Properties

Label 675.2.u.e.49.12
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.12
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.163444 + 0.194784i) q^{2} +(0.154950 + 1.72511i) q^{3} +(0.336069 - 1.90594i) q^{4} +(-0.310698 + 0.312139i) q^{6} +(2.55151 - 0.449901i) q^{7} +(0.866590 - 0.500326i) q^{8} +(-2.95198 + 0.534610i) q^{9} +(2.07133 + 0.753901i) q^{11} +(3.34003 + 0.284429i) q^{12} +(0.932020 - 1.11074i) q^{13} +(0.504662 + 0.423462i) q^{14} +(-3.39816 - 1.23683i) q^{16} +(2.04069 + 1.17819i) q^{17} +(-0.586616 - 0.487621i) q^{18} +(-2.22207 - 3.84874i) q^{19} +(1.17148 + 4.33192i) q^{21} +(0.191697 + 0.526682i) q^{22} +(6.94755 + 1.22504i) q^{23} +(0.997394 + 1.41743i) q^{24} +0.368687 q^{26} +(-1.37967 - 5.00964i) q^{27} -5.01424i q^{28} +(4.88786 - 4.10140i) q^{29} +(-1.13861 + 6.45736i) q^{31} +(-0.998979 - 2.74467i) q^{32} +(-0.979608 + 3.69007i) q^{33} +(0.104044 + 0.590063i) q^{34} +(0.0268659 + 5.80597i) q^{36} +(3.93474 + 2.27172i) q^{37} +(0.386492 - 1.06188i) q^{38} +(2.06056 + 1.43572i) q^{39} +(5.08374 + 4.26577i) q^{41} +(-0.652319 + 0.936211i) q^{42} +(2.10913 - 5.79479i) q^{43} +(2.13300 - 3.69447i) q^{44} +(0.896913 + 1.55350i) q^{46} +(-9.40977 + 1.65920i) q^{47} +(1.60712 - 6.05384i) q^{48} +(-0.270040 + 0.0982866i) q^{49} +(-1.71630 + 3.70297i) q^{51} +(-1.80378 - 2.14966i) q^{52} +13.3683i q^{53} +(0.750303 - 1.08753i) q^{54} +(1.98602 - 1.66647i) q^{56} +(6.29518 - 4.42967i) q^{57} +(1.59778 + 0.281731i) q^{58} +(-3.10061 + 1.12853i) q^{59} +(-1.57865 - 8.95295i) q^{61} +(-1.44389 + 0.833631i) q^{62} +(-7.29150 + 2.69216i) q^{63} +(-3.24491 + 5.62035i) q^{64} +(-0.878880 + 0.412306i) q^{66} +(-3.43334 + 4.09170i) q^{67} +(2.93138 - 3.49349i) q^{68} +(-1.03680 + 12.1751i) q^{69} +(-1.67410 + 2.89963i) q^{71} +(-2.29068 + 1.94024i) q^{72} +(4.41805 - 2.55076i) q^{73} +(0.200612 + 1.13773i) q^{74} +(-8.08225 + 2.94170i) q^{76} +(5.62420 + 0.991698i) q^{77} +(0.0571280 + 0.636024i) q^{78} +(-3.14132 + 2.63588i) q^{79} +(8.42838 - 3.15632i) q^{81} +1.68745i q^{82} +(2.22867 + 2.65602i) q^{83} +(8.65009 - 0.776955i) q^{84} +(1.47346 - 0.536295i) q^{86} +(7.83272 + 7.79656i) q^{87} +(2.17219 - 0.383015i) q^{88} +(-7.60791 - 13.1773i) q^{89} +(1.87834 - 3.25338i) q^{91} +(4.66971 - 12.8299i) q^{92} +(-11.3161 - 0.963650i) q^{93} +(-1.86115 - 1.56169i) q^{94} +(4.58006 - 2.14863i) q^{96} +(-1.43431 + 3.94072i) q^{97} +(-0.0632810 - 0.0365353i) q^{98} +(-6.51756 - 1.11815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.163444 + 0.194784i 0.115572 + 0.137733i 0.820729 0.571318i \(-0.193568\pi\)
−0.705157 + 0.709052i \(0.749123\pi\)
\(3\) 0.154950 + 1.72511i 0.0894603 + 0.995990i
\(4\) 0.336069 1.90594i 0.168035 0.952971i
\(5\) 0 0
\(6\) −0.310698 + 0.312139i −0.126842 + 0.127430i
\(7\) 2.55151 0.449901i 0.964381 0.170046i 0.330781 0.943707i \(-0.392688\pi\)
0.633600 + 0.773661i \(0.281577\pi\)
\(8\) 0.866590 0.500326i 0.306386 0.176892i
\(9\) −2.95198 + 0.534610i −0.983994 + 0.178203i
\(10\) 0 0
\(11\) 2.07133 + 0.753901i 0.624528 + 0.227310i 0.634848 0.772637i \(-0.281063\pi\)
−0.0103197 + 0.999947i \(0.503285\pi\)
\(12\) 3.34003 + 0.284429i 0.964183 + 0.0821077i
\(13\) 0.932020 1.11074i 0.258496 0.308063i −0.621151 0.783691i \(-0.713335\pi\)
0.879647 + 0.475628i \(0.157779\pi\)
\(14\) 0.504662 + 0.423462i 0.134877 + 0.113175i
\(15\) 0 0
\(16\) −3.39816 1.23683i −0.849541 0.309208i
\(17\) 2.04069 + 1.17819i 0.494940 + 0.285754i 0.726622 0.687038i \(-0.241089\pi\)
−0.231681 + 0.972792i \(0.574423\pi\)
\(18\) −0.586616 0.487621i −0.138267 0.114933i
\(19\) −2.22207 3.84874i −0.509778 0.882962i −0.999936 0.0113281i \(-0.996394\pi\)
0.490157 0.871634i \(-0.336939\pi\)
\(20\) 0 0
\(21\) 1.17148 + 4.33192i 0.255638 + 0.945302i
\(22\) 0.191697 + 0.526682i 0.0408699 + 0.112289i
\(23\) 6.94755 + 1.22504i 1.44866 + 0.255439i 0.841982 0.539506i \(-0.181389\pi\)
0.606682 + 0.794944i \(0.292500\pi\)
\(24\) 0.997394 + 1.41743i 0.203592 + 0.289333i
\(25\) 0 0
\(26\) 0.368687 0.0723055
\(27\) −1.37967 5.00964i −0.265517 0.964106i
\(28\) 5.01424i 0.947602i
\(29\) 4.88786 4.10140i 0.907652 0.761611i −0.0640188 0.997949i \(-0.520392\pi\)
0.971671 + 0.236338i \(0.0759473\pi\)
\(30\) 0 0
\(31\) −1.13861 + 6.45736i −0.204500 + 1.15978i 0.693725 + 0.720240i \(0.255968\pi\)
−0.898225 + 0.439536i \(0.855143\pi\)
\(32\) −0.998979 2.74467i −0.176596 0.485194i
\(33\) −0.979608 + 3.69007i −0.170528 + 0.642359i
\(34\) 0.104044 + 0.590063i 0.0178434 + 0.101195i
\(35\) 0 0
\(36\) 0.0268659 + 5.80597i 0.00447766 + 0.967662i
\(37\) 3.93474 + 2.27172i 0.646868 + 0.373469i 0.787255 0.616627i \(-0.211501\pi\)
−0.140387 + 0.990097i \(0.544835\pi\)
\(38\) 0.386492 1.06188i 0.0626972 0.172259i
\(39\) 2.06056 + 1.43572i 0.329953 + 0.229900i
\(40\) 0 0
\(41\) 5.08374 + 4.26577i 0.793947 + 0.666201i 0.946719 0.322061i \(-0.104375\pi\)
−0.152772 + 0.988262i \(0.548820\pi\)
\(42\) −0.652319 + 0.936211i −0.100655 + 0.144460i
\(43\) 2.10913 5.79479i 0.321640 0.883697i −0.668512 0.743701i \(-0.733069\pi\)
0.990152 0.139996i \(-0.0447091\pi\)
\(44\) 2.13300 3.69447i 0.321562 0.556962i
\(45\) 0 0
\(46\) 0.896913 + 1.55350i 0.132243 + 0.229051i
\(47\) −9.40977 + 1.65920i −1.37256 + 0.242019i −0.810819 0.585297i \(-0.800978\pi\)
−0.561737 + 0.827316i \(0.689867\pi\)
\(48\) 1.60712 6.05384i 0.231968 0.873797i
\(49\) −0.270040 + 0.0982866i −0.0385772 + 0.0140409i
\(50\) 0 0
\(51\) −1.71630 + 3.70297i −0.240331 + 0.518519i
\(52\) −1.80378 2.14966i −0.250139 0.298104i
\(53\) 13.3683i 1.83627i 0.396263 + 0.918137i \(0.370307\pi\)
−0.396263 + 0.918137i \(0.629693\pi\)
\(54\) 0.750303 1.08753i 0.102103 0.147994i
\(55\) 0 0
\(56\) 1.98602 1.66647i 0.265393 0.222691i
\(57\) 6.29518 4.42967i 0.833817 0.586724i
\(58\) 1.59778 + 0.281731i 0.209798 + 0.0369931i
\(59\) −3.10061 + 1.12853i −0.403665 + 0.146922i −0.535870 0.844300i \(-0.680016\pi\)
0.132205 + 0.991222i \(0.457794\pi\)
\(60\) 0 0
\(61\) −1.57865 8.95295i −0.202125 1.14631i −0.901900 0.431945i \(-0.857828\pi\)
0.699775 0.714363i \(-0.253284\pi\)
\(62\) −1.44389 + 0.833631i −0.183374 + 0.105871i
\(63\) −7.29150 + 2.69216i −0.918642 + 0.339181i
\(64\) −3.24491 + 5.62035i −0.405614 + 0.702543i
\(65\) 0 0
\(66\) −0.878880 + 0.412306i −0.108183 + 0.0507514i
\(67\) −3.43334 + 4.09170i −0.419450 + 0.499881i −0.933848 0.357671i \(-0.883571\pi\)
0.514398 + 0.857552i \(0.328015\pi\)
\(68\) 2.93138 3.49349i 0.355482 0.423647i
\(69\) −1.03680 + 12.1751i −0.124816 + 1.46571i
\(70\) 0 0
\(71\) −1.67410 + 2.89963i −0.198680 + 0.344123i −0.948101 0.317971i \(-0.896999\pi\)
0.749421 + 0.662094i \(0.230332\pi\)
\(72\) −2.29068 + 1.94024i −0.269959 + 0.228660i
\(73\) 4.41805 2.55076i 0.517094 0.298544i −0.218651 0.975803i \(-0.570166\pi\)
0.735745 + 0.677259i \(0.236832\pi\)
\(74\) 0.200612 + 1.13773i 0.0233206 + 0.132258i
\(75\) 0 0
\(76\) −8.08225 + 2.94170i −0.927098 + 0.337436i
