Properties

Label 675.2.u.e.124.4
Level $675$
Weight $2$
Character 675.124
Analytic conductor $5.390$
Analytic rank $0$
Dimension $132$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(49,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 9])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [132] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(132\)
Relative dimension: \(22\) over \(\Q(\zeta_{18})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 124.4
Character \(\chi\) \(=\) 675.124
Dual form 675.2.u.e.49.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.30162 + 1.55121i) q^{2} +(-0.933937 - 1.45868i) q^{3} +(-0.364742 - 2.06856i) q^{4} +(3.47836 + 0.449921i) q^{6} +(-0.370230 - 0.0652816i) q^{7} +(0.176186 + 0.101721i) q^{8} +(-1.25552 + 2.72464i) q^{9} +(0.272976 - 0.0993552i) q^{11} +(-2.67673 + 2.46395i) q^{12} +(-0.568702 - 0.677752i) q^{13} +(0.583165 - 0.489333i) q^{14} +(3.56047 - 1.29590i) q^{16} +(-4.02651 + 2.32471i) q^{17} +(-2.59227 - 5.49403i) q^{18} +(1.75100 - 3.03282i) q^{19} +(0.250547 + 0.601018i) q^{21} +(-0.201190 + 0.552766i) q^{22} +(0.537906 - 0.0948473i) q^{23} +(-0.0161677 - 0.352001i) q^{24} +1.79157 q^{26} +(5.14697 - 0.713228i) q^{27} +0.789653i q^{28} +(4.65300 + 3.90433i) q^{29} +(0.953291 + 5.40638i) q^{31} +(-2.76332 + 7.59216i) q^{32} +(-0.399870 - 0.305395i) q^{33} +(1.63488 - 9.27184i) q^{34} +(6.09401 + 1.60333i) q^{36} +(9.48122 - 5.47398i) q^{37} +(2.42541 + 6.66375i) q^{38} +(-0.457496 + 1.46253i) q^{39} +(-7.28901 + 6.11620i) q^{41} +(-1.25842 - 0.393647i) q^{42} +(3.47348 + 9.54330i) q^{43} +(-0.305088 - 0.528427i) q^{44} +(-0.553021 + 0.957860i) q^{46} +(6.23654 + 1.09967i) q^{47} +(-5.21557 - 3.98331i) q^{48} +(-6.44504 - 2.34580i) q^{49} +(7.15152 + 3.70228i) q^{51} +(-1.19454 + 1.42360i) q^{52} +12.2148i q^{53} +(-5.59303 + 8.91238i) q^{54} +(-0.0585889 - 0.0491619i) q^{56} +(-6.05925 + 0.278306i) q^{57} +(-12.1129 + 2.13583i) q^{58} +(1.18778 + 0.432318i) q^{59} +(0.499613 - 2.83345i) q^{61} +(-9.62726 - 5.55830i) q^{62} +(0.642702 - 0.926782i) q^{63} +(-4.39127 - 7.60590i) q^{64} +(0.994211 - 0.222775i) q^{66} +(5.69325 + 6.78495i) q^{67} +(6.27742 + 7.48114i) q^{68} +(-0.640723 - 0.696054i) q^{69} +(5.36876 + 9.29896i) q^{71} +(-0.498359 + 0.352330i) q^{72} +(0.674654 + 0.389512i) q^{73} +(-3.84964 + 21.8324i) q^{74} +(-6.91222 - 2.51584i) q^{76} +(-0.107550 + 0.0189640i) q^{77} +(-1.67321 - 2.61334i) q^{78} +(-5.29571 - 4.44363i) q^{79} +(-5.84732 - 6.84170i) q^{81} -19.2678i q^{82} +(-5.77486 + 6.88221i) q^{83} +(1.15186 - 0.737486i) q^{84} +(-19.3248 - 7.03366i) q^{86} +(1.34958 - 10.4337i) q^{87} +(0.0582011 + 0.0102624i) q^{88} +(3.11061 - 5.38773i) q^{89} +(0.166306 + 0.288050i) q^{91} +(-0.392394 - 1.07809i) q^{92} +(6.99589 - 6.43977i) q^{93} +(-9.82342 + 8.24283i) q^{94} +(13.6553 - 3.05978i) q^{96} +(4.79504 + 13.1743i) q^{97} +(12.0278 - 6.94427i) q^{98} +(-0.0720209 + 0.868504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 132 q - 12 q^{6} + 12 q^{9} + 30 q^{11} - 30 q^{14} + 36 q^{16} - 24 q^{19} + 24 q^{21} + 78 q^{24} + 12 q^{26} + 30 q^{29} + 6 q^{31} + 60 q^{36} + 30 q^{39} + 78 q^{41} - 102 q^{44} + 18 q^{46} + 12 q^{49}+ \cdots + 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.30162 + 1.55121i −0.920384 + 1.09687i 0.0746373 + 0.997211i \(0.476220\pi\)
−0.995022 + 0.0996605i \(0.968224\pi\)
\(3\) −0.933937 1.45868i −0.539209 0.842172i
\(4\) −0.364742 2.06856i −0.182371 1.03428i
\(5\) 0 0
\(6\) 3.47836 + 0.449921i 1.42003 + 0.183679i
\(7\) −0.370230 0.0652816i −0.139934 0.0246741i 0.103242 0.994656i \(-0.467078\pi\)
−0.243176 + 0.969982i \(0.578189\pi\)
\(8\) 0.176186 + 0.101721i 0.0622912 + 0.0359638i
\(9\) −1.25552 + 2.72464i −0.418508 + 0.908213i
\(10\) 0 0
\(11\) 0.272976 0.0993552i 0.0823054 0.0299567i −0.300539 0.953769i \(-0.597167\pi\)
0.382845 + 0.923813i \(0.374944\pi\)
\(12\) −2.67673 + 2.46395i −0.772704 + 0.711280i
\(13\) −0.568702 0.677752i −0.157729 0.187975i 0.681392 0.731919i \(-0.261375\pi\)
−0.839122 + 0.543944i \(0.816930\pi\)
\(14\) 0.583165 0.489333i 0.155857 0.130780i
\(15\) 0 0
\(16\) 3.56047 1.29590i 0.890117 0.323976i
\(17\) −4.02651 + 2.32471i −0.976572 + 0.563824i −0.901233 0.433334i \(-0.857337\pi\)
−0.0753383 + 0.997158i \(0.524004\pi\)
\(18\) −2.59227 5.49403i −0.611005 1.29495i
\(19\) 1.75100 3.03282i 0.401707 0.695777i −0.592225 0.805772i \(-0.701750\pi\)
0.993932 + 0.109996i \(0.0350838\pi\)
\(20\) 0 0
\(21\) 0.250547 + 0.601018i 0.0546737 + 0.131153i
\(22\) −0.201190 + 0.552766i −0.0428939 + 0.117850i
\(23\) 0.537906 0.0948473i 0.112161 0.0197770i −0.117286 0.993098i \(-0.537419\pi\)
0.229447 + 0.973321i \(0.426308\pi\)
\(24\) −0.0161677 0.352001i −0.00330021 0.0718519i
\(25\) 0 0
\(26\) 1.79157 0.351356
\(27\) 5.14697 0.713228i 0.990535 0.137261i
\(28\) 0.789653i 0.149230i
\(29\) 4.65300 + 3.90433i 0.864040 + 0.725016i 0.962834 0.270092i \(-0.0870542\pi\)
−0.0987944 + 0.995108i \(0.531499\pi\)
\(30\) 0 0
\(31\) 0.953291 + 5.40638i 0.171216 + 0.971015i 0.942421 + 0.334428i \(0.108543\pi\)
−0.771205 + 0.636587i \(0.780346\pi\)
\(32\) −2.76332 + 7.59216i −0.488490 + 1.34212i
\(33\) −0.399870 0.305395i −0.0696085 0.0531624i
\(34\) 1.63488 9.27184i 0.280379 1.59011i
\(35\) 0 0
\(36\) 6.09401 + 1.60333i 1.01567 + 0.267222i
\(37\) 9.48122 5.47398i 1.55870 0.899917i 0.561321 0.827598i \(-0.310293\pi\)
0.997382 0.0723191i \(-0.0230400\pi\)
\(38\) 2.42541 + 6.66375i 0.393453 + 1.08100i
\(39\) −0.457496 + 1.46253i −0.0732579 + 0.234193i
\(40\) 0 0
\(41\) −7.28901 + 6.11620i −1.13835 + 0.955190i −0.999384 0.0351066i \(-0.988823\pi\)
−0.138968 + 0.990297i \(0.544378\pi\)
\(42\) −1.25842 0.393647i −0.194179 0.0607411i
\(43\) 3.47348 + 9.54330i 0.529701 + 1.45534i 0.859424 + 0.511263i \(0.170822\pi\)
−0.329724 + 0.944077i \(0.606956\pi\)
\(44\) −0.305088 0.528427i −0.0459937 0.0796634i
\(45\) 0 0
\(46\) −0.553021 + 0.957860i −0.0815385 + 0.141229i
\(47\) 6.23654 + 1.09967i 0.909693 + 0.160403i 0.608864 0.793275i \(-0.291626\pi\)
0.300829 + 0.953678i \(0.402737\pi\)
\(48\) −5.21557 3.98331i −0.752803 0.574941i
\(49\) −6.44504 2.34580i −0.920720 0.335115i
\(50\) 0 0
\(51\) 7.15152 + 3.70228i 1.00141 + 0.518423i
\(52\) −1.19454 + 1.42360i −0.165653 + 0.197417i
\(53\) 12.2148i 1.67783i 0.544265 + 0.838913i \(0.316809\pi\)
−0.544265 + 0.838913i \(0.683191\pi\)
\(54\) −5.59303 + 8.91238i −0.761115 + 1.21282i
\(55\) 0 0
\(56\) −0.0585889 0.0491619i −0.00782927 0.00656954i
\(57\) −6.05925 + 0.278306i −0.802567 + 0.0368625i
\(58\) −12.1129 + 2.13583i −1.59050 + 0.280448i
\(59\) 1.18778 + 0.432318i 0.154636 + 0.0562830i 0.418179 0.908365i \(-0.362669\pi\)
−0.263542 + 0.964648i \(0.584891\pi\)
\(60\) 0 0
\(61\) 0.499613 2.83345i 0.0639690 0.362786i −0.935974 0.352070i \(-0.885478\pi\)
0.999943 0.0107158i \(-0.00341102\pi\)
\(62\) −9.62726 5.55830i −1.22266 0.705905i
\(63\) 0.642702 0.926782i 0.0809728 0.116764i
\(64\) −4.39127 7.60590i −0.548909 0.950737i
\(65\) 0 0
