.724581 0.689189i \(-0.242033\pi\)
0.112059 + 0.993702i \(0.464255\pi\)
\(692\) 15.2496 + 8.80438i 0.579704 + 0.334692i
\(693\) −2.08909 + 3.05988i −0.0793578 + 0.116235i
\(694\) 1.47875 + 2.56127i 0.0561326 + 0.0972245i
\(695\) 0 0
\(696\) −2.02971 + 0.462580i −0.0769361 + 0.0175341i
\(697\) −2.40320 6.60275i −0.0910279 0.250097i
\(698\) −5.92555 1.04484i −0.224286 0.0395476i
\(699\) −1.39671 28.1683i −0.0528286 1.06542i
\(700\) 0 0
\(701\) 15.0287 0.567624 0.283812 0.958880i \(-0.408401\pi\)
0.283812 + 0.958880i \(0.408401\pi\)
\(702\) 28.6165 4.28493i 1.08006 0.161724i
\(703\) 9.27261i 0.349723i
\(704\) 9.32261 7.82260i 0.351359 0.294825i
\(705\) 0 0
\(706\) 4.64765 26.3581i 0.174917 0.992002i
\(707\) 0.774645 + 2.12832i 0.0291335 + 0.0800437i
\(708\) −10.9326 + 10.1374i −0.410871 + 0.380986i
\(709\) −4.68507 26.5704i −0.175952 0.997871i −0.937040 0.349223i \(-0.886446\pi\)
0.761088 0.648648i \(-0.224665\pi\)
\(710\) 0 0
\(711\) −2.18475 7.78432i −0.0819345 0.291935i
\(712\) 45.4076 + 26.2161i 1.70172 + 0.982489i
\(713\) −18.8276 + 51.7284i −0.705098 + 1.93724i
\(714\) −2.68227 + 3.53871i −0.100381 + 0.132433i
\(715\) 0 0
\(716\) 22.9410 + 19.2498i 0.857347 + 0.719399i
\(717\) −32.1884 + 13.5563i −1.20210 + 0.506270i
\(718\) 4.50480 12.3768i 0.168118 0.461900i
\(719\) 21.0623 36.4809i 0.785490 1.36051i −0.143216 0.989691i \(-0.545745\pi\)
0.928706 0.370817i \(-0.120922\pi\)
\(720\) 0 0
\(721\) 2.83915 + 4.91756i 0.105736 + 0.183139i
\(722\) 3.34502 0.589817i 0.124489 0.0219507i
\(723\) −43.6524 13.4804i −1.62345 0.501342i
\(724\) 4.71202 1.71503i 0.175121 0.0637388i
\(725\) 0 0
\(726\) −6.52948 + 4.21420i −0.242332 + 0.156404i
\(727\) 6.68233 + 7.96369i 0.247834 + 0.295357i 0.875592 0.483052i \(-0.160472\pi\)
−0.627758 + 0.778409i \(0.716027\pi\)
\(728\) 9.15166i 0.339183i
\(729\) 25.8158 7.90844i 0.956142 0.292905i
\(730\) 0 0
\(731\) −10.9902 + 9.22191i −0.406489 + 0.341085i
\(732\) −3.71194 5.75128i −0.137197 0.212574i
\(733\) 44.1484 + 7.78456i 1.63066 + 0.287529i 0.912723 0.408579i \(-0.133976\pi\)
0.717937 + 0.696108i \(0.245087\pi\)
\(734\) −13.6936 + 4.98406i −0.505440 + 0.183965i
\(735\) 0 0
\(736\) 6.34152 + 35.9646i 0.233752 + 1.32567i
\(737\) 14.6207 8.44127i 0.538561 0.310938i
\(738\) −2.93875 1.32830i −0.108177 0.0488952i
\(739\) −8.15749 + 14.1292i −0.300078 + 0.519751i −0.976153 0.217082i \(-0.930346\pi\)
0.676075 + 0.736833i \(0.263679\pi\)
\(740\) 0 0
\(741\) −16.5877 39.3861i −0.609364 1.44689i
\(742\) −2.55169 + 3.04099i −0.0936755 + 0.111638i
\(743\) 7.43409 8.85961i 0.272730 0.325028i −0.612242 0.790670i \(-0.709732\pi\)
0.884973 + 0.465643i \(0.154177\pi\)
\(744\) −25.2323 + 33.2889i −0.925060 + 1.22043i
