Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(49,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(84\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 135) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −1.75919 | − | 2.09652i | −1.40194 | + | 1.01713i | −0.953350 | + | 5.40672i | 0 | 4.59871 | + | 1.14987i | −2.48743 | + | 0.438601i | 8.27211 | − | 4.77590i | 0.930888 | − | 2.85192i | 0 | ||||
49.2 | −1.69563 | − | 2.02078i | 0.112798 | − | 1.72837i | −0.861072 | + | 4.88338i | 0 | −3.68392 | + | 2.70275i | −0.0335646 | + | 0.00591834i | 6.75926 | − | 3.90246i | −2.97455 | − | 0.389915i | 0 | ||||
49.3 | −1.19967 | − | 1.42971i | 1.58534 | + | 0.697646i | −0.257569 | + | 1.46075i | 0 | −0.904448 | − | 3.10352i | 3.42349 | − | 0.603654i | −0.835177 | + | 0.482190i | 2.02658 | + | 2.21201i | 0 | ||||
49.4 | −0.949646 | − | 1.13174i | −0.0588713 | − | 1.73105i | −0.0317206 | + | 0.179896i | 0 | −1.90320 | + | 1.71051i | −3.64163 | + | 0.642118i | −2.32519 | + | 1.34245i | −2.99307 | + | 0.203818i | 0 | ||||
49.5 | −0.708387 | − | 0.844223i | −0.290600 | + | 1.70750i | 0.136396 | − | 0.773542i | 0 | 1.64737 | − | 0.964239i | 2.94069 | − | 0.518523i | −2.65848 | + | 1.53487i | −2.83110 | − | 0.992398i | 0 | ||||
49.6 | −0.659865 | − | 0.786397i | −0.795743 | + | 1.53844i | 0.164299 | − | 0.931783i | 0 | 1.73491 | − | 0.389393i | −4.04068 | + | 0.712481i | −2.61923 | + | 1.51222i | −1.73359 | − | 2.44840i | 0 | ||||
49.7 | −0.504838 | − | 0.601643i | −1.44576 | − | 0.953823i | 0.240184 | − | 1.36215i | 0 | 0.156014 | + | 1.35136i | 1.40161 | − | 0.247142i | −2.30112 | + | 1.32855i | 1.18044 | + | 2.75800i | 0 | ||||
49.8 | 0.504838 | + | 0.601643i | 1.44576 | + | 0.953823i | 0.240184 | − | 1.36215i | 0 | 0.156014 | + | 1.35136i | −1.40161 | + | 0.247142i | 2.30112 | − | 1.32855i | 1.18044 | + | 2.75800i | 0 | ||||
49.9 | 0.659865 | + | 0.786397i | 0.795743 | − | 1.53844i | 0.164299 | − | 0.931783i | 0 | 1.73491 | − | 0.389393i | 4.04068 | − | 0.712481i | 2.61923 | − | 1.51222i | −1.73359 | − | 2.44840i | 0 | ||||
49.10 | 0.708387 | + | 0.844223i | 0.290600 | − | 1.70750i | 0.136396 | − | 0.773542i | 0 | 1.64737 | − | 0.964239i | −2.94069 | + | 0.518523i | 2.65848 | − | 1.53487i | −2.83110 | − | 0.992398i | 0 | ||||
49.11 | 0.949646 | + | 1.13174i | 0.0588713 | + | 1.73105i | −0.0317206 | + | 0.179896i | 0 | −1.90320 | + | 1.71051i | 3.64163 | − | 0.642118i | 2.32519 | − | 1.34245i | −2.99307 | + | 0.203818i | 0 | ||||
49.12 | 1.19967 | + | 1.42971i | −1.58534 | − | 0.697646i | −0.257569 | + | 1.46075i | 0 | −0.904448 | − | 3.10352i | −3.42349 | + | 0.603654i | 0.835177 | − | 0.482190i | 2.02658 | + | 2.21201i | 0 | ||||
49.13 | 1.69563 | + | 2.02078i | −0.112798 | + | 1.72837i | −0.861072 | + | 4.88338i | 0 | −3.68392 | + | 2.70275i | 0.0335646 | − | 0.00591834i | −6.75926 | + | 3.90246i | −2.97455 | − | 0.389915i | 0 | ||||
