Properties

Label 675.2.u.e.49.10
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.10
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.e.124.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.177808 - 0.211903i) q^{2} +(1.66326 - 0.483303i) q^{3} +(0.334009 - 1.89426i) q^{4} +(-0.398153 - 0.266514i) q^{6} +(1.66379 - 0.293371i) q^{7} +(-0.939908 + 0.542656i) q^{8} +(2.53284 - 1.60771i) q^{9} +(-4.65944 - 1.69590i) q^{11} +(-0.359958 - 3.31206i) q^{12} +(2.40892 - 2.87084i) q^{13} +(-0.358001 - 0.300398i) q^{14} +(-3.33285 - 1.21306i) q^{16} +(-5.46979 - 3.15798i) q^{17} +(-0.791037 - 0.250852i) q^{18} +(3.42671 + 5.93524i) q^{19} +(2.62552 - 1.29206i) q^{21} +(0.469119 + 1.28889i) q^{22} +(6.37131 + 1.12343i) q^{23} +(-1.30104 + 1.35684i) q^{24} -1.03667 q^{26} +(3.43574 - 3.89816i) q^{27} -3.24964i q^{28} +(0.115261 - 0.0967151i) q^{29} +(-1.06440 + 6.03653i) q^{31} +(1.07795 + 2.96165i) q^{32} +(-8.56948 - 0.568791i) q^{33} +(0.303384 + 1.72058i) q^{34} +(-2.19943 - 5.33484i) q^{36} +(2.13979 + 1.23541i) q^{37} +(0.648400 - 1.78146i) q^{38} +(2.61917 - 5.93918i) q^{39} +(-3.02499 - 2.53826i) q^{41} +(-0.740630 - 0.326617i) q^{42} +(2.39437 - 6.57849i) q^{43} +(-4.76877 + 8.25975i) q^{44} +(-0.894809 - 1.54985i) q^{46} +(6.10414 - 1.07632i) q^{47} +(-6.12965 - 0.406850i) q^{48} +(-3.89572 + 1.41793i) q^{49} +(-10.6239 - 2.60897i) q^{51} +(-4.63352 - 5.52201i) q^{52} -0.373453i q^{53} +(-1.43693 - 0.0349210i) q^{54} +(-1.40461 + 1.17861i) q^{56} +(8.56802 + 8.21568i) q^{57} +(-0.0409885 - 0.00722737i) q^{58} +(-0.342887 + 0.124801i) q^{59} +(1.07271 + 6.08365i) q^{61} +(1.46842 - 0.847791i) q^{62} +(3.74245 - 3.41795i) q^{63} +(-3.11083 + 5.38811i) q^{64} +(1.40319 + 1.91703i) q^{66} +(0.398928 - 0.475424i) q^{67} +(-7.80900 + 9.30640i) q^{68} +(11.1401 - 1.21071i) q^{69} +(-3.39814 + 5.88576i) q^{71} +(-1.50820 + 2.88556i) q^{72} +(3.94359 - 2.27683i) q^{73} +(-0.118685 - 0.673094i) q^{74} +(12.3874 - 4.50866i) q^{76} +(-8.24986 - 1.45467i) q^{77} +(-1.72424 + 0.501023i) q^{78} +(12.4889 - 10.4794i) q^{79} +(3.83053 - 8.14414i) q^{81} +1.09233i q^{82} +(7.18726 + 8.56544i) q^{83} +(-1.57056 - 5.40498i) q^{84} +(-1.81974 + 0.662331i) q^{86} +(0.144965 - 0.216568i) q^{87} +(5.29974 - 0.934487i) q^{88} +(-4.58274 - 7.93753i) q^{89} +(3.16572 - 5.48319i) q^{91} +(4.25615 - 11.6937i) q^{92} +(1.14710 + 10.5547i) q^{93} +(-1.31344 - 1.10211i) q^{94} +(3.22429 + 4.40501i) q^{96} +(-4.70945 + 12.9391i) q^{97} +(0.993152 + 0.573397i) q^{98} +(-14.5281 + 3.19561i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.177808 0.211903i −0.125729 0.149838i 0.699508 0.714625i \(-0.253403\pi\)
−0.825237 + 0.564787i \(0.808958\pi\)
\(3\) 1.66326 0.483303i 0.960281 0.279035i
\(4\) 0.334009 1.89426i 0.167005 0.947130i
\(5\) 0 0
\(6\) −0.398153 0.266514i −0.162545 0.108804i
\(7\) 1.66379 0.293371i 0.628853 0.110884i 0.149867 0.988706i \(-0.452115\pi\)
0.478986 + 0.877822i \(0.341004\pi\)
\(8\) −0.939908 + 0.542656i −0.332308 + 0.191858i
\(9\) 2.53284 1.60771i 0.844279 0.535904i
\(10\) 0 0
\(11\) −4.65944 1.69590i −1.40488 0.511333i −0.475254 0.879849i \(-0.657644\pi\)
−0.929621 + 0.368516i \(0.879866\pi\)
\(12\) −0.359958 3.31206i −0.103911 0.956111i
\(13\) 2.40892 2.87084i 0.668115 0.796229i −0.320411 0.947279i \(-0.603821\pi\)
0.988526 + 0.151050i \(0.0482654\pi\)
\(14\) −0.358001 0.300398i −0.0956798 0.0802849i
\(15\) 0 0
\(16\) −3.33285 1.21306i −0.833212 0.303264i
\(17\) −5.46979 3.15798i −1.32662 0.765923i −0.341843 0.939757i \(-0.611051\pi\)
−0.984775 + 0.173834i \(0.944385\pi\)
\(18\) −0.791037 0.250852i −0.186449 0.0591265i
\(19\) 3.42671 + 5.93524i 0.786142 + 1.36164i 0.928314 + 0.371796i \(0.121258\pi\)
−0.142172 + 0.989842i \(0.545409\pi\)
\(20\) 0 0
\(21\) 2.62552 1.29206i 0.572935 0.281952i
\(22\) 0.469119 + 1.28889i 0.100017 + 0.274793i
\(23\) 6.37131 + 1.12343i 1.32851 + 0.234252i 0.792454 0.609931i \(-0.208803\pi\)
0.536055 + 0.844183i \(0.319914\pi\)
\(24\) −1.30104 + 1.35684i −0.265574 + 0.276963i
\(25\) 0 0
\(26\) −1.03667 −0.203307
\(27\) 3.43574 3.89816i 0.661209 0.750202i
\(28\) 3.24964i 0.614124i
\(29\) 0.115261 0.0967151i 0.0214034 0.0179596i −0.632023 0.774949i \(-0.717775\pi\)
0.653427 + 0.756990i \(0.273331\pi\)
\(30\) 0 0
\(31\) −1.06440 + 6.03653i −0.191172 + 1.08419i 0.726593 + 0.687068i \(0.241103\pi\)
−0.917765 + 0.397124i \(0.870008\pi\)
\(32\) 1.07795 + 2.96165i 0.190557 + 0.523551i
\(33\) −8.56948 0.568791i −1.49175 0.0990138i
\(34\) 0.303384 + 1.72058i 0.0520300 + 0.295077i
\(35\) 0 0
\(36\) −2.19943 5.33484i −0.366572 0.889140i
\(37\) 2.13979 + 1.23541i 0.351780 + 0.203100i 0.665469 0.746426i \(-0.268232\pi\)
−0.313689 + 0.949526i \(0.601565\pi\)
\(38\) 0.648400 1.78146i 0.105184 0.288992i
\(39\) 2.61917 5.93918i 0.419403 0.951031i
\(40\) 0 0
\(41\) −3.02499 2.53826i −0.472423 0.396410i 0.375254 0.926922i \(-0.377555\pi\)
−0.847678 + 0.530512i \(0.822000\pi\)
\(42\) −0.740630 0.326617i −0.114282 0.0503980i
\(43\) 2.39437 6.57849i 0.365139 1.00321i −0.612047 0.790822i \(-0.709654\pi\)
0.977185 0.212388i \(-0.0681242\pi\)
\(44\) −4.76877 + 8.25975i −0.718919 + 1.24520i
\(45\) 0 0
\(46\) −0.894809 1.54985i −0.131932 0.228514i
\(47\) 6.10414 1.07632i 0.890380 0.156998i 0.290298 0.956936i \(-0.406246\pi\)
0.600082 + 0.799938i \(0.295135\pi\)
\(48\) −6.12965 0.406850i −0.884739 0.0587238i
\(49\) −3.89572 + 1.41793i −0.556531 + 0.202561i
\(50\) 0 0
\(51\) −10.6239 2.60897i −1.48765 0.365329i
\(52\) −4.63352 5.52201i −0.642554 0.765766i
\(53\) 0.373453i 0.0512977i −0.999671 0.0256488i \(-0.991835\pi\)
0.999671 0.0256488i \(-0.00816518\pi\)
\(54\) −1.43693 0.0349210i −0.195542 0.00475215i
\(55\) 0 0
\(56\) −1.40461 + 1.17861i −0.187699 + 0.157498i
\(57\) 8.56802 + 8.21568i 1.13486 + 1.08819i
\(58\) −0.0409885 0.00722737i −0.00538205 0.000949001i
\(59\) −0.342887 + 0.124801i −0.0446401 + 0.0162477i −0.364244 0.931304i \(-0.618672\pi\)
0.319604 + 0.947551i \(0.396450\pi\)
\(60\) 0 0
\(61\) 1.07271 + 6.08365i 0.137347 + 0.778931i 0.973197 + 0.229974i \(0.0738640\pi\)
−0.835850 + 0.548958i \(0.815025\pi\)
\(62\) 1.46842 0.847791i 0.186489 0.107670i
\(63\) 3.74245 3.41795i 0.471505 0.430622i
\(64\) −3.11083 + 5.38811i −0.388854 + 0.673514i
\(65\) 0 0
\(66\) 1.40319 + 1.91703i 0.172721 + 0.235971i
\(67\) 0.398928 0.475424i 0.0487369 0.0580823i −0.741125 0.671367i \(-0.765708\pi\)
0.789862 + 0.613284i \(0.210152\pi\)
\(68\) −7.80900 + 9.30640i −0.946980 + 1.12857i
\(69\) 11.1401 1.21071i 1.34111 0.145753i
\(70\) 0 0
\(71\) −3.39814 + 5.88576i −0.403285 + 0.698511i −0.994120 0.108282i \(-0.965465\pi\)
0.590835 + 0.806793i \(0.298799\pi\)
\(72\) −1.50820 + 2.88556i −0.177743 + 0.340067i
\(73\) 3.94359 2.27683i 0.461563 0.266483i −0.251138 0.967951i \(-0.580805\pi\)
0.712701 + 0.701468i \(0.247472\pi\)
\(74\) −0.118685 0.673094i −0.0137968 0.0782456i
\(75\) 0 0
\(76\) 12.3874 4.50866i 1.42094 0.517179i
