Properties

Label 675.2.u.b.49.3
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.3
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.b.124.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.267057 + 0.318266i) q^{2} +(1.72466 + 0.159815i) q^{3} +(0.317323 - 1.79963i) q^{4} +(0.409719 + 0.591580i) q^{6} +(-1.29958 + 0.229151i) q^{7} +(1.37711 - 0.795075i) q^{8} +(2.94892 + 0.551252i) q^{9} +O(q^{10})\) \(q+(0.267057 + 0.318266i) q^{2} +(1.72466 + 0.159815i) q^{3} +(0.317323 - 1.79963i) q^{4} +(0.409719 + 0.591580i) q^{6} +(-1.29958 + 0.229151i) q^{7} +(1.37711 - 0.795075i) q^{8} +(2.94892 + 0.551252i) q^{9} +(4.90067 + 1.78370i) q^{11} +(0.834881 - 3.05303i) q^{12} +(0.0116078 - 0.0138336i) q^{13} +(-0.419993 - 0.352416i) q^{14} +(-2.81355 - 1.02405i) q^{16} +(-2.71308 - 1.56640i) q^{17} +(0.612083 + 1.08575i) q^{18} +(0.208676 + 0.361438i) q^{19} +(-2.27796 + 0.187516i) q^{21} +(0.741067 + 2.03606i) q^{22} +(-1.01867 - 0.179619i) q^{23} +(2.50212 - 1.15115i) q^{24} +0.00750270 q^{26} +(4.99779 + 1.42200i) q^{27} +2.41147i q^{28} +(5.98068 - 5.01839i) q^{29} +(0.647649 - 3.67300i) q^{31} +(-1.51319 - 4.15744i) q^{32} +(8.16694 + 3.85948i) q^{33} +(-0.226015 - 1.28180i) q^{34} +(1.92781 - 5.13202i) q^{36} +(3.83195 + 2.21238i) q^{37} +(-0.0593049 + 0.162939i) q^{38} +(0.0222303 - 0.0220032i) q^{39} +(-2.81517 - 2.36221i) q^{41} +(-0.668024 - 0.674919i) q^{42} +(-2.84146 + 7.80685i) q^{43} +(4.76508 - 8.25337i) q^{44} +(-0.214876 - 0.372177i) q^{46} +(-6.99008 + 1.23254i) q^{47} +(-4.68877 - 2.21579i) q^{48} +(-4.94145 + 1.79854i) q^{49} +(-4.42881 - 3.13510i) q^{51} +(-0.0212119 - 0.0252794i) q^{52} -1.30057i q^{53} +(0.882118 + 1.97038i) q^{54} +(-1.60747 + 1.34883i) q^{56} +(0.302133 + 0.656707i) q^{57} +(3.19436 + 0.563252i) q^{58} +(-3.47856 + 1.26609i) q^{59} +(1.20064 + 6.80919i) q^{61} +(1.34195 - 0.774775i) q^{62} +(-3.95868 - 0.0406486i) q^{63} +(-2.07506 + 3.59410i) q^{64} +(0.952697 + 3.62996i) q^{66} +(-7.08789 + 8.44702i) q^{67} +(-3.67985 + 4.38548i) q^{68} +(-1.72816 - 0.472581i) q^{69} +(3.04214 - 5.26914i) q^{71} +(4.49927 - 1.58548i) q^{72} +(-0.473692 + 0.273486i) q^{73} +(0.319224 + 1.81041i) q^{74} +(0.716670 - 0.260847i) q^{76} +(-6.77756 - 1.19507i) q^{77} +(0.0129396 + 0.00119904i) q^{78} +(-0.374706 + 0.314416i) q^{79} +(8.39224 + 3.25120i) q^{81} -1.52681i q^{82} +(2.96561 + 3.53428i) q^{83} +(-0.385389 + 4.15898i) q^{84} +(-3.24348 + 1.18053i) q^{86} +(11.1167 - 7.69922i) q^{87} +(8.16694 - 1.44005i) q^{88} +(-1.68653 - 2.92116i) q^{89} +(-0.0119153 + 0.0206379i) q^{91} +(-0.646495 + 1.77623i) q^{92} +(1.70398 - 6.23118i) q^{93} +(-2.25902 - 1.89554i) q^{94} +(-1.94531 - 7.41201i) q^{96} +(-3.40014 + 9.34182i) q^{97} +(-1.89206 - 1.09238i) q^{98} +(13.4684 + 7.96149i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 12 q^{4} + 6 q^{11} - 30 q^{14} + 6 q^{19} - 24 q^{21} + 36 q^{24} - 60 q^{26} + 12 q^{29} + 6 q^{31} - 18 q^{34} + 36 q^{36} - 66 q^{39} + 30 q^{41} - 6 q^{44} - 6 q^{46} - 24 q^{49} - 36 q^{51} + 108 q^{54} - 66 q^{56} + 24 q^{59} + 24 q^{61} - 24 q^{64} - 18 q^{66} - 18 q^{69} + 54 q^{71} - 66 q^{74} - 96 q^{76} + 84 q^{79} + 72 q^{81} - 12 q^{84} + 102 q^{86} - 18 q^{89} + 12 q^{91} + 30 q^{94} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.267057 + 0.318266i 0.188837 + 0.225048i 0.852154 0.523291i \(-0.175296\pi\)
−0.663316 + 0.748339i \(0.730852\pi\)
\(3\) 1.72466 + 0.159815i 0.995734 + 0.0922690i
\(4\) 0.317323 1.79963i 0.158661 0.899813i
\(5\) 0 0
\(6\) 0.409719 + 0.591580i 0.167267 + 0.241512i
\(7\) −1.29958 + 0.229151i −0.491195 + 0.0866110i −0.413759 0.910386i \(-0.635784\pi\)
−0.0774361 + 0.996997i \(0.524673\pi\)
\(8\) 1.37711 0.795075i 0.486882 0.281102i
\(9\) 2.94892 + 0.551252i 0.982973 + 0.183751i
\(10\) 0 0
\(11\) 4.90067 + 1.78370i 1.47761 + 0.537805i 0.950155 0.311778i \(-0.100925\pi\)
0.527454 + 0.849584i \(0.323147\pi\)
\(12\) 0.834881 3.05303i 0.241009 0.881335i
\(13\) 0.0116078 0.0138336i 0.00321942 0.00383676i −0.764432 0.644704i \(-0.776981\pi\)
0.767652 + 0.640867i \(0.221425\pi\)
\(14\) −0.419993 0.352416i −0.112248 0.0941870i
\(15\) 0 0
\(16\) −2.81355 1.02405i −0.703389 0.256012i
\(17\) −2.71308 1.56640i −0.658019 0.379907i 0.133503 0.991048i \(-0.457377\pi\)
−0.791522 + 0.611141i \(0.790711\pi\)
\(18\) 0.612083 + 1.08575i 0.144269 + 0.255915i
\(19\) 0.208676 + 0.361438i 0.0478736 + 0.0829195i 0.888969 0.457967i \(-0.151422\pi\)
−0.841096 + 0.540886i \(0.818089\pi\)
