Properties

Label 675.2.u.e.49.14
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.14
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.499186 + 0.594907i) q^{2} +(-1.47949 - 0.900618i) q^{3} +(0.242569 - 1.37568i) q^{4} +(-0.202756 - 1.32973i) q^{6} +(4.84944 - 0.855088i) q^{7} +(2.28459 - 1.31901i) q^{8} +(1.37777 + 2.66491i) q^{9} +(-3.17186 - 1.15446i) q^{11} +(-1.59784 + 1.81684i) q^{12} +(-0.504276 + 0.600973i) q^{13} +(2.92947 + 2.45812i) q^{14} +(-0.700189 - 0.254848i) q^{16} +(4.95771 + 2.86234i) q^{17} +(-0.897607 + 2.14993i) q^{18} +(-2.16649 - 3.75247i) q^{19} +(-7.94481 - 3.10240i) q^{21} +(-0.896551 - 2.46325i) q^{22} +(1.21828 + 0.214816i) q^{23} +(-4.56795 - 0.106085i) q^{24} -0.609251 q^{26} +(0.361665 - 5.18355i) q^{27} -6.87869i q^{28} +(-1.75863 + 1.47566i) q^{29} +(1.42301 - 8.07028i) q^{31} +(-2.00242 - 5.50161i) q^{32} +(3.65300 + 4.56465i) q^{33} +(0.771998 + 4.37822i) q^{34} +(4.00026 - 1.24895i) q^{36} +(2.68123 + 1.54801i) q^{37} +(1.15089 - 3.16204i) q^{38} +(1.28732 - 0.434973i) q^{39} +(4.54071 + 3.81011i) q^{41} +(-2.12029 - 6.27510i) q^{42} +(0.144385 - 0.396695i) q^{43} +(-2.35756 + 4.08342i) q^{44} +(0.480353 + 0.831996i) q^{46} +(-7.90806 + 1.39441i) q^{47} +(0.806401 + 1.00765i) q^{48} +(16.2081 - 5.89926i) q^{49} +(-4.75701 - 8.69981i) q^{51} +(0.704423 + 0.839499i) q^{52} -12.8380i q^{53} +(3.26427 - 2.37240i) q^{54} +(9.95112 - 8.34998i) q^{56} +(-0.174246 + 7.50292i) q^{57} +(-1.75576 - 0.309589i) q^{58} +(-6.94844 + 2.52902i) q^{59} +(-0.679578 - 3.85408i) q^{61} +(5.51141 - 3.18202i) q^{62} +(8.96017 + 11.7452i) q^{63} +(1.52824 - 2.64699i) q^{64} +(-0.892014 + 4.45180i) q^{66} +(2.05797 - 2.45259i) q^{67} +(5.14024 - 6.12590i) q^{68} +(-1.60896 - 1.41502i) q^{69} +(-4.92735 + 8.53442i) q^{71} +(6.66269 + 4.27093i) q^{72} +(-3.07968 + 1.77806i) q^{73} +(0.417511 + 2.36782i) q^{74} +(-5.68772 + 2.07016i) q^{76} +(-16.3689 - 2.88628i) q^{77} +(0.901380 + 0.548702i) q^{78} +(-1.31333 + 1.10201i) q^{79} +(-5.20348 + 7.34328i) q^{81} +4.60325i q^{82} +(10.4548 + 12.4596i) q^{83} +(-6.19507 + 10.1769i) q^{84} +(0.308071 - 0.112129i) q^{86} +(3.93088 - 0.599376i) q^{87} +(-8.76914 + 1.54624i) q^{88} +(-1.10530 - 1.91444i) q^{89} +(-1.93158 + 3.34559i) q^{91} +(0.591034 - 1.62385i) q^{92} +(-9.37357 + 10.6583i) q^{93} +(-4.77714 - 4.00849i) q^{94} +(-1.99229 + 9.94300i) q^{96} +(-5.21207 + 14.3200i) q^{97} +(11.6004 + 6.69747i) q^{98} +(-1.29357 - 10.0433i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.499186 + 0.594907i 0.352978 + 0.420663i 0.913092 0.407752i \(-0.133687\pi\)
−0.560115 + 0.828415i \(0.689243\pi\)
\(3\) −1.47949 0.900618i −0.854183 0.519972i
\(4\) 0.242569 1.37568i 0.121285 0.687839i
\(5\) 0 0
\(6\) −0.202756 1.32973i −0.0827749 0.542862i
\(7\) 4.84944 0.855088i 1.83292 0.323193i 0.852896 0.522082i \(-0.174844\pi\)
0.980022 + 0.198889i \(0.0637332\pi\)
\(8\) 2.28459 1.31901i 0.807724 0.466340i
\(9\) 1.37777 + 2.66491i 0.459258 + 0.888303i
\(10\) 0 0
\(11\) −3.17186 1.15446i −0.956352 0.348084i −0.183749 0.982973i \(-0.558823\pi\)
−0.772603 + 0.634890i \(0.781046\pi\)
\(12\) −1.59784 + 1.81684i −0.461256 + 0.524476i
\(13\) −0.504276 + 0.600973i −0.139861 + 0.166680i −0.831428 0.555632i \(-0.812476\pi\)
0.691567 + 0.722312i \(0.256921\pi\)
\(14\) 2.92947 + 2.45812i 0.782934 + 0.656960i
\(15\) 0 0
\(16\) −0.700189 0.254848i −0.175047 0.0637120i
\(17\) 4.95771 + 2.86234i 1.20242 + 0.694219i 0.961093 0.276224i \(-0.0890833\pi\)
0.241329 + 0.970443i \(0.422417\pi\)
\(18\) −0.897607 + 2.14993i −0.211568 + 0.506744i
\(19\) −2.16649 3.75247i −0.497027 0.860877i 0.502967 0.864306i \(-0.332242\pi\)
−0.999994 + 0.00342920i \(0.998908\pi\)
\(20\) 0 0
\(21\) −7.94481 3.10240i −1.73370 0.677000i
\(22\) −0.896551 2.46325i −0.191145 0.525167i
\(23\) 1.21828 + 0.214816i 0.254029 + 0.0447921i 0.299212 0.954187i \(-0.403276\pi\)
−0.0451834 + 0.998979i \(0.514387\pi\)
\(24\) −4.56795 0.106085i −0.932428 0.0216545i
\(25\) 0 0
\(26\) −0.609251 −0.119484
\(27\) 0.361665 5.18355i 0.0696024 0.997575i
\(28\) 6.87869i 1.29995i
\(29\) −1.75863 + 1.47566i −0.326569 + 0.274024i −0.791300 0.611428i \(-0.790595\pi\)
0.464731 + 0.885452i \(0.346151\pi\)
\(30\) 0 0
\(31\) 1.42301 8.07028i 0.255580 1.44947i −0.539000 0.842306i \(-0.681198\pi\)
0.794580 0.607160i \(-0.207691\pi\)
\(32\) −2.00242 5.50161i −0.353982 0.972557i
\(33\) 3.65300 + 4.56465i 0.635906 + 0.794603i
\(34\) 0.771998 + 4.37822i 0.132397 + 0.750858i
\(35\) 0 0
\(36\) 4.00026 1.24895i 0.666710 0.208158i
\(37\) 2.68123 + 1.54801i 0.440791 + 0.254491i 0.703933 0.710266i \(-0.251425\pi\)
−0.263142 + 0.964757i \(0.584759\pi\)
\(38\) 1.15089 3.16204i 0.186699 0.512951i
\(39\) 1.28732 0.434973i 0.206136 0.0696514i
\(40\) 0 0
\(41\) 4.54071 + 3.81011i 0.709140 + 0.595039i 0.924358 0.381527i \(-0.124602\pi\)
−0.215218 + 0.976566i \(0.569046\pi\)
\(42\) −2.12029 6.27510i −0.327169 0.968268i
\(43\) 0.144385 0.396695i 0.0220185 0.0604954i −0.928196 0.372091i \(-0.878641\pi\)
0.950215 + 0.311595i \(0.100863\pi\)
\(44\) −2.35756 + 4.08342i −0.355416 + 0.615599i
\(45\) 0 0
\(46\) 0.480353 + 0.831996i 0.0708242 + 0.122671i
\(47\) −7.90806 + 1.39441i −1.15351 + 0.203395i −0.717508 0.696551i \(-0.754717\pi\)
−0.436002 + 0.899946i \(0.643606\pi\)
\(48\) 0.806401 + 1.00765i 0.116394 + 0.145441i
\(49\) 16.2081 5.89926i 2.31544 0.842752i
\(50\) 0 0
\(51\) −4.75701 8.69981i −0.666115 1.21822i
\(52\) 0.704423 + 0.839499i 0.0976859 + 0.116418i
\(53\) 12.8380i 1.76343i −0.471779 0.881717i \(-0.656388\pi\)
0.471779 0.881717i \(-0.343612\pi\)
\(54\) 3.26427 2.37240i 0.444211 0.322843i
\(55\) 0 0
\(56\) 9.95112 8.34998i 1.32977 1.11581i
\(57\) −0.174246 + 7.50292i −0.0230795 + 0.993787i
\(58\) −1.75576 0.309589i −0.230543 0.0406510i
\(59\) −6.94844 + 2.52902i −0.904609 + 0.329251i −0.752098 0.659051i \(-0.770958\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(60\) 0 0
\(61\) −0.679578 3.85408i −0.0870111 0.493464i −0.996904 0.0786222i \(-0.974948\pi\)
0.909893 0.414842i \(-0.136163\pi\)
\(62\) 5.51141 3.18202i 0.699950 0.404116i
\(63\) 8.96017 + 11.7452i 1.12888 + 1.47976i
\(64\) 1.52824 2.64699i 0.191030 0.330874i
\(65\) 0 0
\(66\) −0.892014 + 4.45180i −0.109799 + 0.547979i
\(67\) 2.05797 2.45259i 0.251421 0.299631i −0.625542 0.780191i \(-0.715122\pi\)
0.876962 + 0.480559i \(0.159566\pi\)
\(68\) 5.14024 6.12590i 0.623346 0.742875i
\(69\) −1.60896 1.41502i −0.193697 0.170349i
\(70\) 0 0
\(71\) −4.92735 + 8.53442i −0.584769 + 1.01285i 0.410135 + 0.912025i \(0.365482\pi\)
−0.994904 + 0.100825i \(0.967852\pi\)
\(72\) 6.66269 + 4.27093i 0.785205 + 0.503334i
\(73\) −3.07968 + 1.77806i −0.360450 + 0.208106i −0.669278 0.743012i \(-0.733396\pi\)
0.308828 + 0.951118i \(0.400063\pi\)
\(74\) 0.417511 + 2.36782i 0.0485347 + 0.275254i
\(75\) 0 0
\(76\) −5.68772 + 2.07016i −0.652426 + 0.237464i
\(77\) −16.3689 2.88628i −1.86541 0.328922i