\(745\) 0 0
\(746\) −3.06915 + 5.31592i −0.112369 + 0.194630i
\(747\) −22.6442 + 6.35534i −0.828509 + 0.232530i
\(748\) −14.8248 + 8.55910i −0.542049 + 0.312952i
\(749\) −1.01783 5.77239i −0.0371906 0.210918i
\(750\) 0 0
\(751\) −17.9955 + 6.54983i −0.656666 + 0.239007i −0.648796 0.760962i \(-0.724727\pi\)
−0.00786953 + 0.999969i \(0.502505\pi\)
\(752\) −0.0246851 0.00435265i −0.000900174 0.000158725i
\(753\) −16.8399 + 32.8213i −0.613679 + 1.19607i
\(754\) 1.80852 1.51753i 0.0658623 0.0552650i
\(755\) 0 0
\(756\) −0.481385 3.21489i −0.0175078 0.116924i
\(757\) 8.63554i 0.313864i −0.987609 0.156932i \(-0.949840\pi\)
0.987609 0.156932i \(-0.0501603\pi\)
\(758\) 7.77575 + 9.26677i 0.282428 + 0.336584i
\(759\) 1.34704 + 27.1665i 0.0488945 + 0.986083i
\(760\) 0 0
\(761\) −1.00649 + 0.366334i −0.0364854 + 0.0132796i −0.360198 0.932876i \(-0.617291\pi\)
0.323713 + 0.946155i \(0.395069\pi\)
\(762\) 2.63302 + 11.5532i 0.0953844 + 0.418529i
\(763\) 8.42726 1.48595i 0.305087 0.0537951i
\(764\) −4.57588 7.92566i −0.165550 0.286740i
\(765\) 0 0
\(766\) −4.50428 + 7.80164i −0.162746 + 0.281885i
\(767\) 15.1914 41.7380i 0.548530 1.50707i
\(768\) −3.47064 + 27.6228i −0.125236 + 0.996752i
\(769\) −7.27290 6.10268i −0.262267 0.220068i 0.502166 0.864771i \(-0.332537\pi\)
−0.764433 + 0.644703i \(0.776981\pi\)
\(770\) 0 0
\(771\) 19.7918 + 2.48672i 0.712786 + 0.0895572i
\(772\) 3.88931 10.6858i 0.139979 0.384590i
\(773\) 0.670964 + 0.387381i 0.0241329 + 0.0139331i 0.512018 0.858975i \(-0.328898\pi\)
−0.487885 + 0.872908i \(0.662231\pi\)
\(774\) −0.496320 + 6.56609i −0.0178399 + 0.236013i
\(775\) 0 0
\(776\) 4.11826 + 23.3558i 0.147837 + 0.838424i
\(777\) 0.466905 + 2.04869i 0.0167501 + 0.0734963i
\(778\) −11.5032 31.6047i −0.412409 1.13308i
\(779\) −0.827119 + 4.69082i −0.0296346 + 0.168066i
\(780\) 0 0
\(781\) −5.94612 + 4.98939i −0.212769 + 0.178534i
\(782\) 32.5985i 1.16572i
\(783\) 1.45924 1.65030i 0.0521491 0.0589770i
\(784\) −0.203831 −0.00727967
\(785\) 0 0
\(786\) −11.8613 6.08578i −0.423080 0.217073i
\(787\) −7.13632 1.25833i −0.254382 0.0448545i 0.0450026 0.998987i \(-0.485670\pi\)
−0.299385 + 0.954132i \(0.596781\pi\)
\(788\) 3.80071 + 10.4424i 0.135395 + 0.371994i
\(789\) −12.7412 13.7406i −0.453598 0.489179i
\(790\) 0 0
\(791\) 2.72392 + 4.71797i 0.0968515 + 0.167752i
\(792\) −5.10586 + 19.9980i −0.181429 + 0.710598i
\(793\) 17.6604 + 10.1963i 0.627140 + 0.362080i
\(794\) 26.3839 + 9.60296i 0.936330 + 0.340796i
\(795\) 0 0
\(796\) 6.91057 + 5.79865i 0.244939 + 0.205528i
\(797\) −20.4001 + 24.3118i −0.722607 + 0.861170i −0.994881 0.101050i \(-0.967780\pi\)
0.272274 + 0.962220i \(0.412224\pi\)
\(798\) 2.77410 1.16833i 0.0982022 0.0413584i