\(20\) 0 0
\(21\) −2.27796 + 0.187516i −0.497092 + 0.0409194i
\(22\) 0.741067 + 2.03606i 0.157996 + 0.434090i
\(23\) −1.01867 0.179619i −0.212408 0.0374532i 0.0664316 0.997791i \(-0.478839\pi\)
−0.278839 + 0.960338i \(0.589950\pi\)
\(24\) 2.50212 1.15115i 0.510742 0.234978i
\(25\) 0 0
\(26\) 0.00750270 0.00147140
\(27\) 4.99779 + 1.42200i 0.961825 + 0.273665i
\(28\) 2.41147i 0.455726i
\(29\) 5.98068 5.01839i 1.11058 0.931891i 0.112493 0.993652i \(-0.464116\pi\)
0.998091 + 0.0617615i \(0.0196718\pi\)
\(30\) 0 0
\(31\) 0.647649 3.67300i 0.116321 0.659691i −0.869766 0.493464i \(-0.835730\pi\)
0.986088 0.166227i \(-0.0531584\pi\)
\(32\) −1.51319 4.15744i −0.267496 0.734939i
\(33\) 8.16694 + 3.85948i 1.42168 + 0.671849i
\(34\) −0.226015 1.28180i −0.0387613 0.219826i
\(35\) 0 0
\(36\) 1.92781 5.13202i 0.321301 0.855337i
\(37\) 3.83195 + 2.21238i 0.629969 + 0.363713i 0.780740 0.624856i \(-0.214842\pi\)
−0.150771 + 0.988569i \(0.548176\pi\)
\(38\) −0.0593049 + 0.162939i −0.00962052 + 0.0264322i
\(39\) 0.0222303 0.0220032i 0.00355970 0.00352334i
\(40\) 0 0
\(41\) −2.81517 2.36221i −0.439655 0.368915i 0.395925 0.918283i \(-0.370424\pi\)
−0.835580 + 0.549368i \(0.814868\pi\)
\(42\) −0.668024 0.674919i −0.103078 0.104142i
\(43\) −2.84146 + 7.80685i −0.433319 + 1.19053i 0.510445 + 0.859911i \(0.329481\pi\)
−0.943763 + 0.330622i \(0.892741\pi\)
\(44\) 4.76508 8.25337i 0.718363 1.24424i
\(45\) 0 0
\(46\) −0.214876 0.372177i −0.0316818 0.0548745i
\(47\) −6.99008 + 1.23254i −1.01961 + 0.179784i −0.658374 0.752691i \(-0.728755\pi\)
−0.361234 + 0.932475i \(0.617644\pi\)
\(48\) −4.68877 2.21579i −0.676766 0.319821i
\(49\) −4.94145 + 1.79854i −0.705921 + 0.256934i
\(50\) 0 0
\(51\) −4.42881 3.13510i −0.620158 0.439001i
\(52\) −0.0212119 0.0252794i −0.00294157 0.00350562i
\(53\) 1.30057i 0.178648i −0.996003 0.0893238i \(-0.971529\pi\)
0.996003 0.0893238i \(-0.0284706\pi\)
\(54\) 0.882118 + 1.97038i 0.120041 + 0.268135i
\(55\) 0 0
\(56\) −1.60747 + 1.34883i −0.214808 + 0.180245i
\(57\) 0.302133 + 0.656707i 0.0400185 + 0.0869830i
\(58\) 3.19436 + 0.563252i 0.419440 + 0.0739586i
\(59\) −3.47856 + 1.26609i −0.452871 + 0.164831i −0.558377 0.829587i \(-0.688576\pi\)
0.105507 + 0.994419i \(0.466354\pi\)
\(60\) 0 0
\(61\) 1.20064 + 6.80919i 0.153727 + 0.871828i 0.959941 + 0.280204i \(0.0904020\pi\)
−0.806214 + 0.591624i \(0.798487\pi\)
\(62\) 1.34195 0.774775i 0.170428 0.0983965i
\(63\) −3.95868 0.0406486i −0.498747 0.00512125i
\(64\) −2.07506 + 3.59410i −0.259382 + 0.449263i
\(65\) 0 0
\(66\) 0.952697 + 3.62996i 0.117269 + 0.446817i
\(67\) −7.08789 + 8.44702i −0.865923 + 1.03197i 0.133241 + 0.991084i \(0.457462\pi\)
−0.999164 + 0.0408835i \(0.986983\pi\)
\(68\) −3.67985 + 4.38548i −0.446247 + 0.531817i
\(69\) −1.72816 0.472581i −0.208046 0.0568921i
\(70\) 0 0
\(71\) 3.04214 5.26914i 0.361035 0.625332i −0.627096 0.778942i \(-0.715757\pi\)
0.988132 + 0.153610i \(0.0490900\pi\)
\(72\) 4.49927 1.58548i 0.530245 0.186850i
\(73\) −0.473692 + 0.273486i −0.0554415 + 0.0320092i −0.527465 0.849577i \(-0.676857\pi\)
0.472023 + 0.881586i \(0.343524\pi\)
\(74\) 0.319224 + 1.81041i 0.0371090 + 0.210456i
\(75\) 0 0
\(76\) 0.716670 0.260847i 0.0822077 0.0299212i
\(77\) −6.77756 1.19507i −0.772374 0.136190i
\(78\) 0.0129396 + 0.00119904i 0.00146512 + 0.000135765i
\(79\) −0.374706 + 0.314416i −0.0421577 + 0.0353745i −0.663623 0.748067i \(-0.730982\pi\)
0.621465 + 0.783442i \(0.286538\pi\)
\(80\) 0 0
\(81\) 8.39224 + 3.25120i 0.932471 + 0.361244i
\(82\) 1.52681i 0.168608i
\(83\) 2.96561 + 3.53428i 0.325518 + 0.387937i 0.903839 0.427872i \(-0.140737\pi\)
−0.578321 + 0.815809i \(0.696292\pi\)
\(84\) −0.385389 + 4.15898i −0.0420493 + 0.453782i
\(85\) 0 0
\(86\) −3.24348 + 1.18053i −0.349754 + 0.127300i
\(87\) 11.1167 7.69922i 1.19183 0.825443i
\(88\) 8.16694 1.44005i 0.870599 0.153510i
\(89\) −1.68653 2.92116i −0.178772 0.309642i 0.762688 0.646766i \(-0.223879\pi\)
−0.941460 + 0.337124i \(0.890546\pi\)
\(90\) 0 0
\(91\) −0.0119153 + 0.0206379i −0.00124906 + 0.00216344i
\(92\) −0.646495 + 1.77623i −0.0674018 + 0.185185i
\(93\) 1.70398 6.23118i 0.176694 0.646144i
\(94\) −2.25902 1.89554i −0.233000 0.195510i
\(95\) 0 0
\(96\) −1.94531 7.41201i −0.198543 0.756485i
\(97\) −3.40014 + 9.34182i −0.345232 + 0.948518i 0.638618 + 0.769524i \(0.279507\pi\)
−0.983850 + 0.178994i \(0.942716\pi\)
\(98\) −1.89206 1.09238i −0.191127 0.110347i
\(99\) 13.4684 + 7.96149i 1.35363 + 0.800160i
\(100\) 0 0