\(77\) 5.62420 + 0.991698i 0.640937 + 0.113014i
\(78\) 0.0571280 + 0.636024i 0.00646847 + 0.0720156i
\(79\) −3.14132 + 2.63588i −0.353426 + 0.296560i −0.802164 0.597104i \(-0.796318\pi\)
0.448738 + 0.893663i \(0.351874\pi\)
\(80\) 0 0
\(81\) 8.42838 3.15632i 0.936487 0.350702i
\(82\) 1.68745i 0.186347i
\(83\) 2.22867 + 2.65602i 0.244628 + 0.291536i 0.874362 0.485275i \(-0.161280\pi\)
−0.629734 + 0.776811i \(0.716836\pi\)
\(84\) 8.65009 0.776955i 0.943802 0.0847727i
\(85\) 0 0
\(86\) 1.47346 0.536295i 0.158887 0.0578302i
\(87\) 7.83272 + 7.79656i 0.839756 + 0.835879i
\(88\) 2.17219 0.383015i 0.231556 0.0408296i
\(89\) −7.60791 13.1773i −0.806437 1.39679i −0.915317 0.402734i \(-0.868060\pi\)
0.108880 0.994055i \(-0.465274\pi\)
\(90\) 0 0
\(91\) 1.87834 3.25338i 0.196903 0.341047i
\(92\) 4.66971 12.8299i 0.486851 1.33761i
\(93\) −11.3161 0.963650i −1.17342 0.0999259i
\(94\) −1.86115 1.56169i −0.191963 0.161076i
\(95\) 0 0
\(96\) 4.58006 2.14863i 0.467450 0.219294i
\(97\) −1.43431 + 3.94072i −0.145632 + 0.400120i −0.990965 0.134119i \(-0.957179\pi\)
0.845334 + 0.534239i \(0.179402\pi\)
\(98\) −0.0632810 0.0365353i −0.00639235 0.00369063i
\(99\) −6.51756 1.11815i −0.655039 0.112378i
\(100\) 0 0
\(101\) −2.48305 14.0821i −0.247073 1.40122i −0.815629 0.578575i \(-0.803609\pi\)
0.568557 0.822644i \(-0.307502\pi\)
\(102\) −1.00180 + 0.270917i −0.0991929 + 0.0268248i
\(103\) −2.95323 8.11392i −0.290990 0.799489i −0.995922 0.0902141i \(-0.971245\pi\)
0.704932 0.709275i \(-0.250977\pi\)
\(104\) 0.251948 1.42887i 0.0247055 0.140112i
\(105\) 0 0
\(106\) −2.60393 + 2.18496i −0.252916 + 0.212222i
\(107\) 5.67259i 0.548390i 0.961674 + 0.274195i \(0.0884113\pi\)
−0.961674 + 0.274195i \(0.911589\pi\)
\(108\) −10.0118 + 0.945981i −0.963382 + 0.0910271i
\(109\) −18.9591 −1.81595 −0.907975 0.419025i \(-0.862372\pi\)
−0.907975 + 0.419025i \(0.862372\pi\)
\(110\) 0 0
\(111\) −3.30928 + 7.13985i −0.314103 + 0.677685i
\(112\) −9.22691 1.62695i −0.871861 0.153733i
\(113\) 3.91044 + 10.7438i 0.367863 + 1.01070i 0.976172 + 0.216996i \(0.0696259\pi\)
−0.608309 + 0.793700i \(0.708152\pi\)
\(114\) 1.89174 + 0.502201i 0.177177 + 0.0470355i
\(115\) 0 0
\(116\) −6.17437 10.6943i −0.573276 0.992943i
\(117\) −2.15749 + 3.77714i −0.199460 + 0.349197i
\(118\) −0.726595 0.419500i −0.0668884 0.0386181i
\(119\) 5.73692 + 2.08807i 0.525903 + 0.191413i
\(120\) 0 0
\(121\) −4.70446 3.94751i −0.427679 0.358865i
\(122\) 1.48588 1.77080i 0.134525 0.160321i
\(123\) −6.57118 + 9.43098i −0.592503 + 0.850362i
\(124\) 11.9247 + 4.34024i 1.07087 + 0.389765i
\(125\) 0 0
\(126\) −1.71614 0.980254i −0.152886 0.0873279i
\(127\) −2.86168 + 1.65219i −0.253933 + 0.146608i −0.621564 0.783363i \(-0.713502\pi\)
0.367631 + 0.929972i \(0.380169\pi\)
\(128\) −7.37801 + 1.30094i −0.652130 + 0.114988i
\(129\) 10.3234 + 2.74057i 0.908928 + 0.241294i
\(130\) 0 0
\(131\) 2.70616 15.3474i 0.236439 1.34091i −0.603124 0.797647i \(-0.706078\pi\)
0.839563 0.543263i \(-0.182811\pi\)
\(132\) 6.70385 + 3.10720i 0.583496 + 0.270447i
\(133\) −7.40120 8.82040i −0.641765 0.764826i
\(134\) −1.35816 −0.117327
\(135\) 0 0
\(136\) 2.35792 0.202190
\(137\) −7.73491 9.21811i −0.660838 0.787556i 0.326668 0.945139i \(-0.394074\pi\)
−0.987506 + 0.157583i \(0.949630\pi\)
\(138\) −2.54098 + 1.78799i −0.216302 + 0.152203i
\(139\) 3.09573 17.5568i 0.262577 1.48915i −0.513271 0.858227i \(-0.671566\pi\)
0.775848 0.630920i \(-0.217323\pi\)
\(140\) 0 0
\(141\) −4.32033 15.9758i −0.363838 1.34540i
\(142\) −0.838425 + 0.147837i −0.0703591 + 0.0124062i
\(143\) 2.76790 1.59805i 0.231464 0.133636i
\(144\) 10.6925 + 1.83441i 0.891045 + 0.152867i
\(145\) 0 0
\(146\) 1.21895 + 0.443662i 0.100881 + 0.0367177i
\(147\) −0.211398 0.450619i −0.0174358 0.0371664i
\(148\) 5.65212 6.73594i 0.464602 0.553691i
\(149\) 16.4176 + 13.7760i 1.34498 + 1.12857i 0.980316 + 0.197433i \(0.0632606\pi\)
0.364664 + 0.931139i \(0.381184\pi\)
\(150\) 0 0
\(151\) −7.24523 2.63705i −0.589608 0.214600i 0.0299488 0.999551i \(-0.490466\pi\)
−0.619557 + 0.784952i \(0.712688\pi\)
\(152\) −3.85125 2.22352i −0.312378 0.180351i
\(153\) −6.65396 2.38703i −0.537940 0.192980i
\(154\) 0.726071 + 1.25759i 0.0585085 + 0.101340i
\(155\) 0 0
\(156\) 3.42890 3.44480i 0.274532 0.275805i
\(157\) 0.264975 + 0.728013i 0.0211473 + 0.0581018i 0.949817 0.312806i \(-0.101269\pi\)
−0.928670 + 0.370908i \(0.879047\pi\)
\(158\) −1.02686 0.181063i −0.0816924 0.0144046i
\(159\) −23.0617 + 2.07141i −1.82891 + 0.164274i
\(160\) 0 0
\(161\) 18.2779 1.44050
\(162\) 1.99237 + 1.12584i 0.156535 + 0.0884542i
\(163\) 16.3075i 1.27731i 0.769495 + 0.638653i \(0.220508\pi\)
−0.769495 + 0.638653i \(0.779492\pi\)
\(164\) 9.83880 8.25573i 0.768281 0.644664i
\(165\) 0 0
\(166\) −0.153090 + 0.868219i −0.0118821 + 0.0673869i
\(167\) −2.36980 6.51098i −0.183381 0.503835i 0.813605 0.581418i \(-0.197502\pi\)
−0.996986 + 0.0775833i \(0.975280\pi\)
\(168\) 3.18257 + 3.16787i 0.245540 + 0.244407i
\(169\) 1.89235 + 10.7320i 0.145565 + 0.825542i
\(170\) 0 0
\(171\) 8.61709 + 10.1735i 0.658965 + 0.777985i
\(172\) −10.3357 5.96733i −0.788092 0.455005i
\(173\) 2.55019 7.00660i 0.193888 0.532702i −0.804211 0.594344i \(-0.797412\pi\)
0.998098 + 0.0616426i \(0.0196339\pi\)
\(174\) −0.238441 + 2.79999i −0.0180762 + 0.212267i
\(175\) 0 0
\(176\) −6.10626 5.12376i −0.460277 0.386218i
\(177\) −2.42727 5.17401i −0.182445 0.388903i
\(178\) 1.32327 3.63564i 0.0991830 0.272503i
\(179\) −7.25608 + 12.5679i −0.542345 + 0.939369i 0.456424 + 0.889762i \(0.349130\pi\)
−0.998769 + 0.0496065i \(0.984203\pi\)
\(180\) 0 0
\(181\) −4.13864 7.16833i −0.307622 0.532818i 0.670219 0.742163i \(-0.266200\pi\)
−0.977842 + 0.209345i \(0.932867\pi\)
\(182\) 0.940710 0.165873i 0.0697301 0.0122953i
\(183\) 15.2002 4.11059i 1.12363 0.303864i
\(184\) 6.63360 2.41443i 0.489035 0.177994i
\(185\) 0 0
\(186\) −1.66183 2.36169i −0.121851 0.173168i
\(187\) 3.33870 + 3.97890i 0.244150 + 0.290966i
\(188\) 18.4921i 1.34867i
\(189\) −5.77408 12.1615i −0.420003 0.884616i
\(190\) 0 0
\(191\) −18.3309 + 15.3815i −1.32638 + 1.11297i −0.341472 + 0.939892i \(0.610925\pi\)
−0.984909 + 0.173074i \(0.944630\pi\)
\(192\) −10.1985 4.72694i −0.736013 0.341137i
\(193\) −23.6651 4.17280i −1.70345 0.300364i −0.764553 0.644560i \(-0.777040\pi\)
−0.938898 + 0.344196i \(0.888152\pi\)
\(194\) −1.00202 + 0.364705i −0.0719408 + 0.0261843i
\(195\) 0 0
\(196\) 0.0965765 + 0.547712i 0.00689832 + 0.0391223i
\(197\) −20.3050 + 11.7231i −1.44667 + 0.835235i −0.998281 0.0586045i \(-0.981335\pi\)
−0.448388 + 0.893839i \(0.648002\pi\)
\(198\) −0.847455 1.45227i −0.0602260 0.103209i
\(199\) −3.92254 + 6.79404i −0.278061 + 0.481617i −0.970903 0.239473i \(-0.923025\pi\)
0.692841 + 0.721090i \(0.256359\pi\)
\(200\) 0 0
\(201\) −7.59061 5.28887i −0.535401 0.373048i
\(202\) 2.33713 2.78528i 0.164440 0.195972i
\(203\) 10.6262 12.6638i 0.745814 0.888826i