\(799\) 4.46992 + 1.62692i 0.158134 + 0.0575562i
\(800\) 0 0
\(801\) −55.2118 + 5.48880i −1.95081 + 0.193937i
\(802\) −3.91118 + 2.25812i −0.138108 + 0.0797369i
\(803\) 28.6435 5.05061i 1.01081 0.178232i
\(804\) −4.37062 + 14.1530i −0.154140 + 0.499138i
\(805\) 0 0
\(806\) 8.22590 46.6514i 0.289745 1.64322i
\(807\) −25.9156 40.1536i −0.912272 1.41347i
\(808\) 8.11014 + 9.66529i 0.285314 + 0.340024i
\(809\) −48.9871 −1.72230 −0.861148 0.508355i \(-0.830254\pi\)
−0.861148 + 0.508355i \(0.830254\pi\)
\(810\) 0 0
\(811\) 34.5483 1.21316 0.606578 0.795024i \(-0.292542\pi\)
0.606578 + 0.795024i \(0.292542\pi\)
\(812\) −0.170484 0.203175i −0.00598283 0.00713006i
\(813\) −20.9387 32.4424i −0.734352 1.13780i
\(814\) 0.881881 5.00139i 0.0309099 0.175299i
\(815\) 0 0
\(816\) −0.0886738 + 0.287144i −0.00310420 + 0.0100521i
\(817\) 9.57775 1.68882i 0.335083 0.0590842i
\(818\) −17.8413 + 10.3007i −0.623808 + 0.360156i
\(819\) 5.64809 + 7.86672i 0.197360 + 0.274886i
\(820\) 0 0
\(821\) 14.2900 + 5.20114i 0.498725 + 0.181521i 0.579120 0.815242i \(-0.303396\pi\)
−0.0803955 + 0.996763i \(0.525618\pi\)
\(822\) 22.3922 9.43060i 0.781018 0.328930i
\(823\) 4.08912 4.87323i 0.142538 0.169870i −0.690052 0.723759i \(-0.742413\pi\)
0.832590 + 0.553889i \(0.186857\pi\)
\(824\) 24.2316 + 20.3327i 0.844148 + 0.708324i
\(825\) 0 0
\(826\) 2.93976 + 1.06998i 0.102287 + 0.0372295i
\(827\) −41.7075 24.0799i −1.45031 0.837339i −0.451815 0.892112i \(-0.649223\pi\)
−0.998499 + 0.0547729i \(0.982557\pi\)
\(828\) −17.0733 16.6743i −0.593337 0.579472i
\(829\) −23.1268 40.0568i −0.803227 1.39123i −0.917482 0.397778i \(-0.869782\pi\)
0.114255 0.993451i \(-0.463552\pi\)
\(830\) 0 0
\(831\) 24.1179 + 26.0098i 0.836641 + 0.902269i
\(832\) −10.8796 29.8916i −0.377184 1.03630i
\(833\) 38.0935 + 6.71691i 1.31986 + 0.232727i
\(834\) −4.53766 2.32817i −0.157126 0.0806180i
\(835\) 0 0
\(836\) 11.6042 0.401341
\(837\) 1.14476 44.1875i 0.0395686 1.52734i
\(838\) 8.18356i 0.282696i
\(839\) −18.8397 + 15.8084i −0.650418 + 0.545765i −0.907198 0.420705i \(-0.861783\pi\)
0.256780 + 0.966470i \(0.417338\pi\)
\(840\) 0 0
\(841\) −5.00459 + 28.3824i −0.172572 + 0.978704i
\(842\) −7.25385 19.9298i −0.249984 0.686826i
\(843\) −6.06922 26.6306i −0.209035 0.917207i
\(844\) −3.55496 20.1612i −0.122367 0.693976i
\(845\) 0 0
\(846\) 1.96765 0.946009i 0.0676493 0.0325245i
\(847\) −2.25250 1.30048i −0.0773967 0.0446850i
\(848\) −0.0918906 + 0.252467i −0.00315554 + 0.00866977i
\(849\) 18.1535 + 2.28088i 0.623028 + 0.0782796i
\(850\) 0 0
\(851\) 11.8169 + 9.91554i 0.405077 + 0.339900i
\(852\) 0.849005 6.75723i 0.0290864 0.231499i
\(853\) 5.09720 14.0044i 0.174525 0.479503i −0.821331 0.570452i \(-0.806768\pi\)