\(77\) −8.24986 1.45467i −0.940159 0.165775i
\(78\) −1.72424 + 0.501023i −0.195232 + 0.0567297i
\(79\) 12.4889 10.4794i 1.40511 1.17903i 0.446338 0.894864i \(-0.352728\pi\)
0.958775 0.284166i \(-0.0917166\pi\)
\(80\) 0 0
\(81\) 3.83053 8.14414i 0.425614 0.904905i
\(82\) 1.09233i 0.120627i
\(83\) 7.18726 + 8.56544i 0.788904 + 0.940179i 0.999299 0.0374374i \(-0.0119195\pi\)
−0.210395 + 0.977616i \(0.567475\pi\)
\(84\) −1.57056 5.40498i −0.171362 0.589731i
\(85\) 0 0
\(86\) −1.81974 + 0.662331i −0.196228 + 0.0714210i
\(87\) 0.144965 0.216568i 0.0155419 0.0232185i
\(88\) 5.29974 0.934487i 0.564954 0.0996167i
\(89\) −4.58274 7.93753i −0.485769 0.841377i 0.514097 0.857732i \(-0.328127\pi\)
−0.999866 + 0.0163553i \(0.994794\pi\)
\(90\) 0 0
\(91\) 3.16572 5.48319i 0.331858 0.574794i
\(92\) 4.25615 11.6937i 0.443734 1.21915i
\(93\) 1.14710 + 10.5547i 0.118948 + 1.09447i
\(94\) −1.31344 1.10211i −0.135471 0.113674i
\(95\) 0 0
\(96\) 3.22429 + 4.40501i 0.329077 + 0.449584i
\(97\) −4.70945 + 12.9391i −0.478172 + 1.31377i 0.432871 + 0.901456i \(0.357501\pi\)
−0.911043 + 0.412312i \(0.864721\pi\)
\(98\) 0.993152 + 0.573397i 0.100324 + 0.0579218i
\(99\) −14.5281 + 3.19561i −1.46013 + 0.321171i
\(100\) 0 0
\(101\) 1.98385 + 11.2510i 0.197400 + 1.11951i 0.908959 + 0.416886i \(0.136879\pi\)
−0.711558 + 0.702627i \(0.752010\pi\)
\(102\) 1.33617 + 2.71514i 0.132300 + 0.268838i
\(103\) −3.13998 8.62703i −0.309392 0.850046i −0.992775 0.119987i \(-0.961715\pi\)
0.683384 0.730059i \(-0.260508\pi\)
\(104\) −0.706286 + 4.00555i −0.0692571 + 0.392776i
\(105\) 0 0
\(106\) −0.0791358 + 0.0664028i −0.00768635 + 0.00644961i
\(107\) 1.09015i 0.105389i 0.998611 + 0.0526946i \(0.0167810\pi\)
−0.998611 + 0.0526946i \(0.983219\pi\)
\(108\) −6.23656 7.81021i −0.600113 0.751538i
\(109\) 0.574982 0.0550733 0.0275366 0.999621i \(-0.491234\pi\)
0.0275366 + 0.999621i \(0.491234\pi\)
\(110\) 0 0
\(111\) 4.15610 + 1.02063i 0.394480 + 0.0968744i
\(112\) −5.90104 1.04051i −0.557595 0.0983191i
\(113\) 6.02550 + 16.5549i 0.566832 + 1.55736i 0.809421 + 0.587228i \(0.199781\pi\)
−0.242590 + 0.970129i \(0.577997\pi\)
\(114\) 0.217468 3.27640i 0.0203678 0.306863i
\(115\) 0 0
\(116\) −0.144705 0.250637i −0.0134356 0.0232711i
\(117\) 1.48592 11.1442i 0.137374 1.03028i
\(118\) 0.0874136 + 0.0504683i 0.00804708 + 0.00464598i
\(119\) −10.0270 3.64954i −0.919177 0.334553i
\(120\) 0 0
\(121\) 10.4079 + 8.73323i 0.946169 + 0.793930i
\(122\) 1.09841 1.30903i 0.0994451 0.118514i
\(123\) −6.25807 2.75980i −0.564272 0.248843i
\(124\) 11.0792 + 4.03251i 0.994944 + 0.362130i
\(125\) 0 0
\(126\) −1.38971 0.185298i −0.123805 0.0165077i
\(127\) −6.89096 + 3.97850i −0.611474 + 0.353035i −0.773542 0.633745i \(-0.781517\pi\)
0.162068 + 0.986780i \(0.448184\pi\)
\(128\) 7.90257 1.39344i 0.698496 0.123164i
\(129\) 0.803054 12.0989i 0.0707050 1.06525i
\(130\) 0 0
\(131\) 1.46844 8.32796i 0.128298 0.727617i −0.850995 0.525173i \(-0.824001\pi\)
0.979294 0.202444i \(-0.0648883\pi\)
\(132\) −3.93972 + 16.0428i −0.342909 + 1.39635i
\(133\) 7.44256 + 8.86970i 0.645352 + 0.769100i
\(134\) −0.171676 −0.0148306
\(135\) 0 0
\(136\) 6.85480 0.587794
\(137\) −0.254931 0.303815i −0.0217802 0.0259567i 0.755044 0.655674i \(-0.227615\pi\)
−0.776825 + 0.629717i \(0.783171\pi\)
\(138\) −2.23734 2.14534i −0.190455 0.182624i
\(139\) 0.813377 4.61289i 0.0689897 0.391260i −0.930687 0.365818i \(-0.880789\pi\)
0.999676 0.0254426i \(-0.00809950\pi\)
\(140\) 0 0
\(141\) 9.63255 4.74035i 0.811207 0.399209i
\(142\) 1.85143 0.326456i 0.155368 0.0273956i
\(143\) −16.0929 + 9.29124i −1.34576 + 0.776973i
\(144\) −10.3918 + 2.28578i −0.865984 + 0.190482i
\(145\) 0 0
\(146\) −1.18367 0.430821i −0.0979612 0.0356550i
\(147\) −5.79429 + 4.24118i −0.477905 + 0.349807i
\(148\) 3.05490 3.64069i 0.251111 0.299263i
\(149\) 17.6585 + 14.8172i 1.44664 + 1.21387i 0.934987 + 0.354682i \(0.115411\pi\)
0.511653 + 0.859192i \(0.329033\pi\)
\(150\) 0 0
\(151\) −4.86203 1.76963i −0.395666 0.144011i 0.136522 0.990637i \(-0.456408\pi\)
−0.532188 + 0.846626i \(0.678630\pi\)
\(152\) −6.44159 3.71906i −0.522482 0.301655i
\(153\) −18.9312 + 0.795184i −1.53050 + 0.0642868i
\(154\) 1.15864 + 2.00682i 0.0933659 + 0.161714i
\(155\) 0 0
\(156\) −10.3755 6.94513i −0.830707 0.556055i
\(157\) −4.73812 13.0179i −0.378143 1.03894i −0.972125 0.234462i \(-0.924667\pi\)
0.593982 0.804478i \(-0.297555\pi\)
\(158\) −4.44125 0.783113i −0.353327 0.0623011i
\(159\) −0.180491 0.621147i −0.0143138 0.0492602i
\(160\) 0 0
\(161\) 10.9301 0.861412
\(162\) −2.40687 + 0.636392i −0.189101 + 0.0499997i
\(163\) 2.98083i 0.233477i 0.993163 + 0.116738i \(0.0372439\pi\)
−0.993163 + 0.116738i \(0.962756\pi\)
\(164\) −5.81850 + 4.88231i −0.454349 + 0.381244i
\(165\) 0 0
\(166\) 0.537093 3.04600i 0.0416865 0.236416i
\(167\) 6.41805 + 17.6335i 0.496644 + 1.36452i 0.894499 + 0.447070i \(0.147532\pi\)
−0.397855 + 0.917448i \(0.630245\pi\)
\(168\) −1.76660 + 2.63918i −0.136296 + 0.203617i
\(169\) −0.181402 1.02878i −0.0139540 0.0791371i
\(170\) 0 0
\(171\) 18.2215 + 9.52383i 1.39343 + 0.728306i
\(172\) −11.6616 6.73284i −0.889190 0.513374i
\(173\) 2.87196 7.89065i 0.218351 0.599915i −0.781357 0.624085i \(-0.785472\pi\)
0.999708 + 0.0241697i \(0.00769422\pi\)
\(174\) −0.0716673 + 0.00778887i −0.00543308 + 0.000590473i
\(175\) 0 0
\(176\) 13.4720 + 11.3043i 1.01549 + 0.852097i
\(177\) −0.509992 + 0.373294i −0.0383334 + 0.0280585i
\(178\) −0.867141 + 2.38245i −0.0649950 + 0.178572i
\(179\) −11.7123 + 20.2863i −0.875420 + 1.51627i −0.0191052 + 0.999817i \(0.506082\pi\)
−0.856315 + 0.516454i \(0.827252\pi\)
\(180\) 0 0
\(181\) 4.02049 + 6.96369i 0.298841 + 0.517607i 0.975871 0.218348i \(-0.0700667\pi\)
−0.677030 + 0.735955i \(0.736733\pi\)
\(182\) −1.72479 + 0.304128i −0.127850 + 0.0225434i
\(183\) 4.72444 + 9.60022i 0.349240 + 0.709668i
\(184\) −6.59808 + 2.40151i −0.486417 + 0.177041i
\(185\) 0 0
\(186\) 2.03261 2.11978i 0.149038 0.155430i
\(187\) 20.1305 + 23.9906i 1.47209 + 1.75437i
\(188\) 11.9223i 0.869525i
\(189\) 4.57275 7.49367i 0.332618 0.545084i
\(190\) 0 0
\(191\) 2.02875 1.70232i 0.146795 0.123176i −0.566433 0.824108i \(-0.691677\pi\)
0.713228 + 0.700932i \(0.247232\pi\)
\(192\) −2.57001 + 10.4653i −0.185475 + 0.755267i
\(193\) 13.5598 + 2.39096i 0.976055 + 0.172105i 0.638854 0.769328i \(-0.279409\pi\)
0.337201 + 0.941433i \(0.390520\pi\)
\(194\) 3.57921 1.30273i 0.256973 0.0935304i
\(195\) 0 0
\(196\) 1.38471 + 7.85310i 0.0989081 + 0.560936i
\(197\) −9.42236 + 5.44000i −0.671315 + 0.387584i −0.796575 0.604540i \(-0.793357\pi\)
0.125260 + 0.992124i \(0.460024\pi\)
\(198\) 3.26037 + 2.51035i 0.231705 + 0.178403i
\(199\) −9.58456 + 16.6009i −0.679431 + 1.17681i 0.295721 + 0.955274i \(0.404440\pi\)
−0.975152 + 0.221535i \(0.928893\pi\)
\(200\) 0 0
\(201\) 0.433746 0.983555i 0.0305941 0.0693747i
\(202\) 2.03137 2.42089i 0.142927 0.170334i
\(203\) 0.163396 0.194728i 0.0114682 0.0136672i