\(78\) 0.901380 + 0.548702i 0.102061 + 0.0621283i
\(79\) −1.31333 + 1.10201i −0.147761 + 0.123986i −0.713672 0.700480i \(-0.752969\pi\)
0.565911 + 0.824467i \(0.308525\pi\)
\(80\) 0 0
\(81\) −5.20348 + 7.34328i −0.578164 + 0.815920i
\(82\) 4.60325i 0.508344i
\(83\) 10.4548 + 12.4596i 1.14757 + 1.36762i 0.919079 + 0.394073i \(0.128934\pi\)
0.228490 + 0.973546i \(0.426621\pi\)
\(84\) −6.19507 + 10.1769i −0.675938 + 1.11040i
\(85\) 0 0
\(86\) 0.308071 0.112129i 0.0332202 0.0120912i
\(87\) 3.93088 0.599376i 0.421434 0.0642598i
\(88\) −8.76914 + 1.54624i −0.934794 + 0.164829i
\(89\) −1.10530 1.91444i −0.117162 0.202930i 0.801480 0.598021i \(-0.204046\pi\)
−0.918642 + 0.395091i \(0.870713\pi\)
\(90\) 0 0
\(91\) −1.93158 + 3.34559i −0.202484 + 0.350713i
\(92\) 0.591034 1.62385i 0.0616195 0.169298i
\(93\) −9.37357 + 10.6583i −0.971994 + 1.10522i
\(94\) −4.77714 4.00849i −0.492724 0.413445i
\(95\) 0 0
\(96\) −1.99229 + 9.94300i −0.203337 + 1.01480i
\(97\) −5.21207 + 14.3200i −0.529205 + 1.45398i 0.330804 + 0.943700i \(0.392680\pi\)
−0.860009 + 0.510279i \(0.829542\pi\)
\(98\) 11.6004 + 6.69747i 1.17181 + 0.676547i
\(99\) −1.29357 10.0433i −0.130008 1.00939i
\(100\) 0 0
\(101\) 3.25498 + 18.4599i 0.323882 + 1.83683i 0.517417 + 0.855733i \(0.326894\pi\)
−0.193535 + 0.981093i \(0.561995\pi\)
\(102\) 2.80094 7.17280i 0.277334 0.710213i
\(103\) 0.474488 + 1.30365i 0.0467527 + 0.128452i 0.960872 0.276994i \(-0.0893383\pi\)
−0.914119 + 0.405446i \(0.867116\pi\)
\(104\) −0.359376 + 2.03812i −0.0352397 + 0.199854i
\(105\) 0 0
\(106\) 7.63741 6.40854i 0.741810 0.622453i
\(107\) 6.79809i 0.657196i 0.944470 + 0.328598i \(0.106576\pi\)
−0.944470 + 0.328598i \(0.893424\pi\)
\(108\) −7.04316 1.75490i −0.677729 0.168866i
\(109\) −3.70718 −0.355084 −0.177542 0.984113i \(-0.556815\pi\)
−0.177542 + 0.984113i \(0.556815\pi\)
\(110\) 0 0
\(111\) −2.57268 4.70502i −0.244188 0.446581i
\(112\) −3.61345 0.637148i −0.341439 0.0602048i
\(113\) −3.50908 9.64111i −0.330106 0.906959i −0.988083 0.153921i \(-0.950810\pi\)
0.657977 0.753038i \(-0.271412\pi\)
\(114\) −4.55052 + 3.64169i −0.426195 + 0.341076i
\(115\) 0 0
\(116\) 1.60345 + 2.77725i 0.148876 + 0.257862i
\(117\) −2.29632 0.515846i −0.212295 0.0476899i
\(118\) −4.97310 2.87122i −0.457811 0.264317i
\(119\) 26.4897 + 9.64147i 2.42831 + 0.883832i
\(120\) 0 0
\(121\) 0.301422 + 0.252923i 0.0274020 + 0.0229930i
\(122\) 1.95358 2.32819i 0.176869 0.210784i
\(123\) −3.28648 9.72646i −0.296332 0.877005i
\(124\) −10.7569 3.91520i −0.966001 0.351596i
\(125\) 0 0
\(126\) −2.51451 + 11.1935i −0.224011 + 0.997197i
\(127\) 15.4077 8.89562i 1.36721 0.789359i 0.376639 0.926360i \(-0.377080\pi\)
0.990571 + 0.137002i \(0.0437466\pi\)
\(128\) −9.19391 + 1.62113i −0.812635 + 0.143289i
\(129\) −0.570887 + 0.456870i −0.0502638 + 0.0402251i
\(130\) 0 0
\(131\) 1.04732 5.93962i 0.0915044 0.518947i −0.904258 0.426986i \(-0.859575\pi\)
0.995763 0.0919612i \(-0.0293136\pi\)
\(132\) 7.16559 3.91811i 0.623684 0.341027i
\(133\) −13.7150 16.3449i −1.18924 1.41728i
\(134\) 2.48637 0.214790
\(135\) 0 0
\(136\) 15.1018 1.29497
\(137\) 9.66943 + 11.5236i 0.826115 + 0.984525i 1.00000 0.000240652i \(-7.66018e-5\pi\)
−0.173885 + 0.984766i \(0.555632\pi\)
\(138\) 0.0386337 1.66354i 0.00328872 0.141610i
\(139\) 1.48204 8.40509i 0.125705 0.712911i −0.855181 0.518330i \(-0.826554\pi\)
0.980886 0.194581i \(-0.0623348\pi\)
\(140\) 0 0
\(141\) 12.9557 + 5.05914i 1.09107 + 0.426056i
\(142\) −7.53685 + 1.32895i −0.632479 + 0.111523i
\(143\) 2.29330 1.32403i 0.191775 0.110721i
\(144\) −0.285556 2.21706i −0.0237963 0.184755i
\(145\) 0 0
\(146\) −2.59511 0.944544i −0.214773 0.0781710i
\(147\) −29.2927 5.86941i −2.41602 0.484101i
\(148\) 2.77994 3.31301i 0.228510 0.272327i
\(149\) −7.57146 6.35321i −0.620278 0.520475i 0.277613 0.960693i \(-0.410457\pi\)
−0.897891 + 0.440218i \(0.854901\pi\)
\(150\) 0 0
\(151\) 3.18979 + 1.16099i 0.259582 + 0.0944800i 0.468533 0.883446i \(-0.344783\pi\)
−0.208951 + 0.977926i \(0.567005\pi\)
\(152\) −9.89909 5.71524i −0.802922 0.463567i
\(153\) −0.797261 + 17.1555i −0.0644547 + 1.38694i
\(154\) −6.45407 11.1788i −0.520084 0.900811i
\(155\) 0 0
\(156\) −0.286118 1.87645i −0.0229078 0.150236i
\(157\) 7.39131 + 20.3075i 0.589891 + 1.62071i 0.770703 + 0.637195i \(0.219905\pi\)
−0.180812 + 0.983518i \(0.557873\pi\)
\(158\) −1.31119 0.231198i −0.104313 0.0183931i
\(159\) −11.5621 + 18.9937i −0.916936 + 1.50630i
\(160\) 0 0
\(161\) 6.09166 0.480090
\(162\) −6.96607 + 0.570079i −0.547306 + 0.0447897i
\(163\) 6.62741i 0.519099i 0.965730 + 0.259549i \(0.0835741\pi\)
−0.965730 + 0.259549i \(0.916426\pi\)
\(164\) 6.34292 5.32234i 0.495299 0.415605i
\(165\) 0 0
\(166\) −2.19339 + 12.4393i −0.170240 + 0.965479i
\(167\) 6.48077 + 17.8058i 0.501497 + 1.37785i 0.889813 + 0.456326i \(0.150835\pi\)
−0.388315 + 0.921527i \(0.626943\pi\)
\(168\) −22.2427 + 3.39154i −1.71606 + 0.261663i
\(169\) 2.15055 + 12.1964i 0.165427 + 0.938184i
\(170\) 0 0
\(171\) 7.01507 10.9436i 0.536455 0.836875i
\(172\) −0.510701 0.294853i −0.0389406 0.0224823i
\(173\) −0.200504 + 0.550879i −0.0152440 + 0.0418826i −0.947081 0.320994i \(-0.895983\pi\)
0.931837 + 0.362876i \(0.118205\pi\)
\(174\) 2.31881 + 2.03931i 0.175789 + 0.154599i
\(175\) 0 0
\(176\) 1.92669 + 1.61668i 0.145230 + 0.121862i
\(177\) 12.5578 + 2.51623i 0.943903 + 0.189131i
\(178\) 0.587161 1.61321i 0.0440096 0.120915i
\(179\) 10.0081 17.3345i 0.748037 1.29564i −0.200725 0.979648i \(-0.564330\pi\)
0.948762 0.315991i \(-0.102337\pi\)
\(180\) 0 0
\(181\) 7.25247 + 12.5617i 0.539072 + 0.933700i 0.998954 + 0.0457203i \(0.0145583\pi\)
−0.459882 + 0.887980i \(0.652108\pi\)
\(182\) −2.95453 + 0.520963i −0.219004 + 0.0386163i
\(183\) −2.46563 + 6.31411i −0.182264 + 0.466752i
\(184\) 3.06661 1.11616i 0.226074 0.0822841i
\(185\) 0 0
\(186\) −11.0199 0.255922i −0.808015 0.0187651i
\(187\) −12.4207 14.8024i −0.908293 1.08246i
\(188\) 11.2172i 0.818097i
\(189\) −2.67852 25.4466i −0.194834 1.85097i
\(190\) 0 0
\(191\) −3.01864 + 2.53294i −0.218421 + 0.183277i −0.745432 0.666581i \(-0.767757\pi\)
0.527011 + 0.849858i \(0.323312\pi\)
\(192\) −4.64494 + 2.53983i −0.335220 + 0.183296i
\(193\) −5.95297 1.04967i −0.428504 0.0755568i −0.0447632 0.998998i \(-0.514253\pi\)
−0.383741 + 0.923441i \(0.625364\pi\)
\(194\) −11.1209 + 4.04767i −0.798432 + 0.290606i
\(195\) 0 0
\(196\) −4.18390 23.7281i −0.298850 1.69486i
\(197\) 0.694457 0.400945i 0.0494780 0.0285662i −0.475057 0.879955i \(-0.657573\pi\)
0.524535 + 0.851389i \(0.324239\pi\)
\(198\) 5.32910 5.78303i 0.378723 0.410982i
\(199\) 2.31981 4.01802i 0.164447 0.284830i −0.772012 0.635608i \(-0.780749\pi\)
0.936459 + 0.350778i \(0.114083\pi\)
\(200\) 0 0
\(201\) −5.25358 + 1.77514i −0.370559 + 0.125208i
\(202\) −9.35707 + 11.1513i −0.658361 + 0.784604i
\(203\) −7.26654 + 8.65993i −0.510011 + 0.607808i