\(101\) 2.39626 + 13.5898i 0.238436 + 1.35224i 0.835255 + 0.549863i \(0.185320\pi\)
−0.596818 + 0.802377i \(0.703569\pi\)
\(102\) −0.184950 2.24679i −0.0183128 0.222465i
\(103\) −1.56136 4.28981i −0.153846 0.422687i 0.838695 0.544601i \(-0.183319\pi\)
−0.992541 + 0.121914i \(0.961097\pi\)
\(104\) 0.00498644 0.0282795i 0.000488961 0.00277303i
\(105\) 0 0
\(106\) 0.413928 0.347327i 0.0402042 0.0337354i
\(107\) 11.2965i 1.09207i 0.837762 + 0.546035i \(0.183864\pi\)
−0.837762 + 0.546035i \(0.816136\pi\)
\(108\) 4.14499 8.54292i 0.398851 0.822043i
\(109\) −14.5032 −1.38915 −0.694577 0.719419i \(-0.744408\pi\)
−0.694577 + 0.719419i \(0.744408\pi\)
\(110\) 0 0
\(111\) 6.25525 + 4.42801i 0.593722 + 0.420288i
\(112\) 3.89110 + 0.686107i 0.367675 + 0.0648310i
\(113\) −4.29523 11.8011i −0.404062 1.11015i −0.960262 0.279102i \(-0.909963\pi\)
0.556200 0.831049i \(-0.312259\pi\)
\(114\) −0.128321 + 0.271536i −0.0120183 + 0.0254317i
\(115\) 0 0
\(116\) −7.13341 12.3554i −0.662321 1.14717i
\(117\) 0.0418563 0.0343954i 0.00386961 0.00317986i
\(118\) −1.33193 0.768989i −0.122614 0.0707912i
\(119\) 3.88481 + 1.41395i 0.356120 + 0.129617i
\(120\) 0 0
\(121\) 12.4085 + 10.4120i 1.12805 + 0.946544i
\(122\) −1.84649 + 2.20056i −0.167174 + 0.199230i
\(123\) −4.47770 4.52391i −0.403740 0.407907i
\(124\) −6.40452 2.33105i −0.575143 0.209335i
\(125\) 0 0
\(126\) −1.04425 1.27077i −0.0930295 0.113209i
\(127\) 7.27027 4.19749i 0.645132 0.372467i −0.141456 0.989944i \(-0.545179\pi\)
0.786589 + 0.617477i \(0.211845\pi\)
\(128\) −10.4121 + 1.83594i −0.920310 + 0.162276i
\(129\) −6.14821 + 13.0101i −0.541319 + 1.14547i
\(130\) 0 0
\(131\) −2.69761 + 15.2989i −0.235691 + 1.33667i 0.605463 + 0.795874i \(0.292988\pi\)
−0.841154 + 0.540796i \(0.818123\pi\)
\(132\) 9.53717 13.4727i 0.830104 1.17265i
\(133\) −0.354015 0.421899i −0.0306970 0.0365833i
\(134\) −4.58126 −0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) −7.71820 9.19820i −0.659411 0.785855i 0.327890 0.944716i \(-0.393662\pi\)
−0.987301 + 0.158861i \(0.949218\pi\)
\(138\) −0.311110 0.676219i −0.0264834 0.0575636i
\(139\) −1.06709 + 6.05176i −0.0905093 + 0.513304i 0.905522 + 0.424299i \(0.139480\pi\)
−0.996031 + 0.0890042i \(0.971632\pi\)
\(140\) 0 0
\(141\) −12.2525 + 1.00860i −1.03185 + 0.0849392i
\(142\) 2.48941 0.438950i 0.208907 0.0368359i
\(143\) 0.0815610 0.0470893i 0.00682047 0.00393780i
\(144\) −7.73243 4.57082i −0.644369 0.380901i
\(145\) 0 0
\(146\) −0.213544 0.0777237i −0.0176730 0.00643246i
\(147\) −8.80976 + 2.31216i −0.726617 + 0.190704i
\(148\) 5.19742 6.19404i 0.427225 0.509147i
\(149\) −0.676280 0.567466i −0.0554030 0.0464886i 0.614666 0.788788i \(-0.289291\pi\)
−0.670069 + 0.742299i \(0.733735\pi\)
\(150\) 0 0
\(151\) −7.72942 2.81328i −0.629011 0.228941i 0.00778980 0.999970i \(-0.497520\pi\)
−0.636801 + 0.771028i \(0.719743\pi\)
\(152\) 0.574740 + 0.331826i 0.0466176 + 0.0269147i
\(153\) −7.13717 6.11477i −0.577006 0.494350i
\(154\) −1.42964 2.47621i −0.115204 0.199539i
\(155\) 0 0
\(156\) −0.0325434 0.0469884i −0.00260556 0.00376208i
\(157\) 4.29571 + 11.8024i 0.342835 + 0.941932i 0.984568 + 0.175003i \(0.0559937\pi\)
−0.641733 + 0.766928i \(0.721784\pi\)
\(158\) −0.200135 0.0352893i −0.0159219 0.00280746i
\(159\) 0.207851 2.24305i 0.0164836 0.177886i
\(160\) 0 0
\(161\) 1.36501 0.107578
\(162\) 1.20646 + 3.53922i 0.0947884 + 0.278067i
\(163\) 3.31466i 0.259624i 0.991539 + 0.129812i \(0.0414374\pi\)
−0.991539 + 0.129812i \(0.958563\pi\)
\(164\) −5.14440 + 4.31667i −0.401710 + 0.337075i
\(165\) 0 0
\(166\) −0.332853 + 1.88770i −0.0258344 + 0.146514i
\(167\) −7.03295 19.3229i −0.544226 1.49525i −0.841393 0.540424i \(-0.818264\pi\)
0.297167 0.954826i \(-0.403958\pi\)
\(168\) −2.98791 + 2.06938i −0.230522 + 0.159656i
\(169\) 2.25737 + 12.8022i 0.173644 + 0.984783i
\(170\) 0 0
\(171\) 0.416126 + 1.18088i 0.0318219 + 0.0903044i
\(172\) 13.1477 + 7.59085i 1.00251 + 0.578797i
\(173\) 4.79966 13.1870i 0.364911 1.00259i −0.612357 0.790581i \(-0.709779\pi\)
0.977269 0.212005i \(-0.0679992\pi\)
\(174\) 5.41917 + 1.48192i 0.410827 + 0.112344i
\(175\) 0 0
\(176\) −11.9617 10.0371i −0.901648 0.756572i
\(177\) −6.20169 + 1.62766i −0.466148 + 0.122342i
\(178\) 0.479305 1.31688i 0.0359254 0.0987043i
\(179\) 5.09500 8.82479i 0.380818 0.659596i −0.610361 0.792123i \(-0.708976\pi\)
0.991179 + 0.132527i \(0.0423091\pi\)
\(180\) 0 0
\(181\) −12.0274 20.8320i −0.893987 1.54843i −0.835054 0.550169i \(-0.814563\pi\)