\(204\) −8.49055 + 19.2530i −0.594457 + 1.34798i
\(205\) 0 0
\(206\) −1.26978 + 2.19932i −0.0884698 + 0.153234i
\(207\) 17.9436 7.39775i 1.24717 0.514179i
\(208\) −11.5111 + 6.64592i −0.798150 + 0.460812i
\(209\) −5.90101 33.4663i −0.408181 2.31491i
\(210\) 0 0
\(211\) −14.2097 + 5.17190i −0.978235 + 0.356048i −0.781154 0.624339i \(-0.785369\pi\)
−0.197081 + 0.980387i \(0.563146\pi\)
\(212\) −0.707417 0.124737i −0.0485856 0.00856695i
\(213\) −2.80738 + 11.4319i −0.192358 + 0.783297i
\(214\) 0.231007 0.193838i 0.0157913 0.0132505i
\(215\) 0 0
\(216\) −1.11392 + 5.52834i −0.0757928 + 0.376156i
\(217\) 10.3558i 0.702996i
\(218\) −0.102236 0.121840i −0.00692431 0.00825207i
\(219\) 5.45880 5.69291i 0.368872 0.384691i
\(220\) 0 0
\(221\) −22.2424 + 8.09556i −1.49618 + 0.544566i
\(222\) −0.522711 1.06217i −0.0350821 0.0712880i
\(223\) −4.59088 + 0.809497i −0.307428 + 0.0542079i −0.325234 0.945634i \(-0.605443\pi\)
0.0178057 + 0.999841i \(0.494332\pi\)
\(224\) 2.66235 + 4.61133i 0.177886 + 0.308107i
\(225\) 0 0
\(226\) 2.43666 4.22042i 0.162084 0.280738i
\(227\) 0.0682374 0.187481i 0.00452908 0.0124435i −0.937407 0.348234i \(-0.886781\pi\)
0.941937 + 0.335791i \(0.109004\pi\)
\(228\) 18.4244 13.4859i 1.22019 0.893128i
\(229\) −13.3044 11.1637i −0.879179 0.737719i 0.0868311 0.996223i \(-0.472326\pi\)
−0.966010 + 0.258504i \(0.916770\pi\)
\(230\) 0 0
\(231\) −14.4247 + 1.56769i −0.949074 + 0.103146i
\(232\) −0.0558513 + 0.153450i −0.00366682 + 0.0100745i
\(233\) 13.6919 + 7.90504i 0.896988 + 0.517876i 0.876222 0.481908i \(-0.160056\pi\)
0.0207662 + 0.999784i \(0.493389\pi\)
\(234\) −2.62571 + 1.66666i −0.171648 + 0.108953i
\(235\) 0 0
\(236\) 0.121877 + 0.691202i 0.00793355 + 0.0449934i
\(237\) 15.7075 23.4659i 1.02031 1.52428i
\(238\) 1.00954 + 2.77368i 0.0654385 + 0.179791i
\(239\) 5.21235 29.5607i 0.337159 1.91212i −0.0676249 0.997711i \(-0.521542\pi\)
0.404784 0.914412i \(-0.367347\pi\)
\(240\) 0 0
\(241\) −2.74958 + 2.30717i −0.177116 + 0.148618i −0.727036 0.686600i \(-0.759103\pi\)
0.549920 + 0.835217i \(0.314658\pi\)
\(242\) 3.75829i 0.241592i
\(243\) 2.43506 15.3971i 0.156209 0.987724i
\(244\) 11.8823 0.760686
\(245\) 0 0
\(246\) 0.527925 + 1.81682i 0.0336592 + 0.115836i
\(247\) 25.2938 + 4.45999i 1.60941 + 0.283782i
\(248\) −2.27532 6.25139i −0.144483 0.396964i
\(249\) 16.0939 + 10.7729i 1.01991 + 0.682704i
\(250\) 0 0
\(251\) −12.8233 22.2107i −0.809401 1.40192i −0.913279 0.407334i \(-0.866458\pi\)
0.103878 0.994590i \(-0.466875\pi\)
\(252\) −5.22448 8.23080i −0.329111 0.518492i
\(253\) −27.7815 16.0397i −1.74661 1.00841i
\(254\) 2.06832 + 0.752808i 0.129778 + 0.0472354i
\(255\) 0 0
\(256\) 7.83172 + 6.57159i 0.489483 + 0.410725i
\(257\) 5.38768 6.42079i 0.336075 0.400518i −0.571368 0.820694i \(-0.693587\pi\)
0.907443 + 0.420176i \(0.138032\pi\)
\(258\) −2.70659 + 1.98111i −0.168505 + 0.123339i
\(259\) 3.92260 + 1.42771i 0.243738 + 0.0887135i
\(260\) 0 0
\(261\) 0.136446 0.430270i 0.00844581 0.0266330i
\(262\) −2.02582 + 1.16961i −0.125156 + 0.0722586i
\(263\) 5.01183 0.883720i 0.309043 0.0544925i −0.0169761 0.999856i \(-0.505404\pi\)
0.326019 + 0.945363i \(0.394293\pi\)
\(264\) 8.36318 4.11567i 0.514718 0.253302i
\(265\) 0 0
\(266\) 0.556171 3.15420i 0.0341010 0.193397i
\(267\) −11.4585 10.9873i −0.701248 0.672411i
\(268\) −0.767331 0.914470i −0.0468722 0.0558601i
\(269\) −28.2625 −1.72320 −0.861599 0.507590i \(-0.830536\pi\)
−0.861599 + 0.507590i \(0.830536\pi\)
\(270\) 0 0
\(271\) −17.2893 −1.05025 −0.525125 0.851025i \(-0.675982\pi\)
−0.525125 + 0.851025i \(0.675982\pi\)
\(272\) 14.3992 + 17.1602i 0.873077 + 1.04049i
\(273\) 2.61536 10.6499i 0.158289 0.644564i
\(274\) −0.0190506 + 0.108041i −0.00115089 + 0.00652702i
\(275\) 0 0
\(276\) 1.42748 21.5066i 0.0859241 1.29454i
\(277\) −4.07733 + 0.718943i −0.244983 + 0.0431971i −0.294791 0.955562i \(-0.595250\pi\)
0.0498083 + 0.998759i \(0.484139\pi\)
\(278\) −1.12211 + 0.647851i −0.0672997 + 0.0388555i
\(279\) 7.00904 + 17.0008i 0.419620 + 1.01781i
\(280\) 0 0
\(281\) 18.0380 + 6.56528i 1.07605 + 0.391652i 0.818438 0.574595i \(-0.194840\pi\)
0.257617 + 0.966247i \(0.417063\pi\)
\(282\) −2.71724 1.19830i −0.161809 0.0713575i
\(283\) 6.13548 7.31199i 0.364717 0.434652i −0.552212 0.833704i \(-0.686216\pi\)
0.916929 + 0.399051i \(0.130661\pi\)
\(284\) 10.0141 + 8.40286i 0.594230 + 0.498618i
\(285\) 0 0
\(286\) 4.83029 + 1.75808i 0.285621 + 0.103957i
\(287\) −5.77759 3.33570i −0.341041 0.196900i
\(288\) 7.49176 + 5.76835i 0.441456 + 0.339903i
\(289\) 11.4457 + 19.8246i 0.673277 + 1.16615i
\(290\) 0 0
\(291\) −1.57951 + 23.7971i −0.0925927 + 1.39501i
\(292\) −2.99572 8.23067i −0.175311 0.481664i
\(293\) 6.25900 + 1.10363i 0.365655 + 0.0644748i 0.353457 0.935451i \(-0.385006\pi\)
0.0121977 + 0.999926i \(0.496117\pi\)
\(294\) 1.92899 + 0.473712i 0.112501 + 0.0276274i
\(295\) 0 0
\(296\) −2.68161 −0.155866
\(297\) −22.6195 + 12.3366i −1.31252 + 0.715842i
\(298\) 6.37651i 0.369381i
\(299\) 18.5732 15.5848i 1.07412 0.901290i
\(300\) 0 0
\(301\) 2.05380 11.6477i 0.118379 0.671360i
\(302\) 0.489516 + 1.34493i 0.0281685 + 0.0773922i
\(303\) 8.73727 + 17.7544i 0.501943 + 1.01997i
\(304\) −4.22093 23.9381i −0.242087 1.37294i
\(305\) 0 0
\(306\) 3.53462 + 3.87019i 0.202061 + 0.221244i
\(307\) −7.43535 4.29280i −0.424358 0.245003i 0.272582 0.962133i \(-0.412122\pi\)
−0.696940 + 0.717129i \(0.745456\pi\)
\(308\) −5.51106 + 15.1415i −0.314022 + 0.862767i
\(309\) −9.39206 12.8314i −0.534295 0.729952i
\(310\) 0 0
\(311\) −8.78608 7.37239i −0.498213 0.418050i 0.358746 0.933435i \(-0.383204\pi\)
−0.856959 + 0.515385i \(0.827649\pi\)
\(312\) 0.761158 + 7.00360i 0.0430921 + 0.396501i
\(313\) −8.53424 + 23.4476i −0.482384 + 1.32534i 0.425060 + 0.905165i \(0.360253\pi\)
−0.907444 + 0.420173i \(0.861969\pi\)
\(314\) −1.91605 + 3.31870i −0.108129 + 0.187285i
\(315\) 0 0
\(316\) −15.6794 27.1575i −0.882034 1.52773i
\(317\) 0.624658 0.110144i 0.0350843 0.00618630i −0.156078 0.987745i \(-0.549885\pi\)
0.191163 + 0.981558i \(0.438774\pi\)
\(318\) −0.0995304 + 0.148691i −0.00558139 + 0.00833820i
\(319\) −0.701069 + 0.255168i −0.0392524 + 0.0142867i
\(320\) 0 0
\(321\) 0.526875 + 1.81321i 0.0294073 + 0.101203i
\(322\) −1.94346 2.31612i −0.108305 0.129072i
\(323\) 43.2860i 2.40850i
\(324\) −14.1477 9.97623i −0.785983 0.554235i
\(325\) 0 0
\(326\) 0.631648 0.530015i 0.0349837 0.0293548i
\(327\) 0.956342 0.277890i 0.0528858 0.0153674i
\(328\) 4.22062 + 0.744208i 0.233045 + 0.0410920i
\(329\) 9.84024 3.58155i 0.542510 0.197457i
\(330\) 0 0
\(331\) −3.50296 19.8662i −0.192540 1.09195i −0.915879 0.401455i \(-0.868505\pi\)
0.723339 0.690493i \(-0.242606\pi\)
\(332\) 18.6258 10.7536i 1.02222 0.590180i
\(333\) 7.40593 0.311078i 0.405843 0.0170470i
\(334\) 2.59540 4.49537i 0.142014 0.245976i
\(335\) 0 0
\(336\) −10.3178 + 1.12135i −0.562883 + 0.0611746i
\(337\) 19.5507 23.2996i 1.06499 1.26921i 0.103428 0.994637i \(-0.467019\pi\)