0.995856 + 0.0909495i \(0.0289902\pi\)
\(854\) −0.718158 + 1.24389i −0.0245749 + 0.0425649i
\(855\) 0 0
\(856\) −16.3261 28.2777i −0.558016 0.966512i
\(857\) 35.0389 6.17830i 1.19690 0.211047i 0.460545 0.887636i \(-0.347654\pi\)
0.736360 + 0.676590i \(0.236543\pi\)
\(858\) −5.20109 22.8214i −0.177562 0.779110i
\(859\) −20.6271 + 7.50764i −0.703787 + 0.256157i −0.669027 0.743238i \(-0.733289\pi\)
−0.0347598 + 0.999396i \(0.511067\pi\)
\(860\) 0 0
\(861\) −0.0534540 1.07804i −0.00182171 0.0367394i
\(862\) −5.95074 7.09181i −0.202683 0.241548i
\(863\) 6.43512i 0.219054i 0.993984 + 0.109527i \(0.0349336\pi\)
−0.993984 + 0.109527i \(0.965066\pi\)
\(864\) −13.9995 25.7667i −0.476271 0.876600i
\(865\) 0 0
\(866\) −2.77487 + 2.32839i −0.0942940 + 0.0791220i
\(867\) 12.5929 24.5439i 0.427679 0.833556i
\(868\) −5.24099 0.924127i −0.177891 0.0313669i
\(869\) −6.14578 + 2.23688i −0.208481 + 0.0758809i
\(870\) 0 0
\(871\) −7.66280 43.4579i −0.259644 1.47251i
\(872\) 41.2833 23.8350i 1.39803 0.807153i
\(873\) −17.9544 17.5349i −0.607666 0.593466i
\(874\) 11.0491 19.1376i 0.373741 0.647339i
\(875\) 0 0
\(876\) −15.4151 + 20.3371i −0.520827 + 0.687126i
\(877\) 8.66977 10.3322i 0.292757 0.348895i −0.599538 0.800346i \(-0.704649\pi\)
0.892296 + 0.451451i \(0.149094\pi\)
\(878\) −6.78513 + 8.08620i −0.228987 + 0.272896i
\(879\) 11.0917 + 26.3364i 0.374115 + 0.888306i
\(880\) 0 0
\(881\) 15.0545 26.0751i 0.507198 0.878492i −0.492767 0.870161i \(-0.664015\pi\)
0.999965 0.00833136i \(-0.00265199\pi\)
\(882\) 14.4216 10.3543i 0.485601 0.348648i
\(883\) −6.71129 + 3.87477i −0.225853 + 0.130396i −0.608658 0.793433i \(-0.708292\pi\)
0.382804 + 0.923829i \(0.374958\pi\)
\(884\) 7.76977 + 44.0645i 0.261325 + 1.48205i
\(885\) 0 0
\(886\) 27.9721 10.1810i 0.939741 0.342038i
\(887\) 29.7761 + 5.25033i 0.999784 + 0.176289i 0.649506 0.760357i \(-0.274976\pi\)
0.350278 + 0.936646i \(0.386087\pi\)
\(888\) 6.34747 + 9.83477i 0.213007 + 0.330033i
\(889\) −3.03802 + 2.54920i −0.101892 + 0.0854974i
\(890\) 0 0
\(891\) −7.95312 20.3414i −0.266439 0.681461i
\(892\) 10.4214i 0.348934i
\(893\) −2.07272 2.47017i −0.0693608 0.0826610i
\(894\) 2.73588 1.76577i 0.0915014 0.0590561i
\(895\) 0 0
\(896\) −3.29224 + 1.19828i −0.109986 + 0.0400317i
\(897\) 67.9309 + 20.9779i 2.26815 + 0.700432i
\(898\) −0.514555 + 0.0907299i −0.0171709 + 0.00302769i
\(899\) −1.80323 3.12329i −0.0601411 0.104167i
\(900\) 0 0
\(901\) 25.4929 44.1550i 0.849292 1.47102i
\(902\) −0.892250 + 2.45144i −0.0297087 + 0.0816240i
\(903\) −2.03107 + 0.855396i −0.0675897 + 0.0284658i
\(904\) 23.2481 + 19.5075i 0.773222 + 0.648810i
\(905\) 0 0