\(204\) 6.48085 + 4.51563i 0.453750 + 0.316157i
\(205\) 0 0
\(206\) 1.09778 1.90141i 0.0764860 0.132478i
\(207\) −21.1640 + 0.0979318i −1.47100 + 0.00680673i
\(208\) −4.54095 + 2.62172i −0.314858 + 0.181784i
\(209\) −1.70107 9.64722i −0.117665 0.667312i
\(210\) 0 0
\(211\) 4.73989 1.72518i 0.326307 0.118766i −0.173672 0.984804i \(-0.555563\pi\)
0.499979 + 0.866037i \(0.333341\pi\)
\(212\) 25.4792 + 4.49267i 1.74992 + 0.308558i
\(213\) −5.26158 2.43871i −0.360517 0.167098i
\(214\) −1.10493 + 0.927148i −0.0755316 + 0.0633785i
\(215\) 0 0
\(216\) −3.70206 3.65102i −0.251893 0.248421i
\(217\) 16.9883i 1.15324i
\(218\) −3.09874 3.69293i −0.209873 0.250117i
\(219\) 5.08492 + 7.22637i 0.343607 + 0.488313i
\(220\) 0 0
\(221\) 3.21063 1.16857i 0.215970 0.0786067i
\(222\) −1.93161 + 0.522367i −0.129641 + 0.0350590i
\(223\) 18.5966 3.27908i 1.24532 0.219583i 0.488125 0.872774i \(-0.337681\pi\)
0.757193 + 0.653191i \(0.226570\pi\)
\(224\) −3.78374 6.55363i −0.252812 0.437883i
\(225\) 0 0
\(226\) −1.45360 + 2.51771i −0.0966919 + 0.167475i
\(227\) −1.27969 + 3.51591i −0.0849358 + 0.233359i −0.974888 0.222694i \(-0.928515\pi\)
0.889953 + 0.456053i \(0.150737\pi\)
\(228\) −6.32709 13.4869i −0.419022 0.893194i
\(229\) −6.44759 5.41017i −0.426069 0.357514i 0.404397 0.914583i \(-0.367481\pi\)
−0.830466 + 0.557069i \(0.811926\pi\)
\(230\) 0 0
\(231\) −0.839315 + 9.85600i −0.0552229 + 0.648477i
\(232\) 2.18373 5.99975i 0.143369 0.393903i
\(233\) −9.73700 5.62166i −0.637892 0.368287i 0.145910 0.989298i \(-0.453389\pi\)
−0.783802 + 0.621011i \(0.786722\pi\)
\(234\) −1.08836 + 0.197104i −0.0711481 + 0.0128851i
\(235\) 0 0
\(236\) 1.10889 + 6.28885i 0.0721828 + 0.409369i
\(237\) −5.03392 5.01068i −0.326988 0.325479i
\(238\) 0.530939 + 1.45874i 0.0344157 + 0.0945563i
\(239\) −3.13312 + 17.7688i −0.202665 + 1.14937i 0.698408 + 0.715700i \(0.253892\pi\)
−0.901073 + 0.433668i \(0.857219\pi\)
\(240\) 0 0
\(241\) 11.6762 9.79751i 0.752131 0.631113i −0.183934 0.982939i \(-0.558883\pi\)
0.936066 + 0.351826i \(0.114439\pi\)
\(242\) 1.56155i 0.100380i
\(243\) 6.75096 + 14.0508i 0.433074 + 0.901358i
\(244\) −17.5943 −1.12636
\(245\) 0 0
\(246\) −2.91102 + 0.261470i −0.185600 + 0.0166707i
\(247\) −6.34596 1.11896i −0.403784 0.0711980i
\(248\) 2.24408 + 6.16556i 0.142499 + 0.391513i
\(249\) −4.23659 + 4.25624i −0.268483 + 0.269728i
\(250\) 0 0
\(251\) 10.1160 + 17.5214i 0.638515 + 1.10594i 0.985759 + 0.168165i \(0.0537843\pi\)
−0.347244 + 0.937775i \(0.612882\pi\)
\(252\) 2.68066 + 14.8019i 0.168866 + 0.932434i
\(253\) 13.4671 + 7.77522i 0.846668 + 0.488824i
\(254\) −0.789545 0.287371i −0.0495405 0.0180312i
\(255\) 0 0
\(256\) 8.48369 + 7.11866i 0.530230 + 0.444916i
\(257\) −18.7141 + 22.3026i −1.16735 + 1.39120i −0.262795 + 0.964852i \(0.584644\pi\)
−0.904560 + 0.426347i \(0.859800\pi\)
\(258\) 1.15348 + 2.45877i 0.0718124 + 0.153077i
\(259\) 11.0616 + 4.02609i 0.687334 + 0.250169i
\(260\) 0 0
\(261\) −12.2362 + 14.7203i −0.757402 + 0.911167i
\(262\) 3.43174 1.98132i 0.212014 0.122406i
\(263\) 1.14764 0.202359i 0.0707663 0.0124780i −0.138153 0.990411i \(-0.544117\pi\)
0.208919 + 0.977933i \(0.433005\pi\)
\(264\) 0.997322 + 3.68791i 0.0613809 + 0.226975i
\(265\) 0 0
\(266\) 0.508399 2.88328i 0.0311720 0.176785i
\(267\) 21.5534 15.1663i 1.31904 0.928160i
\(268\) 6.64471 + 7.91885i 0.405890 + 0.483721i
\(269\) −3.89377 −0.237407 −0.118704 0.992930i \(-0.537874\pi\)
−0.118704 + 0.992930i \(0.537874\pi\)
\(270\) 0 0
\(271\) −1.01175 −0.0614596 −0.0307298 0.999528i \(-0.509783\pi\)
−0.0307298 + 0.999528i \(0.509783\pi\)
\(272\) −5.47738 6.52769i −0.332115 0.395799i
\(273\) 5.90347 + 2.73622i 0.357294 + 0.165604i
\(274\) 0.531323 3.01328i 0.0320984 0.182039i
\(275\) 0 0
\(276\) 22.8566 + 6.06776i 1.37580 + 0.365236i
\(277\) 30.5191 5.38133i 1.83371 0.323333i 0.853471 0.521140i \(-0.174493\pi\)
0.980241 + 0.197807i \(0.0633818\pi\)
\(278\) 3.92577 2.26654i 0.235452 0.135938i
\(279\) −0.0910221 19.6707i −0.00544935 1.17765i
\(280\) 0 0
\(281\) −2.69096 0.979428i −0.160529 0.0584278i 0.260506 0.965472i \(-0.416111\pi\)
−0.421035 + 0.907045i \(0.638333\pi\)
\(282\) 2.40570 3.45267i 0.143257 0.205603i
\(283\) −15.8369 + 18.8737i −0.941405 + 1.12192i 0.0509739 + 0.998700i \(0.483767\pi\)
−0.992379 + 0.123223i \(0.960677\pi\)
\(284\) 4.96392 + 4.16523i 0.294555 + 0.247161i
\(285\) 0 0
\(286\) 0.763671 + 0.277954i 0.0451568 + 0.0164357i
\(287\) 14.8904 + 8.59698i 0.878953 + 0.507464i
\(288\) 4.41630 + 7.56816i 0.260233 + 0.445958i
\(289\) −5.72372 9.91377i −0.336689 0.583163i
\(290\) 0 0
\(291\) −7.02041 1.86371i −0.411544 0.109253i
\(292\) −3.37684 9.27779i −0.197615 0.542942i
\(293\) −5.71323 1.00740i −0.333771 0.0588527i 0.00425146 0.999991i \(-0.498647\pi\)
−0.338022 + 0.941138i \(0.609758\pi\)
\(294\) 0.0532219 0.114828i 0.00310397 0.00669688i
\(295\) 0 0
\(296\) 4.54641 0.264255
\(297\) 0.919033 11.4167i 0.0533277 0.662466i
\(298\) 5.44948i 0.315680i
\(299\) 7.83595 6.57515i 0.453165 0.380250i
\(300\) 0 0
\(301\) 2.77440 15.7344i 0.159914 0.906915i
\(302\) −0.670530 1.84227i −0.0385847 0.106011i
\(303\) 23.9083 6.46554i 1.37350 0.371435i
\(304\) 2.79073 + 15.8270i 0.160059 + 0.907740i
\(305\) 0 0
\(306\) −0.622589 1.68623i −0.0355911 0.0963955i
\(307\) 26.8124 + 15.4802i 1.53027 + 0.883500i 0.999349 + 0.0360759i \(0.0114858\pi\)
0.530917 + 0.847424i \(0.321848\pi\)
\(308\) 3.78024 10.3861i 0.215399 0.591804i
\(309\) 13.5398 6.35188i 0.770251 0.361346i
\(310\) 0 0
\(311\) 7.44776 + 6.24942i 0.422324 + 0.354372i 0.829046 0.559180i \(-0.188884\pi\)
−0.406722 + 0.913552i \(0.633328\pi\)
\(312\) 2.50399 + 0.213234i 0.141760 + 0.0120720i
\(313\) 4.15409 11.4133i 0.234803 0.645116i −0.765196 0.643797i \(-0.777358\pi\)
0.999999 0.00131881i \(-0.000419789\pi\)
\(314\) −0.0984972 + 0.170602i −0.00555852 + 0.00962763i
\(315\) 0 0
\(316\) 3.96814 + 6.87301i 0.223225 + 0.386637i
\(317\) 5.20964 0.918600i 0.292603 0.0515937i −0.0254200 0.999677i \(-0.508092\pi\)
0.318023 + 0.948083i \(0.396981\pi\)
\(318\) −4.17276 4.15350i −0.233997 0.232917i
\(319\) 13.2164 4.81037i 0.739976 0.269329i
\(320\) 0 0
\(321\) −9.78581 + 0.878966i −0.546191 + 0.0490591i
\(322\) 2.98741 + 3.56025i 0.166482 + 0.198405i
\(323\) 10.4721i 0.582685i
\(324\) −3.18324 17.1248i −0.176847 0.951376i
\(325\) 0 0
\(326\) −3.17646 + 2.66536i −0.175928 + 0.147621i
\(327\) −2.93770 32.7064i −0.162455 1.80867i
\(328\) 6.53980 + 1.15314i 0.361100 + 0.0636717i
\(329\) −23.2627 + 8.46692i −1.28251 + 0.466797i
\(330\) 0 0
\(331\) 4.36397 + 24.7493i 0.239866 + 1.36035i 0.832121 + 0.554595i \(0.187127\pi\)
−0.592255 + 0.805750i \(0.701762\pi\)
\(332\) 5.81121 3.35510i 0.318932 0.184135i
\(333\) −12.8298 4.60254i −0.703067 0.252217i
\(334\) 0.880908 1.52578i 0.0482012 0.0834868i
\(335\) 0 0
\(336\) 1.37696 16.1695i 0.0751193 0.882118i
\(337\) −3.24968 + 3.87282i −0.177021 + 0.210966i −0.847258 0.531182i \(-0.821748\pi\)