\(204\) −13.1220 + 4.43381i −0.918726 + 0.310429i
\(205\) 0 0
\(206\) −0.538690 + 0.933038i −0.0375323 + 0.0650078i
\(207\) 1.10605 + 3.54257i 0.0768758 + 0.246226i
\(208\) 0.506246 0.292281i 0.0351018 0.0202661i
\(209\) 2.53972 + 14.4035i 0.175676 + 0.996308i
\(210\) 0 0
\(211\) 5.90447 2.14905i 0.406480 0.147947i −0.130684 0.991424i \(-0.541717\pi\)
0.537165 + 0.843477i \(0.319495\pi\)
\(212\) −17.6609 3.11410i −1.21296 0.213877i
\(213\) 14.9762 8.18892i 1.02615 0.561096i
\(214\) −4.04423 + 3.39351i −0.276458 + 0.231976i
\(215\) 0 0
\(216\) −6.01089 12.3193i −0.408989 0.838224i
\(217\) 40.3532i 2.73935i
\(218\) −1.85057 2.20543i −0.125337 0.149370i
\(219\) 6.15771 + 0.143005i 0.416099 + 0.00966339i
\(220\) 0 0
\(221\) −4.22025 + 1.53604i −0.283885 + 0.103326i
\(222\) 1.51480 3.87919i 0.101667 0.260354i
\(223\) −0.207803 + 0.0366413i −0.0139155 + 0.00245368i −0.180602 0.983556i \(-0.557804\pi\)
0.166686 + 0.986010i \(0.446693\pi\)
\(224\) −14.4150 24.9675i −0.963143 1.66821i
\(225\) 0 0
\(226\) 3.98388 6.90028i 0.265004 0.459000i
\(227\) 2.41142 6.62533i 0.160052 0.439739i −0.833582 0.552395i \(-0.813714\pi\)
0.993634 + 0.112657i \(0.0359361\pi\)
\(228\) 10.2793 + 2.05968i 0.680766 + 0.136406i
\(229\) 17.0605 + 14.3154i 1.12739 + 0.945991i 0.998954 0.0457276i \(-0.0145606\pi\)
0.128434 + 0.991718i \(0.459005\pi\)
\(230\) 0 0
\(231\) 21.6182 + 19.0124i 1.42237 + 1.25092i
\(232\) −2.07133 + 5.69093i −0.135989 + 0.373628i
\(233\) 11.7402 + 6.77819i 0.769124 + 0.444054i 0.832562 0.553932i \(-0.186873\pi\)
−0.0634379 + 0.997986i \(0.520206\pi\)
\(234\) −0.839410 1.62360i −0.0548739 0.106138i
\(235\) 0 0
\(236\) 1.79365 + 10.1723i 0.116756 + 0.662158i
\(237\) 2.93555 0.447609i 0.190684 0.0290753i
\(238\) 7.48752 + 20.5718i 0.485344 + 1.33347i
\(239\) −1.06063 + 6.01513i −0.0686065 + 0.389087i 0.931098 + 0.364770i \(0.118852\pi\)
−0.999704 + 0.0243171i \(0.992259\pi\)
\(240\) 0 0
\(241\) −14.7499 + 12.3766i −0.950123 + 0.797248i −0.979318 0.202326i \(-0.935150\pi\)
0.0291956 + 0.999574i \(0.490705\pi\)
\(242\) 0.305574i 0.0196430i
\(243\) 14.3120 6.17796i 0.918114 0.396316i
\(244\) −5.46681 −0.349977
\(245\) 0 0
\(246\) 4.14577 6.81046i 0.264325 0.434219i
\(247\) 3.34765 + 0.590280i 0.213006 + 0.0375586i
\(248\) −7.39378 20.3143i −0.469506 1.28996i
\(249\) −4.24648 27.8497i −0.269110 1.76490i
\(250\) 0 0
\(251\) −0.695671 1.20494i −0.0439104 0.0760550i 0.843235 0.537545i \(-0.180648\pi\)
−0.887145 + 0.461490i \(0.847315\pi\)
\(252\) 18.3311 9.47728i 1.15475 0.597012i
\(253\) −3.61622 2.08782i −0.227350 0.131260i
\(254\) 12.9834 + 4.72556i 0.814648 + 0.296508i
\(255\) 0 0
\(256\) −10.2367 8.58961i −0.639793 0.536850i
\(257\) 2.68508 3.19995i 0.167491 0.199608i −0.675770 0.737113i \(-0.736189\pi\)
0.843261 + 0.537505i \(0.180633\pi\)
\(258\) −0.556773 0.111561i −0.0346632 0.00694551i
\(259\) 14.3261 + 5.21429i 0.890184 + 0.324000i
\(260\) 0 0
\(261\) −6.35550 2.65345i −0.393396 0.164245i
\(262\) 4.05633 2.34192i 0.250601 0.144684i
\(263\) −8.59885 + 1.51621i −0.530228 + 0.0934934i −0.432351 0.901705i \(-0.642316\pi\)
−0.0978761 + 0.995199i \(0.531205\pi\)
\(264\) 14.3664 + 5.61001i 0.884192 + 0.345272i
\(265\) 0 0
\(266\) 2.87735 16.3183i 0.176422 1.00054i
\(267\) −0.0888969 + 3.82784i −0.00544040 + 0.234260i
\(268\) −2.87477 3.42602i −0.175605 0.209277i
\(269\) −3.57322 −0.217863 −0.108931 0.994049i \(-0.534743\pi\)
−0.108931 + 0.994049i \(0.534743\pi\)
\(270\) 0 0
\(271\) −13.9724 −0.848765 −0.424383 0.905483i \(-0.639509\pi\)
−0.424383 + 0.905483i \(0.639509\pi\)
\(272\) −2.74188 3.26764i −0.166251 0.198130i
\(273\) 5.87084 3.21015i 0.355319 0.194287i
\(274\) −2.02861 + 11.5048i −0.122553 + 0.695031i
\(275\) 0 0
\(276\) −2.33690 + 1.87017i −0.140665 + 0.112571i
\(277\) −19.1250 + 3.37225i −1.14911 + 0.202619i −0.715587 0.698524i \(-0.753841\pi\)
−0.433523 + 0.901143i \(0.642730\pi\)
\(278\) 5.74006 3.31403i 0.344266 0.198762i
\(279\) 23.4672 7.32684i 1.40494 0.438646i
\(280\) 0 0
\(281\) −18.7960 6.84119i −1.12128 0.408111i −0.286158 0.958182i \(-0.592378\pi\)
−0.835118 + 0.550071i \(0.814600\pi\)
\(282\) 3.45760 + 10.2329i 0.205897 + 0.609360i
\(283\) −7.03336 + 8.38203i −0.418090 + 0.498260i −0.933447 0.358715i \(-0.883215\pi\)
0.515357 + 0.856976i \(0.327659\pi\)
\(284\) 10.5454 + 8.84863i 0.625754 + 0.525070i
\(285\) 0 0
\(286\) 1.93246 + 0.703357i 0.114269 + 0.0415904i
\(287\) 25.2779 + 14.5942i 1.49211 + 0.861469i
\(288\) 11.9024 12.9163i 0.701356 0.761098i
\(289\) 7.88596 + 13.6589i 0.463880 + 0.803464i
\(290\) 0 0
\(291\) 20.6081 16.4922i 1.20807 0.966792i
\(292\) 1.69900 + 4.66795i 0.0994262 + 0.273171i
\(293\) 6.31252 + 1.11307i 0.368781 + 0.0650261i 0.354968 0.934879i \(-0.384492\pi\)
0.0138134 + 0.999905i \(0.495603\pi\)
\(294\) −11.1307 20.3563i −0.649158 1.18721i
\(295\) 0 0
\(296\) 8.16734 0.474717
\(297\) −7.13137 + 16.0240i −0.413804 + 0.929805i
\(298\) 7.67575i 0.444644i
\(299\) −0.743448 + 0.623827i −0.0429947 + 0.0360768i
\(300\) 0 0
\(301\) 0.360979 2.04721i 0.0208065 0.117999i
\(302\) 0.901619 + 2.47718i 0.0518823 + 0.142546i
\(303\) 11.8096 30.2427i 0.678444 1.73740i
\(304\) 0.560644 + 3.17957i 0.0321551 + 0.182361i
\(305\) 0 0
\(306\) −10.6039 + 8.08950i −0.606185 + 0.462446i
\(307\) 9.86017 + 5.69277i 0.562750 + 0.324904i 0.754248 0.656589i \(-0.228001\pi\)
−0.191499 + 0.981493i \(0.561335\pi\)
\(308\) −7.94119 + 21.8182i −0.452491 + 1.24321i
\(309\) 0.472087 2.35606i 0.0268561 0.134032i
\(310\) 0 0
\(311\) −1.58925 1.33354i −0.0901183 0.0756182i 0.596616 0.802527i \(-0.296512\pi\)
−0.686734 + 0.726909i \(0.740956\pi\)
\(312\) 2.36726 2.69172i 0.134020 0.152389i
\(313\) −8.22881 + 22.6085i −0.465120 + 1.27791i 0.456469 + 0.889739i \(0.349114\pi\)
−0.921589 + 0.388167i \(0.873108\pi\)
\(314\) −8.39141 + 14.5343i −0.473555 + 0.820221i
\(315\) 0 0
\(316\) 1.19744 + 2.07403i 0.0673614 + 0.116673i
\(317\) 7.25490 1.27924i 0.407476 0.0718490i 0.0338465 0.999427i \(-0.489224\pi\)
0.373629 + 0.927578i \(0.378113\pi\)
\(318\) −17.0711 + 2.60298i −0.957300 + 0.145968i
\(319\) 7.28172 2.65033i 0.407698 0.148390i
\(320\) 0 0
\(321\) 6.12248 10.0577i 0.341724 0.561366i
\(322\) 3.04087 + 3.62397i 0.169461 + 0.201956i
\(323\) 24.8049i 1.38018i
\(324\) 8.83978 + 8.93956i 0.491099 + 0.496642i
\(325\) 0 0
\(326\) −3.94269 + 3.30831i −0.218366 + 0.183230i
\(327\) 5.48473 + 3.33876i 0.303307 + 0.184634i
\(328\) 15.3992 + 2.71530i 0.850280 + 0.149927i
\(329\) −37.1574 + 13.5242i −2.04855 + 0.745612i
\(330\) 0 0
\(331\) −0.0223761 0.126901i −0.00122990 0.00697513i 0.984187 0.177135i \(-0.0566828\pi\)
−0.985417 + 0.170160i \(0.945572\pi\)
\(332\) 19.6764 11.3602i 1.07988 0.623471i
\(333\) −0.431174 + 9.27803i −0.0236282 + 0.508433i
\(334\) −7.35767 + 12.7439i −0.402594 + 0.697312i
\(335\) 0 0
\(336\) 4.77223 + 4.19699i 0.260346 + 0.228965i
\(337\) 7.89430 9.40807i 0.430030 0.512490i −0.506901 0.862004i \(-0.669209\pi\)
