Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(49,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 135) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −1.47962 | − | 1.76334i | −0.912694 | − | 1.47207i | −0.572799 | + | 3.24850i | 0 | −1.24532 | + | 3.78748i | 4.22769 | − | 0.745456i | 2.58877 | − | 1.49463i | −1.33398 | + | 2.68710i | 0 | ||||
49.2 | −1.36249 | − | 1.62376i | −1.71592 | − | 0.235856i | −0.432902 | + | 2.45511i | 0 | 1.95495 | + | 3.10759i | −0.0622407 | + | 0.0109747i | 0.904959 | − | 0.522478i | 2.88874 | + | 0.809420i | 0 | ||||
49.3 | −1.04972 | − | 1.25101i | 1.47630 | − | 0.905836i | −0.115814 | + | 0.656812i | 0 | −2.68292 | − | 0.895989i | −3.26909 | + | 0.576430i | −1.88532 | + | 1.08849i | 1.35892 | − | 2.67457i | 0 | ||||
49.4 | −0.446338 | − | 0.531925i | 1.45285 | − | 0.942993i | 0.263570 | − | 1.49478i | 0 | −1.15006 | − | 0.351912i | 0.287167 | − | 0.0506352i | −2.11545 | + | 1.22136i | 1.22153 | − | 2.74005i | 0 | ||||
49.5 | −0.156523 | − | 0.186537i | 0.255766 | − | 1.71306i | 0.337000 | − | 1.91122i | 0 | −0.359583 | + | 0.220424i | 3.90696 | − | 0.688903i | −0.831029 | + | 0.479795i | −2.86917 | − | 0.876286i | 0 | ||||
49.6 | 0.156523 | + | 0.186537i | −0.255766 | + | 1.71306i | 0.337000 | − | 1.91122i | 0 | −0.359583 | + | 0.220424i | −3.90696 | + | 0.688903i | 0.831029 | − | 0.479795i | −2.86917 | − | 0.876286i | 0 | ||||
49.7 | 0.446338 | + | 0.531925i | −1.45285 | + | 0.942993i | 0.263570 | − | 1.49478i | 0 | −1.15006 | − | 0.351912i | −0.287167 | + | 0.0506352i | 2.11545 | − | 1.22136i | 1.22153 | − | 2.74005i | 0 | ||||
49.8 | 1.04972 | + | 1.25101i | −1.47630 | + | 0.905836i | −0.115814 | + | 0.656812i | 0 | −2.68292 | − | 0.895989i | 3.26909 | − | 0.576430i | 1.88532 | − | 1.08849i | 1.35892 | − | 2.67457i | 0 | ||||
49.9 | 1.36249 | + | 1.62376i | 1.71592 | + | 0.235856i | −0.432902 | + | 2.45511i | 0 | 1.95495 | + | 3.10759i | 0.0622407 | − | 0.0109747i | −0.904959 | + | 0.522478i | 2.88874 | + | 0.809420i | 0 | ||||
49.10 | 1.47962 | + | 1.76334i | 0.912694 | + | 1.47207i | −0.572799 | + | 3.24850i | 0 | −1.24532 | + | 3.78748i | −4.22769 | + | 0.745456i | −2.58877 | + | 1.49463i | −1.33398 | + | 2.68710i | 0 | ||||
124.1 | −1.47962 | + | 1.76334i | −0.912694 | + | 1.47207i | −0.572799 | − | 3.24850i | 0 | −1.24532 | − | 3.78748i | 4.22769 | + | 0.745456i | 2.58877 | + | 1.49463i | −1.33398 | − | 2.68710i | 0 | ||||
124.2 | −1.36249 | + | 1.62376i | −1.71592 | + | 0.235856i | −0.432902 | − | 2.45511i | 0 | 1.95495 | − | 3.10759i | −0.0622407 | − | 0.0109747i | 0.904959 | + | 0.522478i | 2.88874 | − | 0.809420i | 0 | ||||
124.3 | −1.04972 | + | 1.25101i | 1.47630 | + | 0.905836i | −0.115814 | − | 0.656812i | 0 | −2.68292 | + | 0.895989i | −3.26909 | − | 0.576430i | −1.88532 | − | 1.08849i | 1.35892 | + | 2.67457i | 0 | ||||