\(66\) 0.994211 0.222775i 0.122379 0.0274217i
\(67\) 5.69325 + 6.78495i 0.695541 + 0.828913i 0.992014 0.126128i \(-0.0402550\pi\)
−0.296473 + 0.955041i \(0.595811\pi\)
\(68\) 6.27742 + 7.48114i 0.761249 + 0.907222i
\(69\) −0.640723 0.696054i −0.0771339 0.0837951i
\(70\) 0 0
\(71\) 5.36876 + 9.29896i 0.637154 + 1.10358i 0.986054 + 0.166424i \(0.0532219\pi\)
−0.348900 + 0.937160i \(0.613445\pi\)
\(72\) −0.498359 + 0.352330i −0.0587322 + 0.0415225i
\(73\) 0.674654 + 0.389512i 0.0789623 + 0.0455889i 0.538961 0.842331i \(-0.318817\pi\)
−0.459999 + 0.887919i \(0.652150\pi\)
\(74\) −3.84964 + 21.8324i −0.447512 + 2.53797i
\(75\) 0 0
\(76\) −6.91222 2.51584i −0.792886 0.288587i
\(77\) −0.107550 + 0.0189640i −0.0122565 + 0.00216115i
\(78\) −1.67321 2.61334i −0.189454 0.295902i
\(79\) −5.29571 4.44363i −0.595813 0.499947i 0.294283 0.955718i \(-0.404919\pi\)
−0.890097 + 0.455771i \(0.849363\pi\)
\(80\) 0 0
\(81\) −5.84732 6.84170i −0.649702 0.760189i
\(82\) 19.2678i 2.12777i
\(83\) −5.77486 + 6.88221i −0.633874 + 0.755421i −0.983389 0.181509i \(-0.941902\pi\)
0.349516 + 0.936931i \(0.386346\pi\)
\(84\) 1.15186 0.737486i 0.125678 0.0804664i
\(85\) 0 0
\(86\) −19.3248 7.03366i −2.08385 0.758459i
\(87\) 1.34958 10.4337i 0.144690 1.11861i
\(88\) 0.0582011 + 0.0102624i 0.00620426 + 0.00109398i
\(89\) 3.11061 5.38773i 0.329724 0.571099i −0.652733 0.757588i \(-0.726378\pi\)
0.982457 + 0.186489i \(0.0597110\pi\)
\(90\) 0 0
\(91\) 0.166306 + 0.288050i 0.0174336 + 0.0301959i
\(92\) −0.392394 1.07809i −0.0409099 0.112399i
\(93\) 6.99589 6.43977i 0.725440 0.667773i
\(94\) −9.82342 + 8.24283i −1.01321 + 0.850183i
\(95\) 0 0
\(96\) 13.6553 3.05978i 1.39369 0.312288i
\(97\) 4.79504 + 13.1743i 0.486863 + 1.33765i 0.903506 + 0.428575i \(0.140984\pi\)
−0.416643 + 0.909070i \(0.636794\pi\)
\(98\) 12.0278 6.94427i 1.21499 0.701477i
\(99\) −0.0720209 + 0.868504i −0.00723838 + 0.0872880i
\(100\) 0 0
\(101\) −0.698390 + 3.96077i −0.0694924 + 0.394111i 0.930145 + 0.367192i \(0.119681\pi\)
−0.999638 + 0.0269191i \(0.991430\pi\)
\(102\) −15.0516 + 6.27455i −1.49033 + 0.621273i
\(103\) −0.176280 + 0.484326i −0.0173694 + 0.0477221i −0.948074 0.318049i \(-0.896972\pi\)
0.930705 + 0.365771i \(0.119195\pi\)
\(104\) −0.0312556 0.177260i −0.00306487 0.0173817i
\(105\) 0 0
\(106\) −18.9477 15.8990i −1.84036 1.54425i
\(107\) 17.9687i 1.73710i −0.495598 0.868552i \(-0.665051\pi\)
0.495598 0.868552i \(-0.334949\pi\)
\(108\) −3.35267 10.3867i −0.322611 0.999456i
\(109\) 1.10502 0.105842 0.0529209 0.998599i \(-0.483147\pi\)
0.0529209 + 0.998599i \(0.483147\pi\)
\(110\) 0 0
\(111\) −16.8397 8.71775i −1.59835 0.827453i
\(112\) −1.40279 + 0.247350i −0.132551 + 0.0233724i
\(113\) 3.10537 8.53194i 0.292129 0.802618i −0.703626 0.710571i \(-0.748437\pi\)
0.995755 0.0920470i \(-0.0293410\pi\)
\(114\) 7.45513 9.76142i 0.698237 0.914241i
\(115\) 0 0
\(116\) 6.37918 11.0491i 0.592292 1.02588i
\(117\) 2.56065 0.698573i 0.236732 0.0645831i
\(118\) −2.21666 + 1.27979i −0.204060 + 0.117814i
\(119\) 1.64250 0.597820i 0.150567 0.0548020i
\(120\) 0 0
\(121\) −8.36184 + 7.01642i −0.760168 + 0.637856i
\(122\) 3.74497 + 4.46308i 0.339053 + 0.404068i
\(123\) 15.7291 + 4.92022i 1.41824 + 0.443641i
\(124\) 10.8357 3.94387i 0.973074 0.354170i
\(125\) 0 0
\(126\) 0.601080 + 2.20328i 0.0535484 + 0.196284i
\(127\) 9.35175 + 5.39923i 0.829833 + 0.479105i 0.853796 0.520608i \(-0.174295\pi\)
−0.0239622 + 0.999713i \(0.507628\pi\)
\(128\) 1.60079 + 0.282262i 0.141491 + 0.0249487i
\(129\) 10.6767 13.9796i 0.940028 1.23083i
\(130\) 0 0
\(131\) 2.14908 + 12.1880i 0.187766 + 1.06487i 0.922350 + 0.386356i \(0.126266\pi\)
−0.734584 + 0.678518i \(0.762623\pi\)
\(132\) −0.485876 + 0.938545i −0.0422901 + 0.0816898i
\(133\) −0.846260 + 1.00853i −0.0733801 + 0.0874510i
\(134\) −17.9353 −1.54938
\(135\) 0 0
\(136\) −0.945886 −0.0811091
\(137\) 10.6051 12.6386i 0.906052 1.07979i −0.0904234 0.995903i \(-0.528822\pi\)
0.996475 0.0838872i \(-0.0267335\pi\)
\(138\) 1.91370 0.0878978i 0.162905 0.00748236i
\(139\) 2.14103 + 12.1424i 0.181600 + 1.02990i 0.930247 + 0.366935i \(0.119593\pi\)
−0.748647 + 0.662969i \(0.769296\pi\)
\(140\) 0 0
\(141\) −4.22046 10.1242i −0.355427 0.852609i
\(142\) −21.4127 3.77564i −1.79692 0.316845i
\(143\) −0.222580 0.128507i −0.0186131 0.0107463i
\(144\) −0.939380 + 11.3280i −0.0782817 + 0.944003i
\(145\) 0 0
\(146\) −1.48236 + 0.539534i −0.122681 + 0.0446522i
\(147\) 2.59747 + 11.5921i 0.214236 + 0.956101i
\(148\) −14.7814 17.6158i −1.21503 1.44801i
\(149\) 7.81833 6.56036i 0.640503 0.537446i −0.263670 0.964613i \(-0.584933\pi\)
0.904173 + 0.427167i \(0.140488\pi\)
\(150\) 0 0
\(151\) 16.7786 6.10690i 1.36542 0.496972i 0.447695 0.894187i \(-0.352245\pi\)
0.917726 + 0.397214i \(0.130023\pi\)
\(152\) 0.617003 0.356227i 0.0500456 0.0288938i
\(153\) −1.27861 13.8895i −0.103369 1.12290i
\(154\) 0.110572 0.191517i 0.00891016 0.0154329i
\(155\) 0 0
\(156\) 3.19220 + 0.412907i 0.255581 + 0.0330590i
\(157\) −3.95020 + 10.8531i −0.315260 + 0.866170i 0.676312 + 0.736615i \(0.263577\pi\)
−0.991572 + 0.129555i \(0.958645\pi\)
\(158\) 13.7860 2.43084i 1.09675 0.193387i
\(159\) 17.8175 11.4078i 1.41302 0.904699i
\(160\) 0 0
\(161\) −0.205341 −0.0161831
\(162\) 18.2239 0.165131i 1.43180 0.0129739i
\(163\) 6.26212i 0.490487i −0.969461 0.245244i \(-0.921132\pi\)
0.969461 0.245244i \(-0.0788679\pi\)
\(164\) 15.3103 + 12.8469i 1.19553 + 1.00317i
\(165\) 0 0
\(166\) −3.15908 17.9161i −0.245192 1.39056i
\(167\) −5.35688 + 14.7179i −0.414528 + 1.13891i 0.540229 + 0.841518i \(0.318338\pi\)
−0.954757 + 0.297388i \(0.903884\pi\)
\(168\) −0.0169934 + 0.131377i −0.00131107 + 0.0101360i
\(169\) 2.12150 12.0316i 0.163192 0.925509i
\(170\) 0 0
\(171\) 6.06492 + 8.57862i 0.463796 + 0.656023i
\(172\) 18.4739 10.6659i 1.40862 0.813270i
\(173\) −3.11962 8.57107i −0.237180 0.651647i −0.999987 0.00502090i \(-0.998402\pi\)
0.762807 0.646626i \(-0.223820\pi\)
\(174\) 14.4282 + 15.6741i 1.09380 + 1.18825i
\(175\) 0 0
\(176\) 0.843168 0.707502i 0.0635562 0.0533300i
\(177\) −0.478700 2.13636i −0.0359813 0.160579i
\(178\) 4.30868 + 11.8380i 0.322949 + 0.887295i
\(179\) −1.32110 2.28821i −0.0987437 0.171029i 0.812421 0.583071i \(-0.198149\pi\)
−0.911165 + 0.412042i \(0.864816\pi\)
\(180\) 0 0
\(181\) 3.54912 6.14725i 0.263804 0.456922i −0.703446 0.710749i \(-0.748356\pi\)
0.967250 + 0.253827i \(0.0816895\pi\)
\(182\) −0.663294 0.116957i −0.0491666 0.00866940i
\(183\) −4.59972 + 1.91748i −0.340021 + 0.141744i
\(184\) 0.104420 + 0.0380056i 0.00769791 + 0.00280181i
\(185\) 0 0
\(186\) 0.883443 + 19.2342i 0.0647772 + 1.41032i
\(187\) −0.868169 + 1.03464i −0.0634868 + 0.0756606i
\(188\) 13.3017i 0.970128i
\(189\) −1.95213 0.0719439i −0.141996 0.00523315i
\(190\) 0 0
\(191\) 3.97951 + 3.33921i 0.287948 + 0.241617i 0.775307 0.631585i \(-0.217595\pi\)
−0.487359 + 0.873202i \(0.662040\pi\)
\(192\) −6.99344 + 13.5089i −0.504708 + 0.974921i
\(193\) −3.86223 + 0.681015i −0.278009 + 0.0490205i −0.310914 0.950438i \(-0.600635\pi\)