0.936931 + 0.349514i \(0.113653\pi\)
\(338\) −6.18219 + 7.36764i −0.336267 + 0.400747i
\(339\) −3.49132 + 17.4243i −0.189622 + 0.946355i
\(340\) 0 0
\(341\) −13.8304 + 23.9550i −0.748960 + 1.29724i
\(342\) 10.0122 1.28956i 0.541399 0.0697316i
\(343\) 43.7041 25.2326i 2.35980 1.36243i
\(344\) −0.193383 1.09673i −0.0104265 0.0591317i
\(345\) 0 0
\(346\) −0.427810 + 0.155710i −0.0229992 + 0.00837104i
\(347\) −5.83965 1.02969i −0.313489 0.0552765i 0.0146902 0.999892i \(-0.495324\pi\)
−0.328179 + 0.944616i \(0.606435\pi\)
\(348\) 0.128962 5.55301i 0.00691308 0.297673i
\(349\) −22.5465 + 18.9188i −1.20689 + 1.01270i −0.207483 + 0.978239i \(0.566527\pi\)
−0.999406 + 0.0344616i \(0.989028\pi\)
\(350\) 0 0
\(351\) 2.93280 + 2.83129i 0.156541 + 0.151123i
\(352\) 19.7621i 1.05332i
\(353\) −3.78753 4.51380i −0.201590 0.240246i 0.655773 0.754958i \(-0.272343\pi\)
−0.857363 + 0.514713i \(0.827899\pi\)
\(354\) 4.77177 + 8.72679i 0.253617 + 0.463824i
\(355\) 0 0
\(356\) −2.90176 + 1.05615i −0.153793 + 0.0559760i
\(357\) −30.5079 38.1216i −1.61465 2.01761i
\(358\) 15.3083 2.69926i 0.809067 0.142660i
\(359\) −10.0448 17.3981i −0.530145 0.918239i −0.999381 0.0351660i \(-0.988804\pi\)
0.469236 0.883073i \(-0.344529\pi\)
\(360\) 0 0
\(361\) 0.112627 0.195076i 0.00592776 0.0102672i
\(362\) −3.85268 + 10.5851i −0.202492 + 0.556343i
\(363\) −0.218164 0.645664i −0.0114506 0.0338886i
\(364\) 4.13391 + 3.46876i 0.216676 + 0.181812i
\(365\) 0 0
\(366\) −4.98711 + 1.68510i −0.260680 + 0.0880814i
\(367\) 8.05989 22.1444i 0.420723 1.15593i −0.530571 0.847640i \(-0.678023\pi\)
0.951294 0.308286i \(-0.0997553\pi\)
\(368\) −0.798281 0.460888i −0.0416133 0.0240254i
\(369\) −3.89752 + 17.3500i −0.202897 + 0.903207i
\(370\) 0 0
\(371\) −10.9776 62.2571i −0.569929 3.23223i
\(372\) 12.3887 + 15.4804i 0.642322 + 0.802620i
\(373\) 4.91475 + 13.5032i 0.254476 + 0.699167i 0.999484 + 0.0321116i \(0.0102232\pi\)
−0.745008 + 0.667055i \(0.767555\pi\)
\(374\) 2.60582 14.7783i 0.134744 0.764169i
\(375\) 0 0
\(376\) −16.2275 + 13.6164i −0.836867 + 0.702215i
\(377\) 1.80103i 0.0927578i
\(378\) 13.8013 14.2961i 0.709861 0.735310i
\(379\) −32.6347 −1.67633 −0.838165 0.545417i \(-0.816371\pi\)
−0.838165 + 0.545417i \(0.816371\pi\)
\(380\) 0 0
\(381\) −30.8070 0.715455i −1.57829 0.0366539i
\(382\) −3.01372 0.531401i −0.154196 0.0271888i
\(383\) 1.87730 + 5.15784i 0.0959255 + 0.263553i 0.978370 0.206864i \(-0.0663257\pi\)
−0.882444 + 0.470417i \(0.844103\pi\)
\(384\) 15.0623 + 5.88175i 0.768645 + 0.300152i
\(385\) 0 0
\(386\) −2.34718 4.06544i −0.119469 0.206926i
\(387\) 1.25609 0.161782i 0.0638504 0.00822387i
\(388\) 18.4355 + 10.6437i 0.935918 + 0.540353i
\(389\) −16.4485 5.98677i −0.833973 0.303541i −0.110484 0.993878i \(-0.535240\pi\)
−0.723488 + 0.690337i \(0.757462\pi\)
\(390\) 0 0
\(391\) 5.42501 + 4.55212i 0.274354 + 0.230211i
\(392\) 29.2477 34.8560i 1.47723 1.76049i
\(393\) −6.89883 + 7.84437i −0.348000 + 0.395696i
\(394\) 0.585188 + 0.212991i 0.0294814 + 0.0107303i
\(395\) 0 0
\(396\) −14.1301 0.656663i −0.710066 0.0329986i
\(397\) 3.83373 2.21340i 0.192409 0.111088i −0.400701 0.916209i \(-0.631233\pi\)
0.593110 + 0.805121i \(0.297900\pi\)
\(398\) 3.54836 0.625672i 0.177863 0.0313621i
\(399\) 5.57066 + 36.5340i 0.278882 + 1.82899i
\(400\) 0 0
\(401\) 5.70218 32.3387i 0.284754 1.61492i −0.421411 0.906870i \(-0.638465\pi\)
0.706165 0.708048i \(-0.250424\pi\)
\(402\) −3.67856 2.23927i −0.183470 0.111685i
\(403\) 4.13244 + 4.92484i 0.205851 + 0.245324i
\(404\) 26.1844 1.30272
\(405\) 0 0
\(406\) −8.77921 −0.435705
\(407\) −6.71736 8.00544i −0.332967 0.396815i
\(408\) −22.3429 13.6009i −1.10614 0.673347i
\(409\) 4.60541 26.1186i 0.227723 1.29148i −0.629688 0.776848i \(-0.716817\pi\)
0.857411 0.514633i \(-0.172072\pi\)
\(410\) 0 0
\(411\) −3.92747 25.7575i −0.193728 1.27052i
\(412\) 1.90849 0.336519i 0.0940246 0.0165791i
\(413\) −31.5335 + 18.2059i −1.55166 + 0.895853i
\(414\) −1.55538 + 2.42640i −0.0764425 + 0.119251i
\(415\) 0 0
\(416\) 4.31610 + 1.57093i 0.211614 + 0.0770212i
\(417\) −9.76245 + 11.1005i −0.478069 + 0.543593i
\(418\) −7.30092 + 8.70090i −0.357100 + 0.425575i
\(419\) 21.0958 + 17.7015i 1.03060 + 0.864774i 0.990922 0.134439i \(-0.0429232\pi\)
0.0396754 + 0.999213i \(0.487368\pi\)
\(420\) 0 0
\(421\) 25.5292 + 9.29186i 1.24422 + 0.452857i 0.878443 0.477847i \(-0.158583\pi\)
0.365772 + 0.930704i \(0.380805\pi\)
\(422\) 4.22591 + 2.43983i 0.205714 + 0.118769i
\(423\) −14.6115 19.1531i −0.710435 0.931255i
\(424\) −16.9334 29.3295i −0.822359 1.42437i
\(425\) 0 0
\(426\) 12.3476 + 4.82166i 0.598241 + 0.233610i
\(427\) −6.59115 18.1090i −0.318968 0.876358i
\(428\) 9.35198 + 1.64901i 0.452045 + 0.0797077i
\(429\) −4.58535 0.106489i −0.221383 0.00514134i
\(430\) 0 0
\(431\) −6.47039 −0.311668 −0.155834 0.987783i \(-0.549806\pi\)
−0.155834 + 0.987783i \(0.549806\pi\)
\(432\) −1.57425 + 3.53730i −0.0757412 + 0.170188i
\(433\) 18.9751i 0.911883i −0.890010 0.455942i \(-0.849303\pi\)
0.890010 0.455942i \(-0.150697\pi\)
\(434\) 24.0064 20.1438i 1.15234 0.966931i
\(435\) 0 0
\(436\) −0.899248 + 5.09989i −0.0430661 + 0.244240i
\(437\) −1.83330 5.03696i −0.0876988 0.240950i
\(438\) 2.98877 + 3.73465i 0.142809 + 0.178448i
\(439\) 5.12907 + 29.0884i 0.244797 + 1.38831i 0.820963 + 0.570981i \(0.193437\pi\)
−0.576166 + 0.817333i \(0.695452\pi\)
\(440\) 0 0
\(441\) 38.0521 + 35.0652i 1.81200 + 1.66977i
\(442\) −3.02049 1.74388i −0.143670 0.0829480i
\(443\) −4.68628 + 12.8754i −0.222652 + 0.611731i −0.999846 0.0175297i \(-0.994420\pi\)
0.777195 + 0.629260i \(0.216642\pi\)
\(444\) −7.09665 + 2.39789i −0.336792 + 0.113799i
\(445\) 0 0
\(446\) −0.125531 0.105333i −0.00594405 0.00498765i
\(447\) 5.48007 + 16.2185i 0.259199 + 0.767109i
\(448\) 5.14770 14.1432i 0.243206 0.668203i
\(449\) 16.2238 28.1005i 0.765649 1.32614i −0.174253 0.984701i \(-0.555751\pi\)
0.939903 0.341443i \(-0.110915\pi\)
\(450\) 0 0
\(451\) −10.0039 17.3272i −0.471064 0.815907i
\(452\) −14.1142 + 2.48872i −0.663878 + 0.117060i
\(453\) −3.67365 4.59045i −0.172603 0.215678i
\(454\) 5.14520 1.87270i 0.241476 0.0878902i
\(455\) 0 0
\(456\) 9.49834 + 17.3709i 0.444801 + 0.813469i
\(457\) −10.6990 12.7506i −0.500478 0.596446i 0.455372 0.890301i \(-0.349506\pi\)
−0.955850 + 0.293855i \(0.905062\pi\)
\(458\) 17.2955i 0.808163i
\(459\) 16.6301 24.6634i 0.776227 1.15119i
\(460\) 0 0
\(461\) −25.2927 + 21.2231i −1.17800 + 0.988460i −0.178010 + 0.984029i \(0.556966\pi\)
−0.999990 + 0.00443082i \(0.998590\pi\)
\(462\) −0.519086 + 22.3515i −0.0241501 + 1.03989i
\(463\) 33.4802 + 5.90347i 1.55596 + 0.274357i 0.884448 0.466638i \(-0.154535\pi\)
0.671510 + 0.740996i \(0.265646\pi\)
\(464\) 1.60744 0.585061i 0.0746236 0.0271608i
\(465\) 0 0
\(466\) 1.82814 + 10.3679i 0.0846869 + 0.480283i
\(467\) −1.54822 + 0.893863i −0.0716429 + 0.0413630i −0.535394 0.844603i \(-0.679837\pi\)