−0.0589331 0.998262i \(-0.518770\pi\)
\(182\) −0.00975037 + 0.00171925i −0.000722746 + 0.000127440i
\(183\) 0.982498 + 11.9354i 0.0726283 + 0.882293i
\(184\) −1.54563 + 0.562565i −0.113946 + 0.0414728i
\(185\) 0 0
\(186\) 2.43823 1.12176i 0.178780 0.0822516i
\(187\) −10.5019 12.5157i −0.767978 0.915240i
\(188\) 12.9706i 0.945981i
\(189\) −6.82089 0.702760i −0.496146 0.0511182i
\(190\) 0 0
\(191\) 8.38541 7.03619i 0.606747 0.509121i −0.286860 0.957973i \(-0.592611\pi\)
0.893606 + 0.448852i \(0.148167\pi\)
\(192\) −4.15316 + 5.86699i −0.299729 + 0.423414i
\(193\) −10.6418 1.87644i −0.766013 0.135069i −0.223029 0.974812i \(-0.571595\pi\)
−0.542984 + 0.839743i \(0.682706\pi\)
\(194\) −3.88121 + 1.41265i −0.278655 + 0.101422i
\(195\) 0 0
\(196\) 1.66867 + 9.46347i 0.119190 + 0.675962i
\(197\) 19.1161 11.0367i 1.36196 0.786331i 0.372080 0.928201i \(-0.378645\pi\)
0.989885 + 0.141870i \(0.0453115\pi\)
\(198\) 1.06296 + 6.41270i 0.0755413 + 0.455731i
\(199\) 6.44338 11.1603i 0.456759 0.791130i −0.542028 0.840360i \(-0.682343\pi\)
0.998787 + 0.0492301i \(0.0156768\pi\)
\(200\) 0 0
\(201\) −13.5742 + 13.4355i −0.957448 + 0.947667i
\(202\) −3.68524 + 4.39190i −0.259293 + 0.309013i
\(203\) −6.62241 + 7.89228i −0.464802 + 0.553929i
\(204\) −7.04736 + 6.97537i −0.493414 + 0.488374i
\(205\) 0 0
\(206\) 0.948326 1.64255i 0.0660730 0.114442i
\(207\) −2.90496 1.09123i −0.201909 0.0758456i
\(208\) −0.0468255 + 0.0270347i −0.00324676 + 0.00187452i
\(209\) 0.377957 + 2.14350i 0.0261439 + 0.148269i
\(210\) 0 0
\(211\) 22.5485 8.20699i 1.55230 0.564992i 0.583347 0.812223i \(-0.301743\pi\)
0.968957 + 0.247230i \(0.0795204\pi\)
\(212\) −2.34055 0.412702i −0.160749 0.0283445i
\(213\) 6.08875 8.60131i 0.417194 0.589352i
\(214\) −3.59528 + 3.01680i −0.245768 + 0.206224i
\(215\) 0 0
\(216\) 8.01311 2.01536i 0.545223 0.137128i
\(217\) 4.92177i 0.334112i
\(218\) −3.87317 4.61587i −0.262324 0.312626i
\(219\) −0.860667 + 0.395969i −0.0581585 + 0.0267571i
\(220\) 0 0
\(221\) −0.0531618 + 0.0193493i −0.00357605 + 0.00130158i
\(222\) 0.261224 + 3.17336i 0.0175322 + 0.212982i
\(223\) −21.3331 + 3.76160i −1.42857 + 0.251895i −0.833829 0.552023i \(-0.813856\pi\)
−0.594740 + 0.803918i \(0.702745\pi\)
\(224\) 2.91919 + 5.05618i 0.195047 + 0.337831i
\(225\) 0 0
\(226\) 2.60880 4.51858i 0.173535 0.300571i
\(227\) −7.40196 + 20.3367i −0.491285 + 1.34979i 0.408220 + 0.912884i \(0.366150\pi\)
−0.899505 + 0.436911i \(0.856072\pi\)
\(228\) 1.27770 0.335338i 0.0846178 0.0222083i
\(229\) 8.27739 + 6.94555i 0.546985 + 0.458975i 0.873919 0.486072i \(-0.161571\pi\)
−0.326934 + 0.945047i \(0.606015\pi\)
\(230\) 0 0
\(231\) −11.4980 3.14424i −0.756513 0.206876i
\(232\) 4.24606 11.6660i 0.278768 0.765908i
\(233\) −6.61557 3.81950i −0.433400 0.250224i 0.267394 0.963587i \(-0.413838\pi\)
−0.700794 + 0.713364i \(0.747171\pi\)
\(234\) 0.0221249 + 0.00413588i 0.00144635 + 0.000270371i
\(235\) 0 0
\(236\) 1.17467 + 6.66187i 0.0764644 + 0.433651i
\(237\) −0.696490 + 0.482377i −0.0452419 + 0.0313338i
\(238\) 0.587451 + 1.61401i 0.0380788 + 0.104621i
\(239\) 0.561143 3.18240i 0.0362973 0.205852i −0.961266 0.275623i \(-0.911116\pi\)
0.997563 + 0.0697711i \(0.0222269\pi\)
\(240\) 0 0
\(241\) −20.3346 + 17.0628i −1.30987 + 1.09911i −0.321518 + 0.946903i \(0.604193\pi\)
−0.988349 + 0.152206i \(0.951362\pi\)
\(242\) 6.72979i 0.432608i
\(243\) 13.9542 + 6.94842i 0.895162 + 0.445741i
\(244\) 12.6350 0.808873
\(245\) 0 0
\(246\) 0.244007 2.63324i 0.0155573 0.167889i
\(247\) 0.00742226 + 0.00130875i 0.000472267 + 8.32735e-5i
\(248\) −2.02843 5.57306i −0.128805 0.353890i
\(249\) 4.54985 + 6.56938i 0.288335 + 0.416318i
\(250\) 0 0
\(251\) 2.24965 + 3.89651i 0.141997 + 0.245945i 0.928248 0.371961i \(-0.121314\pi\)
−0.786252 + 0.617906i \(0.787981\pi\)
\(252\) −1.32933 + 7.11124i −0.0837399 + 0.447966i
\(253\) −4.67179 2.69726i −0.293713 0.169575i
\(254\) 3.27749 + 1.19291i 0.205648 + 0.0748498i
\(255\) 0 0
\(256\) 2.99340 + 2.51176i 0.187088 + 0.156985i
\(257\) 8.82895 10.5219i 0.550735 0.656340i −0.416824 0.908987i \(-0.636857\pi\)
0.967559 + 0.252647i \(0.0813011\pi\)
\(258\) −5.78258 + 1.51766i −0.360007 + 0.0944854i
\(259\) −5.48690 1.99707i −0.340939 0.124092i
\(260\) 0 0
\(261\) 20.4029 11.5020i 1.26291 0.711953i
\(262\) −5.58952 + 3.22711i −0.345322 + 0.199372i
\(263\) 23.8349 4.20273i 1.46972 0.259151i 0.619258 0.785187i \(-0.287433\pi\)
0.850462 + 0.526036i \(0.176322\pi\)
\(264\) 14.3154 1.17841i 0.881049 0.0725260i
\(265\) 0 0