0.0329051 + 0.999458i \(0.489524\pi\)
\(194\) −26.6774 9.70978i −1.91533 0.697121i
\(195\) 0 0
\(196\) −2.50165 + 14.1875i −0.178689 + 1.01340i
\(197\) −8.98212 5.18583i −0.639950 0.369475i 0.144646 0.989484i \(-0.453796\pi\)
−0.784595 + 0.620008i \(0.787129\pi\)
\(198\) −1.25349 1.24218i −0.0890816 0.0882780i
\(199\) 5.95479 + 10.3140i 0.422124 + 0.731140i 0.996147 0.0876991i \(-0.0279514\pi\)
−0.574023 + 0.818839i \(0.694618\pi\)
\(200\) 0 0
\(201\) 4.57997 14.6414i 0.323046 1.03272i
\(202\) −5.23494 6.23876i −0.368329 0.438958i
\(203\) −1.46780 1.74926i −0.103019 0.122774i
\(204\) 5.04991 16.1437i 0.353565 1.13028i
\(205\) 0 0
\(206\) −0.521842 0.903856i −0.0363584 0.0629747i
\(207\) −0.416929 + 1.58468i −0.0289786 + 0.110143i
\(208\) −2.90315 1.67613i −0.201297 0.116219i
\(209\) 0.176655 1.00186i 0.0122195 0.0693000i
\(210\) 0 0
\(211\) −2.30091 0.837462i −0.158401 0.0576532i 0.261603 0.965176i \(-0.415749\pi\)
−0.420004 + 0.907522i \(0.637971\pi\)
\(212\) 25.2669 4.45524i 1.73534 0.305987i
\(213\) 8.55017 16.5160i 0.585848 1.13166i
\(214\) 27.8733 + 23.3885i 1.90538 + 1.59880i
\(215\) 0 0
\(216\) 0.979375 + 0.397895i 0.0666380 + 0.0270733i
\(217\) 2.06384i 0.140103i
\(218\) −1.43832 + 1.71412i −0.0974152 + 0.116095i
\(219\) −0.0619094 1.34789i −0.00418345 0.0910818i
\(220\) 0 0
\(221\) 3.86546 + 1.40691i 0.260019 + 0.0946391i
\(222\) 35.4419 14.7747i 2.37871 0.991611i
\(223\) −17.7446 3.12885i −1.18826 0.209523i −0.455645 0.890162i \(-0.650591\pi\)
−0.732619 + 0.680639i \(0.761702\pi\)
\(224\) 1.51869 2.63045i 0.101472 0.175755i
\(225\) 0 0
\(226\) 9.19282 + 15.9224i 0.611497 + 1.05914i
\(227\) −1.82862 5.02409i −0.121370 0.333460i 0.864098 0.503324i \(-0.167890\pi\)
−0.985468 + 0.169863i \(0.945667\pi\)
\(228\) 2.78576 + 12.4324i 0.184491 + 0.823355i
\(229\) −16.5031 + 13.8477i −1.09055 + 0.915083i −0.996754 0.0805082i \(-0.974346\pi\)
−0.0937994 + 0.995591i \(0.529901\pi\)
\(230\) 0 0
\(231\) 0.128107 + 0.139171i 0.00842885 + 0.00915675i
\(232\) 0.422641 + 1.16120i 0.0277477 + 0.0762363i
\(233\) 22.1390 12.7820i 1.45038 0.837375i 0.451874 0.892082i \(-0.350756\pi\)
0.998502 + 0.0547064i \(0.0174223\pi\)
\(234\) −2.24936 + 4.88138i −0.147045 + 0.319106i
\(235\) 0 0
\(236\) 0.461039 2.61468i 0.0300111 0.170201i
\(237\) −1.53599 + 11.8748i −0.0997735 + 0.771353i
\(238\) −1.21056 + 3.32599i −0.0784691 + 0.215592i
\(239\) −1.60685 9.11290i −0.103939 0.589465i −0.991639 0.129043i \(-0.958809\pi\)
0.887700 0.460421i \(-0.152302\pi\)
\(240\) 0 0
\(241\) −22.0268 18.4827i −1.41887 1.19058i −0.951940 0.306283i \(-0.900914\pi\)
−0.466933 0.884293i \(-0.654641\pi\)
\(242\) 22.1037i 1.42088i
\(243\) −4.51886 + 14.9191i −0.289885 + 0.957062i
\(244\) −6.04338 −0.386888
\(245\) 0 0
\(246\) −28.1056 + 17.9949i −1.79195 + 1.14731i
\(247\) −3.05130 + 0.538026i −0.194149 + 0.0342338i
\(248\) −0.381986 + 1.04950i −0.0242562 + 0.0666432i
\(249\) 15.4323 + 1.99615i 0.977985 + 0.126501i
\(250\) 0 0
\(251\) 5.86206 10.1534i 0.370010 0.640876i −0.619557 0.784952i \(-0.712688\pi\)
0.989567 + 0.144076i \(0.0460210\pi\)
\(252\) −2.15152 0.991429i −0.135533 0.0624541i
\(253\) 0.137412 0.0793348i 0.00863901 0.00498774i
\(254\) −20.5478 + 7.47878i −1.28928 + 0.469260i
\(255\) 0 0
\(256\) 10.9342 9.17485i 0.683385 0.573428i
\(257\) −2.37109 2.82575i −0.147904 0.176265i 0.687006 0.726652i \(-0.258925\pi\)
−0.834910 + 0.550387i \(0.814480\pi\)
\(258\) 7.78827 + 34.7578i 0.484876 + 2.16393i
\(259\) −3.86758 + 1.40769i −0.240320 + 0.0874693i
\(260\) 0 0
\(261\) −16.4798 + 7.77576i −1.02008 + 0.481308i
\(262\) −21.7035 12.5305i −1.34085 0.774138i
\(263\) −21.7759 3.83968i −1.34276 0.236765i −0.544340 0.838864i \(-0.683220\pi\)
−0.798421 + 0.602099i \(0.794331\pi\)
\(264\) −0.0393865 0.0944815i −0.00242407 0.00581494i
\(265\) 0 0
\(266\) −0.462939 2.62546i −0.0283846 0.160977i
\(267\) −10.7641 + 0.494404i −0.658754 + 0.0302570i
\(268\) 11.9585 14.2516i 0.730480 0.870553i
\(269\) −25.3331 −1.54459 −0.772294 0.635265i \(-0.780891\pi\)
−0.772294 + 0.635265i \(0.780891\pi\)
\(270\) 0 0
\(271\) 28.7783 1.74816 0.874079 0.485783i \(-0.161466\pi\)
0.874079 + 0.485783i \(0.161466\pi\)
\(272\) −11.3237 + 13.4950i −0.686598 + 0.818255i
\(273\) 0.264855 0.511609i 0.0160298 0.0309640i
\(274\) 5.80140 + 32.9014i 0.350475 + 1.98764i
\(275\) 0 0
\(276\) −1.20613 + 1.57925i −0.0726004 + 0.0950598i
\(277\) −19.4258 3.42530i −1.16718 0.205806i −0.443719 0.896166i \(-0.646341\pi\)
−0.723466 + 0.690360i \(0.757452\pi\)
\(278\) −21.6222 12.4836i −1.29681 0.748715i
\(279\) −15.9273 4.19047i −0.953544 0.250877i
\(280\) 0 0
\(281\) −8.19525 + 2.98283i −0.488887 + 0.177940i −0.574689 0.818372i \(-0.694877\pi\)
0.0858017 + 0.996312i \(0.472655\pi\)
\(282\) 21.1982 + 6.63100i 1.26233 + 0.394870i
\(283\) 4.77449 + 5.69001i 0.283814 + 0.338236i 0.889050 0.457810i \(-0.151366\pi\)
−0.605236 + 0.796046i \(0.706921\pi\)
\(284\) 17.2772 14.4973i 1.02521 0.860257i
\(285\) 0 0
\(286\) 0.489056 0.178002i 0.0289185 0.0105255i
\(287\) 3.09789 1.78857i 0.182862 0.105576i
\(288\) −17.2165 17.0612i −1.01449 1.00534i
\(289\) 2.30851 3.99846i 0.135795 0.235204i
\(290\) 0 0
\(291\) 14.7389 19.2984i 0.864007 1.13129i
\(292\) 0.559652 1.53763i 0.0327512 0.0899831i
\(293\) −1.86471 + 0.328799i −0.108937 + 0.0192086i −0.227851 0.973696i \(-0.573170\pi\)
0.118914 + 0.992905i \(0.462059\pi\)
\(294\) −21.3627 11.0593i −1.24590 0.644991i
\(295\) 0 0
\(296\) 2.22728 0.129458
\(297\) 1.33414 0.706072i 0.0774145 0.0409705i
\(298\) 20.6670i 1.19721i
\(299\) −0.370191 0.310627i −0.0214087 0.0179640i
\(300\) 0 0
\(301\) −0.662985 3.75998i −0.0382138 0.216721i
\(302\) −12.3662 + 33.9759i −0.711597 + 1.95510i
\(303\) 6.42976 2.68037i 0.369380 0.153983i
\(304\) 2.30413 13.0674i 0.132151 0.749466i
\(305\) 0 0
\(306\) 23.2098 + 16.0955i 1.32682 + 0.920117i
\(307\) −12.3183 + 7.11195i −0.703040 + 0.405900i −0.808479 0.588525i \(-0.799709\pi\)
0.105439 + 0.994426i \(0.466375\pi\)
\(308\) 0.0784561 + 0.215556i 0.00447045 + 0.0122825i
\(309\) 0.871114 0.195193i 0.0495559 0.0111041i
\(310\) 0 0
\(311\) 11.2222 9.41658i 0.636355 0.533965i −0.266541 0.963824i \(-0.585881\pi\)
0.902896 + 0.429858i \(0.141436\pi\)
\(312\) −0.229375 + 0.211141i −0.0129858 + 0.0119535i
\(313\) 8.84996 + 24.3151i 0.500229 + 1.37437i 0.891051 + 0.453902i \(0.149968\pi\)
−0.390822 + 0.920466i \(0.627809\pi\)
\(314\) −11.6938 20.2542i −0.659917 1.14301i
\(315\) 0 0
\(316\) −7.26032 + 12.5752i −0.408425 + 0.707413i
\(317\) −17.9868 3.17156i −1.01024 0.178133i −0.356053 0.934466i \(-0.615878\pi\)
−0.654187 + 0.756333i \(0.726989\pi\)
\(318\) −5.49568 + 42.4873i −0.308182 + 2.38257i
\(319\) 1.65807 + 0.603489i 0.0928342 + 0.0337889i
\(320\) 0 0
\(321\) −26.2107 + 16.7817i −1.46294 + 0.936661i
\(322\) 0.267276 0.318527i 0.0148947 0.0177508i
\(323\) 16.2822i 0.905968i
\(324\) −12.0197 + 14.5910i −0.667760 + 0.810609i
\(325\) 0 0
\(326\) 9.71387 + 8.15090i 0.538001 + 0.451437i
\(327\) −1.03202 1.61188i −0.0570709 0.0891371i