0.961566 0.274574i \(-0.0885368\pi\)
\(338\) −0.185747 + 0.221365i −0.0101033 + 0.0120407i
\(339\) 18.0230 + 24.6229i 0.978875 + 1.33733i
\(340\) 0 0
\(341\) 15.1969 26.3217i 0.822956 1.42540i
\(342\) −1.22179 5.55460i −0.0660668 0.300358i
\(343\) −16.3075 + 9.41512i −0.880520 + 0.508369i
\(344\) 1.31937 + 7.48250i 0.0711355 + 0.403429i
\(345\) 0 0
\(346\) −2.18271 + 0.794442i −0.117343 + 0.0427094i
\(347\) −36.3972 6.41781i −1.95391 0.344526i −0.998841 0.0481276i \(-0.984675\pi\)
−0.955064 0.296399i \(-0.904214\pi\)
\(348\) −0.361816 0.346937i −0.0193954 0.0185978i
\(349\) −5.58600 + 4.68721i −0.299012 + 0.250901i −0.779933 0.625863i \(-0.784747\pi\)
0.480921 + 0.876764i \(0.340302\pi\)
\(350\) 0 0
\(351\) −2.91457 19.2539i −0.155568 1.02769i
\(352\) 15.6278i 0.832962i
\(353\) −7.31939 8.72291i −0.389572 0.464273i 0.535239 0.844700i \(-0.320221\pi\)
−0.924811 + 0.380427i \(0.875777\pi\)
\(354\) 0.169783 + 0.0416944i 0.00902385 + 0.00221603i
\(355\) 0 0
\(356\) −16.5664 + 6.02968i −0.878018 + 0.319573i
\(357\) −18.4414 1.22403i −0.976020 0.0647824i
\(358\) 6.38128 1.12519i 0.337261 0.0594682i
\(359\) 12.4562 + 21.5748i 0.657414 + 1.13867i 0.981283 + 0.192573i \(0.0616831\pi\)
−0.323869 + 0.946102i \(0.604984\pi\)
\(360\) 0 0
\(361\) −13.9847 + 24.2223i −0.736039 + 1.27486i
\(362\) 0.760754 2.09015i 0.0399843 0.109856i
\(363\) 21.5317 + 9.49544i 1.13012 + 0.498381i
\(364\) −9.32920 7.82813i −0.488983 0.410305i
\(365\) 0 0
\(366\) 1.19427 2.70812i 0.0624257 0.141555i
\(367\) 9.83014 27.0081i 0.513129 1.40981i −0.364830 0.931074i \(-0.618873\pi\)
0.877959 0.478736i \(-0.158905\pi\)
\(368\) −19.8718 11.4730i −1.03589 0.598071i
\(369\) −11.7426 1.56571i −0.611295 0.0815074i
\(370\) 0 0
\(371\) −0.109560 0.621347i −0.00568808 0.0322587i
\(372\) 20.3765 + 1.35247i 1.05647 + 0.0701224i
\(373\) −6.34227 17.4252i −0.328390 0.902245i −0.988520 0.151093i \(-0.951721\pi\)
0.660129 0.751152i \(-0.270501\pi\)
\(374\) 1.50432 8.53145i 0.0777868 0.441151i
\(375\) 0 0
\(376\) −5.15326 + 4.32410i −0.265759 + 0.222998i
\(377\) 0.563875i 0.0290410i
\(378\) −2.40100 + 0.363454i −0.123494 + 0.0186940i
\(379\) −23.8701 −1.22613 −0.613063 0.790034i \(-0.710063\pi\)
−0.613063 + 0.790034i \(0.710063\pi\)
\(380\) 0 0
\(381\) −9.53861 + 9.94768i −0.488678 + 0.509635i
\(382\) −0.721455 0.127212i −0.0369129 0.00650873i
\(383\) −10.4525 28.7180i −0.534097 1.46742i −0.854154 0.520021i \(-0.825924\pi\)
0.320057 0.947398i \(-0.396298\pi\)
\(384\) 12.4705 6.13698i 0.636385 0.313176i
\(385\) 0 0
\(386\) −1.90439 3.29849i −0.0969307 0.167889i
\(387\) −4.51175 20.5117i −0.229345 1.04267i
\(388\) 22.9370 + 13.2427i 1.16445 + 0.672296i
\(389\) −7.60180 2.76683i −0.385427 0.140284i 0.142037 0.989861i \(-0.454635\pi\)
−0.527464 + 0.849578i \(0.676857\pi\)
\(390\) 0 0
\(391\) −31.3019 26.2654i −1.58301 1.32830i
\(392\) 2.89217 3.44676i 0.146077 0.174088i
\(393\) −1.58253 14.5612i −0.0798279 0.734516i
\(394\) 2.82812 + 1.02935i 0.142479 + 0.0518580i
\(395\) 0 0
\(396\) 1.20078 + 28.5874i 0.0603416 + 1.43657i
\(397\) −16.9021 + 9.75843i −0.848292 + 0.489762i −0.860074 0.510169i \(-0.829583\pi\)
0.0117821 + 0.999931i \(0.496250\pi\)
\(398\) 5.22200 0.920780i 0.261755 0.0461545i
\(399\) 16.6656 + 11.1556i 0.834325 + 0.558477i
\(400\) 0 0
\(401\) 2.44572 13.8704i 0.122134 0.692654i −0.860835 0.508883i \(-0.830058\pi\)
0.982969 0.183771i \(-0.0588305\pi\)
\(402\) −0.285542 + 0.0829717i −0.0142415 + 0.00413825i
\(403\) 14.7659 + 17.5973i 0.735540 + 0.876582i
\(404\) 21.9749 1.09329
\(405\) 0 0
\(406\) −0.0703165 −0.00348975
\(407\) −7.87512 9.38520i −0.390355 0.465207i
\(408\) 11.4013 3.31294i 0.564448 0.164015i
\(409\) −0.282399 + 1.60156i −0.0139637 + 0.0791923i −0.990993 0.133912i \(-0.957246\pi\)
0.977030 + 0.213104i \(0.0683573\pi\)
\(410\) 0 0
\(411\) −0.570850 0.382113i −0.0281580 0.0188482i
\(412\) −17.3906 + 3.06643i −0.856774 + 0.151072i
\(413\) −0.533879 + 0.308235i −0.0262705 + 0.0151673i
\(414\) −4.75812 2.48693i −0.233849 0.122226i
\(415\) 0 0
\(416\) 11.0991 + 4.03976i 0.544181 + 0.198066i
\(417\) −0.876569 8.06552i −0.0429257 0.394970i
\(418\) −6.04236 + 7.20101i −0.295542 + 0.352213i
\(419\) 24.5436 + 20.5945i 1.19903 + 1.00611i 0.999657 + 0.0261853i \(0.00833601\pi\)
0.199376 + 0.979923i \(0.436108\pi\)
\(420\) 0 0
\(421\) −3.21532 1.17028i −0.156705 0.0570360i 0.262477 0.964938i \(-0.415461\pi\)
−0.419182 + 0.907902i \(0.637683\pi\)
\(422\) 3.62254 + 2.09147i 0.176342 + 0.101811i
\(423\) 13.7304 12.5398i 0.667593 0.609708i
\(424\) 0.202657 + 0.351011i 0.00984187 + 0.0170466i
\(425\) 0 0
\(426\) 2.92162 1.43778i 0.141553 0.0696607i
\(427\) 3.56953 + 9.80721i 0.172742 + 0.474604i
\(428\) 2.06504 + 0.364121i 0.0998173 + 0.0176005i
\(429\) −22.2761 + 23.2315i −1.07550 + 1.12163i
\(430\) 0 0
\(431\) 33.8955 1.63269 0.816344 0.577565i \(-0.195997\pi\)
0.816344 + 0.577565i \(0.195997\pi\)
\(432\) −16.1795 + 8.82423i −0.778437 + 0.424556i
\(433\) 17.6676i 0.849049i 0.905417 + 0.424524i \(0.139559\pi\)
−0.905417 + 0.424524i \(0.860441\pi\)
\(434\) 2.19442 1.84134i 0.105336 0.0883870i
\(435\) 0 0
\(436\) 0.192049 1.08916i 0.00919748 0.0521615i
\(437\) 15.1648 + 41.6649i 0.725430 + 1.99310i
\(438\) −2.17696 0.144494i −0.104019 0.00690418i
\(439\) −1.25144 7.09728i −0.0597281 0.338735i 0.940270 0.340428i \(-0.110572\pi\)
−0.999999 + 0.00169354i \(0.999461\pi\)
\(440\) 0 0
\(441\) −7.58761 + 9.85457i −0.361315 + 0.469265i
\(442\) 5.67034 + 3.27377i 0.269711 + 0.155718i
\(443\) 11.8604 32.5861i 0.563504 1.54821i −0.250959 0.967998i \(-0.580746\pi\)
0.814463 0.580216i \(-0.197032\pi\)
\(444\) 3.32152 7.53183i 0.157632 0.357445i
\(445\) 0 0
\(446\) 0.987830 + 0.828888i 0.0467751 + 0.0392490i
\(447\) 36.5318 + 16.1104i 1.72789 + 0.761998i
\(448\) −3.59505 + 9.87731i −0.169850 + 0.466659i
\(449\) 4.87046 8.43589i 0.229851 0.398114i −0.727913 0.685670i \(-0.759509\pi\)
0.957764 + 0.287556i \(0.0928427\pi\)
\(450\) 0 0
\(451\) 9.79011 + 16.9570i 0.460998 + 0.798473i
\(452\) 33.3719 5.88437i 1.56968 0.276777i
\(453\) −8.94206 0.593521i −0.420135 0.0278861i
\(454\) −0.0518609 + 0.0188758i −0.00243395 + 0.000885886i
\(455\) 0 0
\(456\) −12.5114 3.07250i −0.585902 0.143883i
\(457\) 20.3177 + 24.2137i 0.950421 + 1.13267i 0.991050 + 0.133493i \(0.0426194\pi\)
−0.0406289 + 0.999174i \(0.512936\pi\)
\(458\) 4.80424i 0.224487i
\(459\) −31.1031 + 10.4721i −1.45177 + 0.488796i
\(460\) 0 0
\(461\) −13.9469 + 11.7028i −0.649572 + 0.545056i −0.906941 0.421258i \(-0.861589\pi\)
0.257369 + 0.966313i \(0.417144\pi\)
\(462\) 2.89702 + 2.77789i 0.134781 + 0.129239i
\(463\) −27.8450 4.90983i −1.29407 0.228179i −0.516125 0.856513i \(-0.672626\pi\)
−0.777943 + 0.628334i \(0.783737\pi\)
\(464\) −0.501467 + 0.182519i −0.0232800 + 0.00847324i
\(465\) 0 0
\(466\) −0.759430 4.30694i −0.0351799 0.199515i
\(467\) −12.1683 + 7.02539i −0.563083 + 0.325096i −0.754382 0.656435i \(-0.772063\pi\)