\(266\) 0.0397339 0.225342i 0.00243624 0.0138166i
\(267\) −2.44185 5.30755i −0.149439 0.324817i
\(268\) 12.9523 + 15.4360i 0.791189 + 0.942902i
\(269\) −12.0062 −0.732032 −0.366016 0.930609i \(-0.619278\pi\)
−0.366016 + 0.930609i \(0.619278\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) 6.02933 + 7.18547i 0.365582 + 0.435683i
\(273\) −0.0238481 + 0.0336891i −0.00144335 + 0.00203896i
\(274\) 0.866273 4.91288i 0.0523335 0.296798i
\(275\) 0 0
\(276\) −1.39885 + 2.96008i −0.0842011 + 0.178176i
\(277\) −23.1264 + 4.07780i −1.38953 + 0.245011i −0.817833 0.575455i \(-0.804825\pi\)
−0.571695 + 0.820466i \(0.693714\pi\)
\(278\) −2.21104 + 1.27654i −0.132609 + 0.0765621i
\(279\) 3.93462 10.4744i 0.235559 0.627084i
\(280\) 0 0
\(281\) 19.1432 + 6.96754i 1.14199 + 0.415649i 0.842630 0.538493i \(-0.181006\pi\)
0.299356 + 0.954142i \(0.403228\pi\)
\(282\) −3.59311 3.63020i −0.213967 0.216175i
\(283\) −7.45630 + 8.88607i −0.443231 + 0.528222i −0.940691 0.339265i \(-0.889822\pi\)
0.497460 + 0.867487i \(0.334266\pi\)
\(284\) −8.51714 7.14673i −0.505399 0.424080i
\(285\) 0 0
\(286\) 0.0367683 + 0.0133826i 0.00217416 + 0.000791328i
\(287\) 4.19984 + 2.42478i 0.247909 + 0.143130i
\(288\) −2.17046 13.0941i −0.127896 0.771578i
\(289\) −3.59280 6.22291i −0.211341 0.366053i
\(290\) 0 0
\(291\) −7.35706 + 15.5681i −0.431279 + 0.912618i
\(292\) 0.341860 + 0.939253i 0.0200058 + 0.0549656i
\(293\) 31.0945 + 5.48280i 1.81656 + 0.320308i 0.975394 0.220470i \(-0.0707592\pi\)
0.841165 + 0.540779i \(0.181870\pi\)
\(294\) −3.08858 2.18637i −0.180130 0.127511i
\(295\) 0 0
\(296\) 7.03603 0.408961
\(297\) 21.9561 + 15.8833i 1.27402 + 0.921644i
\(298\) 0.366782i 0.0212471i
\(299\) −0.0143093 + 0.0120069i −0.000827529 + 0.000694379i
\(300\) 0 0
\(301\) 1.90376 10.7968i 0.109731 0.622315i
\(302\) −1.16882 3.21131i −0.0672581 0.184790i
\(303\) 1.96088 + 23.8208i 0.112649 + 1.36847i
\(304\) −0.216991 1.23062i −0.0124453 0.0705809i
\(305\) 0 0
\(306\) 0.0400924 3.90451i 0.00229193 0.223206i
\(307\) −7.03259 4.06027i −0.401371 0.231732i 0.285704 0.958318i \(-0.407773\pi\)
−0.687075 + 0.726586i \(0.741106\pi\)
\(308\) −4.30134 + 11.8178i −0.245092 + 0.673384i
\(309\) −2.00725 7.64800i −0.114188 0.435079i
\(310\) 0 0
\(311\) −18.2691 15.3296i −1.03594 0.869259i −0.0443970 0.999014i \(-0.514137\pi\)
−0.991546 + 0.129754i \(0.958581\pi\)
\(312\) 0.0131194 0.0479757i 0.000742740 0.00271609i
\(313\) 9.20392 25.2876i 0.520236 1.42934i −0.350022 0.936742i \(-0.613826\pi\)
0.870258 0.492596i \(-0.163952\pi\)
\(314\) −2.60909 + 4.51908i −0.147240 + 0.255026i
\(315\) 0 0
\(316\) 0.446928 + 0.774102i 0.0251417 + 0.0435466i
\(317\) −8.20574 + 1.44689i −0.460881 + 0.0812657i −0.399268 0.916834i \(-0.630736\pi\)
−0.0616130 + 0.998100i \(0.519624\pi\)
\(318\) 0.769394 0.532870i 0.0431455 0.0298819i
\(319\) 38.2606 13.9257i 2.14218 0.779692i
\(320\) 0 0
\(321\) −1.80534 + 19.4826i −0.100764 + 1.08741i
\(322\) 0.364534 + 0.434435i 0.0203147 + 0.0242101i
\(323\) 1.30748i 0.0727501i
\(324\) 8.51398 14.0712i 0.472999 0.781734i
\(325\) 0 0
\(326\) −1.05494 + 0.885201i −0.0584278 + 0.0490268i
\(327\) −25.0131 2.31782i −1.38323 0.128176i
\(328\) −5.75493 1.01475i −0.317763 0.0560301i
\(329\) 8.80173 3.20357i 0.485255 0.176618i
\(330\) 0 0
\(331\) −1.11487 6.32272i −0.0612786 0.347528i −0.999996 0.00284030i \(-0.999096\pi\)
0.938717 0.344688i \(-0.112015\pi\)
\(332\) 7.30143 4.21548i 0.400718 0.231355i
\(333\) 10.0805 + 8.63650i 0.552410 + 0.473277i
\(334\) 4.27161 7.39865i 0.233732 0.404836i
\(335\) 0 0
\(336\) 6.60119 + 1.80516i 0.360124 + 0.0984794i
\(337\) 4.80477 5.72610i 0.261732 0.311921i −0.619134 0.785285i \(-0.712516\pi\)
0.880867 + 0.473365i \(0.156961\pi\)
\(338\) −3.47165 + 4.13735i −0.188833 + 0.225042i
\(339\) −5.52185 21.0393i −0.299906 1.14270i
\(340\) 0 0
\(341\) 9.72545 16.8450i 0.526663 0.912206i
\(342\) −0.264706 + 0.447801i −0.0143136 + 0.0242143i
\(343\) 14.0095 8.08839i 0.756442 0.436732i
\(344\) 2.29403 + 13.0101i 0.123686 + 0.701456i
\(345\) 0 0
\(346\) 5.47874 1.99410i 0.294539 0.107203i
\(347\) 30.9766 + 5.46202i 1.66291 + 0.293216i 0.924514 0.381148i \(-0.124471\pi\)
0.738399 + 0.674364i \(0.235582\pi\)
\(348\) −10.3281 22.4490i −0.553647 1.20339i
\(349\) −9.07988 + 7.61893i −0.486035 + 0.407832i −0.852603 0.522560i \(-0.824977\pi\)
0.366568 + 0.930391i \(0.380533\pi\)
\(350\) 0 0
\(351\) 0.0776848 0.0526312i 0.00414651 0.00280925i
\(352\) 23.0733i 1.22981i