\(328\) −1.90637 + 0.336144i −0.105262 + 0.0185605i
\(329\) −2.23717 0.814263i −0.123339 0.0448918i
\(330\) 0 0
\(331\) −5.49188 + 31.1460i −0.301861 + 1.71194i 0.336062 + 0.941840i \(0.390905\pi\)
−0.637923 + 0.770100i \(0.720206\pi\)
\(332\) 16.3426 + 9.43539i 0.896916 + 0.517835i
\(333\) 3.01074 + 32.7056i 0.164987 + 1.79226i
\(334\) −15.8580 27.4668i −0.867709 1.50292i
\(335\) 0 0
\(336\) 1.67093 + 1.81522i 0.0911565 + 0.0990285i
\(337\) −4.92591 5.87047i −0.268332 0.319785i 0.615006 0.788522i \(-0.289154\pi\)
−0.883338 + 0.468737i \(0.844709\pi\)
\(338\) 15.9022 + 18.9515i 0.864965 + 1.03083i
\(339\) −15.3456 + 3.43854i −0.833461 + 0.186756i
\(340\) 0 0
\(341\) 0.797378 + 1.38110i 0.0431804 + 0.0747907i
\(342\) −21.2015 1.75814i −1.14644 0.0950691i
\(343\) 4.51204 + 2.60503i 0.243627 + 0.140658i
\(344\) −0.358777 + 2.03472i −0.0193439 + 0.109705i
\(345\) 0 0
\(346\) 17.3561 + 6.31710i 0.933069 + 0.339609i
\(347\) 3.49638 0.616506i 0.187695 0.0330958i −0.0790102 0.996874i \(-0.525176\pi\)
0.266706 + 0.963778i \(0.414065\pi\)
\(348\) −22.0749 + 1.01391i −1.18334 + 0.0543515i
\(349\) 3.58455 + 3.00779i 0.191876 + 0.161003i 0.733665 0.679511i \(-0.237808\pi\)
−0.541788 + 0.840515i \(0.682253\pi\)
\(350\) 0 0
\(351\) −3.41048 3.08276i −0.182038 0.164545i
\(352\) 2.34703i 0.125097i
\(353\) −10.0759 + 12.0080i −0.536286 + 0.639120i −0.964351 0.264628i \(-0.914751\pi\)
0.428065 + 0.903748i \(0.359195\pi\)
\(354\) 3.93703 + 2.03817i 0.209251 + 0.108327i
\(355\) 0 0
\(356\) −12.2794 4.46934i −0.650807 0.236874i
\(357\) −2.40602 1.83756i −0.127340 0.0972539i
\(358\) 5.26907 + 0.929080i 0.278479 + 0.0491034i
\(359\) 1.36397 2.36247i 0.0719876 0.124686i −0.827785 0.561046i \(-0.810399\pi\)
0.899772 + 0.436360i \(0.143732\pi\)
\(360\) 0 0
\(361\) 3.36800 + 5.83355i 0.177263 + 0.307029i
\(362\) 4.91608 + 13.5068i 0.258383 + 0.709902i
\(363\) 18.0442 + 5.64440i 0.947074 + 0.296254i
\(364\) 0.535189 0.449077i 0.0280516 0.0235380i
\(365\) 0 0
\(366\) 3.01266 9.63096i 0.157474 0.503418i
\(367\) 10.9091 + 29.9725i 0.569450 + 1.56455i 0.805366 + 0.592778i \(0.201969\pi\)
−0.235916 + 0.971773i \(0.575809\pi\)
\(368\) 1.79228 1.03478i 0.0934293 0.0539414i
\(369\) −7.51293 27.5390i −0.391107 1.43362i
\(370\) 0 0
\(371\) 0.797399 4.52228i 0.0413989 0.234785i
\(372\) −15.8727 12.1225i −0.822962 0.628525i
\(373\) 2.11873 5.82118i 0.109704 0.301409i −0.872677 0.488298i \(-0.837618\pi\)
0.982381 + 0.186888i \(0.0598403\pi\)
\(374\) −0.474924 2.69343i −0.0245577 0.139274i
\(375\) 0 0
\(376\) 0.986932 + 0.828134i 0.0508971 + 0.0427078i
\(377\) 5.37398i 0.276774i
\(378\) 2.65253 2.93451i 0.136431 0.150935i
\(379\) −24.4506 −1.25595 −0.627973 0.778235i \(-0.716115\pi\)
−0.627973 + 0.778235i \(0.716115\pi\)
\(380\) 0 0
\(381\) −0.858161 18.6838i −0.0439649 0.957200i
\(382\) −10.3596 + 1.82668i −0.530045 + 0.0934612i
\(383\) −2.55465 + 7.01885i −0.130537 + 0.358647i −0.987692 0.156411i \(-0.950007\pi\)
0.857155 + 0.515058i \(0.172230\pi\)
\(384\) −1.08330 2.59866i −0.0552821 0.132612i
\(385\) 0 0
\(386\) 3.97075 6.87755i 0.202106 0.350058i
\(387\) −30.3631 2.51787i −1.54344 0.127990i
\(388\) 25.5028 14.7240i 1.29471 0.747500i
\(389\) 26.7061 9.72022i 1.35405 0.492835i 0.439842 0.898075i \(-0.355034\pi\)
0.914210 + 0.405240i \(0.132812\pi\)
\(390\) 0 0
\(391\) −1.94539 + 1.63238i −0.0983826 + 0.0825528i
\(392\) −0.896909 1.06889i −0.0453007 0.0539873i
\(393\) 15.7714 14.5177i 0.795562 0.732320i
\(394\) 19.7356 7.18318i 0.994266 0.361883i
\(395\) 0 0
\(396\) 1.82282 0.167801i 0.0916001 0.00843231i
\(397\) 25.1031 + 14.4933i 1.25989 + 0.727396i 0.973052 0.230585i \(-0.0740639\pi\)
0.286834 + 0.957980i \(0.407397\pi\)
\(398\) −23.7501 4.18777i −1.19048 0.209914i
\(399\) 2.26149 + 0.292520i 0.113216 + 0.0146443i
\(400\) 0 0
\(401\) 5.27642 + 29.9241i 0.263492 + 1.49434i 0.773296 + 0.634046i \(0.218607\pi\)
−0.509804 + 0.860291i \(0.670282\pi\)
\(402\) 16.7505 + 26.1620i 0.835437 + 1.30484i
\(403\) 3.12205 3.72071i 0.155520 0.185342i
\(404\) 8.44780 0.420294
\(405\) 0 0
\(406\) 4.62398 0.229484
\(407\) 2.04428 2.43627i 0.101331 0.120762i
\(408\) 0.883398 + 1.37975i 0.0437347 + 0.0683078i
\(409\) 0.726985 + 4.12294i 0.0359471 + 0.203866i 0.997492 0.0707824i \(-0.0225496\pi\)
−0.961545 + 0.274649i \(0.911438\pi\)
\(410\) 0 0
\(411\) −28.3402 3.66577i −1.39792 0.180819i
\(412\) 1.06615 + 0.187992i 0.0525256 + 0.00926168i
\(413\) −0.411531 0.237598i −0.0202501 0.0116914i
\(414\) −1.91549 2.70940i −0.0941414 0.133160i
\(415\) 0 0
\(416\) 6.71711 2.44483i 0.329333 0.119868i
\(417\) 15.7123 14.4633i 0.769436 0.708271i
\(418\) 1.32416 + 1.57807i 0.0647666 + 0.0771858i
\(419\) 17.7641 14.9058i 0.867832 0.728197i −0.0958087 0.995400i \(-0.530544\pi\)
0.963640 + 0.267203i \(0.0860993\pi\)
\(420\) 0 0
\(421\) 6.96568 2.53530i 0.339487 0.123563i −0.166651 0.986016i \(-0.553295\pi\)
0.506137 + 0.862453i \(0.331073\pi\)
\(422\) 4.29399 2.47913i 0.209028 0.120682i
\(423\) −10.8263 + 15.6117i −0.526394 + 0.759065i
\(424\) −1.24250 + 2.15207i −0.0603411 + 0.104514i
\(425\) 0 0
\(426\) 14.4907 + 34.7606i 0.702075 + 1.68416i
\(427\) −0.369944 + 1.01641i −0.0179029 + 0.0491877i
\(428\) −37.1694 + 6.55396i −1.79665 + 0.316798i
\(429\) 0.0204250 + 0.444692i 0.000986129 + 0.0214699i
\(430\) 0 0
\(431\) 3.55875 0.171419 0.0857095 0.996320i \(-0.472684\pi\)
0.0857095 + 0.996320i \(0.472684\pi\)
\(432\) 17.4014 9.20941i 0.837223 0.443088i
\(433\) 39.5383i 1.90009i −0.312111 0.950046i \(-0.601036\pi\)
0.312111 0.950046i \(-0.398964\pi\)
\(434\) 3.20145 + 2.68633i 0.153674 + 0.128948i
\(435\) 0 0
\(436\) −0.403048 2.28580i −0.0193025 0.109470i
\(437\) 0.654218 1.79745i 0.0312955 0.0859837i
\(438\) 2.17144 + 1.65840i 0.103755 + 0.0792415i
\(439\) 0.368776 2.09143i 0.0176007 0.0998186i −0.974742 0.223334i \(-0.928306\pi\)
0.992343 + 0.123516i \(0.0394169\pi\)
\(440\) 0 0
\(441\) 14.4834 14.6152i 0.689684 0.695962i
\(442\) −7.21377 + 4.16487i −0.343124 + 0.198103i
\(443\) −5.55606 15.2652i −0.263977 0.725270i −0.998890 0.0471084i \(-0.984999\pi\)
0.734913 0.678161i \(-0.237223\pi\)
\(444\) −11.8910 + 38.0136i −0.564323 + 1.80404i
\(445\) 0 0
\(446\) 27.9502 23.4530i 1.32348 1.11053i
\(447\) −16.8713 5.27752i −0.797987 0.249618i
\(448\) 1.12926 + 3.10260i 0.0533523 + 0.146584i
\(449\) 17.8132 + 30.8534i 0.840658 + 1.45606i 0.889339 + 0.457249i \(0.151165\pi\)
−0.0486805 + 0.998814i \(0.515502\pi\)
\(450\) 0 0
\(451\) −1.38205 + 2.39378i −0.0650781 + 0.112719i
\(452\) −18.7815 3.31168i −0.883406 0.155768i
\(453\) −24.5782 18.7712i −1.15478 0.881947i
\(454\) 10.1736 + 3.70288i 0.477470 + 0.173785i
\(455\) 0 0
\(456\) −1.09587 0.567320i −0.0513186 0.0265672i
\(457\) 16.5710 19.7485i 0.775157 0.923796i −0.223547 0.974693i \(-0.571764\pi\)
0.998704 + 0.0508970i \(0.0162080\pi\)
\(458\) 43.6242i 2.03842i
\(459\) −19.0663 + 14.8370i −0.889938 + 0.692532i
\(460\) 0 0
\(461\) −26.3039 22.0716i −1.22509 1.02798i −0.998542 0.0539762i \(-0.982810\pi\)
−0.226551 0.973999i \(-0.572745\pi\)