0.463751 + 0.885966i \(0.346503\pi\)
\(468\) −1.26665 + 3.03386i −0.0585510 + 0.140240i
\(469\) 7.88281 13.6534i 0.363995 0.630457i
\(470\) 0 0
\(471\) 7.35391 36.7014i 0.338850 1.69111i
\(472\) −12.5385 + 14.9428i −0.577132 + 0.687799i
\(473\) −0.915938 + 1.09157i −0.0421149 + 0.0501906i
\(474\) 1.73167 + 1.52294i 0.0795382 + 0.0699508i
\(475\) 0 0
\(476\) 19.6891 34.1026i 0.902450 1.56309i
\(477\) 34.2121 17.6878i 1.56646 0.809871i
\(478\) −4.10790 + 2.37169i −0.187891 + 0.108479i
\(479\) −3.22748 18.3040i −0.147467 0.836329i −0.965353 0.260948i \(-0.915965\pi\)
0.817886 0.575381i \(-0.195146\pi\)
\(480\) 0 0
\(481\) −2.28239 + 0.830722i −0.104068 + 0.0378777i
\(482\) −14.7259 2.59657i −0.670744 0.118270i
\(483\) −9.01255 5.48626i −0.410085 0.249634i
\(484\) 0.421057 0.353309i 0.0191389 0.0160595i
\(485\) 0 0
\(486\) 10.8196 + 5.43035i 0.490789 + 0.246325i
\(487\) 16.9037i 0.765979i 0.923753 + 0.382989i \(0.125105\pi\)
−0.923753 + 0.382989i \(0.874895\pi\)
\(488\) −6.63612 7.90862i −0.300403 0.358006i
\(489\) 5.96877 9.80518i 0.269917 0.443406i
\(490\) 0 0
\(491\) −1.02681 + 0.373728i −0.0463392 + 0.0168661i −0.365086 0.930974i \(-0.618960\pi\)
0.318747 + 0.947840i \(0.396738\pi\)
\(492\) −14.1777 + 2.16179i −0.639179 + 0.0974612i
\(493\) −12.9426 + 2.28213i −0.582906 + 0.102782i
\(494\) 1.31994 + 2.28620i 0.0593868 + 0.102861i
\(495\) 0 0
\(496\) −3.05307 + 5.28808i −0.137087 + 0.237442i
\(497\) −16.5972 + 45.6005i −0.744488 + 2.04546i
\(498\) 14.4482 16.4284i 0.647438 0.736176i
\(499\) −1.10500 0.927202i −0.0494664 0.0415073i 0.617719 0.786399i \(-0.288057\pi\)
−0.667186 + 0.744891i \(0.732501\pi\)
\(500\) 0 0
\(501\) 6.44798 32.1801i 0.288074 1.43770i
\(502\) 0.369556 1.01535i 0.0164941 0.0453172i
\(503\) −20.6911 11.9460i −0.922569 0.532645i −0.0381151 0.999273i \(-0.512135\pi\)
−0.884454 + 0.466628i \(0.845469\pi\)
\(504\) 35.9623 + 15.0144i 1.60189 + 0.668797i
\(505\) 0 0
\(506\) −0.563104 3.19352i −0.0250330 0.141969i
\(507\) 7.80257 19.9812i 0.346524 0.887398i
\(508\) −8.50008 23.3538i −0.377130 1.03616i
\(509\) 0.690844 3.91797i 0.0306211 0.173661i −0.965662 0.259802i \(-0.916343\pi\)
0.996283 + 0.0861414i \(0.0274537\pi\)
\(510\) 0 0
\(511\) −13.4144 + 11.2560i −0.593416 + 0.497936i
\(512\) 8.29380i 0.366537i
\(513\) −20.2347 + 9.87298i −0.893383 + 0.435903i
\(514\) 3.24403 0.143088
\(515\) 0 0
\(516\) 0.490026 + 0.896178i 0.0215722 + 0.0394520i
\(517\) 26.6931 + 4.70671i 1.17396 + 0.207001i
\(518\) 4.04940 + 11.1256i 0.177920 + 0.488832i
\(519\) 0.792775 0.634442i 0.0347990 0.0278489i
\(520\) 0 0
\(521\) 11.2999 + 19.5719i 0.495055 + 0.857461i 0.999984 0.00570007i \(-0.00181440\pi\)
−0.504928 + 0.863161i \(0.668481\pi\)
\(522\) −1.59402 5.10550i −0.0697684 0.223461i
\(523\) 25.9568 + 14.9862i 1.13501 + 0.655299i 0.945190 0.326520i \(-0.105876\pi\)
0.189821 + 0.981819i \(0.439209\pi\)
\(524\) −7.91696 2.88154i −0.345854 0.125881i
\(525\) 0 0
\(526\) −5.19443 4.35864i −0.226488 0.190046i
\(527\) 30.1548 35.9370i 1.31356 1.56544i
\(528\) −1.39450 4.12708i −0.0606878 0.179608i
\(529\) −20.1749 7.34305i −0.877168 0.319263i
\(530\) 0 0
\(531\) −16.3130 15.0325i −0.707923 0.652356i
\(532\) −25.8121 + 14.9026i −1.11910 + 0.646111i
\(533\) −4.57955 + 0.807498i −0.198362 + 0.0349766i
\(534\) −2.32159 + 1.85792i −0.100465 + 0.0804001i
\(535\) 0 0
\(536\) 1.46662 8.31764i 0.0633485 0.359267i
\(537\) −30.4185 + 16.6327i −1.31266 + 0.717754i
\(538\) −1.78370 2.12573i −0.0769008 0.0916468i
\(539\) −58.2203 −2.50772
\(540\) 0 0
\(541\) 3.99696 0.171843 0.0859215 0.996302i \(-0.472617\pi\)
0.0859215 + 0.996302i \(0.472617\pi\)
\(542\) −6.97485 8.31230i −0.299595 0.357044i
\(543\) 0.583300 25.1165i 0.0250318 1.07785i
\(544\) 5.82003 33.0070i 0.249532 1.41517i
\(545\) 0 0
\(546\) 4.84038 + 1.89014i 0.207149 + 0.0808906i
\(547\) 33.3096 5.87339i 1.42422 0.251128i 0.592161 0.805819i \(-0.298275\pi\)
0.832056 + 0.554692i \(0.187164\pi\)
\(548\) 18.1982 10.5067i 0.777389 0.448826i
\(549\) 9.33447 7.12106i 0.398385 0.303920i
\(550\) 0 0
\(551\) 9.34744 + 3.40219i 0.398214 + 0.144938i
\(552\) −5.54225 1.11051i −0.235894 0.0472663i
\(553\) −5.42660 + 6.46716i −0.230762 + 0.275012i
\(554\) −11.5531 9.69421i −0.490844 0.411867i
\(555\) 0 0
\(556\) −11.2032 4.07763i −0.475121 0.172930i
\(557\) −21.9093 12.6493i −0.928326 0.535969i −0.0420444 0.999116i \(-0.513387\pi\)
−0.886282 + 0.463146i \(0.846720\pi\)
\(558\) 16.0733 + 10.3033i 0.680435 + 0.436174i
\(559\) 0.165593 + 0.286815i 0.00700383 + 0.0121310i
\(560\) 0 0
\(561\) 5.04497 + 33.0864i 0.212999 + 1.39691i
\(562\) −5.31284 14.5969i −0.224108 0.615733i
\(563\) −39.8845 7.03270i −1.68093 0.296393i −0.749958 0.661486i \(-0.769926\pi\)
−0.930971 + 0.365092i \(0.881037\pi\)
\(564\) 10.1024 16.5957i 0.425388 0.698805i
\(565\) 0 0
\(566\) −8.49748 −0.357176
\(567\) −18.9548 + 40.0603i −0.796028 + 1.68237i
\(568\) 25.9969i 1.09080i
\(569\) −7.94639 + 6.66781i −0.333130 + 0.279529i −0.793974 0.607952i \(-0.791991\pi\)
0.460844 + 0.887481i \(0.347547\pi\)
\(570\) 0 0
\(571\) −1.66139 + 9.42220i −0.0695269 + 0.394307i 0.930108 + 0.367286i \(0.119713\pi\)
−0.999635 + 0.0270205i \(0.991398\pi\)
\(572\) −1.26516 3.47600i −0.0528991 0.145339i
\(573\) 6.74725 1.02881i 0.281870 0.0429793i
\(574\) 3.93619 + 22.3232i 0.164293 + 0.931753i
\(575\) 0 0
\(576\) 9.15955 + 0.425668i 0.381648 + 0.0177362i
\(577\) −18.2058 10.5111i −0.757919 0.437585i 0.0706290 0.997503i \(-0.477499\pi\)
−0.828548 + 0.559918i \(0.810833\pi\)
\(578\) −4.18920 + 11.5097i −0.174248 + 0.478742i
\(579\) 7.86200 + 6.91433i 0.326734 + 0.287350i
\(580\) 0 0
\(581\) 61.3543 + 51.4823i 2.54540 + 2.13585i
\(582\) 20.0986 + 4.02718i 0.833114 + 0.166932i
\(583\) −14.8210 + 40.7203i −0.613822 + 1.68646i
\(584\) −4.69054 + 8.12426i −0.194096 + 0.336184i
\(585\) 0 0
\(586\) 2.48895 + 4.31099i 0.102818 + 0.178085i
\(587\) 25.4966 4.49575i 1.05236 0.185559i 0.379395 0.925235i \(-0.376132\pi\)
0.672964 + 0.739675i \(0.265021\pi\)
\(588\) −15.1799 + 38.8735i −0.626009 + 1.60312i
\(589\) −33.3665 + 12.1444i −1.37484 + 0.500401i
\(590\) 0 0
\(591\) −1.38854 0.0322471i −0.0571169 0.00132647i
\(592\) −1.48286 1.76720i −0.0609452 0.0726317i
\(593\) 7.66640i 0.314821i 0.987533 + 0.157411i \(0.0503146\pi\)
−0.987533 + 0.157411i \(0.949685\pi\)
\(594\) −13.0926 + 3.75644i −0.537198 + 0.154129i
\(595\) 0 0
\(596\) −10.5766 + 8.87479i −0.433233 + 0.363526i
\(597\) −7.05083 + 3.85536i −0.288571 + 0.157789i
\(598\) −0.742238 0.130877i −0.0303524 0.00535194i
\(599\) −35.3351 + 12.8609i −1.44375 + 0.525483i −0.940839 0.338854i \(-0.889961\pi\)
−0.502914 + 0.864337i \(0.667739\pi\)
\(600\) 0 0
\(601\) −2.37700 13.4806i −0.0969599 0.549887i −0.994129 0.108200i \(-0.965491\pi\)
0.897169 0.441687i \(-0.145620\pi\)
\(602\) 1.39810 0.807191i 0.0569821 0.0328986i
\(603\) 9.37134 + 2.10518i 0.381630 + 0.0857296i