0.191299 + 0.981532i \(0.438730\pi\)
\(468\) −20.6138 6.53700i −0.952871 0.302173i
\(469\) 0.524257 0.908040i 0.0242080 0.0419294i
\(470\) 0 0
\(471\) −14.1723 19.3621i −0.653024 0.892159i
\(472\) 0.254559 0.303371i 0.0117170 0.0139638i
\(473\) −22.3129 + 26.5915i −1.02595 + 1.22268i
\(474\) −7.76542 + 0.843953i −0.356678 + 0.0387641i
\(475\) 0 0
\(476\) −10.2623 + 17.7748i −0.470372 + 0.814708i
\(477\) −0.600404 0.945895i −0.0274906 0.0433096i
\(478\) −7.19080 + 4.15161i −0.328900 + 0.189890i
\(479\) −1.21657 6.89953i −0.0555867 0.315248i 0.944318 0.329033i \(-0.106723\pi\)
−0.999905 + 0.0137857i \(0.995612\pi\)
\(480\) 0 0
\(481\) 8.70127 3.16700i 0.396744 0.144403i
\(482\) 0.977792 + 0.172411i 0.0445372 + 0.00785311i
\(483\) 18.1795 5.28254i 0.827198 0.240364i
\(484\) 20.0193 16.7982i 0.909969 0.763555i
\(485\) 0 0
\(486\) −3.69566 + 2.22173i −0.167639 + 0.100780i
\(487\) 20.2826i 0.919093i −0.888154 0.459547i \(-0.848012\pi\)
0.888154 0.459547i \(-0.151988\pi\)
\(488\) −4.30958 5.13596i −0.195086 0.232494i
\(489\) 1.44064 + 4.95789i 0.0651482 + 0.224203i
\(490\) 0 0
\(491\) 4.72637 1.72026i 0.213298 0.0776342i −0.233161 0.972438i \(-0.574907\pi\)
0.446459 + 0.894804i \(0.352685\pi\)
\(492\) −7.31803 + 10.9326i −0.329922 + 0.492881i
\(493\) −0.935876 + 0.165020i −0.0421497 + 0.00743213i
\(494\) −3.55236 6.15286i −0.159828 0.276830i
\(495\) 0 0
\(496\) 10.8701 18.8277i 0.488084 0.845387i
\(497\) −3.92709 + 10.7896i −0.176154 + 0.483979i
\(498\) −0.578820 5.32586i −0.0259375 0.238658i
\(499\) −18.3084 15.3625i −0.819595 0.687722i 0.133282 0.991078i \(-0.457448\pi\)
−0.952877 + 0.303356i \(0.901893\pi\)
\(500\) 0 0
\(501\) 19.1972 + 26.2271i 0.857666 + 1.17174i
\(502\) −2.42642 + 6.66653i −0.108296 + 0.297542i
\(503\) −6.99778 4.04017i −0.312015 0.180142i 0.335813 0.941929i \(-0.390989\pi\)
−0.647828 + 0.761787i \(0.724322\pi\)
\(504\) −1.66279 + 5.24343i −0.0740664 + 0.233561i
\(505\) 0 0
\(506\) 1.54092 + 8.73897i 0.0685020 + 0.388494i
\(507\) −0.798931 1.62346i −0.0354818 0.0721002i
\(508\) 5.23467 + 14.3821i 0.232251 + 0.638104i
\(509\) −2.73491 + 15.5104i −0.121223 + 0.687487i 0.862257 + 0.506470i \(0.169050\pi\)
−0.983480 + 0.181017i \(0.942061\pi\)
\(510\) 0 0
\(511\) 5.89335 4.94511i 0.260707 0.218759i
\(512\) 18.8770i 0.834254i
\(513\) 34.9098 + 7.03408i 1.54131 + 0.310562i
\(514\) −2.31856 −0.102267
\(515\) 0 0
\(516\) −22.6503 5.56234i −0.997122 0.244868i
\(517\) −30.2672 5.33693i −1.33115 0.234718i
\(518\) −0.394933 1.08507i −0.0173523 0.0476752i
\(519\) 0.963233 14.5122i 0.0422813 0.637015i
\(520\) 0 0
\(521\) 6.71663 + 11.6335i 0.294261 + 0.509675i 0.974813 0.223025i \(-0.0715932\pi\)
−0.680552 + 0.732700i \(0.738260\pi\)
\(522\) −0.115437 + 0.0475919i −0.00505253 + 0.00208304i
\(523\) −15.6709 9.04762i −0.685242 0.395625i 0.116585 0.993181i \(-0.462805\pi\)
−0.801827 + 0.597556i \(0.796139\pi\)
\(524\) −15.2848 5.56323i −0.667721 0.243031i
\(525\) 0 0
\(526\) −1.07841 0.904889i −0.0470207 0.0394551i
\(527\) 24.8853 29.6572i 1.08402 1.29189i
\(528\) 27.8708 + 12.2910i 1.21292 + 0.534896i
\(529\) 17.7185 + 6.44901i 0.770370 + 0.280392i
\(530\) 0 0
\(531\) −0.667833 + 0.867363i −0.0289815 + 0.0376404i
\(532\) 19.2874 11.1356i 0.836214 0.482789i
\(533\) −14.5739 + 2.56978i −0.631267 + 0.111309i
\(534\) −0.290832 + 4.38172i −0.0125855 + 0.189615i
\(535\) 0 0
\(536\) −0.116964 + 0.663337i −0.00505208 + 0.0286518i
\(537\) −9.67614 + 39.4020i −0.417556 + 1.70032i
\(538\) 5.02530 + 5.98892i 0.216656 + 0.258201i
\(539\) 20.5565 0.885433
\(540\) 0 0
\(541\) 10.6112 0.456211 0.228106 0.973636i \(-0.426747\pi\)
0.228106 + 0.973636i \(0.426747\pi\)
\(542\) 3.07417 + 3.66366i 0.132047 + 0.157368i
\(543\) 10.0527 + 9.63929i 0.431402 + 0.413661i
\(544\) 3.45667 19.6038i 0.148204 0.840505i
\(545\) 0 0
\(546\) −2.72179 + 1.33944i −0.116482 + 0.0573227i
\(547\) 16.5817 2.92380i 0.708983 0.125013i 0.192483 0.981300i \(-0.438346\pi\)
0.516500 + 0.856287i \(0.327235\pi\)
\(548\) −0.660654 + 0.381429i −0.0282217 + 0.0162938i
\(549\) 12.4978 + 13.6843i 0.533391 + 0.584031i
\(550\) 0 0
\(551\) 0.968993 + 0.352685i 0.0412805 + 0.0150249i
\(552\) −9.81364 + 7.18319i −0.417696 + 0.305737i
\(553\) 17.7046 21.0995i 0.752875 0.897241i
\(554\) 0.877326 + 0.736164i 0.0372740 + 0.0312766i
\(555\) 0 0
\(556\) −8.46634 3.08149i −0.359053 0.130684i
\(557\) 3.98565 + 2.30112i 0.168877 + 0.0975015i 0.582056 0.813148i \(-0.302248\pi\)
−0.413179 + 0.910650i \(0.635582\pi\)
\(558\) 2.35626 4.50811i 0.0997484 0.190844i
\(559\) −13.1179 22.7209i −0.554830 0.960994i
\(560\) 0 0
\(561\) 45.0770 + 30.1734i 1.90315 + 1.27392i
\(562\) −1.81609 4.98966i −0.0766070 0.210476i
\(563\) 10.5736 + 1.86442i 0.445626 + 0.0785758i 0.391958 0.919983i \(-0.371798\pi\)
0.0536674 + 0.998559i \(0.482909\pi\)
\(564\) −5.76209 19.8299i −0.242628 0.834988i
\(565\) 0 0
\(566\) −2.64037 −0.110983
\(567\) 3.98393 14.6739i 0.167310 0.616246i
\(568\) 7.37610i 0.309494i
\(569\) −10.4618 + 8.77850i −0.438582 + 0.368014i −0.835178 0.549979i \(-0.814636\pi\)
0.396597 + 0.917993i \(0.370191\pi\)
\(570\) 0 0
\(571\) −2.92720 + 16.6010i −0.122499 + 0.694729i 0.860262 + 0.509852i \(0.170300\pi\)
−0.982762 + 0.184877i \(0.940811\pi\)
\(572\) 12.2248 + 33.5875i 0.511147 + 1.40436i
\(573\) 2.55159 3.81190i 0.106594 0.159244i
\(574\) 0.320457 + 1.81740i 0.0133756 + 0.0758569i
\(575\) 0 0
\(576\) 0.783310 + 18.6485i 0.0326379 + 0.777022i
\(577\) −13.3591 7.71289i −0.556147 0.321092i 0.195450 0.980714i \(-0.437383\pi\)
−0.751598 + 0.659622i \(0.770716\pi\)
\(578\) 2.16575 5.95034i 0.0900832 0.247502i
\(579\) 23.7090 2.57671i 0.985311 0.107085i
\(580\) 0 0
\(581\) 14.4709 + 12.1426i 0.600355 + 0.503758i
\(582\) 5.32354 3.89661i 0.220668 0.161520i
\(583\) −0.633338 + 1.74008i −0.0262302 + 0.0720668i
\(584\) −2.47108 + 4.28003i −0.102254 + 0.177109i
\(585\) 0 0
\(586\) −0.879036 1.52254i −0.0363126 0.0628953i
\(587\) −11.6775 + 2.05906i −0.481983 + 0.0849866i −0.409360 0.912373i \(-0.634248\pi\)
−0.0726229 + 0.997359i \(0.523137\pi\)
\(588\) 6.09856 + 12.3925i 0.251500 + 0.511057i
\(589\) −39.4757 + 14.3680i −1.62657 + 0.592022i
\(590\) 0 0
\(591\) −13.0426 + 13.6020i −0.536502 + 0.559510i
\(592\) −5.63298 6.71313i −0.231514 0.275908i
\(593\) 34.8582i 1.43146i 0.698379 + 0.715728i \(0.253905\pi\)
−0.698379 + 0.715728i \(0.746095\pi\)
\(594\) 6.63609 + 2.59961i 0.272282 + 0.106663i
\(595\) 0 0
\(596\) 33.9658 28.5007i 1.39129 1.16743i
\(597\) −7.91829 + 32.2439i −0.324074 + 1.31965i
\(598\) −6.60492 1.16462i −0.270095 0.0476251i
\(599\) −11.2279 + 4.08662i −0.458759 + 0.166975i −0.561054 0.827779i \(-0.689604\pi\)
0.102294 + 0.994754i \(0.467382\pi\)
\(600\) 0 0
\(601\) 3.39336 + 19.2447i 0.138418 + 0.785007i 0.972418 + 0.233243i \(0.0749338\pi\)
−0.834001 + 0.551764i \(0.813955\pi\)
\(602\) −2.83336 + 1.63584i −0.115479 + 0.0666718i
\(603\) 0.246075 1.84553i 0.0100210 0.0751560i