\(462\) −0.382630 + 0.0175745i −0.0178016 + 0.000817639i
\(463\) 29.0659 5.12509i 1.35080 0.238183i 0.549026 0.835805i \(-0.314999\pi\)
0.801778 + 0.597622i \(0.203888\pi\)
\(464\) 21.6265 + 7.87140i 1.00398 + 0.365421i
\(465\) 0 0
\(466\) −8.98908 + 50.9796i −0.416411 + 2.36158i
\(467\) 14.4100 + 8.31964i 0.666817 + 0.384987i 0.794869 0.606780i \(-0.207539\pi\)
−0.128053 + 0.991767i \(0.540873\pi\)
\(468\) −2.37902 5.04205i −0.109970 0.233069i
\(469\) −1.66488 2.88366i −0.0768770 0.133155i
\(470\) 0 0
\(471\) 19.5205 4.37400i 0.899455 0.201543i
\(472\) 0.165295 + 0.196991i 0.00760833 + 0.00906725i
\(473\) 1.89635 + 2.25999i 0.0871944 + 0.103914i
\(474\) −16.4211 17.8392i −0.754245 0.819380i
\(475\) 0 0
\(476\) −1.83571 3.17955i −0.0841397 0.145734i
\(477\) −33.2808 15.3359i −1.52382 0.702184i
\(478\) 16.2275 + 9.36897i 0.742230 + 0.428527i
\(479\) −0.965663 + 5.47655i −0.0441223 + 0.250230i −0.998889 0.0471262i \(-0.984994\pi\)
0.954767 + 0.297356i \(0.0961048\pi\)
\(480\) 0 0
\(481\) −9.10199 3.31285i −0.415015 0.151053i
\(482\) 57.3411 10.1108i 2.61182 0.460534i
\(483\) 0.191775 + 0.299528i 0.00872609 + 0.0136290i
\(484\) 17.5638 + 14.7378i 0.798354 + 0.669898i
\(485\) 0 0
\(486\) −17.2608 26.4287i −0.782968 1.19883i
\(487\) 17.5069i 0.793314i 0.917967 + 0.396657i \(0.129830\pi\)
−0.917967 + 0.396657i \(0.870170\pi\)
\(488\) 0.376246 0.448393i 0.0170319 0.0202978i
\(489\) −9.13446 + 5.84843i −0.413075 + 0.264475i
\(490\) 0 0
\(491\) 25.2199 + 9.17930i 1.13816 + 0.414256i 0.841248 0.540649i \(-0.181821\pi\)
0.296911 + 0.954905i \(0.404044\pi\)
\(492\) 4.44068 34.3311i 0.200201 1.54777i
\(493\) −27.8118 4.90396i −1.25258 0.220863i
\(494\) 3.13704 5.43351i 0.141142 0.244465i
\(495\) 0 0
\(496\) 10.4003 + 18.0139i 0.466988 + 0.808847i
\(497\) −1.38063 3.79324i −0.0619295 0.170150i
\(498\) −23.1835 + 21.3406i −1.03888 + 0.956294i
\(499\) −4.46524 + 3.74678i −0.199892 + 0.167729i −0.737239 0.675632i \(-0.763871\pi\)
0.537347 + 0.843361i \(0.319426\pi\)
\(500\) 0 0
\(501\) 26.4718 5.93160i 1.18267 0.265004i
\(502\) 8.11986 + 22.3091i 0.362407 + 0.995705i
\(503\) −26.4175 + 15.2521i −1.17790 + 0.680059i −0.955527 0.294904i \(-0.904712\pi\)
−0.222369 + 0.974963i \(0.571379\pi\)
\(504\) 0.207508 0.0979097i 0.00924316 0.00436124i
\(505\) 0 0
\(506\) −0.0557931 + 0.316419i −0.00248031 + 0.0140665i
\(507\) −19.5317 + 8.14218i −0.867433 + 0.361607i
\(508\) 7.75764 21.3139i 0.344190 0.945654i
\(509\) 5.46355 + 30.9853i 0.242167 + 1.37340i 0.826980 + 0.562231i \(0.190057\pi\)
−0.584813 + 0.811168i \(0.698832\pi\)
\(510\) 0 0
\(511\) −0.224349 0.188252i −0.00992464 0.00832776i
\(512\) 32.1543i 1.42103i
\(513\) 6.84925 16.8587i 0.302402 0.744330i
\(514\) 7.46958 0.329469
\(515\) 0 0
\(516\) −32.8117 16.9863i −1.44446 0.747782i
\(517\) 1.81168 0.319449i 0.0796778 0.0140493i
\(518\) 2.85051 7.83171i 0.125244 0.344106i
\(519\) −9.58897 + 12.5554i −0.420909 + 0.551120i
\(520\) 0 0
\(521\) −4.14101 + 7.17245i −0.181421 + 0.314231i −0.942365 0.334587i \(-0.891403\pi\)
0.760944 + 0.648818i \(0.224736\pi\)
\(522\) 9.38864 35.6848i 0.410930 1.56188i
\(523\) 15.4347 8.91120i 0.674910 0.389660i −0.123024 0.992404i \(-0.539259\pi\)
0.797935 + 0.602744i \(0.205926\pi\)
\(524\) 24.4278 8.89098i 1.06713 0.388404i
\(525\) 0 0
\(526\) 34.3001 28.7812i 1.49556 1.25492i
\(527\) −16.4067 19.5527i −0.714686 0.851730i
\(528\) −1.81949 0.569154i −0.0791831 0.0247693i
\(529\) −21.3326 + 7.76443i −0.927504 + 0.337584i
\(530\) 0 0
\(531\) −2.66920 + 2.69350i −0.115834 + 0.116888i
\(532\) 2.39488 + 1.38268i 0.103831 + 0.0599469i
\(533\) 8.29054 + 1.46185i 0.359103 + 0.0633196i
\(534\) 13.2439 17.3409i 0.573118 0.750416i
\(535\) 0 0
\(536\) 0.312899 + 1.77454i 0.0135152 + 0.0766483i
\(537\) −2.10396 + 4.06412i −0.0907925 + 0.175380i
\(538\) 32.9741 39.2970i 1.42161 1.69421i
\(539\) −1.99241 −0.0858191
\(540\) 0 0
\(541\) −34.8916 −1.50011 −0.750054 0.661376i \(-0.769973\pi\)
−0.750054 + 0.661376i \(0.769973\pi\)
\(542\) −37.4584 + 44.6412i −1.60898 + 1.91750i
\(543\) −12.2816 + 0.564101i −0.527052 + 0.0242079i
\(544\) −6.52300 36.9938i −0.279671 1.58610i
\(545\) 0 0
\(546\) 0.448872 + 1.07677i 0.0192099 + 0.0460814i
\(547\) 24.4154 + 4.30509i 1.04393 + 0.184072i 0.669214 0.743069i \(-0.266631\pi\)
0.374711 + 0.927142i \(0.377742\pi\)
\(548\) −30.0118 17.3273i −1.28204 0.740187i
\(549\) 7.09285 + 4.91873i 0.302715 + 0.209926i
\(550\) 0 0
\(551\) 19.9885 7.27523i 0.851540 0.309935i
\(552\) −0.0420831 0.187810i −0.00179117 0.00799373i
\(553\) 1.67054 + 1.99088i 0.0710388 + 0.0846607i
\(554\) 30.5984 25.6751i 1.30000 1.09083i
\(555\) 0 0
\(556\) 24.3363 8.85768i 1.03209 0.375649i
\(557\) 27.0026 15.5900i 1.14414 0.660568i 0.196686 0.980467i \(-0.436982\pi\)
0.947452 + 0.319898i \(0.103649\pi\)
\(558\) 27.2316 19.2522i 1.15281 0.815012i
\(559\) 4.49262 7.78145i 0.190018 0.329120i
\(560\) 0 0
\(561\) 2.32003 + 0.300093i 0.0979519 + 0.0126699i
\(562\) 6.04011 16.5951i 0.254787 0.700020i
\(563\) −11.3381 + 1.99921i −0.477844 + 0.0842567i −0.407382 0.913258i \(-0.633558\pi\)
−0.0704615 + 0.997514i \(0.522447\pi\)
\(564\) −19.4030 + 12.4230i −0.817015 + 0.523102i
\(565\) 0 0
\(566\) −15.0410 −0.632219
\(567\) 1.71822 + 2.91473i 0.0721584 + 0.122407i
\(568\) 2.18446i 0.0916580i
\(569\) −0.688909 0.578063i −0.0288805 0.0242337i 0.628233 0.778025i \(-0.283778\pi\)
−0.657114 + 0.753791i \(0.728223\pi\)
\(570\) 0 0
\(571\) 7.41437 + 42.0490i 0.310282 + 1.75969i 0.597538 + 0.801841i \(0.296146\pi\)
−0.287256 + 0.957854i \(0.592743\pi\)
\(572\) −0.184639 + 0.507292i −0.00772015 + 0.0212109i
\(573\) 1.15424 8.92347i 0.0482190 0.372783i
\(574\) −1.25783 + 7.13351i −0.0525008 + 0.297747i
\(575\) 0 0
\(576\) 26.2367 2.41524i 1.09319 0.100635i
\(577\) −10.7781 + 6.22274i −0.448698 + 0.259056i −0.707280 0.706933i \(-0.750078\pi\)
0.258582 + 0.965989i \(0.416745\pi\)
\(578\) 3.19765 + 8.78546i 0.133005 + 0.365427i
\(579\) 4.60046 + 4.99775i 0.191189 + 0.207699i
\(580\) 0 0
\(581\) 2.58731 2.17101i 0.107340 0.0900688i
\(582\) 10.7515 + 47.9822i 0.445664 + 1.98893i
\(583\) 1.21360 + 3.33434i 0.0502622 + 0.138094i
\(584\) 0.0792431 + 0.137253i 0.00327910 + 0.00567957i
\(585\) 0 0
\(586\) 1.91711 3.32053i 0.0791950 0.137170i
\(587\) 10.8379 + 1.91101i 0.447327 + 0.0788758i 0.392774 0.919635i \(-0.371516\pi\)
0.0545530 + 0.998511i \(0.482627\pi\)
\(588\) 23.0315 9.60115i 0.949804 0.395945i
\(589\) 18.0658 + 6.57541i 0.744388 + 0.270935i
\(590\) 0 0
\(591\) 0.824242 + 17.9453i 0.0339048 + 0.738172i
\(592\) 26.6638 31.7767i 1.09588 1.30601i
\(593\) 9.57442i 0.393174i 0.980486 + 0.196587i \(0.0629859\pi\)
−0.980486 + 0.196587i \(0.937014\pi\)
\(594\) −0.641273 + 2.98856i −0.0263117 + 0.122622i
\(595\) 0 0
\(596\) −16.4222 13.7798i −0.672678 0.564444i
\(597\) 9.48348 18.3188i 0.388133 0.749738i
\(598\) 0.963696 0.169926i 0.0394085 0.00694878i
\(599\) 30.9256 + 11.2560i 1.26359 + 0.459908i 0.884971 0.465646i \(-0.154178\pi\)
0.378616 + 0.925554i \(0.376400\pi\)
\(600\) 0 0