\(604\) 2.37089 4.10650i 0.0964702 0.167091i
\(605\) 0 0
\(606\) 23.8868 8.07111i 0.970333 0.327866i
\(607\) −22.2667 + 26.5364i −0.903776 + 1.07708i 0.0929052 + 0.995675i \(0.470385\pi\)
−0.996681 + 0.0814033i \(0.974060\pi\)
\(608\) −16.3064 + 19.4332i −0.661313 + 0.788122i
\(609\) 18.5501 6.26789i 0.751686 0.253988i
\(610\) 0 0
\(611\) 3.14985 5.45570i 0.127429 0.220714i
\(612\) 23.4071 + 5.25817i 0.946174 + 0.212549i
\(613\) −13.6596 + 7.88639i −0.551708 + 0.318528i −0.749810 0.661653i \(-0.769855\pi\)
0.198103 + 0.980181i \(0.436522\pi\)
\(614\) 1.53539 + 8.70763i 0.0619633 + 0.351412i
\(615\) 0 0
\(616\) −41.2033 + 14.9968i −1.66013 + 0.604237i
\(617\) −34.5615 6.09413i −1.39139 0.245340i −0.572792 0.819701i \(-0.694140\pi\)
−0.818603 + 0.574360i \(0.805251\pi\)
\(618\) 1.63730 0.895265i 0.0658617 0.0360129i
\(619\) 14.1386 11.8637i 0.568278 0.476842i −0.312796 0.949820i \(-0.601266\pi\)
0.881074 + 0.472978i \(0.156821\pi\)
\(620\) 0 0
\(621\) 1.55412 6.23732i 0.0623645 0.250295i
\(622\) 1.61114i 0.0646010i
\(623\) −6.99711 8.33883i −0.280333 0.334088i
\(624\) −1.01222 0.0235075i −0.0405212 0.000941054i
\(625\) 0 0
\(626\) −17.5576 + 6.39046i −0.701745 + 0.255414i
\(627\) 9.21453 23.5971i 0.367993 0.942376i
\(628\) 29.7294 5.24210i 1.18633 0.209183i
\(629\) 8.86184 + 15.3492i 0.353345 + 0.612011i
\(630\) 0 0
\(631\) −16.7999 + 29.0983i −0.668793 + 1.15838i 0.309449 + 0.950916i \(0.399855\pi\)
−0.978242 + 0.207467i \(0.933478\pi\)
\(632\) −1.54685 + 4.24994i −0.0615305 + 0.169054i
\(633\) −10.6711 2.13818i −0.424137 0.0849849i
\(634\) 4.38257 + 3.67741i 0.174054 + 0.146049i
\(635\) 0 0
\(636\) 23.3245 + 20.5130i 0.924878 + 0.813394i
\(637\) −4.62806 + 12.7155i −0.183370 + 0.503806i
\(638\) 5.21163 + 3.00894i 0.206330 + 0.119125i
\(639\) −29.5322 1.37244i −1.16828 0.0542929i
\(640\) 0 0
\(641\) −5.20105 29.4966i −0.205429 1.16505i −0.896763 0.442511i \(-0.854088\pi\)
0.691334 0.722536i \(-0.257023\pi\)
\(642\) 9.03965 1.37836i 0.356767 0.0543994i
\(643\) 4.45660 + 12.2444i 0.175751 + 0.482873i 0.996022 0.0891022i \(-0.0283998\pi\)
−0.820271 + 0.571975i \(0.806178\pi\)
\(644\) 1.47765 8.38016i 0.0582275 0.330225i
\(645\) 0 0
\(646\) 14.7566 12.3823i 0.580591 0.487174i
\(647\) 36.7940i 1.44652i −0.690576 0.723260i \(-0.742643\pi\)
0.690576 0.723260i \(-0.257357\pi\)
\(648\) −2.20196 + 23.6398i −0.0865013 + 0.928660i
\(649\) 24.9591 0.979731
\(650\) 0 0
\(651\) −36.3428 + 59.7021i −1.42439 + 2.33991i
\(652\) 9.11718 + 1.60760i 0.357056 + 0.0629587i
\(653\) −14.4650 39.7421i −0.566057 1.55523i −0.810606 0.585592i \(-0.800862\pi\)
0.244548 0.969637i \(-0.421360\pi\)
\(654\) 0.751654 + 4.92957i 0.0293920 + 0.192761i
\(655\) 0 0
\(656\) −2.20836 3.82499i −0.0862219 0.149341i
\(657\) −8.98147 5.75732i −0.350400 0.224614i
\(658\) −26.5941 15.3541i −1.03674 0.598565i
\(659\) −28.0790 10.2199i −1.09380 0.398111i −0.268773 0.963203i \(-0.586618\pi\)
−0.825028 + 0.565092i \(0.808840\pi\)
\(660\) 0 0
\(661\) 30.7868 + 25.8332i 1.19747 + 1.00480i 0.999699 + 0.0245465i \(0.00781419\pi\)
0.197769 + 0.980249i \(0.436630\pi\)
\(662\) 0.0643246 0.0766591i 0.00250005 0.00297944i
\(663\) 7.62720 + 1.52827i 0.296216 + 0.0593531i
\(664\) 40.3194 + 14.6750i 1.56469 + 0.569502i
\(665\) 0 0
\(666\) −5.73480 + 4.37496i −0.222219 + 0.169526i
\(667\) −2.45950 + 1.41999i −0.0952320 + 0.0549822i
\(668\) 26.0670 4.59632i 1.00856 0.177837i
\(669\) 0.340442 + 0.132941i 0.0131623 + 0.00513980i
\(670\) 0 0
\(671\) −2.29386 + 13.0091i −0.0885536 + 0.502213i
\(672\) −1.15937 + 49.9216i −0.0447235 + 1.92577i
\(673\) −13.6066 16.2157i −0.524496 0.625070i 0.437142 0.899393i \(-0.355991\pi\)
−0.961638 + 0.274322i \(0.911546\pi\)
\(674\) 9.53765 0.367376
\(675\) 0 0
\(676\) 17.2999 0.665383
\(677\) −4.85067 5.78080i −0.186426 0.222174i 0.664734 0.747080i \(-0.268545\pi\)
−0.851160 + 0.524906i \(0.824100\pi\)
\(678\) −12.1086 + 6.62093i −0.465029 + 0.254275i
\(679\) −13.0307 + 73.9010i −0.500074 + 2.83606i
\(680\) 0 0
\(681\) −9.53457 + 7.63033i −0.365365 + 0.292395i
\(682\) −21.1549 + 3.73019i −0.810065 + 0.142836i
\(683\) 2.15819 1.24603i 0.0825810 0.0476781i −0.458141 0.888880i \(-0.651484\pi\)
0.540722 + 0.841201i \(0.318151\pi\)
\(684\) −13.3532 12.3050i −0.510571 0.470495i
\(685\) 0 0
\(686\) 36.8275 + 13.4041i 1.40608 + 0.511772i
\(687\) −12.3480 36.5445i −0.471107 1.39426i
\(688\) −0.202194 + 0.240965i −0.00770857 + 0.00918671i
\(689\) 7.71529 + 6.47389i 0.293929 + 0.246636i
\(690\) 0 0
\(691\) 40.1126 + 14.5998i 1.52595 + 0.555402i 0.962627 0.270831i \(-0.0872986\pi\)
0.563328 + 0.826234i \(0.309521\pi\)
\(692\) 0.709196 + 0.409455i 0.0269596 + 0.0155651i
\(693\) −14.8610 47.5983i −0.564522 1.80811i
\(694\) −2.30250 3.98805i −0.0874018 0.151384i
\(695\) 0 0
\(696\) 8.18986 6.55419i 0.310436 0.248436i
\(697\) 11.6057 + 31.8865i 0.439598 + 1.20779i
\(698\) −22.5098 3.96909i −0.852010 0.150232i
\(699\) −11.2649 20.6017i −0.426077 0.779227i
\(700\) 0 0
\(701\) −0.600532 −0.0226818 −0.0113409 0.999936i \(-0.503610\pi\)
−0.0113409 + 0.999936i \(0.503610\pi\)
\(702\) −0.220345 + 3.15808i −0.00831637 + 0.119194i
\(703\) 13.4150i 0.505956i
\(704\) −7.90321 + 6.63158i −0.297863 + 0.249937i
\(705\) 0 0
\(706\) 0.794610 4.50646i 0.0299055 0.169603i
\(707\) 31.5696 + 86.7369i 1.18730 + 3.26208i
\(708\) 6.50765 16.6651i 0.244573 0.626314i
\(709\) −8.93134 50.6521i −0.335423 1.90228i −0.423012 0.906124i \(-0.639027\pi\)
0.0875888 0.996157i \(-0.472084\pi\)
\(710\) 0 0
\(711\) −4.74624 1.98158i −0.177998 0.0743149i
\(712\) −5.05032 2.91580i −0.189269 0.109274i
\(713\) 3.46725 9.52618i 0.129849 0.356758i
\(714\) 7.44963 37.1791i 0.278795 1.39139i
\(715\) 0 0
\(716\) −21.4190 17.9727i −0.800465 0.671670i
\(717\) 6.98653 7.94410i 0.260917 0.296678i
\(718\) 5.33604 14.6606i 0.199139 0.547130i
\(719\) 2.39613 4.15021i 0.0893604 0.154777i −0.817881 0.575388i \(-0.804851\pi\)
0.907241 + 0.420611i \(0.138184\pi\)
\(720\) 0 0
\(721\) 3.41574 + 5.91623i 0.127209 + 0.220332i
\(722\) 0.172274 0.0303766i 0.00641139 0.00113050i
\(723\) 32.9689 5.02705i 1.22613 0.186958i
\(724\) 19.0400 6.92999i 0.707616 0.257551i
\(725\) 0 0
\(726\) 0.275206 0.452093i 0.0102138 0.0167788i
\(727\) −10.1481 12.0941i −0.376373 0.448544i 0.544293 0.838895i \(-0.316798\pi\)
−0.920666 + 0.390351i \(0.872354\pi\)
\(728\) 10.1911i 0.377706i
\(729\) −26.7384 3.74942i −0.990311 0.138867i
\(730\) 0 0
\(731\) 1.85129 1.55342i 0.0684726 0.0574553i
\(732\) 8.08809 + 4.92351i 0.298944 + 0.181978i
\(733\) 2.52244 + 0.444773i 0.0931683 + 0.0164281i 0.220038 0.975491i \(-0.429382\pi\)
−0.126870 + 0.991919i \(0.540493\pi\)
\(734\) 17.1972 6.25927i 0.634761 0.231034i
\(735\) 0 0
\(736\) −1.25768 7.13266i −0.0463587 0.262913i
\(737\) −9.35900 + 5.40342i −0.344743 + 0.199038i
\(738\) −12.2672 + 6.34224i −0.451564 + 0.233461i