\(353\) −5.27541 6.28699i −0.280782 0.334623i 0.607159 0.794580i \(-0.292309\pi\)
−0.887941 + 0.459958i \(0.847865\pi\)
\(354\) −2.17423 1.53911i −0.115559 0.0818026i
\(355\) 0 0
\(356\) −5.79217 + 2.10818i −0.306984 + 0.111733i
\(357\) 6.47401 + 3.05944i 0.342641 + 0.161923i
\(358\) 4.16928 0.735157i 0.220353 0.0388542i
\(359\) 8.86365 + 15.3523i 0.467806 + 0.810263i 0.999323 0.0367840i \(-0.0117114\pi\)
−0.531517 + 0.847047i \(0.678378\pi\)
\(360\) 0 0
\(361\) 9.41291 16.3036i 0.495416 0.858086i
\(362\) 3.41812 9.39122i 0.179653 0.493591i
\(363\) 19.7365 + 19.9402i 1.03590 + 1.04659i
\(364\) 0.0333594 + 0.0279919i 0.00174851 + 0.00146717i
\(365\) 0 0
\(366\) −3.53626 + 3.50013i −0.184843 + 0.182955i
\(367\) 6.94969 19.0941i 0.362771 0.996704i −0.615275 0.788313i \(-0.710955\pi\)
0.978045 0.208392i \(-0.0668229\pi\)
\(368\) 2.68215 + 1.54854i 0.139817 + 0.0807232i
\(369\) −6.99953 8.51782i −0.364381 0.443420i
\(370\) 0 0
\(371\) 0.298028 + 1.69020i 0.0154728 + 0.0877509i
\(372\) −10.6731 5.04381i −0.553374 0.261510i
\(373\) 3.31125 + 9.09758i 0.171450 + 0.471055i 0.995422 0.0955754i \(-0.0304691\pi\)
−0.823972 + 0.566630i \(0.808247\pi\)
\(374\) 1.17871 6.68481i 0.0609498 0.345663i
\(375\) 0 0
\(376\) −8.64615 + 7.25498i −0.445891 + 0.374147i
\(377\) 0.140987i 0.00726119i
\(378\) −1.59790 2.35853i −0.0821870 0.121310i
\(379\) 4.12905 0.212095 0.106048 0.994361i \(-0.466180\pi\)
0.106048 + 0.994361i \(0.466180\pi\)
\(380\) 0 0
\(381\) 13.2096 6.07736i 0.676748 0.311353i
\(382\) 4.47876 + 0.789725i 0.229153 + 0.0404059i
\(383\) −1.62466 4.46371i −0.0830162 0.228085i 0.891239 0.453535i \(-0.149837\pi\)
−0.974255 + 0.225450i \(0.927615\pi\)
\(384\) −18.2508 + 1.50236i −0.931357 + 0.0766672i
\(385\) 0 0
\(386\) −2.24476 3.88803i −0.114255 0.197896i
\(387\) −12.6828 + 21.4554i −0.644702 + 1.09064i
\(388\) 15.7328 + 9.08336i 0.798714 + 0.461138i
\(389\) −20.4978 7.46059i −1.03928 0.378267i −0.234673 0.972074i \(-0.575402\pi\)
−0.804607 + 0.593807i \(0.797624\pi\)
\(390\) 0 0
\(391\) 2.48238 + 2.08297i 0.125539 + 0.105340i
\(392\) −5.37495 + 6.40561i −0.271476 + 0.323532i
\(393\) −7.09745 + 25.9543i −0.358019 + 1.30922i
\(394\) 8.61767 + 3.13658i 0.434152 + 0.158018i
\(395\) 0 0
\(396\) 18.6015 21.7117i 0.934762 1.09106i
\(397\) 30.1802 17.4245i 1.51470 0.874512i 0.514847 0.857282i \(-0.327849\pi\)
0.999852 0.0172294i \(-0.00548457\pi\)
\(398\) 5.27268 0.929715i 0.264295 0.0466024i
\(399\) −0.543131 0.784210i −0.0271906 0.0392596i
\(400\) 0 0
\(401\) −3.26911 + 18.5401i −0.163252 + 0.925847i 0.787597 + 0.616191i \(0.211325\pi\)
−0.950849 + 0.309656i \(0.899786\pi\)
\(402\) −7.90113 0.732152i −0.394072 0.0365164i
\(403\) −0.0432932 0.0515948i −0.00215659 0.00257012i
\(404\) 25.2170 1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) 14.8329 + 17.6772i 0.735241 + 0.876226i
\(408\) −8.59160 0.796135i −0.425348 0.0394145i
\(409\) 1.10439 6.26334i 0.0546088 0.309702i −0.945253 0.326339i \(-0.894185\pi\)
0.999862 + 0.0166371i \(0.00529599\pi\)
\(410\) 0 0
\(411\) −11.8413 17.0973i −0.584088 0.843346i
\(412\) −8.21551 + 1.44862i −0.404749 + 0.0713682i
\(413\) 4.23055 2.44251i 0.208172 0.120188i
\(414\) −0.428490 1.21597i −0.0210591 0.0597617i
\(415\) 0 0
\(416\) −0.0750772 0.0273259i −0.00368096 0.00133976i
\(417\) −2.80753 + 10.2667i −0.137485 + 0.502763i
\(418\) −0.581267 + 0.692727i −0.0284307 + 0.0338824i
\(419\) 18.6286 + 15.6313i 0.910069 + 0.763638i 0.972132 0.234434i \(-0.0753236\pi\)
−0.0620632 + 0.998072i \(0.519768\pi\)
\(420\) 0 0
\(421\) 7.50818 + 2.73275i 0.365926 + 0.133186i 0.518438 0.855115i \(-0.326514\pi\)
−0.152511 + 0.988302i \(0.548736\pi\)
\(422\) 8.63373 + 4.98469i 0.420283 + 0.242651i
\(423\) −21.2926 0.218637i −1.03528 0.0106305i
\(424\) −1.03405 1.79103i −0.0502181 0.0869803i
\(425\) 0 0
\(426\) 4.36354 0.359197i 0.211414 0.0174031i
\(427\) −3.12067 8.57397i −0.151020 0.414924i
\(428\) 20.3294 + 3.58462i 0.982659 + 0.173269i
\(429\) 0.148191 0.0681784i 0.00715472 0.00329169i
\(430\) 0 0
\(431\) 9.87124 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(432\) −12.6053 9.11887i −0.606475 0.438732i
\(433\) 6.10369i 0.293325i −0.989187 0.146662i \(-0.953147\pi\)
0.989187 0.146662i \(-0.0468531\pi\)
\(434\) −1.56643 + 1.31439i −0.0751911 + 0.0630928i
\(435\) 0 0
\(436\) −4.60219 + 26.1003i −0.220405 + 1.24998i
\(437\) −0.147651 0.405669i −0.00706312 0.0194058i
\(438\) −0.355870 0.168174i −0.0170041 0.00803569i