0.670237 + 0.742147i \(0.266193\pi\)
\(338\) −1.78114 + 2.12268i −0.0968814 + 0.115459i
\(339\) −17.9284 + 8.41068i −0.973734 + 0.456806i
\(340\) 0 0
\(341\) −7.22663 + 12.5169i −0.391344 + 0.677828i
\(342\) −0.573226 + 3.34126i −0.0309965 + 0.180675i
\(343\) −16.3511 + 9.44033i −0.882878 + 0.509730i
\(344\) −1.07153 6.07696i −0.0577732 0.327648i
\(345\) 0 0
\(346\) 1.78159 0.648445i 0.0957788 0.0348606i
\(347\) 26.6058 + 4.69131i 1.42827 + 0.251843i 0.833708 0.552206i \(-0.186214\pi\)
0.594564 + 0.804048i \(0.297325\pi\)
\(348\) 17.4921 12.3085i 0.937677 0.659807i
\(349\) 17.9519 15.0634i 0.960941 0.806326i −0.0201645 0.999797i \(-0.506419\pi\)
0.981106 + 0.193471i \(0.0619746\pi\)
\(350\) 0 0
\(351\) −6.85028 3.13664i −0.365641 0.167421i
\(352\) 6.43824i 0.343160i
\(353\) −11.4710 13.6706i −0.610538 0.727611i 0.368875 0.929479i \(-0.379743\pi\)
−0.979413 + 0.201868i \(0.935299\pi\)
\(354\) 0.611095 1.31845i 0.0324794 0.0700750i
\(355\) 0 0
\(356\) −27.6719 + 10.0718i −1.46661 + 0.533802i
\(357\) −2.71320 + 10.2203i −0.143598 + 0.540918i
\(358\) −3.63399 + 0.640771i −0.192062 + 0.0338658i
\(359\) −12.7067 22.0086i −0.670633 1.16157i −0.977725 0.209891i \(-0.932689\pi\)
0.307092 0.951680i \(-0.400644\pi\)
\(360\) 0 0
\(361\) −0.375211 + 0.649885i −0.0197480 + 0.0342045i
\(362\) 0.719845 1.97776i 0.0378342 0.103949i
\(363\) 6.08092 8.72737i 0.319166 0.458068i
\(364\) −5.56950 4.67337i −0.291921 0.244951i
\(365\) 0 0
\(366\) 3.28505 + 2.28891i 0.171712 + 0.119643i
\(367\) 12.1787 33.4606i 0.635721 1.74663i −0.0290451 0.999578i \(-0.509247\pi\)
0.664766 0.747051i \(-0.268531\pi\)
\(368\) −22.0938 12.7558i −1.15172 0.664944i
\(369\) −17.2876 9.87465i −0.899958 0.514054i
\(370\) 0 0
\(371\) 6.01439 + 34.1093i 0.312252 + 1.77087i
\(372\) −5.63964 + 21.2439i −0.292402 + 1.10144i
\(373\) −1.97686 5.43137i −0.102358 0.281226i 0.877934 0.478782i \(-0.158922\pi\)
−0.980291 + 0.197557i \(0.936699\pi\)
\(374\) −0.229340 + 1.30065i −0.0118589 + 0.0672551i
\(375\) 0 0
\(376\) −7.32428 + 6.14580i −0.377721 + 0.316945i
\(377\) 9.25171i 0.476487i
\(378\) 1.42513 3.11241i 0.0733006 0.160085i
\(379\) 27.7158 1.42366 0.711832 0.702350i \(-0.247866\pi\)
0.711832 + 0.702350i \(0.247866\pi\)
\(380\) 0 0
\(381\) −3.29362 4.68070i −0.168737 0.239799i
\(382\) −5.99215 1.05658i −0.306585 0.0540592i
\(383\) −1.88281 5.17297i −0.0962069 0.264326i 0.882249 0.470784i \(-0.156029\pi\)
−0.978456 + 0.206457i \(0.933807\pi\)
\(384\) −3.38748 12.5263i −0.172867 0.639228i
\(385\) 0 0
\(386\) −3.05511 5.29161i −0.155501 0.269336i
\(387\) −3.12816 + 18.2337i −0.159014 + 0.926870i
\(388\) 7.02876 + 4.05806i 0.356831 + 0.206017i
\(389\) 33.7465 + 12.2827i 1.71101 + 0.622758i 0.997002 0.0773745i \(-0.0246537\pi\)
0.714013 + 0.700133i \(0.246876\pi\)
\(390\) 0 0
\(391\) 12.7345 + 10.6855i 0.644010 + 0.540388i
\(392\) −0.184839 + 0.220282i −0.00933577 + 0.0111259i
\(393\) 26.8952 + 2.29034i 1.35669 + 0.115532i
\(394\) −5.60219 2.03903i −0.282234 0.102725i
\(395\) 0 0
\(396\) −4.32148 + 12.0463i −0.217163 + 0.605350i
\(397\) −7.32719 + 4.23035i −0.367741 + 0.212315i −0.672471 0.740123i \(-0.734767\pi\)
0.304730 + 0.952439i \(0.401434\pi\)
\(398\) −1.96449 + 0.346392i −0.0984708 + 0.0173631i
\(399\) 14.0693 14.1346i 0.704347 0.707614i
\(400\) 0 0
\(401\) 4.71483 26.7391i 0.235447 1.33529i −0.606222 0.795296i \(-0.707316\pi\)
0.841669 0.539993i \(-0.181573\pi\)
\(402\) −0.210446 2.34297i −0.0104961 0.116857i
\(403\) 6.11123 + 7.28308i 0.304422 + 0.362796i
\(404\) −27.6741 −1.37684
\(405\) 0 0
\(406\) 4.20350 0.208616
\(407\) 6.43748 + 7.67189i 0.319094 + 0.380281i
\(408\) 0.365360 + 4.06767i 0.0180880 + 0.201380i
\(409\) 0.359891 2.04104i 0.0177954 0.100923i −0.974616 0.223882i \(-0.928127\pi\)
0.992412 + 0.122959i \(0.0392382\pi\)
\(410\) 0 0
\(411\) 14.7037 14.7719i 0.725280 0.728643i
\(412\) −16.4572 + 2.90184i −0.810786 + 0.142964i
\(413\) −7.40352 + 4.27442i −0.364303 + 0.210331i
\(414\) −3.47819 4.10640i −0.170944 0.201819i
\(415\) 0 0
\(416\) −3.97968 1.44849i −0.195120 0.0710178i
\(417\) 30.7670 + 2.62005i 1.50667 + 0.128304i
\(418\) 1.60110 1.90812i 0.0783124 0.0933291i
\(419\) 19.8184 + 16.6296i 0.968190 + 0.812408i 0.982266 0.187493i \(-0.0600362\pi\)
−0.0140758 + 0.999901i \(0.504481\pi\)
\(420\) 0 0
\(421\) 9.37834 + 3.41344i 0.457073 + 0.166361i 0.560287 0.828298i \(-0.310691\pi\)
−0.103215 + 0.994659i \(0.532913\pi\)
\(422\) 1.11074 + 0.641287i 0.0540700 + 0.0312174i
\(423\) 26.8904 9.92847i 1.30746 0.482739i
\(424\) 6.68850 + 11.5848i 0.324822 + 0.562608i
\(425\) 0 0
\(426\) −0.384948 1.42347i −0.0186508 0.0689671i
\(427\) −8.05588 22.1333i −0.389851 1.07111i
\(428\) 10.8116 + 1.90638i 0.522600 + 0.0921484i
\(429\) 3.18569 + 4.52731i 0.153807 + 0.218581i
\(430\) 0 0
\(431\) 2.41940 0.116538 0.0582692 0.998301i \(-0.481442\pi\)
0.0582692 + 0.998301i \(0.481442\pi\)
\(432\) −1.50774 + 18.7300i −0.0725413 + 0.901148i
\(433\) 19.8081i 0.951915i 0.879468 + 0.475957i \(0.157898\pi\)
−0.879468 + 0.475957i \(0.842102\pi\)
\(434\) −3.30906 + 2.77663i −0.158840 + 0.133282i
\(435\) 0 0
\(436\) −6.37156 + 36.1349i −0.305142 + 1.73055i
\(437\) −10.7231 29.4615i −0.512955 1.40933i
\(438\) −0.576488 + 2.17157i −0.0275457 + 0.103761i
\(439\) −0.697642 3.95652i −0.0332966 0.188835i 0.963623 0.267266i \(-0.0861201\pi\)
−0.996920 + 0.0784310i \(0.975009\pi\)
\(440\) 0 0
\(441\) 0.744609 0.434506i 0.0354576 0.0206908i
\(442\) 0.752376 + 0.434385i 0.0357869 + 0.0206616i
\(443\) −1.71466 + 4.71098i −0.0814658 + 0.223826i −0.973738 0.227673i \(-0.926888\pi\)
0.892272 + 0.451499i \(0.149110\pi\)
\(444\) 12.4960 + 8.70678i 0.593034 + 0.413205i
\(445\) 0 0
\(446\) 3.67820 + 3.08638i 0.174168 + 0.146144i
\(447\) −21.2211 + 30.4566i −1.00373 + 1.44055i
\(448\) −5.75083 + 15.8003i −0.271701 + 0.746493i
\(449\) −9.48026 + 16.4203i −0.447401 + 0.774922i −0.998216 0.0597059i \(-0.980984\pi\)
0.550815 + 0.834627i \(0.314317\pi\)
\(450\) 0 0
\(451\) 7.31412 + 12.6684i 0.344409 + 0.596533i
\(452\) 21.7913 3.84240i 1.02498 0.180731i
\(453\) 3.42654 12.9074i 0.160993 0.606442i
\(454\) −0.894001 + 0.325390i −0.0419575 + 0.0152713i
\(455\) 0 0
\(456\) 3.23906 6.98835i 0.151683 0.327260i
\(457\) −7.31683 8.71986i −0.342267 0.407898i 0.567263 0.823537i \(-0.308002\pi\)
−0.909530 + 0.415639i \(0.863558\pi\)
\(458\) 2.14015i 0.100002i
\(459\) 3.08685 11.8486i 0.144082 0.553048i
\(460\) 0 0
\(461\) −3.34271 + 2.80487i −0.155686 + 0.130636i −0.717303 0.696761i \(-0.754624\pi\)
0.561617 + 0.827397i \(0.310179\pi\)
\(462\) −2.05698 + 1.44741i −0.0956992 + 0.0673398i
\(463\) −7.13335 1.25780i −0.331515 0.0584550i 0.00541334 0.999985i \(-0.498277\pi\)
−0.336928 + 0.941530i \(0.609388\pi\)
\(464\) −21.6825 + 7.89178i −1.00658 + 0.366367i
\(465\) 0 0
\(466\) −0.496438 2.81544i −0.0229970 0.130423i
\(467\) 3.10264 1.79131i 0.143573 0.0828919i −0.426493 0.904491i \(-0.640251\pi\)