\(739\) −12.4456 + 21.5564i −0.457818 + 0.792964i −0.998845 0.0480413i \(-0.984702\pi\)
0.541028 + 0.841005i \(0.318035\pi\)
\(740\) 0 0
\(741\) −4.42119 3.88827i −0.162416 0.142839i
\(742\) 31.5573 37.6085i 1.15851 1.38065i
\(743\) −0.918468 + 1.09459i −0.0336953 + 0.0401565i −0.782629 0.622489i \(-0.786122\pi\)
0.748934 + 0.662645i \(0.230566\pi\)
\(744\) −7.35637 + 36.7137i −0.269697 + 1.34599i
\(745\) 0 0
\(746\) −5.57974 + 9.66440i −0.204289 + 0.353839i
\(747\) −18.7993 + 45.0277i −0.687830 + 1.64748i
\(748\) −23.3762 + 13.4963i −0.854720 + 0.493473i
\(749\) 5.81296 + 32.9670i 0.212401 + 1.20459i
\(750\) 0 0
\(751\) 24.5964 8.95234i 0.897534 0.326676i 0.148270 0.988947i \(-0.452630\pi\)
0.749264 + 0.662271i \(0.230407\pi\)
\(752\) 5.89250 + 1.03901i 0.214878 + 0.0378887i
\(753\) −0.0559513 + 2.40923i −0.00203898 + 0.0877971i
\(754\) 1.07145 0.899049i 0.0390197 0.0327414i
\(755\) 0 0
\(756\) −35.6560 2.48778i −1.29680 0.0904797i
\(757\) 13.5023i 0.490750i −0.969428 0.245375i \(-0.921089\pi\)
0.969428 0.245375i \(-0.0789111\pi\)
\(758\) −16.2908 19.4146i −0.591707 0.705169i
\(759\) 3.46982 + 6.34574i 0.125946 + 0.230336i
\(760\) 0 0
\(761\) −38.1386 + 13.8813i −1.38252 + 0.503197i −0.922942 0.384939i \(-0.874222\pi\)
−0.459580 + 0.888136i \(0.652000\pi\)
\(762\) −14.9528 18.6845i −0.541683 0.676866i
\(763\) −17.9778 + 3.16997i −0.650839 + 0.114761i
\(764\) 2.75228 + 4.76708i 0.0995739 + 0.172467i
\(765\) 0 0
\(766\) −2.13131 + 3.69154i −0.0770074 + 0.133381i
\(767\) 1.98406 5.45115i 0.0716401 0.196830i
\(768\) 7.40912 + 21.9276i 0.267354 + 0.791243i
\(769\) 13.6615 + 11.4634i 0.492647 + 0.413380i 0.854974 0.518671i \(-0.173573\pi\)
−0.362327 + 0.932051i \(0.618018\pi\)
\(770\) 0 0
\(771\) −6.85448 + 2.31606i −0.246858 + 0.0834110i
\(772\) −2.88801 + 7.93475i −0.103942 + 0.285578i
\(773\) 21.3604 + 12.3324i 0.768279 + 0.443566i 0.832260 0.554385i \(-0.187046\pi\)
−0.0639812 + 0.997951i \(0.520380\pi\)
\(774\) 0.723266 + 0.666494i 0.0259973 + 0.0239566i
\(775\) 0 0
\(776\) 6.98081 + 39.5902i 0.250597 + 1.42120i
\(777\) −16.4993 20.6169i −0.591909 0.739626i
\(778\) −4.64930 12.7738i −0.166685 0.457965i
\(779\) 4.45992 25.2935i 0.159793 0.906233i
\(780\) 0 0
\(781\) 25.4815 21.3816i 0.911801 0.765092i
\(782\) 5.49973i 0.196670i
\(783\) 7.01314 + 9.64963i 0.250629 + 0.344850i
\(784\) −12.8521 −0.459005
\(785\) 0 0
\(786\) −8.11047 0.188356i −0.289291 0.00671842i
\(787\) 1.27156 + 0.224210i 0.0453261 + 0.00799222i 0.196265 0.980551i \(-0.437119\pi\)
−0.150939 + 0.988543i \(0.548230\pi\)
\(788\) −0.383117 1.05261i −0.0136480 0.0374975i
\(789\) 14.0874 + 5.50106i 0.501525 + 0.195843i
\(790\) 0 0
\(791\) −25.2611 43.7535i −0.898180 1.55569i
\(792\) −16.2025 21.2386i −0.575730 0.754681i
\(793\) 2.65889 + 1.53511i 0.0944201 + 0.0545135i
\(794\) 3.23051 + 1.17581i 0.114647 + 0.0417280i
\(795\) 0 0
\(796\) −4.96479 4.16595i −0.175972 0.147658i
\(797\) −13.5891 + 16.1949i −0.481351 + 0.573652i −0.950996 0.309203i \(-0.899938\pi\)
0.469645 + 0.882856i \(0.344382\pi\)
\(798\) −18.9535 + 21.5513i −0.670948 + 0.762907i
\(799\) −43.1972 15.7225i −1.52821 0.556222i
\(800\) 0 0
\(801\) 3.57895 5.58319i 0.126456 0.197272i
\(802\) 22.0850 12.7508i 0.779847 0.450245i
\(803\) 11.8210 2.08437i 0.417155 0.0735557i
\(804\) 1.16766 + 7.65783i 0.0411801 + 0.270071i
\(805\) 0 0
\(806\) −0.866969 + 4.91683i −0.0305377 + 0.173188i
\(807\) 5.28654 + 3.21811i 0.186095 + 0.113283i
\(808\) 31.7850 + 37.8799i 1.11819 + 1.33261i
\(809\) 41.8122 1.47004 0.735019 0.678047i \(-0.237173\pi\)
0.735019 + 0.678047i \(0.237173\pi\)
\(810\) 0 0
\(811\) 1.20717 0.0423894 0.0211947 0.999775i \(-0.493253\pi\)
0.0211947 + 0.999775i \(0.493253\pi\)
\(812\) 10.1506 + 12.0970i 0.356217 + 0.424523i
\(813\) 20.6721 + 12.5838i 0.725001 + 0.441334i
\(814\) 1.40928 7.99241i 0.0493951 0.280134i
\(815\) 0 0
\(816\) 1.11368 + 7.30383i 0.0389866 + 0.255685i
\(817\) −1.80140 + 0.317635i −0.0630229 + 0.0111126i
\(818\) 17.8371 10.2982i 0.623659 0.360070i
\(819\) −11.5770 0.538011i −0.404532 0.0187996i
\(820\) 0 0
\(821\) 14.8150 + 5.39222i 0.517047 + 0.188190i 0.587346 0.809336i \(-0.300173\pi\)
−0.0702986 + 0.997526i \(0.522395\pi\)
\(822\) 13.3627 15.1942i 0.466079 0.529960i
\(823\) 18.1599 21.6421i 0.633015 0.754398i −0.350235 0.936662i \(-0.613898\pi\)
0.983250 + 0.182264i \(0.0583427\pi\)
\(824\) 2.80353 + 2.35244i 0.0976656 + 0.0819512i
\(825\) 0 0
\(826\) −26.5719 9.67138i −0.924554 0.336510i
\(827\) −16.4770 9.51297i −0.572960 0.330799i 0.185371 0.982669i \(-0.440651\pi\)
−0.758331 + 0.651870i \(0.773985\pi\)
\(828\) 5.14173 0.662249i 0.178687 0.0230148i
\(829\) −8.50721 14.7349i −0.295468 0.511765i 0.679626 0.733559i \(-0.262142\pi\)
−0.975094 + 0.221794i \(0.928809\pi\)
\(830\) 0 0
\(831\) 31.3323 + 12.2351i 1.08691 + 0.424431i
\(832\) 0.820114 + 2.25324i 0.0284323 + 0.0781172i
\(833\) 97.2407 + 17.1462i 3.36919 + 0.594079i
\(834\) −11.4770 0.266540i −0.397417 0.00922952i
\(835\) 0 0
\(836\) 20.4306 0.706606
\(837\) −41.3181 10.2950i −1.42816 0.355846i
\(838\) 21.3864i 0.738780i
\(839\) −0.767986 + 0.644416i −0.0265138 + 0.0222477i −0.655948 0.754806i \(-0.727731\pi\)
0.629434 + 0.777054i \(0.283287\pi\)
\(840\) 0 0
\(841\) −4.12061 + 23.3691i −0.142090 + 0.805832i
\(842\) 7.21601 + 19.8258i 0.248680 + 0.683243i
\(843\) 21.6472 + 27.0495i 0.745569 + 0.931634i
\(844\) −1.52416 8.64394i −0.0524637 0.297537i
\(845\) 0 0
\(846\) 4.10046 18.2534i 0.140977 0.627566i
\(847\) 1.67800 + 0.968796i 0.0576569 + 0.0332882i
\(848\) −3.27174 + 8.98902i −0.112352 + 0.308684i
\(849\) 17.9548 6.06675i 0.616207 0.208210i
\(850\) 0 0
\(851\) 2.93395 + 2.46188i 0.100574 + 0.0843920i
\(852\) −7.63255 22.5888i −0.261487 0.773880i
\(853\) 10.1529 27.8950i 0.347630 0.955106i −0.635484 0.772114i \(-0.719200\pi\)
0.983114 0.182992i \(-0.0585783\pi\)
\(854\) 7.48298 12.9609i 0.256062 0.443513i
\(855\) 0 0
\(856\) 8.96674 + 15.5308i 0.306477 + 0.530833i
\(857\) 33.9292 5.98263i 1.15900 0.204363i 0.439097 0.898439i \(-0.355298\pi\)
0.719901 + 0.694077i \(0.244187\pi\)
\(858\) −2.22559 2.78102i −0.0759805 0.0949423i
\(859\) −21.6343 + 7.87422i −0.738151 + 0.268665i −0.683611 0.729847i \(-0.739592\pi\)
−0.0545401 + 0.998512i \(0.517369\pi\)
\(860\) 0 0
\(861\) −24.2546 44.3577i −0.826593 1.51171i
\(862\) −3.22993 3.84928i −0.110012 0.131107i
\(863\) 17.0095i 0.579009i 0.957177 + 0.289504i \(0.0934905\pi\)
−0.957177 + 0.289504i \(0.906509\pi\)
\(864\) −29.2421 + 8.38993i −0.994837 + 0.285431i
\(865\) 0 0
\(866\) 11.2884 9.47209i 0.383595 0.321875i
\(867\) 0.634250 27.3104i 0.0215403 0.927510i
\(868\) −55.5130 9.78843i −1.88423 0.332241i
\(869\) 5.43793 1.97924i 0.184469 0.0671412i
\(870\) 0 0
\(871\) 0.436156 + 2.47357i 0.0147786 + 0.0838136i
\(872\) −8.46939 + 4.88981i −0.286810 + 0.165590i
\(873\) −45.3426 + 5.84008i −1.53462 + 0.197657i
\(874\) 2.08136 3.60502i 0.0704031 0.121942i
\(875\) 0 0