\(604\) −4.97611 + 8.61887i −0.202475 + 0.350697i
\(605\) 0 0
\(606\) 2.20867 5.00833i 0.0897209 0.203450i
\(607\) −6.56061 + 7.81863i −0.266287 + 0.317348i −0.882574 0.470173i \(-0.844192\pi\)
0.616287 + 0.787521i \(0.288636\pi\)
\(608\) −13.8843 + 16.5467i −0.563082 + 0.671055i
\(609\) 0.177657 0.402852i 0.00719902 0.0163244i
\(610\) 0 0
\(611\) 11.6144 20.1168i 0.469870 0.813839i
\(612\) −4.81691 + 36.1262i −0.194712 + 1.46032i
\(613\) −12.7859 + 7.38192i −0.516416 + 0.298153i −0.735467 0.677560i \(-0.763037\pi\)
0.219051 + 0.975713i \(0.429704\pi\)
\(614\) 0.412406 + 2.33887i 0.0166433 + 0.0943890i
\(615\) 0 0
\(616\) 8.54350 3.10958i 0.344228 0.125289i
\(617\) −32.1559 5.66996i −1.29455 0.228264i −0.516402 0.856346i \(-0.672729\pi\)
−0.778147 + 0.628082i \(0.783840\pi\)
\(618\) −1.04903 + 4.27173i −0.0421982 + 0.171834i
\(619\) −11.2792 + 9.46438i −0.453350 + 0.380406i −0.840677 0.541537i \(-0.817843\pi\)
0.387327 + 0.921942i \(0.373398\pi\)
\(620\) 0 0
\(621\) 26.2695 20.9766i 1.05416 0.841760i
\(622\) 3.17267i 0.127212i
\(623\) −9.95335 11.8619i −0.398773 0.475239i
\(624\) −15.9339 + 16.6172i −0.637865 + 0.665220i
\(625\) 0 0
\(626\) 6.48608 2.36074i 0.259236 0.0943541i
\(627\) −25.9892 52.8110i −1.03791 2.10907i
\(628\) −26.2418 + 4.62714i −1.04716 + 0.184643i
\(629\) −7.80281 13.5149i −0.311118 0.538873i
\(630\) 0 0
\(631\) 12.9621 22.4511i 0.516014 0.893762i −0.483813 0.875171i \(-0.660749\pi\)
0.999827 0.0185911i \(-0.00591806\pi\)
\(632\) −6.05170 + 16.6269i −0.240724 + 0.661383i
\(633\) −21.1347 + 15.4698i −0.840031 + 0.614868i
\(634\) −0.134409 0.112782i −0.00533806 0.00447916i
\(635\) 0 0
\(636\) −1.23690 + 0.134427i −0.0490463 + 0.00533040i
\(637\) −5.31385 + 14.5997i −0.210542 + 0.578460i
\(638\) 0.178727 + 0.103188i 0.00707585 + 0.00408525i
\(639\) 0.855657 + 20.3709i 0.0338493 + 0.805860i
\(640\) 0 0
\(641\) −3.45147 19.5742i −0.136325 0.773136i −0.973928 0.226857i \(-0.927155\pi\)
0.837603 0.546279i \(-0.183956\pi\)
\(642\) 0.290541 0.434048i 0.0114668 0.0171305i
\(643\) 11.3450 + 31.1702i 0.447404 + 1.22923i 0.934525 + 0.355897i \(0.115825\pi\)
−0.487121 + 0.873334i \(0.661953\pi\)
\(644\) 3.65075 20.7044i 0.143860 0.815869i
\(645\) 0 0
\(646\) −9.17244 + 7.69659i −0.360885 + 0.302818i
\(647\) 18.8740i 0.742014i 0.928630 + 0.371007i \(0.120987\pi\)
−0.928630 + 0.371007i \(0.879013\pi\)
\(648\) 0.819127 + 9.73341i 0.0321783 + 0.382364i
\(649\) 1.80931 0.0710217
\(650\) 0 0
\(651\) 5.00497 + 17.2243i 0.196160 + 0.675074i
\(652\) 5.64647 + 0.995625i 0.221133 + 0.0389917i
\(653\) −9.37817 25.7663i −0.366996 1.00831i −0.976498 0.215528i \(-0.930853\pi\)
0.609502 0.792785i \(-0.291370\pi\)
\(654\) −0.228931 0.153241i −0.00895190 0.00599218i
\(655\) 0 0
\(656\) 7.00276 + 12.1291i 0.273412 + 0.473563i
\(657\) 6.32798 12.1070i 0.246878 0.472339i
\(658\) −2.50861 1.44835i −0.0977959 0.0564625i
\(659\) 4.90832 + 1.78648i 0.191201 + 0.0695915i 0.435846 0.900021i \(-0.356449\pi\)
−0.244645 + 0.969613i \(0.578671\pi\)
\(660\) 0 0
\(661\) 17.4652 + 14.6551i 0.679319 + 0.570017i 0.915807 0.401618i \(-0.131552\pi\)
−0.236488 + 0.971634i \(0.575996\pi\)
\(662\) −3.58687 + 4.27466i −0.139408 + 0.166139i
\(663\) −33.0821 + 24.2148i −1.28480 + 0.940424i
\(664\) −11.4035 4.15052i −0.442540 0.161071i
\(665\) 0 0
\(666\) −1.38275 1.51403i −0.0535805 0.0586674i
\(667\) 0.843014 0.486714i 0.0326416 0.0188456i
\(668\) 35.5460 6.26772i 1.37532 0.242505i
\(669\) −7.24458 + 3.56519i −0.280092 + 0.137838i
\(670\) 0 0
\(671\) 5.31901 30.1656i 0.205338 1.16453i
\(672\) 6.65684 + 6.38309i 0.256793 + 0.246233i
\(673\) −11.1986 13.3460i −0.431675 0.514450i 0.505730 0.862692i \(-0.331223\pi\)
−0.937405 + 0.348242i \(0.886779\pi\)
\(674\) −8.41353 −0.324077
\(675\) 0 0
\(676\) −2.00937 −0.0772835
\(677\) −20.6209 24.5750i −0.792526 0.944495i 0.206901 0.978362i \(-0.433662\pi\)
−0.999426 + 0.0338665i \(0.989218\pi\)
\(678\) 2.01305 8.19728i 0.0773107 0.314815i
\(679\) −4.03958 + 22.9096i −0.155025 + 0.879189i
\(680\) 0 0
\(681\) 0.0228863 0.344808i 0.000877005 0.0132131i
\(682\) −8.27978 + 1.45995i −0.317049 + 0.0559043i
\(683\) 18.3599 10.6001i 0.702520 0.405600i −0.105765 0.994391i \(-0.533729\pi\)
0.808285 + 0.588791i \(0.200396\pi\)
\(684\) 24.1267 31.3351i 0.922509 1.19813i
\(685\) 0 0
\(686\) 4.89469 + 1.78152i 0.186880 + 0.0680188i
\(687\) −27.5241 12.1381i −1.05011 0.463096i
\(688\) −15.9602 + 19.0206i −0.608476 + 0.725153i
\(689\) −1.07212 0.899619i −0.0408447 0.0342728i
\(690\) 0 0
\(691\) −10.2500 3.73069i −0.389928 0.141922i 0.139614 0.990206i \(-0.455414\pi\)
−0.529542 + 0.848284i \(0.677636\pi\)
\(692\) −13.9877 8.07579i −0.531732 0.306995i
\(693\) −23.2342 + 9.57895i −0.882596 + 0.363874i
\(694\) 5.11176 + 8.85382i 0.194040 + 0.336086i
\(695\) 0 0
\(696\) −0.0187321 + 0.282220i −0.000710038 + 0.0106975i
\(697\) 8.53023 + 23.4366i 0.323106 + 0.887725i
\(698\) 1.98647 + 0.350268i 0.0751889 + 0.0132578i
\(699\) 26.5937 + 6.53075i 1.00587 + 0.247016i
\(700\) 0 0
\(701\) −16.5817 −0.626282 −0.313141 0.949707i \(-0.601381\pi\)
−0.313141 + 0.949707i \(0.601381\pi\)
\(702\) −3.56172 + 4.04109i −0.134428 + 0.152521i
\(703\) 16.9336i 0.638662i
\(704\) 23.6324 19.8300i 0.890681 0.747370i
\(705\) 0 0
\(706\) −0.546967 + 3.10200i −0.0205854 + 0.116745i
\(707\) 6.60142 + 18.1372i 0.248272 + 0.682121i
\(708\) 0.536773 + 1.09074i 0.0201732 + 0.0409926i
\(709\) 0.653972 + 3.70886i 0.0245604 + 0.139289i 0.994622 0.103569i \(-0.0330262\pi\)
−0.970062 + 0.242858i \(0.921915\pi\)
\(710\) 0 0
\(711\) 14.7845 46.6213i 0.554461 1.74844i
\(712\) 8.61470 + 4.97370i 0.322850 + 0.186397i
\(713\) −13.5633 + 37.2648i −0.507948 + 1.39558i
\(714\) 3.01964 + 4.12542i 0.113007 + 0.154390i
\(715\) 0 0
\(716\) 34.5156 + 28.9620i 1.28991 + 1.08236i
\(717\) −5.61730 51.6861i −0.209782 1.93025i
\(718\) 2.35695 6.47568i 0.0879608 0.241670i
\(719\) −0.0341167 + 0.0590919i −0.00127234 + 0.00220375i −0.866661 0.498898i \(-0.833738\pi\)
0.865389 + 0.501101i \(0.167072\pi\)
\(720\) 0 0
\(721\) −7.75519 13.4324i −0.288818 0.500248i
\(722\) 7.61937 1.34350i 0.283564 0.0499999i
\(723\) −3.45819 + 5.16629i −0.128611 + 0.192136i
\(724\) 14.5339 5.28992i 0.540149 0.196598i
\(725\) 0 0
\(726\) −1.81639 6.25100i −0.0674127 0.231996i
\(727\) −28.1700 33.5717i −1.04477 1.24511i −0.968760 0.247998i \(-0.920227\pi\)
−0.0760072 0.997107i \(-0.524217\pi\)
\(728\) 6.87159i 0.254678i
\(729\) −3.39133 26.7862i −0.125605 0.992080i
\(730\) 0 0
\(731\) −33.8715 + 28.4215i −1.25278 + 1.05121i
\(732\) 19.7633 5.74275i 0.730473 0.212258i
\(733\) 5.07348 + 0.894591i 0.187393 + 0.0330425i 0.266557 0.963819i \(-0.414114\pi\)
−0.0791639 + 0.996862i \(0.525225\pi\)
\(734\) −7.47097 + 2.71921i −0.275759 + 0.100368i
\(735\) 0 0
\(736\) 3.54075 + 20.0806i 0.130514 + 0.740181i
\(737\) −2.66506 + 1.53867i −0.0981686 + 0.0566777i
\(738\) 1.75615 + 2.76669i 0.0646447 + 0.101843i