0.570066 + 0.821599i \(0.306918\pi\)
\(468\) 6.47395 + 5.38144i 0.299259 + 0.248757i
\(469\) −6.91936 + 11.9847i −0.319507 + 0.553402i
\(470\) 0 0
\(471\) −1.21484 + 0.569916i −0.0559770 + 0.0262603i
\(472\) −2.12232 + 2.52929i −0.0976879 + 0.116420i
\(473\) 8.73740 10.4128i 0.401746 0.478782i
\(474\) 0.153241 1.79949i 0.00703858 0.0826534i
\(475\) 0 0
\(476\) 5.90774 10.2325i 0.270781 0.469006i
\(477\) −7.14681 39.4629i −0.327230 1.80688i
\(478\) −3.97317 + 2.29391i −0.181729 + 0.104921i
\(479\) −0.329444 1.86837i −0.0150527 0.0853680i 0.976356 0.216169i \(-0.0693562\pi\)
−0.991409 + 0.130801i \(0.958245\pi\)
\(480\) 0 0
\(481\) 6.19055 2.25318i 0.282265 0.102736i
\(482\) 3.81680 + 0.673006i 0.173851 + 0.0306546i
\(483\) 2.83216 + 31.5313i 0.128868 + 1.43473i
\(484\) −9.10476 + 7.63980i −0.413853 + 0.347264i
\(485\) 0 0
\(486\) −1.63347 + 3.61149i −0.0740959 + 0.163821i
\(487\) 13.6444i 0.618286i 0.951016 + 0.309143i \(0.100042\pi\)
−0.951016 + 0.309143i \(0.899958\pi\)
\(488\) −5.84743 6.96870i −0.264701 0.315458i
\(489\) −28.1322 + 2.52685i −1.27218 + 0.114268i
\(490\) 0 0
\(491\) −37.0378 + 13.4806i −1.67149 + 0.608373i −0.992105 0.125408i \(-0.959976\pi\)
−0.679386 + 0.733781i \(0.737754\pi\)
\(492\) 15.7665 + 15.6937i 0.710810 + 0.707529i
\(493\) 14.8068 2.61085i 0.666867 0.117587i
\(494\) −0.819249 1.41898i −0.0368598 0.0638430i
\(495\) 0 0
\(496\) 11.8558 20.5349i 0.532343 0.922044i
\(497\) −2.96695 + 8.15164i −0.133086 + 0.365651i
\(498\) −1.52149 0.129567i −0.0681797 0.00580603i
\(499\) 20.0062 + 16.7872i 0.895599 + 0.751497i 0.969325 0.245781i \(-0.0790446\pi\)
−0.0737260 + 0.997279i \(0.523489\pi\)
\(500\) 0 0
\(501\) 10.8649 5.09703i 0.485409 0.227719i
\(502\) −1.75950 + 4.83419i −0.0785304 + 0.215761i
\(503\) 5.65434 + 3.26454i 0.252115 + 0.145558i 0.620732 0.784023i \(-0.286835\pi\)
−0.368618 + 0.929581i \(0.620169\pi\)
\(504\) −4.97178 + 5.98113i −0.221461 + 0.266421i
\(505\) 0 0
\(506\) 0.686615 + 3.89399i 0.0305238 + 0.173109i
\(507\) −18.2207 + 4.92743i −0.809209 + 0.218835i
\(508\) 2.18726 + 6.00945i 0.0970441 + 0.266626i
\(509\) 0.633039 3.59014i 0.0280590 0.159130i −0.967559 0.252646i \(-0.918699\pi\)
0.995618 + 0.0935154i \(0.0298104\pi\)
\(510\) 0 0
\(511\) 10.1251 8.49600i 0.447910 0.375841i
\(512\) 17.7996i 0.786640i
\(513\) −16.2151 + 16.4418i −0.715914 + 0.725922i
\(514\) −7.40290 −0.326528
\(515\) 0 0
\(516\) 8.69277 18.7549i 0.382678 0.825637i
\(517\) −20.7416 3.65730i −0.912214 0.160848i
\(518\) 1.02373 + 2.81267i 0.0449800 + 0.123581i
\(519\) 12.4823 + 3.31368i 0.547911 + 0.145454i
\(520\) 0 0
\(521\) 5.35490 + 9.27496i 0.234603 + 0.406344i 0.959157 0.282874i \(-0.0912878\pi\)
−0.724555 + 0.689217i \(0.757954\pi\)
\(522\) −4.86722 + 0.0225221i −0.213033 + 0.000985764i
\(523\) −2.58057 1.48990i −0.112841 0.0651486i 0.442517 0.896760i \(-0.354085\pi\)
−0.555358 + 0.831611i \(0.687419\pi\)
\(524\) −28.3418 10.3156i −1.23812 0.450639i
\(525\) 0 0
\(526\) 0.226990 + 0.190467i 0.00989724 + 0.00830477i
\(527\) −9.93156 + 11.8360i −0.432626 + 0.515583i
\(528\) 7.89287 11.3279i 0.343493 0.492982i
\(529\) 25.1548 + 9.15560i 1.09369 + 0.398069i
\(530\) 0 0
\(531\) 8.54962 4.98901i 0.371022 0.216505i
\(532\) −19.2985 + 11.1420i −0.836696 + 0.483067i
\(533\) 9.47630 1.67093i 0.410464 0.0723759i
\(534\) 6.47691 + 1.71943i 0.280283 + 0.0744071i
\(535\) 0 0
\(536\) −0.928118 + 5.26362i −0.0400886 + 0.227354i
\(537\) −22.8053 10.5701i −0.984121 0.456134i
\(538\) −0.636411 0.758445i −0.0274376 0.0326989i
\(539\) −0.633440 −0.0272842
\(540\) 0 0
\(541\) 9.02469 0.388002 0.194001 0.981001i \(-0.437854\pi\)
0.194001 + 0.981001i \(0.437854\pi\)
\(542\) −0.165364 0.197074i −0.00710301 0.00846504i
\(543\) 11.7248 8.25032i 0.503161 0.354055i
\(544\) 1.19515 6.77802i 0.0512415 0.290605i
\(545\) 0 0
\(546\) 0.431911 + 1.59712i 0.0184841 + 0.0683505i
\(547\) 10.5473 1.85977i 0.450969 0.0795180i 0.0564494 0.998405i \(-0.482022\pi\)
0.394520 + 0.918887i \(0.370911\pi\)
\(548\) −20.1687 + 11.6444i −0.861562 + 0.497423i
\(549\) 9.44647 + 25.5850i 0.403166 + 1.09194i
\(550\) 0 0
\(551\) −26.6464 9.69849i −1.13517 0.413170i
\(552\) 5.19303 + 11.0695i 0.221030 + 0.471151i
\(553\) −6.82923 + 8.13876i −0.290409 + 0.346095i
\(554\) 6.03634 + 5.06509i 0.256460 + 0.215195i
\(555\) 0 0
\(556\) −32.4218 11.8006i −1.37499 0.500456i
\(557\) −8.87931 5.12647i −0.376228 0.217216i 0.299948 0.953956i \(-0.403031\pi\)
−0.676176 + 0.736740i \(0.736364\pi\)
\(558\) 3.81667 3.23278i 0.161573 0.136855i
\(559\) −4.47074 7.74355i −0.189092 0.327517i
\(560\) 0 0
\(561\) −6.34670 + 6.37613i −0.267958 + 0.269201i
\(562\) −0.249042 0.684238i −0.0105052 0.0288628i
\(563\) −41.2043 7.26542i −1.73655 0.306201i −0.786338 0.617797i \(-0.788025\pi\)
−0.950215 + 0.311596i \(0.899136\pi\)
\(564\) −31.9008 + 2.86535i −1.34327 + 0.120653i
\(565\) 0 0
\(566\) −6.26473 −0.263326
\(567\) 20.0851 11.8453i 0.843495 0.497457i
\(568\) 3.35039i 0.140579i
\(569\) 6.82704 5.72857i 0.286205 0.240154i −0.488370 0.872637i \(-0.662408\pi\)
0.774575 + 0.632482i \(0.217964\pi\)
\(570\) 0 0
\(571\) 3.12283 17.7104i 0.130686 0.741159i −0.847081 0.531464i \(-0.821642\pi\)
0.977767 0.209695i \(-0.0672470\pi\)
\(572\) −2.11558 5.81252i −0.0884570 0.243034i
\(573\) −29.3751 29.2395i −1.22716 1.22150i
\(574\) 0.759183 + 4.30554i 0.0316877 + 0.179710i
\(575\) 0 0
\(576\) 6.57422 18.3259i 0.273926 0.763580i
\(577\) −6.31165 3.64403i −0.262757 0.151703i 0.362834 0.931854i \(-0.381809\pi\)
−0.625592 + 0.780151i \(0.715142\pi\)
\(578\) 0.995544 2.73523i 0.0414092 0.113771i
\(579\) 3.53161 41.4714i 0.146769 1.72349i
\(580\) 0 0
\(581\) 6.88142 + 5.77419i 0.285489 + 0.239554i
\(582\) −0.784418 1.67208i −0.0325152 0.0693099i
\(583\) −10.0784 + 27.6901i −0.417403 + 1.14680i
\(584\) 2.55243 4.42094i 0.105620 0.182940i
\(585\) 0 0
\(586\) −0.737566 1.27750i −0.0304686 0.0527731i
\(587\) −29.6830 + 5.23392i −1.22515 + 0.216027i −0.748541 0.663089i \(-0.769245\pi\)
−0.476608 + 0.879116i \(0.658134\pi\)
\(588\) −0.929897 + 0.251473i −0.0383483 + 0.0103706i
\(589\) 27.3828 9.96652i 1.12829 0.410663i
\(590\) 0 0
\(591\) −23.3698 33.2117i −0.961305 1.36615i
\(592\) −10.5612 12.5863i −0.434061 0.517294i
\(593\) 3.49473i 0.143511i 0.997422 + 0.0717557i \(0.0228602\pi\)
−0.997422 + 0.0717557i \(0.977140\pi\)
\(594\) 2.37401 1.68698i 0.0974069 0.0692176i
\(595\) 0 0
\(596\) 31.7737 26.6613i 1.30150 1.09209i
\(597\) −12.3282 5.71406i −0.504561 0.233861i
\(598\) 2.56147 + 0.451657i 0.104746 + 0.0184696i
\(599\) −24.8902 + 9.05928i −1.01698 + 0.370152i −0.796111 0.605150i \(-0.793113\pi\)
−0.220873 + 0.975302i \(0.570891\pi\)
\(600\) 0 0
\(601\) −2.02684 11.4948i −0.0826764 0.468881i −0.997834 0.0657845i \(-0.979045\pi\)
0.915157 0.403096i \(-0.132066\pi\)
\(602\) 3.51827 2.03127i 0.143394 0.0827886i
\(603\) 7.94770 13.9141i 0.323656 0.566627i
\(604\) −7.46096 + 12.9228i −0.303582 + 0.525820i