\(876\) 1.69040 8.43633i 0.0571133 0.285037i
\(877\) 9.26361 11.0399i 0.312810 0.372792i −0.586616 0.809865i \(-0.699540\pi\)
0.899426 + 0.437073i \(0.143985\pi\)
\(878\) −14.7445 + 17.5718i −0.497604 + 0.593021i
\(879\) −8.33685 7.33194i −0.281195 0.247300i
\(880\) 0 0
\(881\) −3.76414 + 6.51968i −0.126817 + 0.219654i −0.922442 0.386136i \(-0.873809\pi\)
0.795625 + 0.605790i \(0.207143\pi\)
\(882\) −1.86548 + 40.1415i −0.0628140 + 1.35163i
\(883\) −28.8410 + 16.6514i −0.970578 + 0.560363i −0.899412 0.437101i \(-0.856005\pi\)
−0.0711656 + 0.997465i \(0.522672\pi\)
\(884\) 1.08940 + 6.17829i 0.0366405 + 0.207799i
\(885\) 0 0
\(886\) −9.99901 + 3.63934i −0.335923 + 0.122266i
\(887\) −16.6274 2.93186i −0.558294 0.0984423i −0.112621 0.993638i \(-0.535925\pi\)
−0.445673 + 0.895196i \(0.647036\pi\)
\(888\) −12.0835 7.35566i −0.405495 0.246840i
\(889\) 67.1121 56.3137i 2.25087 1.88870i
\(890\) 0 0
\(891\) 24.9823 17.2846i 0.836937 0.579057i
\(892\) 0.294758i 0.00986924i
\(893\) 22.3652 + 26.6538i 0.748424 + 0.891937i
\(894\) −6.91292 + 11.3562i −0.231203 + 0.379807i
\(895\) 0 0
\(896\) −43.1992 + 15.7232i −1.44318 + 0.525275i
\(897\) 1.66175 0.253382i 0.0554843 0.00846018i
\(898\) 24.8159 4.37571i 0.828116 0.146019i
\(899\) 9.40648 + 16.2925i 0.313724 + 0.543386i
\(900\) 0 0
\(901\) 36.7467 63.6471i 1.22421 2.12039i
\(902\) 5.31428 14.6009i 0.176946 0.486156i
\(903\) −2.37782 + 2.70372i −0.0791289 + 0.0899742i
\(904\) −20.7335 17.3975i −0.689586 0.578631i
\(905\) 0 0
\(906\) 0.897056 4.47697i 0.0298027 0.148737i
\(907\) −2.57952 + 7.08716i −0.0856514 + 0.235325i −0.975123 0.221666i \(-0.928851\pi\)
0.889471 + 0.456991i \(0.151073\pi\)
\(908\) −8.52938 4.92444i −0.283057 0.163423i
\(909\) −44.7093 + 34.1078i −1.48291 + 1.13128i
\(910\) 0 0
\(911\) 1.57637 + 8.94003i 0.0522274 + 0.296196i 0.999722 0.0235753i \(-0.00750494\pi\)
−0.947495 + 0.319772i \(0.896394\pi\)
\(912\) 2.03411 5.20906i 0.0673562 0.172489i
\(913\) −18.7772 51.5898i −0.621434 1.70737i
\(914\) 2.24461 12.7298i 0.0742451 0.421065i
\(915\) 0 0
\(916\) 23.8318 19.9972i 0.787423 0.660727i
\(917\) 29.6994i 0.980761i
\(918\) 22.9739 2.41824i 0.758252 0.0798139i
\(919\) 27.0698 0.892951 0.446475 0.894796i \(-0.352679\pi\)
0.446475 + 0.894796i \(0.352679\pi\)
\(920\) 0 0
\(921\) −9.46100 17.3026i −0.311750 0.570141i
\(922\) −25.2516 4.45253i −0.831616 0.146636i
\(923\) −2.64421 7.26492i −0.0870353 0.239128i
\(924\) 31.3988 25.1279i 1.03294 0.826646i
\(925\) 0 0
\(926\) 13.2008 + 22.8645i 0.433807 + 0.751375i
\(927\) −2.82036 + 3.06060i −0.0926328 + 0.100523i
\(928\) 11.6400 + 6.72039i 0.382103 + 0.220607i
\(929\) 30.5625 + 11.1238i 1.00272 + 0.364962i 0.790634 0.612289i \(-0.209751\pi\)
0.212090 + 0.977250i \(0.431973\pi\)
\(930\) 0 0
\(931\) −57.2515 48.0397i −1.87634 1.57444i
\(932\) 12.1724 14.5065i 0.398720 0.475176i
\(933\) 1.15027 + 3.40427i 0.0376582 + 0.111451i
\(934\) −1.30461 0.474840i −0.0426882 0.0155372i
\(935\) 0 0
\(936\) −5.92655 + 1.85037i −0.193715 + 0.0604811i
\(937\) −18.8358 + 10.8749i −0.615340 + 0.355267i −0.775052 0.631897i \(-0.782277\pi\)
0.159713 + 0.987164i \(0.448943\pi\)
\(938\) 12.0575 2.12606i 0.393692 0.0694185i
\(939\) 32.5360 26.0380i 1.06177 0.849717i
\(940\) 0 0
\(941\) 0.523029 2.96625i 0.0170503 0.0966969i −0.975095 0.221787i \(-0.928811\pi\)
0.992145 + 0.125090i \(0.0399221\pi\)
\(942\) 25.5049 13.9459i 0.830994 0.454383i
\(943\) 4.71338 + 5.61719i 0.153489 + 0.182921i
\(944\) 5.50974 0.179327
\(945\) 0 0
\(946\) −1.10661 −0.0359789
\(947\) 10.6073 + 12.6413i 0.344692 + 0.410787i 0.910341 0.413858i \(-0.135819\pi\)
−0.565650 + 0.824646i \(0.691375\pi\)
\(948\) 0.0963076 4.14694i 0.00312793 0.134686i
\(949\) 0.484448 2.74744i 0.0157258 0.0891857i
\(950\) 0 0
\(951\) −11.8857 4.64128i −0.385419 0.150504i
\(952\) 73.2353 12.9134i 2.37357 0.418524i
\(953\) 24.2702 14.0124i 0.786190 0.453907i −0.0524298 0.998625i \(-0.516697\pi\)
0.838619 + 0.544718i \(0.183363\pi\)
\(954\) 27.6008 + 11.5235i 0.893609 + 0.373086i
\(955\) 0 0
\(956\) 8.01761 + 2.91817i 0.259308 + 0.0943804i
\(957\) −13.1602 2.63692i −0.425407 0.0852394i
\(958\) 9.27803 11.0571i 0.299760 0.357240i
\(959\) 56.7450 + 47.6147i 1.83239 + 1.53756i
\(960\) 0 0
\(961\) −33.9741 12.3656i −1.09594 0.398889i
\(962\) −1.63354 0.943125i −0.0526675 0.0304076i
\(963\) −18.1163 + 9.36623i −0.583789 + 0.301823i
\(964\) 13.4484 + 23.2932i 0.433142 + 0.750225i
\(965\) 0 0
\(966\) −1.23512 8.10029i −0.0397394 0.260623i
\(967\) −4.22850 11.6177i −0.135979 0.373601i 0.852949 0.521995i \(-0.174812\pi\)
−0.988928 + 0.148394i \(0.952590\pi\)
\(968\) 1.02223 + 0.180248i 0.0328559 + 0.00579338i
\(969\) −22.3398 + 36.6986i −0.717657 + 1.17893i
\(970\) 0 0
\(971\) −24.0943 −0.773224 −0.386612 0.922242i \(-0.626355\pi\)
−0.386612 + 0.922242i \(0.626355\pi\)
\(972\) −5.02723 21.1872i −0.161248 0.679581i
\(973\) 42.0273i 1.34733i
\(974\) −10.0561 + 8.43808i −0.322219 + 0.270374i
\(975\) 0 0
\(976\) −0.506371 + 2.87177i −0.0162086 + 0.0919233i
\(977\) 14.5207 + 39.8952i 0.464558 + 1.27636i 0.922023 + 0.387134i \(0.126535\pi\)
−0.457466 + 0.889227i \(0.651243\pi\)
\(978\) 8.81269 1.34375i 0.281799 0.0429684i
\(979\) 1.29571 + 7.34835i 0.0414112 + 0.234854i
\(980\) 0 0
\(981\) −5.10766 9.87930i −0.163075 0.315422i
\(982\) −0.734902 0.424296i −0.0234517 0.0135398i
\(983\) 17.6012 48.3589i 0.561392 1.54241i −0.256207 0.966622i \(-0.582473\pi\)
0.817598 0.575789i \(-0.195305\pi\)
\(984\) −20.3375 17.8861i −0.648337 0.570187i
\(985\) 0 0
\(986\) −7.81843 6.56044i −0.248990 0.208927i
\(987\) 67.1540 + 13.4557i 2.13754 + 0.428301i
\(988\) 1.62407 4.46210i 0.0516686 0.141958i
\(989\) 0.261118 0.452269i 0.00830306 0.0143813i
\(990\) 0 0
\(991\) −16.2637 28.1695i −0.516632 0.894833i −0.999813 0.0193130i \(-0.993852\pi\)
0.483181 0.875520i \(-0.339481\pi\)
\(992\) −47.2491 + 8.33128i −1.50016 + 0.264519i
\(993\) −0.0811844 + 0.207901i −0.00257631 + 0.00659755i
\(994\) −35.4132 + 12.8893i −1.12324 + 0.408825i
\(995\) 0 0
\(996\) −39.3422 0.913674i −1.24661 0.0289509i
\(997\) 5.40517 + 6.44164i 0.171184 + 0.204009i 0.844815 0.535059i \(-0.179711\pi\)
−0.673631 + 0.739068i \(0.735266\pi\)
\(998\) 1.12022i 0.0354598i
\(999\) 8.99388 13.3384i 0.284554 0.422009i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.14 132
5.2 odd 4 675.2.l.f.76.5 66
5.3 odd 4 675.2.l.g.76.7 yes 66
5.4 even 2 inner 675.2.u.e.49.9 132
27.16 even 9 inner 675.2.u.e.124.9 132
135.43 odd 36 675.2.l.g.151.7 yes 66
135.97 odd 36 675.2.l.f.151.5 yes 66
135.124 even 18 inner 675.2.u.e.124.14 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.5 66 5.2 odd 4
675.2.l.f.151.5 yes 66 135.97 odd 36
675.2.l.g.76.7 yes 66 5.3 odd 4
675.2.l.g.151.7 yes 66 135.43 odd 36
675.2.u.e.49.9 132 5.4 even 2 inner
675.2.u.e.49.14 132 1.1 even 1 trivial
675.2.u.e.124.9 132 27.16 even 9 inner
675.2.u.e.124.14 132 135.124 even 18 inner