\(601\) −2.22127 + 12.5974i −0.0906074 + 0.513860i 0.905398 + 0.424564i \(0.139573\pi\)
−0.996005 + 0.0892957i \(0.971538\pi\)
\(602\) 6.69547 + 3.86563i 0.272887 + 0.157551i
\(603\) −25.6345 + 6.99338i −1.04392 + 0.284793i
\(604\) −18.7523 32.4800i −0.763021 1.32159i
\(605\) 0 0
\(606\) −4.21128 + 13.4627i −0.171072 + 0.546886i
\(607\) −24.0848 28.7032i −0.977573 1.16503i −0.986283 0.165064i \(-0.947217\pi\)
0.00870958 0.999962i \(-0.497228\pi\)
\(608\) 18.1871 + 21.6745i 0.737583 + 0.879018i
\(609\) −1.18078 + 3.77475i −0.0478477 + 0.152961i
\(610\) 0 0
\(611\) −2.80143 4.85221i −0.113334 0.196300i
\(612\) −28.2649 + 7.71096i −1.14254 + 0.311697i
\(613\) 2.26483 + 1.30760i 0.0914758 + 0.0528136i 0.545040 0.838410i \(-0.316514\pi\)
−0.453564 + 0.891224i \(0.649848\pi\)
\(614\) 5.00156 28.3653i 0.201847 1.14473i
\(615\) 0 0
\(616\) −0.0208779 0.00759892i −0.000841193 0.000306169i
\(617\) 6.35172 1.11998i 0.255711 0.0450887i −0.0443232 0.999017i \(-0.514113\pi\)
0.300034 + 0.953929i \(0.403002\pi\)
\(618\) −0.831075 + 1.60535i −0.0334307 + 0.0645766i
\(619\) 0.0522006 + 0.0438015i 0.00209812 + 0.00176053i 0.643836 0.765163i \(-0.277342\pi\)
−0.641738 + 0.766924i \(0.721786\pi\)
\(620\) 0 0
\(621\) 2.70094 0.871826i 0.108385 0.0349852i
\(622\) 29.6649i 1.18945i
\(623\) −1.50336 + 1.79164i −0.0602309 + 0.0717804i
\(624\) 0.266407 + 5.80018i 0.0106648 + 0.232193i
\(625\) 0 0
\(626\) −49.2370 17.9208i −1.96791 0.716260i
\(627\) −1.62638 + 0.677989i −0.0649514 + 0.0270763i
\(628\) 23.8910 + 4.21263i 0.953355 + 0.168102i
\(629\) −25.4508 + 44.0821i −1.01479 + 1.75767i
\(630\) 0 0
\(631\) −22.5451 39.0492i −0.897506 1.55453i −0.830673 0.556761i \(-0.812044\pi\)
−0.0668329 0.997764i \(-0.521289\pi\)
\(632\) −0.481019 1.32159i −0.0191339 0.0525700i
\(633\) 0.927309 + 4.13843i 0.0368572 + 0.164488i
\(634\) 28.3317 23.7732i 1.12520 0.944153i
\(635\) 0 0
\(636\) −30.0965 32.6956i −1.19340 1.29646i
\(637\) 2.07543 + 5.70220i 0.0822316 + 0.225930i
\(638\) −3.09432 + 1.78651i −0.122505 + 0.0707284i
\(639\) −32.0769 + 2.95286i −1.26894 + 0.116813i
\(640\) 0 0
\(641\) 6.39211 36.2514i 0.252473 1.43185i −0.550004 0.835162i \(-0.685374\pi\)
0.802477 0.596683i \(-0.203515\pi\)
\(642\) 8.08451 62.5017i 0.319070 2.46675i
\(643\) 1.67760 4.60918i 0.0661582 0.181768i −0.902208 0.431301i \(-0.858055\pi\)
0.968366 + 0.249533i \(0.0802770\pi\)
\(644\) 0.0748965 + 0.424759i 0.00295134 + 0.0167379i
\(645\) 0 0
\(646\) −25.2572 21.1933i −0.993730 0.833838i
\(647\) 37.6519i 1.48025i 0.672469 + 0.740125i \(0.265234\pi\)
−0.672469 + 0.740125i \(0.734766\pi\)
\(648\) −0.334271 1.80021i −0.0131314 0.0707188i
\(649\) 0.367190 0.0144135
\(650\) 0 0
\(651\) −3.01049 + 1.92750i −0.117990 + 0.0755445i
\(652\) −12.9536 + 2.28406i −0.507300 + 0.0894507i
\(653\) 7.83944 21.5387i 0.306781 0.842874i −0.686498 0.727132i \(-0.740853\pi\)
0.993279 0.115743i \(-0.0369247\pi\)
\(654\) 3.84366 + 0.497172i 0.150299 + 0.0194410i
\(655\) 0 0
\(656\) −18.0263 + 31.2224i −0.703807 + 1.21903i
\(657\) −1.90832 + 1.34915i −0.0744508 + 0.0526353i
\(658\) 4.17504 2.41046i 0.162760 0.0939694i
\(659\) −4.41936 + 1.60852i −0.172154 + 0.0626589i −0.426659 0.904412i \(-0.640310\pi\)
0.254505 + 0.967071i \(0.418087\pi\)
\(660\) 0 0
\(661\) −25.3416 + 21.2641i −0.985675 + 0.827079i −0.984936 0.172920i \(-0.944680\pi\)
−0.000739053 1.00000i \(0.500235\pi\)
\(662\) −41.1657 49.0593i −1.59995 1.90675i
\(663\) −1.55785 6.95245i −0.0605020 0.270011i
\(664\) −1.71752 + 0.625125i −0.0666526 + 0.0242596i
\(665\) 0 0
\(666\) −54.6521 37.9000i −2.11773 1.46859i
\(667\) 2.87319 + 1.65884i 0.111250 + 0.0642304i
\(668\) 32.3987 + 5.71277i 1.25354 + 0.221034i
\(669\) 12.0083 + 28.8059i 0.464268 + 1.11370i
\(670\) 0 0
\(671\) −0.145135 0.823103i −0.00560288 0.0317755i
\(672\) −5.25537 + 0.241383i −0.202730 + 0.00931155i
\(673\) −28.5883 + 34.0702i −1.10200 + 1.31331i −0.156500 + 0.987678i \(0.550021\pi\)
−0.945497 + 0.325631i \(0.894423\pi\)
\(674\) 15.5180 0.597731
\(675\) 0 0
\(676\) −25.6619 −0.986996
\(677\) 5.51191 6.56883i 0.211840 0.252461i −0.649653 0.760231i \(-0.725086\pi\)
0.861492 + 0.507770i \(0.169530\pi\)
\(678\) 14.6403 28.2800i 0.562257 1.08609i
\(679\) −0.915233 5.19055i −0.0351234 0.199195i
\(680\) 0 0
\(681\) −5.62075 + 7.35956i −0.215388 + 0.282019i
\(682\) −3.18026 0.560765i −0.121778 0.0214728i
\(683\) 38.0739 + 21.9820i 1.45686 + 0.841117i 0.998855 0.0478347i \(-0.0152321\pi\)
0.458002 + 0.888951i \(0.348565\pi\)
\(684\) 15.5332 15.6746i 0.593928 0.599334i
\(685\) 0 0
\(686\) −9.91390 + 3.60836i −0.378514 + 0.137768i
\(687\) 35.6123 + 11.1399i 1.35869 + 0.425013i
\(688\) 24.7344 + 29.4773i 0.942991 + 1.12381i
\(689\) 8.27859 6.94656i 0.315389 0.264643i
\(690\) 0 0
\(691\) 20.7711 7.56005i 0.790169 0.287598i 0.0847628 0.996401i \(-0.472987\pi\)
0.705406 + 0.708803i \(0.250765\pi\)
\(692\) −16.5919 + 9.57933i −0.630729 + 0.364152i
\(693\) 0.0833617 0.316845i 0.00316665 0.0120359i
\(694\) −3.59462 + 6.22607i −0.136450 + 0.236338i
\(695\) 0 0
\(696\) 1.29910 1.70098i 0.0492423 0.0644756i
\(697\) 15.1309 41.5717i 0.573123 1.57464i
\(698\) −9.33144 + 1.64538i −0.353200 + 0.0622787i
\(699\) −39.3213 20.3563i −1.48727 0.769947i
\(700\) 0 0
\(701\) −0.728282 −0.0275068 −0.0137534 0.999905i \(-0.504378\pi\)
−0.0137534 + 0.999905i \(0.504378\pi\)
\(702\) 9.22116 1.27780i 0.348030 0.0482274i
\(703\) 38.3398i 1.44601i
\(704\) −1.95440 1.63993i −0.0736591 0.0618073i
\(705\) 0 0
\(706\) −5.51192 31.2596i −0.207444 1.17647i
\(707\) 0.517130 1.42080i 0.0194487 0.0534348i
\(708\) −4.24458 + 1.76944i −0.159521 + 0.0664996i
\(709\) −2.85514 + 16.1923i −0.107227 + 0.608115i 0.883080 + 0.469222i \(0.155465\pi\)
−0.990307 + 0.138893i \(0.955646\pi\)
\(710\) 0 0
\(711\) 18.7562 8.84981i 0.703411 0.331894i
\(712\) 1.09609 0.632829i 0.0410778 0.0237163i
\(713\) 1.02556 + 2.81771i 0.0384076 + 0.105524i
\(714\) 5.98216 1.34044i 0.223877 0.0501646i
\(715\) 0 0
\(716\) −4.25144 + 3.56738i −0.158884 + 0.133319i
\(717\) −11.7922 + 10.8548i −0.440386 + 0.405379i
\(718\) 1.88931 + 5.19084i 0.0705085 + 0.193720i
\(719\) −18.6844 32.3624i −0.696811 1.20691i −0.969566 0.244829i \(-0.921268\pi\)
0.272755 0.962083i \(-0.412065\pi\)
\(720\) 0 0
\(721\) 0.0968819 0.167804i 0.00360807 0.00624936i
\(722\) −13.4329 2.36859i −0.499922 0.0881497i
\(723\) −6.38878 + 49.3919i −0.237601 + 1.83690i
\(724\) −14.0105 5.09939i −0.520694 0.189517i
\(725\) 0 0
\(726\) −32.2423 + 20.6435i −1.19662 + 0.766150i
\(727\) 3.26002 3.88514i 0.120907 0.144092i −0.702195 0.711984i \(-0.747797\pi\)
0.823103 + 0.567893i \(0.192241\pi\)
\(728\) 0.0676673i 0.00250792i
\(729\) 25.9826 7.34192i 0.962319 0.271923i
\(730\) 0 0
\(731\) −36.1714 30.3514i −1.33785 1.12259i
\(732\) 5.64413 + 8.81539i 0.208613 + 0.325826i
\(733\) −24.6950 + 4.35439i −0.912129 + 0.160833i −0.609970 0.792424i \(-0.708819\pi\)
−0.302159 + 0.953257i \(0.597707\pi\)
\(734\) −60.6931 22.0905i −2.24022 0.815375i
\(735\) 0 0
\(736\) −0.766310 + 4.34596i −0.0282466 + 0.160194i