124.4 | −0.446338 | + | 0.531925i | 1.45285 | + | 0.942993i | 0.263570 | + | 1.49478i | 0 | −1.15006 | + | 0.351912i | 0.287167 | + | 0.0506352i | −2.11545 | − | 1.22136i | 1.22153 | + | 2.74005i | 0 | ||||
124.5 | −0.156523 | + | 0.186537i | 0.255766 | + | 1.71306i | 0.337000 | + | 1.91122i | 0 | −0.359583 | − | 0.220424i | 3.90696 | + | 0.688903i | −0.831029 | − | 0.479795i | −2.86917 | + | 0.876286i | 0 | ||||
124.6 | 0.156523 | − | 0.186537i | −0.255766 | − | 1.71306i | 0.337000 | + | 1.91122i | 0 | −0.359583 | − | 0.220424i | −3.90696 | − | 0.688903i | 0.831029 | + | 0.479795i | −2.86917 | + | 0.876286i | 0 | ||||
124.7 | 0.446338 | − | 0.531925i | −1.45285 | − | 0.942993i | 0.263570 | + | 1.49478i | 0 | −1.15006 | + | 0.351912i | −0.287167 | − | 0.0506352i | 2.11545 | + | 1.22136i | 1.22153 | + | 2.74005i | 0 | ||||
124.8 | 1.04972 | − | 1.25101i | −1.47630 | − | 0.905836i | −0.115814 | − | 0.656812i | 0 | −2.68292 | + | 0.895989i | 3.26909 | + | 0.576430i | 1.88532 | + | 1.08849i | 1.35892 | + | 2.67457i | 0 | ||||
124.9 | 1.36249 | − | 1.62376i | 1.71592 | − | 0.235856i | −0.432902 | − | 2.45511i | 0 | 1.95495 | − | 3.10759i | 0.0622407 | + | 0.0109747i | −0.904959 | − | 0.522478i | 2.88874 | − | 0.809420i | 0 | ||||
124.10 | 1.47962 | − | 1.76334i | 0.912694 | − | 1.47207i | −0.572799 | − | 3.24850i | 0 | −1.24532 | − | 3.78748i | −4.22769 | − | 0.745456i | −2.58877 | − | 1.49463i | −1.33398 | − | 2.68710i | 0 | ||||
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
135.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 675.2.u.c | 60 | |
5.b | even | 2 | 1 | inner | 675.2.u.c | 60 | |
5.c | odd | 4 | 1 | 135.2.k.a | ✓ | 30 | |
5.c | odd | 4 | 1 | 675.2.l.d | 30 | ||
15.e | even | 4 | 1 | 405.2.k.a | 30 | ||
27.e | even | 9 | 1 | inner | 675.2.u.c | 60 | |
135.p | even | 18 | 1 | inner | 675.2.u.c | 60 | |
135.q | even | 36 | 1 | 405.2.k.a | 30 | ||
135.q | even | 36 | 1 | 3645.2.a.g | 15 | ||
135.r | odd | 36 | 1 | 135.2.k.a | ✓ | 30 | |
135.r | odd | 36 | 1 | 675.2.l.d | 30 | ||
135.r | odd | 36 | 1 | 3645.2.a.h | 15 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
135.2.k.a | ✓ | 30 | 5.c | odd | 4 | 1 | |
135.2.k.a | ✓ | 30 | 135.r | odd | 36 | 1 | |
405.2.k.a | 30 | 15.e | even | 4 | 1 | ||
405.2.k.a | 30 | 135.q | even | 36 | 1 | ||
675.2.l.d | 30 | 5.c | odd | 4 | 1 | ||
675.2.l.d | 30 | 135.r | odd | 36 | 1 | ||
675.2.u.c | 60 | 1.a | even | 1 | 1 | trivial | |
675.2.u.c | 60 | 5.b | even | 2 | 1 | inner | |
675.2.u.c | 60 | 27.e | even | 9 | 1 | inner | |
675.2.u.c | 60 | 135.p | even | 18 | 1 | inner | |
3645.2.a.g | 15 | 135.q | even | 36 | 1 | ||
3645.2.a.h | 15 | 135.r | odd | 36 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{60} - 6 T_{2}^{56} - 289 T_{2}^{54} - 117 T_{2}^{52} + 2370 T_{2}^{50} + 69805 T_{2}^{48} + \cdots + 81 \) acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).