\(439\) 2.62800 + 14.9041i 0.125427 + 0.711334i 0.981053 + 0.193739i \(0.0620615\pi\)
−0.855626 + 0.517595i \(0.826827\pi\)
\(440\) 0 0
\(441\) −15.5634 + 2.57976i −0.741113 + 0.122846i
\(442\) −0.0203554 0.0117522i −0.000968210 0.000558996i
\(443\) −0.247210 + 0.679204i −0.0117453 + 0.0322699i −0.945427 0.325835i \(-0.894355\pi\)
0.933681 + 0.358105i \(0.116577\pi\)
\(444\) 9.95369 9.85201i 0.472381 0.467555i
\(445\) 0 0
\(446\) −6.89432 5.78502i −0.326456 0.273929i
\(447\) −1.07566 1.08677i −0.0508772 0.0514023i
\(448\) 1.87311 5.14633i 0.0884962 0.243141i
\(449\) 0.834224 1.44492i 0.0393695 0.0681899i −0.845669 0.533707i \(-0.820798\pi\)
0.885039 + 0.465517i \(0.154132\pi\)
\(450\) 0 0
\(451\) −9.58275 16.5978i −0.451234 0.781560i
\(452\) −22.6005 + 3.98507i −1.06304 + 0.187442i
\(453\) −12.8810 6.08723i −0.605204 0.286003i
\(454\) −8.44922 + 3.07526i −0.396541 + 0.144329i
\(455\) 0 0
\(456\) 0.938202 + 0.664140i 0.0439353 + 0.0311012i
\(457\) −7.12430 8.49041i −0.333261 0.397165i 0.573227 0.819397i \(-0.305691\pi\)
−0.906488 + 0.422232i \(0.861247\pi\)
\(458\) 4.48926i 0.209769i
\(459\) −11.3320 11.6865i −0.528932 0.545481i
\(460\) 0 0
\(461\) −16.7644 + 14.0670i −0.780797 + 0.655166i −0.943449 0.331517i \(-0.892439\pi\)
0.162653 + 0.986683i \(0.447995\pi\)
\(462\) −2.06992 4.49911i −0.0963012 0.209318i
\(463\) 24.4742 + 4.31546i 1.13741 + 0.200556i 0.710473 0.703724i \(-0.248481\pi\)
0.426938 + 0.904281i \(0.359592\pi\)
\(464\) −21.9660 + 7.99499i −1.01975 + 0.371158i
\(465\) 0 0
\(466\) −0.551115 3.12553i −0.0255299 0.144787i
\(467\) 10.2499 5.91777i 0.474308 0.273842i −0.243734 0.969842i \(-0.578372\pi\)
0.718041 + 0.696001i \(0.245039\pi\)
\(468\) −0.0486170 0.0862400i −0.00224732 0.00398645i
\(469\) 7.27564 12.6018i 0.335958 0.581896i
\(470\) 0 0
\(471\) 5.52246 + 21.0416i 0.254462 + 0.969547i
\(472\) −3.78373 + 4.50927i −0.174160 + 0.207556i
\(473\) −27.8501 + 33.1905i −1.28055 + 1.52610i
\(474\) −0.339526 0.0928466i −0.0155950 0.00426459i
\(475\) 0 0
\(476\) 3.77733 6.54252i 0.173134 0.299876i
\(477\) 0.716944 3.83529i 0.0328266 0.175606i
\(478\) 1.16270 0.671288i 0.0531809 0.0307040i
\(479\) −0.501383 2.84349i −0.0229088 0.129922i 0.971209 0.238231i \(-0.0765676\pi\)
−0.994117 + 0.108309i \(0.965456\pi\)
\(480\) 0 0
\(481\) 0.0750857 0.0273290i 0.00342361 0.00124609i
\(482\) −10.8610 1.91508i −0.494704 0.0872297i
\(483\) 2.35417 + 0.218148i 0.107119 + 0.00992607i
\(484\) 22.6752 19.0267i 1.03069 0.864852i
\(485\) 0 0
\(486\) 1.51512 + 6.29676i 0.0687271 + 0.285627i
\(487\) 8.75903i 0.396910i −0.980110 0.198455i \(-0.936408\pi\)
0.980110 0.198455i \(-0.0635923\pi\)
\(488\) 7.06724 + 8.42241i 0.319919 + 0.381265i
\(489\) −0.529731 + 5.71667i −0.0239553 + 0.258517i
\(490\) 0 0
\(491\) 21.2117 7.72044i 0.957272 0.348418i 0.184308 0.982869i \(-0.440996\pi\)
0.772964 + 0.634450i \(0.218773\pi\)
\(492\) −9.56222 + 6.62264i −0.431098 + 0.298572i
\(493\) −24.0869 + 4.24716i −1.08482 + 0.191283i
\(494\) 0.00156564 + 0.00271176i 7.04413e−5 + 0.000122008i
\(495\) 0 0
\(496\) −5.58354 + 9.67097i −0.250708 + 0.434239i
\(497\) −2.74608 + 7.54478i −0.123178 + 0.338430i
\(498\) −0.875741 + 3.20246i −0.0392429 + 0.143505i
\(499\) 19.4061 + 16.2836i 0.868734 + 0.728955i 0.963831 0.266513i \(-0.0858716\pi\)
−0.0950968 + 0.995468i \(0.530316\pi\)
\(500\) 0 0
\(501\) −9.04139 34.4494i −0.403940 1.53909i
\(502\) −0.639340 + 1.75657i −0.0285352 + 0.0783997i
\(503\) −3.24252 1.87207i −0.144577 0.0834714i 0.425967 0.904739i \(-0.359934\pi\)
−0.570543 + 0.821267i \(0.693267\pi\)
\(504\) −5.48386 + 3.09147i −0.244270 + 0.137705i
\(505\) 0 0
\(506\) −0.389187 2.20719i −0.0173015 0.0981216i
\(507\) 1.84723 + 22.4402i 0.0820382 + 0.996604i
\(508\) −5.24690 14.4157i −0.232793 0.639595i
\(509\) −4.22831 + 23.9800i −0.187417 + 1.06289i 0.735394 + 0.677640i \(0.236997\pi\)
−0.922811 + 0.385253i \(0.874114\pi\)
\(510\) 0 0
\(511\) 0.552932 0.463965i 0.0244603 0.0205246i
\(512\) 22.7690i 1.00626i
\(513\) 0.528954 + 2.10313i 0.0233539 + 0.0928554i
\(514\) 5.70660 0.251707
\(515\) 0 0
\(516\) 21.4623 + 15.1929i 0.944824 + 0.668828i
\(517\) −36.4546 6.42792i −1.60327 0.282700i
\(518\) −0.829715 2.27962i −0.0364556 0.100161i
\(519\) 10.3853 21.9760i 0.455862 0.964639i
\(520\) 0 0
\(521\) −9.81046 16.9922i −0.429804 0.744443i 0.567051 0.823682i \(-0.308084\pi\)
−0.996856 + 0.0792397i \(0.974751\pi\)
\(522\) 9.10941 + 3.42188i 0.398708 + 0.149772i
\(523\) −18.0267 10.4077i −0.788251 0.455097i 0.0510956 0.998694i \(-0.483729\pi\)