\(605\) 0 0
\(606\) 5.16705 + 3.60022i 0.209897 + 0.146249i
\(607\) 3.50795 4.18061i 0.142383 0.169686i −0.690140 0.723676i \(-0.742451\pi\)
0.832523 + 0.553990i \(0.186895\pi\)
\(608\) −8.34373 + 9.94367i −0.338383 + 0.403269i
\(609\) 23.4930 + 16.3691i 0.951983 + 0.663308i
\(610\) 0 0
\(611\) −6.92716 + 11.9982i −0.280243 + 0.485395i
\(612\) −6.78574 + 11.8799i −0.274297 + 0.480215i
\(613\) 6.02950 3.48113i 0.243529 0.140602i −0.373269 0.927723i \(-0.621763\pi\)
0.616798 + 0.787122i \(0.288430\pi\)
\(614\) 1.36702 + 7.75278i 0.0551686 + 0.312877i
\(615\) 0 0
\(616\) 5.37005 1.95454i 0.216365 0.0787505i
\(617\) 18.7560 + 3.30719i 0.755089 + 0.133143i 0.537925 0.842993i \(-0.319208\pi\)
0.217164 + 0.976135i \(0.430319\pi\)
\(618\) 3.45024 + 1.59916i 0.138789 + 0.0643278i
\(619\) −10.9809 + 9.21409i −0.441360 + 0.370345i −0.836218 0.548397i \(-0.815238\pi\)
0.394858 + 0.918742i \(0.370794\pi\)
\(620\) 0 0
\(621\) −3.44829 36.4949i −0.138375 1.46449i
\(622\) 2.47214i 0.0991236i
\(623\) −25.3401 30.1992i −1.01523 1.20991i
\(624\) −5.22636 7.42739i −0.209222 0.297333i
\(625\) 0 0
\(626\) 2.90209 1.05627i 0.115991 0.0422172i
\(627\) 16.3789 4.42935i 0.654110 0.176891i
\(628\) 1.47660 0.260365i 0.0589228 0.0103897i
\(629\) 5.35306 + 9.27178i 0.213441 + 0.369690i
\(630\) 0 0
\(631\) −5.23437 + 9.06620i −0.208377 + 0.360920i −0.951203 0.308564i \(-0.900151\pi\)
0.742826 + 0.669484i \(0.233485\pi\)
\(632\) −1.40344 + 3.85591i −0.0558257 + 0.153380i
\(633\) 3.71056 + 7.90949i 0.147481 + 0.314374i
\(634\) 1.03041 + 0.864618i 0.0409229 + 0.0343384i
\(635\) 0 0
\(636\) −3.80233 + 44.6504i −0.150772 + 1.77050i
\(637\) −0.142512 + 0.391549i −0.00564654 + 0.0155137i
\(638\) 3.09712 + 1.78812i 0.122616 + 0.0707925i
\(639\) 3.39175 9.45466i 0.134176 0.374021i
\(640\) 0 0
\(641\) −1.94620 11.0374i −0.0768701 0.435952i −0.998817 0.0486349i \(-0.984513\pi\)
0.921947 0.387317i \(-0.126598\pi\)
\(642\) −1.77064 1.76246i −0.0698815 0.0695588i
\(643\) −1.36924 3.76197i −0.0539977 0.148357i 0.909761 0.415132i \(-0.136264\pi\)
−0.963759 + 0.266774i \(0.914042\pi\)
\(644\) 6.14264 34.8367i 0.242054 1.37276i
\(645\) 0 0
\(646\) 2.03981 1.71160i 0.0802551 0.0673421i
\(647\) 23.5060i 0.924118i 0.886849 + 0.462059i \(0.152889\pi\)
−0.886849 + 0.462059i \(0.847111\pi\)
\(648\) 5.72477 6.95217i 0.224890 0.273107i
\(649\) −7.27317 −0.285497
\(650\) 0 0
\(651\) −29.3066 + 2.63233i −1.14862 + 0.103169i
\(652\) 31.0812 + 5.48046i 1.21724 + 0.214631i
\(653\) −3.66017 10.0562i −0.143233 0.393531i 0.847244 0.531203i \(-0.178260\pi\)
−0.990478 + 0.137673i \(0.956038\pi\)
\(654\) 5.89055 5.91787i 0.230339 0.231407i
\(655\) 0 0
\(656\) −11.9994 20.7835i −0.468497 0.811460i
\(657\) −11.6783 + 9.89175i −0.455616 + 0.385914i
\(658\) −5.45136 3.14734i −0.212516 0.122696i
\(659\) 5.16703 + 1.88064i 0.201279 + 0.0732595i 0.440692 0.897658i \(-0.354733\pi\)
−0.239414 + 0.970918i \(0.576955\pi\)
\(660\) 0 0
\(661\) −29.3397 24.6189i −1.14118 0.957565i −0.141705 0.989909i \(-0.545258\pi\)
−0.999477 + 0.0323440i \(0.989703\pi\)
\(662\) −4.10752 + 4.89515i −0.159643 + 0.190255i
\(663\) 2.51340 + 5.35760i 0.0976123 + 0.208072i
\(664\) 3.26022 + 1.18662i 0.126521 + 0.0460499i
\(665\) 0 0
\(666\) −1.20044 3.25130i −0.0465161 0.125985i
\(667\) 38.9830 22.5068i 1.50943 0.871469i
\(668\) −13.2060 + 2.32857i −0.510954 + 0.0900950i
\(669\) 8.53829 + 31.5730i 0.330109 + 1.22068i
\(670\) 0 0
\(671\) 3.47975 19.7346i 0.134334 0.761847i
\(672\) 10.7194 7.54283i 0.413510 0.290971i
\(673\) −13.5100 16.1006i −0.520771 0.620631i 0.439992 0.898002i \(-0.354981\pi\)
−0.960763 + 0.277371i \(0.910537\pi\)
\(674\) −1.28550 −0.0495158
\(675\) 0 0
\(676\) 21.0906 0.811178
\(677\) 1.79711 + 2.14171i 0.0690685 + 0.0823126i 0.799472 0.600703i \(-0.205113\pi\)
−0.730404 + 0.683016i \(0.760668\pi\)
\(678\) −4.56854 2.11749i −0.175454 0.0813218i
\(679\) −1.88672 + 10.7001i −0.0724055 + 0.410632i
\(680\) 0 0
\(681\) −6.26360 1.66280i −0.240022 0.0637188i
\(682\) −3.61924 + 0.638170i −0.138588 + 0.0244368i
\(683\) 1.94224 1.12135i 0.0743176 0.0429073i −0.462381 0.886681i \(-0.653005\pi\)
0.536698 + 0.843774i \(0.319671\pi\)
\(684\) 22.2860 13.0047i 0.852126 0.497247i
\(685\) 0 0
\(686\) −4.51132 1.64199i −0.172243 0.0626913i
\(687\) 8.33406 11.9611i 0.317964 0.456343i
\(688\) −14.3344 + 17.0830i −0.546492 + 0.651284i
\(689\) 14.8487 + 12.4595i 0.565689 + 0.474669i
\(690\) 0 0
\(691\) 27.0475 + 9.84448i 1.02893 + 0.374502i 0.800675 0.599099i \(-0.204474\pi\)
0.228260 + 0.973600i \(0.426697\pi\)
\(692\) −12.4971 7.21522i −0.475070 0.274282i
\(693\) −17.1327 + 0.0792780i −0.650817 + 0.00301152i
\(694\) 3.43474 + 5.94915i 0.130381 + 0.225827i
\(695\) 0 0
\(696\) 10.6886 + 2.83751i 0.405150 + 0.107555i
\(697\) 5.34845 + 14.6947i 0.202587 + 0.556603i
\(698\) 5.86823 + 1.03473i 0.222116 + 0.0391650i
\(699\) 8.18921 17.6684i 0.309744 0.668281i
\(700\) 0 0
\(701\) −19.7581 −0.746255 −0.373127 0.927780i \(-0.621715\pi\)
−0.373127 + 0.927780i \(0.621715\pi\)
\(702\) −0.508666 1.84699i −0.0191983 0.0697102i
\(703\) 20.1917i 0.761546i
\(704\) −10.9584 + 9.19523i −0.413012 + 0.346558i
\(705\) 0 0
\(706\) 0.787958 4.46873i 0.0296552 0.168183i
\(707\) −12.6711 34.8135i −0.476544 1.30930i
\(708\) −10.6771 + 2.88741i −0.401270 + 0.108516i
\(709\) 0.688034 + 3.90203i 0.0258397 + 0.146544i 0.994998 0.0998949i \(-0.0318507\pi\)
−0.969158 + 0.246439i \(0.920740\pi\)
\(710\) 0 0
\(711\) 7.86395 9.46045i 0.294921 0.354795i
\(712\) −13.1859 7.61287i −0.494162 0.285304i
\(713\) −15.8211 + 43.4680i −0.592503 + 1.62789i
\(714\) −2.43422 + 1.14196i −0.0910984 + 0.0427367i
\(715\) 0 0
\(716\) 21.5152 + 18.0534i 0.804059 + 0.674686i
\(717\) −31.1385 2.65169i −1.16289 0.0990291i
\(718\) 2.21011 6.07223i 0.0824806 0.226614i
\(719\) 13.6807 23.6957i 0.510204 0.883699i −0.489726 0.871876i \(-0.662903\pi\)
0.999930 0.0118228i \(-0.00376341\pi\)
\(720\) 0 0
\(721\) −11.1857 19.3741i −0.416576 0.721530i
\(722\) −0.187913 + 0.0331342i −0.00699341 + 0.00123313i
\(723\) 18.7110 + 18.6246i 0.695868 + 0.692656i
\(724\) −15.0533 + 5.47895i −0.559451 + 0.203624i
\(725\) 0 0
\(726\) 2.69384 0.241962i 0.0999779 0.00898006i
\(727\) 7.91094 + 9.42789i 0.293401 + 0.349661i 0.892528 0.450993i \(-0.148930\pi\)
−0.599127 + 0.800654i \(0.704486\pi\)
\(728\) 3.75913i 0.139323i
\(729\) −23.1930 + 13.8233i −0.859001 + 0.511973i
\(730\) 0 0
\(731\) 11.1315 9.34041i 0.411712 0.345468i
\(732\) −2.72624 30.3521i −0.100765 1.12185i
\(733\) 2.30089 + 0.405710i 0.0849854 + 0.0149852i 0.215979 0.976398i \(-0.430706\pi\)
−0.130994 + 0.991383i \(0.541817\pi\)
\(734\) 8.50813 3.09671i 0.314041 0.114302i
\(735\) 0 0
\(736\) −3.57812 20.2925i −0.131891 0.747993i
\(737\) −10.1963 + 5.88684i −0.375586 + 0.216845i
\(738\) −0.902125 4.98131i −0.0332077 0.183365i
\(739\) 26.0513 45.1221i 0.958311 1.65984i 0.231710 0.972785i \(-0.425568\pi\)