\(739\) 0.515367 0.892642i 0.0189581 0.0328364i −0.856391 0.516328i \(-0.827298\pi\)
0.875349 + 0.483492i \(0.160632\pi\)
\(740\) 0 0
\(741\) 44.2256 4.80648i 1.62467 0.176571i
\(742\) −0.112185 + 0.133696i −0.00411843 + 0.00490815i
\(743\) 27.2972 32.5316i 1.00144 1.19347i 0.0203733 0.999792i \(-0.493515\pi\)
0.981066 0.193676i \(-0.0620410\pi\)
\(744\) −6.80575 9.29799i −0.249511 0.340881i
\(745\) 0 0
\(746\) −2.56476 + 4.44229i −0.0939025 + 0.162644i
\(747\) 31.9749 + 10.1398i 1.16990 + 0.370997i
\(748\) 52.1683 30.1194i 1.90746 1.10127i
\(749\) 0.319820 + 1.81379i 0.0116860 + 0.0662744i
\(750\) 0 0
\(751\) 2.32349 0.845681i 0.0847853 0.0308593i −0.299279 0.954166i \(-0.596746\pi\)
0.384065 + 0.923306i \(0.374524\pi\)
\(752\) −21.6498 3.81745i −0.789487 0.139208i
\(753\) −32.0629 30.7444i −1.16844 1.12039i
\(754\) −0.119487 + 0.100261i −0.00435145 + 0.00365130i
\(755\) 0 0
\(756\) −12.6676 11.1649i −0.460717 0.406064i
\(757\) 52.6699i 1.91432i 0.289559 + 0.957160i \(0.406491\pi\)
−0.289559 + 0.957160i \(0.593509\pi\)
\(758\) 4.24430 + 5.05816i 0.154160 + 0.183721i
\(759\) −53.9598 13.2512i −1.95862 0.480987i
\(760\) 0 0
\(761\) −28.1597 + 10.2493i −1.02079 + 0.371537i −0.797567 0.603231i \(-0.793880\pi\)
−0.223222 + 0.974768i \(0.571658\pi\)
\(762\) 3.80398 + 0.252486i 0.137804 + 0.00914660i
\(763\) 0.956649 0.168683i 0.0346330 0.00610673i
\(764\) −2.54702 4.41157i −0.0921480 0.159605i
\(765\) 0 0
\(766\) −4.22689 + 7.32119i −0.152724 + 0.264525i
\(767\) −0.467705 + 1.28501i −0.0168879 + 0.0463990i
\(768\) 16.2022 + 7.14515i 0.584647 + 0.257828i
\(769\) 33.0529 + 27.7347i 1.19192 + 1.00014i 0.999824 + 0.0187613i \(0.00597225\pi\)
0.192094 + 0.981377i \(0.438472\pi\)
\(770\) 0 0
\(771\) 5.85791 13.2833i 0.210967 0.478386i
\(772\) 9.05819 24.8872i 0.326011 0.895709i
\(773\) −33.7376 19.4784i −1.21346 0.700590i −0.249947 0.968260i \(-0.580413\pi\)
−0.963511 + 0.267669i \(0.913746\pi\)
\(774\) −3.54427 + 4.60319i −0.127396 + 0.165458i
\(775\) 0 0
\(776\) −2.59504 14.7172i −0.0931565 0.528316i
\(777\) 7.21430 + 0.478843i 0.258812 + 0.0171784i
\(778\) 0.765360 + 2.10281i 0.0274395 + 0.0753894i
\(779\) 4.69945 26.6519i 0.168375 0.954905i
\(780\) 0 0
\(781\) 25.8151 21.6614i 0.923737 0.775108i
\(782\) 11.3032i 0.404200i
\(783\) 0.0189946 0.781593i 0.000678813 0.0279319i
\(784\) 14.7039 0.525138
\(785\) 0 0
\(786\) −2.80418 + 2.92444i −0.100022 + 0.104311i
\(787\) 10.3244 + 1.82048i 0.368027 + 0.0648930i 0.354603 0.935017i \(-0.384616\pi\)
0.0134234 + 0.999910i \(0.495727\pi\)
\(788\) 7.15762 + 19.6654i 0.254980 + 0.700551i
\(789\) 7.90884 3.89208i 0.281562 0.138562i
\(790\) 0 0
\(791\) 14.8819 + 25.7762i 0.529140 + 0.916497i
\(792\) 11.9210 10.8874i 0.423594 0.386865i
\(793\) 20.0493 + 11.5755i 0.711971 + 0.411056i
\(794\) 5.07317 + 1.84648i 0.180040 + 0.0655292i
\(795\) 0 0
\(796\) 28.2452 + 23.7005i 1.00112 + 0.840042i
\(797\) 18.6906 22.2746i 0.662055 0.789007i −0.325624 0.945499i \(-0.605574\pi\)
0.987679 + 0.156493i \(0.0500188\pi\)
\(798\) −0.599380 5.51504i −0.0212178 0.195230i
\(799\) −36.7873 13.3895i −1.30144 0.473686i
\(800\) 0 0
\(801\) −24.3686 12.7368i −0.861022 0.450031i
\(802\) −3.37405 + 1.94801i −0.119142 + 0.0687865i
\(803\) −22.2362 + 3.92085i −0.784699 + 0.138364i
\(804\) −1.71823 1.15014i −0.0605974 0.0405624i
\(805\) 0 0
\(806\) 1.10343 6.25786i 0.0388667 0.220424i
\(807\) −47.0078 + 13.6594i −1.65475 + 0.480832i
\(808\) −7.97005 9.49834i −0.280385 0.334150i
\(809\) −37.5077 −1.31870 −0.659350 0.751836i \(-0.729169\pi\)
−0.659350 + 0.751836i \(0.729169\pi\)
\(810\) 0 0
\(811\) −9.23252 −0.324198 −0.162099 0.986775i \(-0.551826\pi\)
−0.162099 + 0.986775i \(0.551826\pi\)
\(812\) −0.314289 0.374555i −0.0110294 0.0131443i
\(813\) −28.7565 + 8.35597i −1.00854 + 0.293057i
\(814\) −0.588495 + 3.33752i −0.0206268 + 0.116980i
\(815\) 0 0
\(816\) 32.2431 + 21.5827i 1.12873 + 0.755546i
\(817\) 47.2498 8.33141i 1.65306 0.291479i
\(818\) 0.389589 0.224929i 0.0136217 0.00786447i
\(819\) −0.797132 18.9776i −0.0278540 0.663130i
\(820\) 0 0
\(821\) −26.4820 9.63866i −0.924228 0.336392i −0.164309 0.986409i \(-0.552539\pi\)
−0.759919 + 0.650017i \(0.774762\pi\)
\(822\) 0.0205307 + 0.188908i 0.000716089 + 0.00658891i
\(823\) −14.1420 + 16.8538i −0.492959 + 0.587485i −0.953967 0.299910i \(-0.903043\pi\)
0.461009 + 0.887396i \(0.347488\pi\)
\(824\) 7.63281 + 6.40468i 0.265901 + 0.223118i
\(825\) 0 0
\(826\) 0.160244 + 0.0583240i 0.00557560 + 0.00202935i
\(827\) 7.12323 + 4.11260i 0.247699 + 0.143009i 0.618710 0.785619i \(-0.287656\pi\)
−0.371011 + 0.928628i \(0.620989\pi\)
\(828\) −8.01992 36.4608i −0.278712 1.26710i
\(829\) −5.60468 9.70759i −0.194659 0.337159i 0.752130 0.659015i \(-0.229027\pi\)
−0.946789 + 0.321856i \(0.895693\pi\)
\(830\) 0 0
\(831\) −6.43417 + 3.16637i −0.223199 + 0.109840i
\(832\) 7.97468 + 21.9103i 0.276472 + 0.759601i
\(833\) 25.7865 + 4.54686i 0.893451 + 0.157539i
\(834\) −1.55325 + 1.61986i −0.0537846 + 0.0560912i
\(835\) 0 0
\(836\) −65.3648 −2.26069
\(837\) 19.8743 + 24.8892i 0.686958 + 0.860296i
\(838\) 8.86273i 0.306158i
\(839\) −6.85960 + 5.75589i −0.236820 + 0.198715i −0.753472 0.657480i \(-0.771622\pi\)
0.516652 + 0.856195i \(0.327178\pi\)
\(840\) 0 0
\(841\) −5.03187 + 28.5371i −0.173513 + 0.984039i
\(842\) 0.323723 + 0.889421i 0.0111562 + 0.0306515i
\(843\) 33.1748 + 2.20194i 1.14260 + 0.0758390i
\(844\) 5.05076 + 28.6443i 0.173854 + 0.985977i
\(845\) 0 0
\(846\) −5.09860 0.679825i −0.175293 0.0233729i
\(847\) 19.8786 + 11.4769i 0.683035 + 0.394351i
\(848\) −0.453020 + 1.24466i −0.0155568 + 0.0427419i
\(849\) 6.67097 15.1270i 0.228947 0.519157i
\(850\) 0 0
\(851\) 12.2454 + 10.2751i 0.419766 + 0.352226i
\(852\) 20.7172 + 9.13624i 0.709760 + 0.313003i
\(853\) 17.3097 47.5581i 0.592674 1.62836i −0.172847 0.984949i \(-0.555297\pi\)
0.765522 0.643410i \(-0.222481\pi\)
\(854\) 1.44349 2.50019i 0.0493951 0.0855548i
\(855\) 0 0
\(856\) −0.591579 1.02465i −0.0202198 0.0350217i
\(857\) −26.4841 + 4.66987i −0.904681 + 0.159520i −0.606587 0.795017i \(-0.707462\pi\)
−0.298094 + 0.954537i \(0.596351\pi\)
\(858\) 8.88369 + 0.589646i 0.303284 + 0.0201302i
\(859\) 51.3051 18.6735i 1.75051 0.637133i 0.750782 0.660550i \(-0.229677\pi\)
0.999726 + 0.0234172i \(0.00745462\pi\)
\(860\) 0 0
\(861\) −11.2218 2.75579i −0.382437 0.0939170i
\(862\) −6.02689 7.18256i −0.205277 0.244639i
\(863\) 36.0299i 1.22647i 0.789900 + 0.613235i \(0.210132\pi\)
−0.789900 + 0.613235i \(0.789868\pi\)
\(864\) 15.2486 + 5.97344i 0.518767 + 0.203221i
\(865\) 0 0
\(866\) 3.74381 3.14143i 0.127220 0.106750i
\(867\) 28.6184 + 27.4416i 0.971932 + 0.931964i
\(868\) 19.6165 + 3.45892i 0.665828 + 0.117403i
\(869\) −75.9635 + 27.6485i −2.57689 + 0.937910i
\(870\) 0 0
\(871\) −0.403881 2.29052i −0.0136850 0.0776114i
\(872\) −0.540430 + 0.312018i −0.0183013 + 0.0105662i
\(873\) 8.87409 + 40.3441i 0.300342 + 1.36544i
\(874\) 6.13251 10.6218i 0.207435 0.359288i
\(875\) 0 0