\(906\) −14.4758 + 19.0979i −0.480927 + 0.634486i
\(907\) −7.42916 + 20.4114i −0.246681 + 0.677751i 0.753122 + 0.657881i \(0.228547\pi\)
−0.999803 + 0.0198692i \(0.993675\pi\)
\(908\) 10.3235 + 5.96027i 0.342597 + 0.197798i
\(909\) −12.9365 3.30293i −0.429077 0.109551i
\(910\) 0 0
\(911\) −4.34320 24.6315i −0.143897 0.816078i −0.968246 0.249998i \(-0.919570\pi\)
0.824350 0.566081i \(-0.191541\pi\)
\(912\) 0.149384 0.138518i 0.00494659 0.00458679i
\(913\) 6.50698 + 17.8778i 0.215350 + 0.591668i
\(914\) −1.35272 + 7.67163i −0.0447438 + 0.253755i
\(915\) 0 0
\(916\) −0.147530 + 0.123792i −0.00487453 + 0.00409022i
\(917\) 4.46185i 0.147343i
\(918\) −8.31263 24.8208i −0.274358 0.819209i
\(919\) −56.7307 −1.87137 −0.935686 0.352835i \(-0.885218\pi\)
−0.935686 + 0.352835i \(0.885218\pi\)
\(920\) 0 0
\(921\) −1.22942 24.7944i −0.0405108 0.817005i
\(922\) −21.6852 3.82369i −0.714164 0.125926i
\(923\) 6.93922 + 19.0654i 0.228407 + 0.627544i
\(924\) −2.56384 + 0.584309i −0.0843441 + 0.0192224i
\(925\) 0 0
\(926\) 5.03635 + 8.72322i 0.165505 + 0.286663i
\(927\) −33.3780 2.52299i −1.09628 0.0828660i
\(928\) −2.07201 1.19628i −0.0680172 0.0392697i
\(929\) 0.152953 + 0.0556703i 0.00501822 + 0.00182648i 0.344528 0.938776i \(-0.388039\pi\)
−0.339510 + 0.940603i \(0.610261\pi\)
\(930\) 0 0
\(931\) −20.0869 16.8549i −0.658320 0.552396i
\(932\) 12.8664 15.3336i 0.421454 0.502269i
\(933\) 6.86356 54.6270i 0.224703 1.78841i
\(934\) −0.541204 0.196982i −0.0177087 0.00644545i
\(935\) 0 0
\(936\) 44.5547 + 30.4190i 1.45632 + 0.994277i
\(937\) −43.7391 + 25.2528i −1.42890 + 0.824973i −0.997034 0.0769668i \(-0.975476\pi\)
−0.431862 + 0.901940i \(0.642143\pi\)
\(938\) 3.06089 0.539718i 0.0999417 0.0176224i
\(939\) 28.8336 6.57131i 0.940950 0.214446i
\(940\) 0 0
\(941\) 4.03430 22.8796i 0.131514 0.745855i −0.845709 0.533644i \(-0.820822\pi\)
0.977224 0.212211i \(-0.0680665\pi\)
\(942\) 33.2755 1.64995i 1.08417 0.0537583i
\(943\) −5.09345 6.07013i −0.165865 0.197671i
\(944\) 0.211731 0.00689126
\(945\) 0 0
\(946\) 5.32659 0.173183
\(947\) 15.4521 + 18.4151i 0.502126 + 0.598410i 0.956258 0.292524i \(-0.0944951\pi\)
−0.454132 + 0.890934i \(0.650051\pi\)
\(948\) 2.61951 5.10548i 0.0850776 0.165818i
\(949\) 13.2015 74.8695i 0.428539 2.43037i
\(950\) 0 0
\(951\) 16.0788 + 17.3400i 0.521390 + 0.562289i
\(952\) −8.15304 + 1.43760i −0.264242 + 0.0465929i
\(953\) −43.1725 + 24.9256i −1.39849 + 0.807421i −0.994235 0.107224i \(-0.965804\pi\)
−0.404259 + 0.914645i \(0.632471\pi\)
\(954\) −6.32348 22.5307i −0.204730 0.729460i
\(955\) 0 0
\(956\) −23.2937 8.47820i −0.753371 0.274205i
\(957\) −1.42014 1.07643i −0.0459065 0.0347961i
\(958\) 12.6078 15.0254i 0.407341 0.485450i