0.726602 0.687059i \(-0.241099\pi\)
\(740\) 0 0
\(741\) 0.947026 11.1208i 0.0347899 0.408534i
\(742\) −5.66095 + 6.74646i −0.207820 + 0.247670i
\(743\) 25.9544 30.9313i 0.952175 1.13476i −0.0386016 0.999255i \(-0.512290\pi\)
0.990777 0.135504i \(-0.0432652\pi\)
\(744\) −10.2885 + 4.82663i −0.377195 + 0.176953i
\(745\) 0 0
\(746\) 0.734841 1.27278i 0.0269045 0.0465999i
\(747\) −7.99892 6.64906i −0.292665 0.243276i
\(748\) 8.70559 5.02618i 0.318308 0.183775i
\(749\) 2.55210 + 14.4737i 0.0932517 + 0.528857i
\(750\) 0 0
\(751\) −25.8917 + 9.42382i −0.944803 + 0.343880i −0.768061 0.640377i \(-0.778778\pi\)
−0.176742 + 0.984257i \(0.556556\pi\)
\(752\) 34.0281 + 6.00007i 1.24088 + 0.218800i
\(753\) −28.6588 + 20.1661i −1.04438 + 0.734892i
\(754\) 1.80209 1.51213i 0.0656282 0.0550686i
\(755\) 0 0
\(756\) −25.1195 + 6.91798i −0.913588 + 0.251604i
\(757\) 13.2447i 0.481386i −0.970601 0.240693i \(-0.922625\pi\)
0.970601 0.240693i \(-0.0773746\pi\)
\(758\) 4.52996 + 5.39860i 0.164536 + 0.196086i
\(759\) −11.3264 + 24.4369i −0.411121 + 0.887004i
\(760\) 0 0
\(761\) 35.4594 12.9062i 1.28540 0.467848i 0.393187 0.919459i \(-0.371373\pi\)
0.892215 + 0.451611i \(0.149150\pi\)
\(762\) 0.373405 1.40658i 0.0135270 0.0509549i
\(763\) −48.3743 + 8.52970i −1.75127 + 0.308796i
\(764\) 23.1558 + 40.1070i 0.837747 + 1.45102i
\(765\) 0 0
\(766\) 0.699881 1.21223i 0.0252877 0.0437997i
\(767\) −1.63633 + 4.49578i −0.0590844 + 0.162333i
\(768\) −10.9659 + 15.7383i −0.395698 + 0.567907i
\(769\) −39.2960 32.9733i −1.41705 1.18905i −0.952898 0.303292i \(-0.901914\pi\)
−0.464153 0.885755i \(-0.653641\pi\)
\(770\) 0 0
\(771\) −41.3741 28.8280i −1.49005 1.03822i
\(772\) −15.9062 + 43.7020i −0.572477 + 1.57287i
\(773\) 37.1420 + 21.4439i 1.33590 + 0.771285i 0.986197 0.165574i \(-0.0529478\pi\)
0.349707 + 0.936859i \(0.386281\pi\)
\(774\) −4.06291 + 2.37086i −0.146038 + 0.0852188i
\(775\) 0 0
\(776\) 0.728691 + 4.13261i 0.0261585 + 0.148352i
\(777\) −5.23144 + 19.7063i −0.187677 + 0.706959i
\(778\) 3.12316 + 8.58082i 0.111971 + 0.307637i
\(779\) 5.12139 29.0449i 0.183493 1.04064i
\(780\) 0 0
\(781\) −5.65365 + 4.74398i −0.202304 + 0.169753i
\(782\) 4.22695i 0.151155i
\(783\) −27.2902 18.8278i −0.975271 0.672852i
\(784\) 1.03921 0.0371145
\(785\) 0 0
\(786\) 3.94973 + 5.61312i 0.140882 + 0.200213i
\(787\) 38.1836 + 6.73280i 1.36110 + 0.239998i 0.806063 0.591829i \(-0.201594\pi\)
0.555034 + 0.831827i \(0.312705\pi\)
\(788\) 15.5196 + 42.6399i 0.552864 + 1.51898i
\(789\) 0.526917 + 1.94844i 0.0187588 + 0.0693663i
\(790\) 0 0
\(791\) 14.8112 + 25.6538i 0.526626 + 0.912143i
\(792\) −6.20749 + 2.29193i −0.220574 + 0.0814401i
\(793\) −11.4157 6.59086i −0.405384 0.234048i
\(794\) −2.02159 0.735798i −0.0717435 0.0261125i
\(795\) 0 0
\(796\) 11.6308 + 9.75940i 0.412243 + 0.345913i
\(797\) −28.1529 + 33.5513i −0.997228 + 1.18845i −0.0151670 + 0.999885i \(0.504828\pi\)
−0.982061 + 0.188565i \(0.939616\pi\)
\(798\) 5.05273 + 0.430280i 0.178865 + 0.0152317i
\(799\) −21.1573 7.70063i −0.748491 0.272429i
\(800\) 0 0
\(801\) 29.5031 + 34.8318i 1.04244 + 1.23072i
\(802\) 5.97898 3.45196i 0.211125 0.121893i
\(803\) 11.0743 1.95269i 0.390802 0.0689089i
\(804\) −12.6313 + 12.6898i −0.445470 + 0.447536i
\(805\) 0 0
\(806\) −0.419790 + 2.38074i −0.0147865 + 0.0838582i
\(807\) −0.603338 6.71716i −0.0212385 0.236455i
\(808\) −9.19742 10.9611i −0.323564 0.385608i
\(809\) 20.1808 0.709518 0.354759 0.934958i \(-0.384563\pi\)
0.354759 + 0.934958i \(0.384563\pi\)
\(810\) 0 0
\(811\) −9.77975 −0.343413 −0.171707 0.985148i \(-0.554928\pi\)
−0.171707 + 0.985148i \(0.554928\pi\)
\(812\) −20.5654 24.5089i −0.721703 0.860093i
\(813\) −0.156771 1.74538i −0.00549820 0.0612132i
\(814\) −0.442200 + 2.50784i −0.0154991 + 0.0878998i
\(815\) 0 0
\(816\) 10.4122 10.4605i 0.364501 0.366192i
\(817\) −26.9893 + 4.75894i −0.944236 + 0.166494i
\(818\) 0.456385 0.263494i 0.0159571 0.00921285i
\(819\) −3.80553 + 10.6081i −0.132976 + 0.370677i
\(820\) 0 0
\(821\) −5.74874 2.09237i −0.200632 0.0730242i 0.239749 0.970835i \(-0.422935\pi\)
−0.440382 + 0.897811i \(0.645157\pi\)
\(822\) 5.28056 + 0.449681i 0.184181 + 0.0156844i
\(823\) 27.7805 33.1075i 0.968366 1.15405i −0.0196667 0.999807i \(-0.506261\pi\)
0.988032 0.154247i \(-0.0492950\pi\)
\(824\) −6.61885 5.55387i −0.230578 0.193478i
\(825\) 0 0
\(826\) −2.04265 0.743463i −0.0710728 0.0258684i
\(827\) −2.44008 1.40878i −0.0848499 0.0489881i 0.456975 0.889480i \(-0.348933\pi\)
−0.541825 + 0.840492i \(0.682266\pi\)
\(828\) −6.92590 + 40.3702i −0.240692 + 1.40296i
\(829\) 10.5567 + 18.2847i 0.366649 + 0.635054i 0.989039 0.147653i \(-0.0471718\pi\)
−0.622391 + 0.782707i \(0.713838\pi\)
\(830\) 0 0
\(831\) 14.0123 + 51.8148i 0.486081 + 1.79743i
\(832\) 3.21841 + 8.84252i 0.111578 + 0.306559i
\(833\) −0.666869 0.117587i −0.0231057 0.00407415i
\(834\) 4.51832 + 6.42116i 0.156457 + 0.222347i
\(835\) 0 0
\(836\) −18.9587 −0.655701
\(837\) 33.9200 3.20500i 1.17245 0.110781i
\(838\) 6.57831i 0.227244i
\(839\) −21.2831 + 17.8586i −0.734774 + 0.616549i −0.931429 0.363924i \(-0.881437\pi\)
0.196655 + 0.980473i \(0.436992\pi\)
\(840\) 0 0
\(841\) 2.03387 11.5347i 0.0701335 0.397747i
\(842\) 0.867945 + 2.38466i 0.0299114 + 0.0821808i
\(843\) 1.27265 4.79395i 0.0438325 0.165112i
\(844\) −1.69516 9.61373i −0.0583498 0.330918i
\(845\) 0 0
\(846\) 6.32898 + 3.61510i 0.217595 + 0.124290i
\(847\) −13.7795 7.95559i −0.473469 0.273357i
\(848\) 16.5343 45.4276i 0.567790 1.55999i
\(849\) −35.0130 24.3958i −1.20164 0.837263i
\(850\) 0 0
\(851\) 24.5539 + 20.6031i 0.841696 + 0.706267i
\(852\) −6.41630 + 9.20869i −0.219819 + 0.315485i
\(853\) 14.0482 38.5970i 0.481000 1.32154i −0.427637 0.903950i \(-0.640654\pi\)
0.908637 0.417586i \(-0.137124\pi\)
\(854\) 2.99455 5.18671i 0.102471 0.177486i
\(855\) 0 0
\(856\) 2.83814 + 4.91581i 0.0970057 + 0.168019i
\(857\) 9.34103 1.64708i 0.319084 0.0562630i −0.0118126 0.999930i \(-0.503760\pi\)
0.330896 + 0.943667i \(0.392649\pi\)
\(858\) −0.361169 + 1.36048i −0.0123301 + 0.0464461i
\(859\) −29.4183 + 10.7074i −1.00374 + 0.365332i −0.791026 0.611783i \(-0.790453\pi\)
−0.212715 + 0.977114i \(0.568231\pi\)
\(860\) 0 0
\(861\) −12.5234 + 27.0196i −0.426798 + 0.920827i
\(862\) 0.395435 + 0.471261i 0.0134686 + 0.0160512i
\(863\) 34.9043i 1.18816i −0.804407 0.594078i \(-0.797517\pi\)
0.804407 0.594078i \(-0.202483\pi\)
\(864\) −12.3716 + 8.79126i −0.420889 + 0.299085i
\(865\) 0 0
\(866\) −3.85830 + 3.23750i −0.131110 + 0.110015i
\(867\) 16.2154 11.4102i 0.550705 0.387509i
\(868\) 32.3787 + 5.70924i 1.09901 + 0.193784i
\(869\) −8.49389 + 3.09152i −0.288136 + 0.104873i
\(870\) 0 0
\(871\) 1.34486 + 7.62709i 0.0455689 + 0.258434i
\(872\) −16.4297 + 9.48572i −0.556381 + 0.321227i
\(873\) 2.12729 12.3997i 0.0719980 0.419667i
\(874\) 3.98601 6.90398i 0.134829 0.233531i
\(875\) 0 0
\(876\) 15.4819 7.26300i 0.523086 0.245394i