49.14 | 1.75919 | + | 2.09652i | 1.40194 | − | 1.01713i | −0.953350 | + | 5.40672i | 0 | 4.59871 | + | 1.14987i | 2.48743 | − | 0.438601i | −8.27211 | + | 4.77590i | 0.930888 | − | 2.85192i | 0 | ||||
124.1 | −1.75919 | + | 2.09652i | −1.40194 | − | 1.01713i | −0.953350 | − | 5.40672i | 0 | 4.59871 | − | 1.14987i | −2.48743 | − | 0.438601i | 8.27211 | + | 4.77590i | 0.930888 | + | 2.85192i | 0 | ||||
124.2 | −1.69563 | + | 2.02078i | 0.112798 | + | 1.72837i | −0.861072 | − | 4.88338i | 0 | −3.68392 | − | 2.70275i | −0.0335646 | − | 0.00591834i | 6.75926 | + | 3.90246i | −2.97455 | + | 0.389915i | 0 | ||||
124.3 | −1.19967 | + | 1.42971i | 1.58534 | − | 0.697646i | −0.257569 | − | 1.46075i | 0 | −0.904448 | + | 3.10352i | 3.42349 | + | 0.603654i | −0.835177 | − | 0.482190i | 2.02658 | − | 2.21201i | 0 | ||||
124.4 | −0.949646 | + | 1.13174i | −0.0588713 | + | 1.73105i | −0.0317206 | − | 0.179896i | 0 | −1.90320 | − | 1.71051i | −3.64163 | − | 0.642118i | −2.32519 | − | 1.34245i | −2.99307 | − | 0.203818i | 0 | ||||
124.5 | −0.708387 | + | 0.844223i | −0.290600 | − | 1.70750i | 0.136396 | + | 0.773542i | 0 | 1.64737 | + | 0.964239i | 2.94069 | + | 0.518523i | −2.65848 | − | 1.53487i | −2.83110 | + | 0.992398i | 0 | ||||
124.6 | −0.659865 | + | 0.786397i | −0.795743 | − | 1.53844i | 0.164299 | + | 0.931783i | 0 | 1.73491 | + | 0.389393i | −4.04068 | − | 0.712481i | −2.61923 | − | 1.51222i | −1.73359 | + | 2.44840i | 0 | ||||
See all 84 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
135.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 675.2.u.d | 84 | |
5.b | even | 2 | 1 | inner | 675.2.u.d | 84 | |
5.c | odd | 4 | 1 | 135.2.k.b | ✓ | 42 | |
5.c | odd | 4 | 1 | 675.2.l.e | 42 | ||
15.e | even | 4 | 1 | 405.2.k.b | 42 | ||
27.e | even | 9 | 1 | inner | 675.2.u.d | 84 | |
135.p | even | 18 | 1 | inner | 675.2.u.d | 84 | |
135.q | even | 36 | 1 | 405.2.k.b | 42 | ||
135.q | even | 36 | 1 | 3645.2.a.k | 21 | ||
135.r | odd | 36 | 1 | 135.2.k.b | ✓ | 42 | |
135.r | odd | 36 | 1 | 675.2.l.e | 42 | ||
135.r | odd | 36 | 1 | 3645.2.a.l | 21 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.2.k.b | ✓ | 42 | 5.c | odd | 4 | 1 | |
135.2.k.b | ✓ | 42 | 135.r | odd | 36 | 1 | |
405.2.k.b | 42 | 15.e | even | 4 | 1 | ||
405.2.k.b | 42 | 135.q | even | 36 | 1 | ||
675.2.l.e | 42 | 5.c | odd | 4 | 1 | ||
675.2.l.e | 42 | 135.r | odd | 36 | 1 | ||
675.2.u.d | 84 | 1.a | even | 1 | 1 | trivial | |
675.2.u.d | 84 | 5.b | even | 2 | 1 | inner | |
675.2.u.d | 84 | 27.e | even | 9 | 1 | inner | |
675.2.u.d | 84 | 135.p | even | 18 | 1 | inner | |
3645.2.a.k | 21 | 135.q | even | 36 | 1 | ||
3645.2.a.l | 21 | 135.r | odd | 36 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{84} + 6 T_{2}^{80} - 755 T_{2}^{78} - 261 T_{2}^{76} - 1530 T_{2}^{74} + 397962 T_{2}^{72} + \cdots + 855036081 \) acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).