\(737\) 2.22824 + 1.28647i 0.0820783 + 0.0473879i
\(738\) 52.4977 + 24.1911i 1.93247 + 0.890487i
\(739\) 23.1354 + 40.0717i 0.851050 + 1.47406i 0.880262 + 0.474489i \(0.157367\pi\)
−0.0292117 + 0.999573i \(0.509300\pi\)
\(740\) 0 0
\(741\) 3.63453 + 3.94840i 0.133518 + 0.145048i
\(742\) 5.97709 + 7.12322i 0.219426 + 0.261502i
\(743\) −21.0629 25.1018i −0.772723 0.920896i 0.225857 0.974160i \(-0.427482\pi\)
−0.998580 + 0.0532649i \(0.983037\pi\)
\(744\) 1.88764 0.422968i 0.0692042 0.0155068i
\(745\) 0 0
\(746\) 6.27208 + 10.8636i 0.229637 + 0.397743i
\(747\) −11.5011 24.3752i −0.420802 0.891842i
\(748\) 2.45688 + 1.41848i 0.0898323 + 0.0518647i
\(749\) −1.17303 + 6.65257i −0.0428615 + 0.243080i
\(750\) 0 0
\(751\) 11.8075 + 4.29756i 0.430860 + 0.156820i 0.548341 0.836255i \(-0.315260\pi\)
−0.117481 + 0.993075i \(0.537482\pi\)
\(752\) 23.6301 4.16662i 0.861700 0.151941i
\(753\) −20.2854 + 0.931722i −0.739240 + 0.0339538i
\(754\) 8.33617 + 6.99488i 0.303585 + 0.254738i
\(755\) 0 0
\(756\) 0.563203 + 4.06432i 0.0204835 + 0.147818i
\(757\) 35.3551i 1.28500i −0.766285 0.642501i \(-0.777897\pi\)
0.766285 0.642501i \(-0.222103\pi\)
\(758\) 31.8254 37.9281i 1.15595 1.37761i
\(759\) −0.244059 0.126347i −0.00885876 0.00458611i
\(760\) 0 0
\(761\) 4.34791 + 1.58251i 0.157612 + 0.0573660i 0.419621 0.907699i \(-0.362163\pi\)
−0.262009 + 0.965065i \(0.584385\pi\)
\(762\) 30.0995 + 22.9880i 1.09039 + 0.832768i
\(763\) −0.409113 0.0721376i −0.0148109 0.00261156i
\(764\) 5.45584 9.44980i 0.197386 0.341882i
\(765\) 0 0
\(766\) −7.56253 13.0987i −0.273245 0.473275i
\(767\) −0.382490 1.05088i −0.0138109 0.0379452i
\(768\) −23.5950 7.38076i −0.851412 0.266330i
\(769\) 10.2592 8.60849i 0.369956 0.310430i −0.438788 0.898591i \(-0.644592\pi\)
0.808744 + 0.588161i \(0.200148\pi\)
\(770\) 0 0
\(771\) −1.90743 + 6.09774i −0.0686946 + 0.219605i
\(772\) 2.81744 + 7.74084i 0.101402 + 0.278599i
\(773\) −20.2297 + 11.6796i −0.727612 + 0.420087i −0.817548 0.575861i \(-0.804667\pi\)
0.0899361 + 0.995948i \(0.471334\pi\)
\(774\) 43.4270 43.8222i 1.56095 1.57516i
\(775\) 0 0
\(776\) −0.495282 + 2.80888i −0.0177796 + 0.100833i
\(777\) 5.66545 + 4.32690i 0.203247 + 0.155227i
\(778\) −19.6831 + 54.0788i −0.705672 + 1.93882i
\(779\) 5.78629 + 32.8157i 0.207316 + 1.17574i
\(780\) 0 0
\(781\) 2.38944 + 2.00498i 0.0855010 + 0.0717438i
\(782\) 5.14244i 0.183893i
\(783\) 26.7335 + 16.7768i 0.955378 + 0.599555i
\(784\) −25.9873 −0.928118
\(785\) 0 0
\(786\) 1.99161 + 43.3613i 0.0710385 + 1.54664i
\(787\) −44.8881 + 7.91498i −1.60009 + 0.282139i −0.901301 0.433193i \(-0.857387\pi\)
−0.698786 + 0.715331i \(0.746276\pi\)
\(788\) −7.45102 + 20.4715i −0.265432 + 0.729267i
\(789\) 14.7365 + 35.3503i 0.524632 + 1.25850i
\(790\) 0 0
\(791\) −1.70668 + 2.95606i −0.0606827 + 0.105105i
\(792\) −0.101034 + 0.145692i −0.00359010 + 0.00517695i
\(793\) −2.20451 + 1.27277i −0.0782844 + 0.0451975i
\(794\) −55.1567 + 20.0754i −1.95744 + 0.712449i
\(795\) 0 0
\(796\) 19.1631 16.0798i 0.679219 0.569932i
\(797\) −19.1281 22.7960i −0.677553 0.807477i 0.312238 0.950004i \(-0.398922\pi\)
−0.989791 + 0.142528i \(0.954477\pi\)
\(798\) −3.39736 + 3.12729i −0.120265 + 0.110705i
\(799\) −27.6679 + 10.0703i −0.978820 + 0.356261i
\(800\) 0 0
\(801\) 10.7742 + 15.2397i 0.380687 + 0.538469i
\(802\) −53.2864 30.7649i −1.88161 1.08635i
\(803\) 0.222864 + 0.0392970i 0.00786472 + 0.00138676i
\(804\) −31.9570 4.13360i −1.12704 0.145781i
\(805\) 0 0
\(806\) 1.70789 + 9.68591i 0.0601578 + 0.341172i
\(807\) 23.6595 + 36.9531i 0.832855 + 1.30081i
\(808\) −0.525940 + 0.626791i −0.0185025 + 0.0220504i
\(809\) −6.39776 −0.224933 −0.112467 0.993656i \(-0.535875\pi\)
−0.112467 + 0.993656i \(0.535875\pi\)
\(810\) 0 0
\(811\) 6.93453 0.243504 0.121752 0.992561i \(-0.461149\pi\)
0.121752 + 0.992561i \(0.461149\pi\)
\(812\) −3.08307 + 3.67426i −0.108194 + 0.128941i
\(813\) −26.8771 41.9785i −0.942622 1.47225i
\(814\) 1.11830 + 6.34221i 0.0391965 + 0.222294i
\(815\) 0 0
\(816\) 30.2606 + 3.91416i 1.05933 + 0.137023i
\(817\) 35.0252 + 6.17588i 1.22538 + 0.216067i
\(818\) −7.34180 4.23879i −0.256700 0.148206i
\(819\) −0.993634 + 0.0914697i −0.0347204 + 0.00319621i
\(820\) 0 0
\(821\) 5.29886 1.92863i 0.184932 0.0673096i −0.247895 0.968787i \(-0.579739\pi\)
0.432826 + 0.901477i \(0.357516\pi\)
\(822\) 42.5746 39.1902i 1.48496 1.36692i
\(823\) −16.0888 19.1739i −0.560821 0.668360i 0.408899 0.912580i \(-0.365913\pi\)
−0.969720 + 0.244219i \(0.921468\pi\)
\(824\) −0.0803243 + 0.0674001i −0.00279823 + 0.00234799i
\(825\) 0 0
\(826\) 0.904222 0.329110i 0.0314619 0.0114512i
\(827\) −9.91448 + 5.72413i −0.344760 + 0.199048i −0.662375 0.749172i \(-0.730451\pi\)
0.317615 + 0.948220i \(0.397118\pi\)
\(828\) 3.43008 + 0.284440i 0.119203 + 0.00988498i
\(829\) 11.2450 19.4769i 0.390555 0.676461i −0.601968 0.798520i \(-0.705617\pi\)
0.992523 + 0.122059i \(0.0389498\pi\)
\(830\) 0 0
\(831\) 13.1461 + 31.5352i 0.456032 + 1.09394i
\(832\) −2.65759 + 7.30168i −0.0921355 + 0.253140i
\(833\) 31.4043 5.53743i 1.08809 0.191860i
\(834\) 1.98415 + 43.1988i 0.0687057 + 1.49585i
\(835\) 0 0
\(836\) −2.13683 −0.0739039
\(837\) 8.76254 + 27.1466i 0.302878 + 0.938323i
\(838\) 46.9575i 1.62212i
\(839\) −37.2179 31.2296i −1.28491 1.07816i −0.992548 0.121855i \(-0.961116\pi\)
−0.292358 0.956309i \(-0.594440\pi\)
\(840\) 0 0
\(841\) 1.37081 + 7.77424i 0.0472693 + 0.268077i
\(842\) −5.13389 + 14.1052i −0.176925 + 0.486099i
\(843\) 12.0048 + 9.16851i 0.413469 + 0.315780i
\(844\) −0.893098 + 5.06501i −0.0307417 + 0.174345i
\(845\) 0 0
\(846\) −10.1252 37.1144i −0.348112 1.27602i
\(847\) 3.55385 2.05182i 0.122112 0.0705013i
\(848\) 15.8292 + 43.4903i 0.543576 + 1.49346i
\(849\) 3.84087 12.2786i 0.131818 0.421400i
\(850\) 0 0
\(851\) 4.58081 3.84376i 0.157028 0.131762i
\(852\) −37.2828 11.6624i −1.27729 0.399549i
\(853\) −0.331738 0.911444i −0.0113585 0.0312072i 0.933884 0.357577i \(-0.116397\pi\)
−0.945242 + 0.326369i \(0.894175\pi\)
\(854\) −1.09514 1.89684i −0.0374751 0.0649087i
\(855\) 0 0
\(856\) 1.82780 3.16584i 0.0624729 0.108206i
\(857\) 25.2108 + 4.44534i 0.861184 + 0.151850i 0.586762 0.809759i \(-0.300402\pi\)
0.274422 + 0.961609i \(0.411514\pi\)
\(858\) −0.716396 0.547136i −0.0244573 0.0186789i
\(859\) 11.4897 + 4.18192i 0.392025 + 0.142685i 0.530509 0.847679i \(-0.322001\pi\)
−0.138484 + 0.990365i \(0.544223\pi\)
\(860\) 0 0
\(861\) −5.50219 2.84843i −0.187514 0.0970744i
\(862\) −4.63214 + 5.52037i −0.157771 + 0.188025i
\(863\) 8.39103i 0.285634i −0.989749 0.142817i \(-0.954384\pi\)
0.989749 0.142817i \(-0.0456161\pi\)
\(864\) −8.80779 + 41.0475i −0.299647 + 1.39646i
\(865\) 0 0
\(866\) 61.3323 + 51.4639i 2.08416 + 1.74881i
\(867\) −7.98850 + 0.366918i −0.271304 + 0.0124612i
\(868\) −4.26917 + 0.752769i −0.144905 + 0.0255507i
\(869\) −1.88710 0.686848i −0.0640154 0.0232997i
\(870\) 0 0
\(871\) 1.36075 7.71722i 0.0461074 0.261488i
\(872\) 0.194689 + 0.112404i 0.00659302 + 0.00380648i