\(959\) 6.22939 + 5.22708i 0.201157 + 0.168791i
\(960\) 0 0
\(961\) −38.8700 14.1475i −1.25387 0.456371i
\(962\) −11.4961 6.63726i −0.370648 0.213994i
\(963\) 31.4859 + 14.2314i 1.01462 + 0.458602i
\(964\) −16.2126 28.0811i −0.522174 0.904432i
\(965\) 0 0
\(966\) −1.47755 + 4.78461i −0.0475393 + 0.153942i
\(967\) −7.53113 20.6916i −0.242185 0.665398i −0.999918 0.0128326i \(-0.995915\pi\)
0.757733 0.652565i \(-0.226307\pi\)
\(968\) −14.2690 2.51602i −0.458624 0.0808678i
\(969\) −32.4827 + 20.9647i −1.04349 + 0.673483i
\(970\) 0 0
\(971\) 53.2340 1.70836 0.854181 0.519977i \(-0.174059\pi\)
0.854181 + 0.519977i \(0.174059\pi\)
\(972\) 17.2517 + 8.34228i 0.553348 + 0.267579i
\(973\) 1.70692i 0.0547215i
\(974\) 19.0328 15.9704i 0.609849 0.511724i
\(975\) 0 0
\(976\) −0.0168803 + 0.0957327i −0.000540324 + 0.00306433i
\(977\) −10.9005 29.9489i −0.348738 0.958149i −0.982768 0.184841i \(-0.940823\pi\)
0.634031 0.773308i \(-0.281399\pi\)
\(978\) −29.0148 8.96012i −0.927790 0.286513i
\(979\) 7.79370 + 44.2003i 0.249088 + 1.41265i
\(980\) 0 0
\(981\) −20.7768 + 45.9671i −0.663353 + 1.46762i
\(982\) −32.5761 18.8078i −1.03955 0.600182i
\(983\) 20.5044 56.3354i 0.653989 1.79682i 0.0515295 0.998671i \(-0.483590\pi\)
0.602460 0.798149i \(-0.294187\pi\)
\(984\) −2.33379 5.54140i −0.0743986 0.176653i
\(985\) 0 0
\(986\) −1.63603 1.37279i −0.0521017 0.0437185i
\(987\) 0.582326 + 0.441391i 0.0185356 + 0.0140496i
\(988\) 10.3740 28.5024i 0.330042 0.906783i
\(989\) −8.08963 + 14.0117i −0.257235 + 0.445545i
\(990\) 0 0
\(991\) 6.87505 + 11.9079i 0.218393 + 0.378268i 0.954317 0.298796i \(-0.0965852\pi\)
−0.735924 + 0.677064i \(0.763252\pi\)
\(992\) −47.2779 + 8.33637i −1.50107 + 0.264680i
\(993\) 35.9590 33.3435i 1.14113 1.05812i
\(994\) −1.34284 + 0.488754i −0.0425923 + 0.0155023i
\(995\) 0 0
\(996\) −14.8516 7.62003i −0.470592 0.241450i
\(997\) −3.82877 4.56295i −0.121258 0.144510i 0.702000 0.712177i \(-0.252291\pi\)
−0.823258 + 0.567667i \(0.807846\pi\)
\(998\) 3.55037i 0.112385i
\(999\) −11.5259 4.53648i −0.364665 0.143528i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.15 132
5.2 odd 4 675.2.l.g.76.4 yes 66
5.3 odd 4 675.2.l.f.76.8 66
5.4 even 2 inner 675.2.u.e.49.8 132
27.16 even 9 inner 675.2.u.e.124.8 132
135.43 odd 36 675.2.l.f.151.8 yes 66
135.97 odd 36 675.2.l.g.151.4 yes 66
135.124 even 18 inner 675.2.u.e.124.15 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.8 66 5.3 odd 4
675.2.l.f.151.8 yes 66 135.43 odd 36
675.2.l.g.76.4 yes 66 5.2 odd 4
675.2.l.g.151.4 yes 66 135.97 odd 36
675.2.u.e.49.8 132 5.4 even 2 inner
675.2.u.e.49.15 132 1.1 even 1 trivial
675.2.u.e.124.8 132 27.16 even 9 inner
675.2.u.e.124.15 132 135.124 even 18 inner