\(876\) −8.96055 12.2419i −0.302749 0.413614i
\(877\) −4.95158 + 5.90106i −0.167203 + 0.199265i −0.843139 0.537695i \(-0.819295\pi\)
0.675936 + 0.736960i \(0.263739\pi\)
\(878\) −1.28142 + 1.52714i −0.0432458 + 0.0515384i
\(879\) 10.9437 1.18937i 0.369122 0.0401165i
\(880\) 0 0
\(881\) −8.21595 + 14.2305i −0.276803 + 0.479436i −0.970588 0.240745i \(-0.922608\pi\)
0.693786 + 0.720181i \(0.255941\pi\)
\(882\) 3.43735 0.144382i 0.115742 0.00486159i
\(883\) −1.57404 + 0.908772i −0.0529706 + 0.0305826i −0.526251 0.850329i \(-0.676403\pi\)
0.473281 + 0.880912i \(0.343070\pi\)
\(884\) 7.90594 + 44.8368i 0.265906 + 1.50803i
\(885\) 0 0
\(886\) −9.01397 + 3.28082i −0.302830 + 0.110221i
\(887\) 19.1288 + 3.37292i 0.642281 + 0.113251i 0.485297 0.874350i \(-0.338712\pi\)
0.156985 + 0.987601i \(0.449823\pi\)
\(888\) −4.46021 + 1.29603i −0.149675 + 0.0434919i
\(889\) −10.2979 + 8.64099i −0.345382 + 0.289810i
\(890\) 0 0
\(891\) −31.6598 + 31.4510i −1.06064 + 1.05365i
\(892\) 8.96671i 0.300228i
\(893\) 27.3054 + 32.5413i 0.913740 + 1.08895i
\(894\) −3.08178 10.6058i −0.103070 0.354710i
\(895\) 0 0
\(896\) 12.7394 4.63677i 0.425594 0.154904i
\(897\) 23.3598 34.8979i 0.779961 1.16521i
\(898\) −2.65360 + 0.467901i −0.0885516 + 0.0156140i
\(899\) 0.461140 + 0.798718i 0.0153799 + 0.0266387i
\(900\) 0 0
\(901\) −1.17936 + 2.04271i −0.0392901 + 0.0680524i
\(902\) 1.85248 5.08964i 0.0616807 0.169466i
\(903\) −2.21336 20.3656i −0.0736559 0.677726i
\(904\) −14.6471 12.2903i −0.487154 0.408771i
\(905\) 0 0
\(906\) 1.46420 + 2.00038i 0.0486448 + 0.0664583i
\(907\) −11.8456 + 32.5455i −0.393327 + 1.08066i 0.572146 + 0.820152i \(0.306111\pi\)
−0.965473 + 0.260505i \(0.916111\pi\)
\(908\) −0.332345 0.191880i −0.0110293 0.00636775i
\(909\) 23.1131 + 25.3074i 0.766613 + 0.839394i
\(910\) 0 0
\(911\) −3.90409 22.1412i −0.129348 0.733570i −0.978630 0.205630i \(-0.934076\pi\)
0.849282 0.527940i \(-0.177035\pi\)
\(912\) −18.5898 37.7751i −0.615570 1.25086i
\(913\) −18.9625 52.0990i −0.627567 1.72423i
\(914\) 1.51831 8.61076i 0.0502212 0.284819i
\(915\) 0 0
\(916\) −25.5908 + 21.4732i −0.845542 + 0.709494i
\(917\) 14.2868i 0.471791i
\(918\) 7.74945 + 4.72883i 0.255770 + 0.156075i
\(919\) 21.3527 0.704360 0.352180 0.935932i \(-0.385440\pi\)
0.352180 + 0.935932i \(0.385440\pi\)
\(920\) 0 0
\(921\) −14.4416 3.54650i −0.475867 0.116861i
\(922\) 4.95974 + 0.874535i 0.163340 + 0.0288013i
\(923\) 8.71122 + 23.9339i 0.286733 + 0.787793i
\(924\) −1.84837 + 27.8477i −0.0608068 + 0.916122i
\(925\) 0 0
\(926\) 3.91066 + 6.77345i 0.128512 + 0.222589i
\(927\) −21.8228 16.8027i −0.716756 0.551872i
\(928\) 0.410682 + 0.237108i 0.0134813 + 0.00778344i
\(929\) 41.3431 + 15.0476i 1.35642 + 0.493697i 0.914946 0.403576i \(-0.132233\pi\)
0.441476 + 0.897273i \(0.354455\pi\)
\(930\) 0 0
\(931\) −21.7652 18.2632i −0.713327 0.598553i
\(932\) 19.5474 23.2957i 0.640297 0.763076i
\(933\) −18.1766 8.01584i −0.595075 0.262427i
\(934\) 3.65233 + 1.32934i 0.119508 + 0.0434973i
\(935\) 0 0
\(936\) 4.65086 + 11.2809i 0.152018 + 0.368728i
\(937\) 1.83833 1.06136i 0.0600555 0.0346731i −0.469672 0.882841i \(-0.655628\pi\)
0.529727 + 0.848168i \(0.322294\pi\)
\(938\) −0.285634 + 0.0503649i −0.00932627 + 0.00164447i
\(939\) −2.86232 + 43.1240i −0.0934082 + 1.40730i
\(940\) 0 0
\(941\) 9.63291 54.6309i 0.314024 1.78092i −0.263617 0.964627i \(-0.584916\pi\)
0.577641 0.816291i \(-0.303973\pi\)
\(942\) −1.58295 + 6.44589i −0.0515753 + 0.210018i
\(943\) −16.4215 19.5704i −0.534759 0.637301i
\(944\) 1.29418 0.0421220
\(945\) 0 0
\(946\) 9.60222 0.312195
\(947\) 5.80959 + 6.92360i 0.188786 + 0.224987i 0.852133 0.523326i \(-0.175309\pi\)
−0.663346 + 0.748312i \(0.730864\pi\)
\(948\) −39.2041 37.5919i −1.27329 1.22093i
\(949\) 2.96338 16.8062i 0.0961953 0.545551i
\(950\) 0 0
\(951\) 0.985732 0.485096i 0.0319646 0.0157303i
\(952\) 11.4049 2.01100i 0.369636 0.0651769i
\(953\) 14.1093 8.14599i 0.457044 0.263874i −0.253757 0.967268i \(-0.581666\pi\)
0.710801 + 0.703394i \(0.248333\pi\)
\(954\) −0.0936815 + 0.295415i −0.00303305 + 0.00956442i
\(955\) 0 0
\(956\) −54.2547 19.7471i −1.75472 0.638666i
\(957\) −1.04273 + 0.763239i −0.0337068 + 0.0246720i
\(958\) −1.24572 + 1.48459i −0.0402472 + 0.0479648i
\(959\) −0.513282 0.430695i −0.0165747 0.0139079i
\(960\) 0 0
\(961\) −6.17624 2.24797i −0.199233 0.0725150i
\(962\) −2.21825 1.28071i −0.0715193 0.0412917i
\(963\) 1.75265 + 2.76118i 0.0564785 + 0.0889779i
\(964\) 3.45199 + 5.97902i 0.111181 + 0.192571i
\(965\) 0 0
\(966\) −4.35185 2.91302i −0.140019 0.0937250i
\(967\) −16.3693 44.9743i −0.526402 1.44628i −0.863279 0.504728i \(-0.831593\pi\)
0.336877 0.941549i \(-0.390629\pi\)
\(968\) −14.5216 2.56054i −0.466741 0.0822990i
\(969\) −20.9202 71.9957i −0.672055 2.31284i
\(970\) 0 0
\(971\) 17.2383 0.553202 0.276601 0.960985i \(-0.410792\pi\)
0.276601 + 0.960985i \(0.410792\pi\)
\(972\) −28.3528 9.75540i −0.909415 0.312905i
\(973\) 7.91350i 0.253695i
\(974\) −4.29795 + 3.60641i −0.137715 + 0.115557i
\(975\) 0 0
\(976\) 3.80463 21.5771i 0.121783 0.690667i
\(977\) −4.78345 13.1424i −0.153036 0.420463i 0.839356 0.543582i \(-0.182932\pi\)
−0.992392 + 0.123119i \(0.960710\pi\)
\(978\) 0.794434 1.18683i 0.0254032 0.0379506i
\(979\) 7.89175 + 44.7563i 0.252221 + 1.43042i
\(980\) 0 0
\(981\) 1.45634 0.924405i 0.0464972 0.0295140i
\(982\) −1.20491 0.695657i −0.0384503 0.0221993i
\(983\) 6.61856 18.1844i 0.211099 0.579991i −0.788276 0.615322i \(-0.789026\pi\)
0.999376 + 0.0353306i \(0.0112484\pi\)
\(984\) 7.37964 0.802026i 0.235254 0.0255677i
\(985\) 0 0
\(986\) 0.201374 + 0.168973i 0.00641306 + 0.00538120i
\(987\) 14.6359 10.7129i 0.465864 0.340994i
\(988\) 16.8967 46.4234i 0.537557 1.47693i
\(989\) 22.6458 39.2236i 0.720094 1.24724i
\(990\) 0 0
\(991\) 8.67263 + 15.0214i 0.275495 + 0.477172i 0.970260 0.242065i \(-0.0778249\pi\)
−0.694765 + 0.719237i \(0.744492\pi\)
\(992\) −19.0255 + 3.35470i −0.604059 + 0.106512i
\(993\) −15.4277 31.3497i −0.489584 0.994851i
\(994\) 2.98461 1.08631i 0.0946661 0.0344557i
\(995\) 0 0
\(996\) 25.7822 26.8879i 0.816939 0.851974i
\(997\) −11.5520 13.7671i −0.365855 0.436009i 0.551442 0.834214i \(-0.314078\pi\)
−0.917297 + 0.398204i \(0.869634\pi\)
\(998\) 6.61118i 0.209273i
\(999\) 12.1676 4.09671i 0.384966 0.129614i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.49.10 132
5.2 odd 4 675.2.l.f.76.7 66
5.3 odd 4 675.2.l.g.76.5 yes 66
5.4 even 2 inner 675.2.u.e.49.13 132
27.16 even 9 inner 675.2.u.e.124.13 132
135.43 odd 36 675.2.l.g.151.5 yes 66
135.97 odd 36 675.2.l.f.151.7 yes 66
135.124 even 18 inner 675.2.u.e.124.10 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.7 66 5.2 odd 4
675.2.l.f.151.7 yes 66 135.97 odd 36
675.2.l.g.76.5 yes 66 5.3 odd 4
675.2.l.g.151.5 yes 66 135.43 odd 36
675.2.u.e.49.10 132 1.1 even 1 trivial
675.2.u.e.49.13 132 5.4 even 2 inner
675.2.u.e.124.10 132 135.124 even 18 inner
675.2.u.e.124.13 132 27.16 even 9 inner