\(873\) −41.9154 3.47585i −1.41862 0.117640i
\(874\) 1.93668 + 3.35443i 0.0655091 + 0.113465i
\(875\) 0 0
\(876\) −2.76560 + 0.619695i −0.0934409 + 0.0209375i
\(877\) −26.8393 31.9858i −0.906298 1.08008i −0.996453 0.0841564i \(-0.973180\pi\)
0.0901543 0.995928i \(-0.471264\pi\)
\(878\) 2.76425 + 3.29430i 0.0932888 + 0.111177i
\(879\) 2.22113 + 2.41295i 0.0749170 + 0.0813867i
\(880\) 0 0
\(881\) 5.65176 + 9.78914i 0.190413 + 0.329805i 0.945387 0.325950i \(-0.105684\pi\)
−0.754974 + 0.655754i \(0.772351\pi\)
\(882\) 3.81941 + 41.4902i 0.128606 + 1.39705i
\(883\) −21.3019 12.2986i −0.716865 0.413882i 0.0967330 0.995310i \(-0.469161\pi\)
−0.813598 + 0.581428i \(0.802494\pi\)
\(884\) 1.50038 8.50908i 0.0504632 0.286191i
\(885\) 0 0
\(886\) 30.9113 + 11.2508i 1.03849 + 0.377978i
\(887\) 9.16975 1.61687i 0.307890 0.0542893i −0.0175685 0.999846i \(-0.505593\pi\)
0.325458 + 0.945556i \(0.394481\pi\)
\(888\) −2.08014 3.24890i −0.0698048 0.109026i
\(889\) −3.10983 2.60946i −0.104300 0.0875184i
\(890\) 0 0
\(891\) −2.27594 1.28666i −0.0762468 0.0431047i
\(892\) 37.8468i 1.26721i
\(893\) 14.2553 16.9888i 0.477035 0.568508i
\(894\) 30.1466 19.3017i 1.00825 0.645544i
\(895\) 0 0
\(896\) −0.574234 0.209004i −0.0191838 0.00698234i
\(897\) −0.107372 + 0.830099i −0.00358505 + 0.0277162i
\(898\) −71.0462 12.5274i −2.37084 0.418043i
\(899\) −16.6726 + 28.8778i −0.556063 + 0.963130i
\(900\) 0 0
\(901\) −28.3957 49.1828i −0.945999 1.63852i
\(902\) −1.91435 5.25964i −0.0637409 0.175127i
\(903\) −4.86543 + 4.47867i −0.161911 + 0.149041i
\(904\) 1.41500 1.18733i 0.0470623 0.0394899i
\(905\) 0 0
\(906\) 61.1095 13.6930i 2.03023 0.454918i
\(907\) −4.95182 13.6050i −0.164423 0.451747i 0.829931 0.557866i \(-0.188380\pi\)
−0.994353 + 0.106119i \(0.966158\pi\)
\(908\) −9.72563 + 5.61510i −0.322757 + 0.186344i
\(909\) −9.91481 6.87570i −0.328854 0.228052i
\(910\) 0 0
\(911\) 3.83154 21.7298i 0.126945 0.719939i −0.853189 0.521602i \(-0.825335\pi\)
0.980134 0.198337i \(-0.0635541\pi\)
\(912\) −21.2131 + 8.84311i −0.702437 + 0.292825i
\(913\) −0.892616 + 2.45244i −0.0295413 + 0.0811640i
\(914\) 9.06499 + 51.4101i 0.299843 + 1.70049i
\(915\) 0 0
\(916\) 34.6642 + 29.0867i 1.14534 + 0.961051i
\(917\) 4.65267i 0.153645i
\(918\) 1.80172 48.8879i 0.0594657 1.61354i
\(919\) 23.3762 0.771109 0.385554 0.922685i \(-0.374010\pi\)
0.385554 + 0.922685i \(0.374010\pi\)
\(920\) 0 0
\(921\) 21.8786 + 11.3263i 0.720923 + 0.373216i
\(922\) 68.4753 12.0740i 2.25511 0.397637i
\(923\) 3.24917 8.92702i 0.106948 0.293837i
\(924\) 0.241156 0.315759i 0.00793345 0.0103877i
\(925\) 0 0
\(926\) −29.8826 + 51.7582i −0.982003 + 1.70088i
\(927\) −1.09829 1.08838i −0.0360726 0.0357472i
\(928\) −42.5000 + 24.5374i −1.39513 + 0.805479i
\(929\) 8.18841 2.98034i 0.268653 0.0977817i −0.204181 0.978933i \(-0.565453\pi\)
0.472834 + 0.881151i \(0.343231\pi\)
\(930\) 0 0
\(931\) −18.3997 + 15.4391i −0.603024 + 0.505998i
\(932\) −34.5153 41.1337i −1.13059 1.34738i
\(933\) −24.2167 7.57523i −0.792819 0.248002i
\(934\) −31.6619 + 11.5240i −1.03601 + 0.377076i
\(935\) 0 0
\(936\) 0.522210 + 0.137393i 0.0170690 + 0.00449084i
\(937\) 35.2473 + 20.3500i 1.15148 + 0.664806i 0.949247 0.314532i \(-0.101847\pi\)
0.202231 + 0.979338i \(0.435181\pi\)
\(938\) 6.64020 + 1.17085i 0.216810 + 0.0382295i
\(939\) 27.2027 35.6180i 0.887727 1.16235i
\(940\) 0 0
\(941\) 7.07254 + 40.1103i 0.230558 + 1.30756i 0.851769 + 0.523917i \(0.175530\pi\)
−0.621211 + 0.783643i \(0.713359\pi\)
\(942\) −18.6232 + 35.9736i −0.606778 + 1.17208i
\(943\) −3.34069 + 3.98129i −0.108788 + 0.129648i
\(944\) 4.78931 0.155879
\(945\) 0 0
\(946\) −5.97404 −0.194233
\(947\) 12.0921 14.4108i 0.392940 0.468288i −0.532914 0.846170i \(-0.678903\pi\)
0.925854 + 0.377882i \(0.123347\pi\)
\(948\) 25.1240 1.15396i 0.815990 0.0374790i
\(949\) −0.119684 0.678764i −0.00388512 0.0220336i
\(950\) 0 0
\(951\) 12.1722 + 29.1991i 0.394712 + 0.946847i
\(952\) 0.350196 + 0.0617490i 0.0113499 + 0.00200130i
\(953\) 35.4426 + 20.4628i 1.14810 + 0.662855i 0.948423 0.317007i \(-0.102678\pi\)
0.199675 + 0.979862i \(0.436011\pi\)
\(954\) 67.1082 31.6640i 2.17271 1.02516i
\(955\) 0 0
\(956\) −18.2645 + 6.64772i −0.590715 + 0.215003i
\(957\) −0.668235 2.98223i −0.0216010 0.0964017i
\(958\) −7.23835 8.62633i −0.233860 0.278704i
\(959\) −4.75139 + 3.98689i −0.153430 + 0.128743i
\(960\) 0 0
\(961\) 0.810279 0.294918i 0.0261380 0.00951347i
\(962\) 16.9863 9.80702i 0.547659 0.316191i
\(963\) 48.9583 + 22.5602i 1.57766 + 0.726992i
\(964\) −30.1984 + 52.3052i −0.972625 + 1.68464i
\(965\) 0 0
\(966\) −0.714249 0.0923872i −0.0229806 0.00297251i
\(967\) −13.1096 + 36.0183i −0.421576 + 1.15827i 0.529229 + 0.848479i \(0.322481\pi\)
−0.950805 + 0.309791i \(0.899741\pi\)
\(968\) −2.18696 + 0.385620i −0.0702915 + 0.0123943i
\(969\) 23.7506 15.2066i 0.762981 0.488506i
\(970\) 0 0
\(971\) 50.2132 1.61142 0.805709 0.592312i \(-0.201785\pi\)
0.805709 + 0.592312i \(0.201785\pi\)
\(972\) 32.5092 + 3.90588i 1.04273 + 0.125281i
\(973\) 4.63525i 0.148599i
\(974\) −27.1569 22.7874i −0.870164 0.730154i
\(975\) 0 0
\(976\) −1.89302 10.7359i −0.0605941 0.343646i
\(977\) 6.87174 18.8800i 0.219847 0.604023i −0.779914 0.625886i \(-0.784737\pi\)
0.999761 + 0.0218628i \(0.00695969\pi\)
\(978\) 2.81746 21.7819i 0.0900924 0.696508i
\(979\) 0.313823 1.77978i 0.0100298 0.0568820i
\(980\) 0 0
\(981\) −1.38738 + 3.01079i −0.0442957 + 0.0961270i
\(982\) −47.0658 + 27.1734i −1.50193 + 0.867139i
\(983\) −16.0497 44.0962i −0.511906 1.40645i −0.879248 0.476364i \(-0.841954\pi\)
0.367342 0.930086i \(-0.380268\pi\)
\(984\) 2.27076 + 2.46685i 0.0723891 + 0.0786404i
\(985\) 0 0
\(986\) 43.8074 36.7588i 1.39511 1.17064i
\(987\) 0.901621 + 4.02379i 0.0286989 + 0.128079i
\(988\) 2.22587 + 6.11554i 0.0708145 + 0.194561i
\(989\) 2.77356 + 4.80395i 0.0881941 + 0.152757i
\(990\) 0 0
\(991\) −2.41568 + 4.18408i −0.0767367 + 0.132912i −0.901840 0.432070i \(-0.857783\pi\)
0.825103 + 0.564982i \(0.191117\pi\)
\(992\) −43.6803 7.70202i −1.38685 0.244539i
\(993\) 50.5613 21.0775i 1.60451 0.668874i
\(994\) 7.68116 + 2.79571i 0.243632 + 0.0886747i
\(995\) 0 0
\(996\) −1.49967 32.6507i −0.0475190 1.03458i
\(997\) −10.2563 + 12.2229i −0.324819 + 0.387104i −0.903599 0.428380i \(-0.859085\pi\)
0.578780 + 0.815484i \(0.303529\pi\)
\(998\) 11.8034i 0.373630i
\(999\) 44.8953 34.9367i 1.42043 1.10535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.u.e.124.4 132
5.2 odd 4 675.2.l.f.151.2 yes 66
5.3 odd 4 675.2.l.g.151.10 yes 66
5.4 even 2 inner 675.2.u.e.124.19 132
27.22 even 9 inner 675.2.u.e.49.19 132
135.22 odd 36 675.2.l.f.76.2 66
135.49 even 18 inner 675.2.u.e.49.4 132
135.103 odd 36 675.2.l.g.76.10 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.2 66 135.22 odd 36
675.2.l.f.151.2 yes 66 5.2 odd 4
675.2.l.g.76.10 yes 66 135.103 odd 36
675.2.l.g.151.10 yes 66 5.3 odd 4
675.2.u.e.49.4 132 135.49 even 18 inner
675.2.u.e.49.19 132 27.22 even 9 inner
675.2.u.e.124.4 132 1.1 even 1 trivial
675.2.u.e.124.19 132 5.4 even 2 inner