\(877\) 11.1162 13.2477i 0.375366 0.447344i −0.544980 0.838449i \(-0.683463\pi\)
0.920346 + 0.391105i \(0.127907\pi\)
\(878\) 0.656644 0.782558i 0.0221607 0.0264101i
\(879\) 0.852602 10.0120i 0.0287576 0.337697i
\(880\) 0 0
\(881\) 10.5256 18.2309i 0.354618 0.614216i −0.632435 0.774614i \(-0.717944\pi\)
0.987052 + 0.160398i \(0.0512777\pi\)
\(882\) 0.206337 + 0.0740209i 0.00694771 + 0.00249241i
\(883\) 27.1348 15.6663i 0.913158 0.527212i 0.0317123 0.999497i \(-0.489904\pi\)
0.881446 + 0.472285i \(0.156571\pi\)
\(884\) −1.14824 6.51200i −0.0386195 0.219022i
\(885\) 0 0
\(886\) −1.19788 + 0.435991i −0.0402434 + 0.0146474i
\(887\) 29.5237 + 5.20582i 0.991309 + 0.174794i 0.645706 0.763586i \(-0.276563\pi\)
0.345603 + 0.938381i \(0.387674\pi\)
\(888\) 0.704466 + 7.84304i 0.0236403 + 0.263195i
\(889\) −6.55830 + 5.50306i −0.219958 + 0.184567i
\(890\) 0 0
\(891\) 19.8375 0.183592i 0.664581 0.00615055i
\(892\) 36.5460i 1.22365i
\(893\) 27.2950 + 32.5289i 0.913393 + 1.08854i
\(894\) −9.40094 + 0.844397i −0.314414 + 0.0282409i
\(895\) 0 0
\(896\) −18.2398 + 6.63874i −0.609349 + 0.221785i
\(897\) 12.5570 + 12.4990i 0.419266 + 0.417331i
\(898\) −4.74791 + 0.837184i −0.158440 + 0.0279372i
\(899\) 20.9189 + 36.2325i 0.697683 + 1.20842i
\(900\) 0 0
\(901\) −15.7504 + 27.2805i −0.524722 + 0.908846i
\(902\) −1.27217 + 3.49525i −0.0423585 + 0.116379i
\(903\) 27.5734 + 2.34809i 0.917584 + 0.0781395i
\(904\) 8.76418 + 7.35402i 0.291492 + 0.244591i
\(905\) 0 0
\(906\) 3.07421 1.44219i 0.102134 0.0479137i
\(907\) −7.49886 + 20.6029i −0.248995 + 0.684109i 0.750728 + 0.660611i \(0.229703\pi\)
−0.999724 + 0.0234984i \(0.992520\pi\)
\(908\) 6.27106 + 3.62060i 0.208112 + 0.120154i
\(909\) 14.8583 + 40.2426i 0.492820 + 1.33476i
\(910\) 0 0
\(911\) −4.98714 28.2835i −0.165231 0.937073i −0.948826 0.315800i \(-0.897727\pi\)
0.783594 0.621273i \(-0.213384\pi\)
\(912\) −26.8708 + 7.26669i −0.889781 + 0.240624i
\(913\) 2.61392 + 7.18168i 0.0865080 + 0.237679i
\(914\) 0.502604 2.85041i 0.0166247 0.0942832i
\(915\) 0 0
\(916\) −12.4783 + 10.4705i −0.412295 + 0.345956i
\(917\) 40.3766i 1.33335i
\(918\) 2.81246 1.33531i 0.0928250 0.0440719i
\(919\) 1.97798 0.0652474 0.0326237 0.999468i \(-0.489614\pi\)
0.0326237 + 0.999468i \(0.489614\pi\)
\(920\) 0 0
\(921\) −22.5503 + 48.6529i −0.743059 + 1.60317i
\(922\) −1.09269 0.192671i −0.0359858 0.00634527i
\(923\) 1.66044 + 4.56201i 0.0546539 + 0.150160i
\(924\) 18.5029 + 4.91198i 0.608701 + 0.161592i
\(925\) 0 0
\(926\) −0.920900 1.59505i −0.0302626 0.0524164i
\(927\) 13.0557 + 22.3733i 0.428804 + 0.734837i
\(928\) −16.1399 9.31835i −0.529817 0.305890i
\(929\) 3.58721 + 1.30564i 0.117693 + 0.0428366i 0.400195 0.916430i \(-0.368942\pi\)
−0.282502 + 0.959267i \(0.591165\pi\)
\(930\) 0 0
\(931\) 0.978329 + 0.820915i 0.0320634 + 0.0269044i
\(932\) −13.9869 + 16.6689i −0.458155 + 0.546008i
\(933\) −9.62687 + 13.8165i −0.315170 + 0.452333i
\(934\) 0.856025 + 0.311568i 0.0280100 + 0.0101948i
\(935\) 0 0
\(936\) 0.0201412 + 4.35269i 0.000658334 + 0.142272i
\(937\) −35.8550 + 20.7009i −1.17133 + 0.676269i −0.953994 0.299827i \(-0.903071\pi\)
−0.217339 + 0.976096i \(0.569738\pi\)
\(938\) −3.46536 + 0.611036i −0.113148 + 0.0199510i
\(939\) 20.3328 + 5.39776i 0.663535 + 0.176149i
\(940\) 0 0
\(941\) 2.51391 14.2571i 0.0819512 0.464768i −0.916022 0.401129i \(-0.868618\pi\)
0.997973 0.0636397i \(-0.0202708\pi\)
\(942\) −0.309569 0.143483i −0.0100863 0.00467494i
\(943\) 30.0938 + 35.8644i 0.979990 + 1.16791i
\(944\) 11.9322 0.388359
\(945\) 0 0
\(946\) 3.45633 0.112375
\(947\) 13.6373 + 16.2523i 0.443152 + 0.528128i 0.940669 0.339326i \(-0.110199\pi\)
−0.497517 + 0.867454i \(0.665755\pi\)
\(948\) −11.2418 + 7.91043i −0.365117 + 0.256919i
\(949\) 1.28448 7.28466i 0.0416961 0.236470i
\(950\) 0 0
\(951\) 2.39192 + 8.84485i 0.0775632 + 0.286814i
\(952\) 6.01627 1.06083i 0.194989 0.0343817i
\(953\) 22.1452 12.7855i 0.717354 0.414165i −0.0964240 0.995340i \(-0.530740\pi\)
0.813778 + 0.581176i \(0.197407\pi\)
\(954\) 6.51866 7.84204i 0.211049 0.253896i
\(955\) 0 0
\(956\) 32.8134 + 11.9431i 1.06126 + 0.386267i
\(957\) 10.3463 + 22.0543i 0.334448 + 0.712915i
\(958\) 0.310084 0.369544i 0.0100184 0.0119394i
\(959\) −23.8830 20.0402i −0.771221 0.647131i
\(960\) 0 0
\(961\) −11.2706 4.10216i −0.363567 0.132328i
\(962\) 1.45069 + 0.837556i 0.0467721 + 0.0270039i
\(963\) −3.03262 16.7454i −0.0977248 0.539612i
\(964\) −14.7495 25.5468i −0.475049 0.822808i
\(965\) 0 0
\(966\) −5.67892 + 5.70525i −0.182716 + 0.183564i
\(967\) 19.1595 + 52.6404i 0.616129 + 1.69280i 0.716266 + 0.697827i \(0.245850\pi\)
−0.100137 + 0.994974i \(0.531928\pi\)
\(968\) −6.05189 1.06711i −0.194515 0.0342982i
\(969\) 18.0655 1.62265i 0.580348 0.0521272i
\(970\) 0 0
\(971\) −13.1661 −0.422521 −0.211261 0.977430i \(-0.567757\pi\)
−0.211261 + 0.977430i \(0.567757\pi\)
\(972\) 29.0488 8.14490i 0.931740 0.261248i
\(973\) 46.1891i 1.48076i
\(974\) −2.65771 + 2.23009i −0.0851587 + 0.0714566i
\(975\) 0 0
\(976\) −5.70878 + 32.3761i −0.182734 + 1.03633i
\(977\) −19.4053 53.3156i −0.620831 1.70572i −0.704945 0.709262i \(-0.749028\pi\)
0.0841143 0.996456i \(-0.473194\pi\)
\(978\) −5.09022 5.06672i −0.162767 0.162016i
\(979\) −5.82409 33.0301i −0.186139 1.05565i
\(980\) 0 0
\(981\) 55.9668 10.1357i 1.78688 0.323608i
\(982\) −8.67940 5.01106i −0.276971 0.159909i
\(983\) −11.4913 + 31.5720i −0.366515 + 1.00699i 0.610162 + 0.792277i \(0.291104\pi\)
−0.976677 + 0.214715i \(0.931118\pi\)
\(984\) −0.975953 + 11.4605i −0.0311122 + 0.365348i
\(985\) 0 0
\(986\) 2.92864 + 2.45742i 0.0932668 + 0.0782601i
\(987\) −18.2109 38.8186i −0.579659 1.23561i
\(988\) −4.26536 + 11.7190i −0.135699 + 0.372831i
\(989\) 21.7522 37.6758i 0.691678 1.19802i
\(990\) 0 0
\(991\) 10.8153 + 18.7327i 0.343559 + 0.595062i 0.985091 0.172034i \(-0.0550340\pi\)
−0.641532 + 0.767097i \(0.721701\pi\)
\(992\) 18.8608 3.32566i 0.598830 0.105590i
\(993\) −42.0190 + 11.3632i −1.33343 + 0.360601i
\(994\) −2.07274 + 0.754416i −0.0657434 + 0.0239286i
\(995\) 0 0
\(996\) 6.68836 + 9.50508i 0.211929 + 0.301180i
\(997\) −22.1024 26.3406i −0.699989 0.834214i 0.292536 0.956254i \(-0.405501\pi\)
−0.992525 + 0.122040i \(0.961056\pi\)
\(998\) 6.64065i 0.210206i
\(999\) 5.95189 22.8459i 0.188310 0.722812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.12 132
5.2 odd 4 675.2.l.g.76.6 yes 66
5.3 odd 4 675.2.l.f.76.6 66
5.4 even 2 inner 675.2.u.e.49.11 132
27.16 even 9 inner 675.2.u.e.124.11 132
135.43 odd 36 675.2.l.f.151.6 yes 66
135.97 odd 36 675.2.l.g.151.6 yes 66
135.124 even 18 inner 675.2.u.e.124.12 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.6 66 5.3 odd 4
675.2.l.f.151.6 yes 66 135.43 odd 36
675.2.l.g.76.6 yes 66 5.2 odd 4
675.2.l.g.151.6 yes 66 135.97 odd 36
675.2.u.e.49.11 132 5.4 even 2 inner
675.2.u.e.49.12 132 1.1 even 1 trivial
675.2.u.e.124.11 132 27.16 even 9 inner
675.2.u.e.124.12 132 135.124 even 18 inner