−0.839346 + 0.543597i \(0.817062\pi\)
\(524\) 26.6763 + 9.70937i 1.16536 + 0.424156i
\(525\) 0 0
\(526\) 7.70284 + 6.46345i 0.335860 + 0.281820i
\(527\) −7.51051 + 8.95067i −0.327163 + 0.389897i
\(528\) −19.0258 19.2222i −0.827993 0.836539i
\(529\) −20.6075 7.50052i −0.895978 0.326109i
\(530\) 0 0
\(531\) −10.9559 + 1.81604i −0.475447 + 0.0788095i
\(532\) −0.871598 + 0.503217i −0.0377886 + 0.0218172i
\(533\) −0.0653558 + 0.0115240i −0.00283087 + 0.000499159i
\(534\) 1.03710 2.19457i 0.0448795 0.0949685i
\(535\) 0 0
\(536\) −3.04479 + 17.2679i −0.131515 + 0.745859i
\(537\) 10.1975 14.4055i 0.440054 0.621645i
\(538\) −3.20634 3.82117i −0.138235 0.164742i
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) 0.992856 + 1.18324i 0.0426468 + 0.0508245i
\(543\) −17.4139 37.8503i −0.747301 1.62431i
\(544\) −2.40681 + 13.6497i −0.103191 + 0.585227i
\(545\) 0 0
\(546\) −0.0170909 + 0.00140688i −0.000731421 + 6.02089e-5i
\(547\) 22.3036 3.93273i 0.953633 0.168151i 0.324879 0.945756i \(-0.394676\pi\)
0.628754 + 0.777604i \(0.283565\pi\)
\(548\) −19.0025 + 10.9711i −0.811745 + 0.468661i
\(549\) −0.212980 + 20.7416i −0.00908976 + 0.885231i
\(550\) 0 0
\(551\) 3.06186 + 1.11443i 0.130440 + 0.0474761i
\(552\) −2.75560 + 0.723220i −0.117286 + 0.0307823i
\(553\) 0.414912 0.494473i 0.0176439 0.0210271i
\(554\) −7.47387 6.27132i −0.317534 0.266443i
\(555\) 0 0
\(556\) 10.5523 + 3.84072i 0.447517 + 0.162883i
\(557\) 31.5682 + 18.2259i 1.33759 + 0.772256i 0.986449 0.164067i \(-0.0524615\pi\)
0.351138 + 0.936324i \(0.385795\pi\)
\(558\) 4.38440 1.54500i 0.185606 0.0654049i
\(559\) 0.0750139 + 0.129928i 0.00317275 + 0.00549537i
\(560\) 0 0
\(561\) −16.1121 23.2637i −0.680253 0.982196i
\(562\) 2.89478 + 7.95334i 0.122109 + 0.335491i
\(563\) 26.1134 + 4.60450i 1.10055 + 0.194056i 0.694285 0.719700i \(-0.255721\pi\)
0.406263 + 0.913756i \(0.366832\pi\)
\(564\) −2.07290 + 22.3700i −0.0872847 + 0.941945i
\(565\) 0 0
\(566\) −4.81938 −0.202574
\(567\) −11.6514 2.30210i −0.489313 0.0966791i
\(568\) 9.67492i 0.405950i
\(569\) −17.5941 + 14.7632i −0.737581 + 0.618904i −0.932187 0.361978i \(-0.882102\pi\)
0.194606 + 0.980882i \(0.437657\pi\)
\(570\) 0 0
\(571\) −0.833165 + 4.72511i −0.0348669 + 0.197740i −0.997266 0.0739009i \(-0.976455\pi\)
0.962399 + 0.271641i \(0.0875662\pi\)
\(572\) −0.0588619 0.161722i −0.00246114 0.00676193i
\(573\) 15.5865 10.7949i 0.651134 0.450965i
\(574\) 0.349871 + 1.98422i 0.0146033 + 0.0828197i
\(575\) 0 0
\(576\) −8.10043 + 9.45484i −0.337518 + 0.393952i
\(577\) −3.73545 2.15666i −0.155509 0.0897831i 0.420226 0.907419i \(-0.361951\pi\)
−0.575735 + 0.817636i \(0.695284\pi\)
\(578\) 1.02106 2.80533i 0.0424704 0.116686i
\(579\) −18.0536 4.93693i −0.750283 0.205172i
\(580\) 0 0
\(581\) −4.66393 3.91351i −0.193493 0.162360i
\(582\) −6.91954 + 1.81606i −0.286824 + 0.0752782i
\(583\) 2.31983 6.37369i 0.0960777 0.263971i
\(584\) −0.434885 + 0.753242i −0.0179957 + 0.0311694i
\(585\) 0 0
\(586\) 6.55900 + 11.3605i 0.270950 + 0.469299i
\(587\) 41.1868 7.26235i 1.69996 0.299749i 0.762281 0.647246i \(-0.224079\pi\)
0.937681 + 0.347497i \(0.112968\pi\)
\(588\) 1.36548 + 16.5880i 0.0563116 + 0.684076i
\(589\) 1.46271 0.532383i 0.0602699 0.0219365i
\(590\) 0 0
\(591\) 34.7326 15.9795i 1.42871 0.657309i
\(592\) −8.51582 10.1488i −0.349998 0.417111i
\(593\) 31.5370i 1.29507i −0.762035 0.647536i \(-0.775800\pi\)
0.762035 0.647536i \(-0.224200\pi\)
\(594\) 0.808405 + 11.2296i 0.0331693 + 0.460757i
\(595\) 0 0
\(596\) −1.23583 + 1.03698i −0.0506214 + 0.0424764i
\(597\) 12.8962 18.2179i 0.527807 0.745611i
\(598\) −0.00764279 0.00134763i −0.000312537 5.51087e-5i
\(599\) −11.8686 + 4.31982i −0.484938 + 0.176503i −0.572907 0.819620i \(-0.694184\pi\)
0.0879695 + 0.996123i \(0.471962\pi\)
\(600\) 0 0
\(601\) 3.56725 + 20.2309i 0.145511 + 0.825235i 0.966955 + 0.254946i \(0.0820577\pi\)
−0.821444 + 0.570289i \(0.806831\pi\)
\(602\) 3.94465 2.27744i 0.160772 0.0928216i
\(603\) −25.5580 + 21.0023i −1.04080 + 0.855282i
\(604\) −7.51556 + 13.0173i −0.305804 + 0.529668i
\(605\) 0 0
\(606\) −7.05769 + 6.98559i −0.286699 + 0.283770i
\(607\) 8.30003 9.89160i 0.336888 0.401487i −0.570830 0.821068i \(-0.693378\pi\)
0.907718 + 0.419581i \(0.137823\pi\)
\(608\) 1.18689 1.41448i 0.0481348 0.0573648i
\(609\) −12.6827 + 12.5532i −0.513930 + 0.508680i
\(610\) 0 0
\(611\) −0.0640889 + 0.111005i −0.00259276 + 0.00449079i
\(612\) −13.2691 + 10.9039i −0.536371 + 0.440763i
\(613\) −26.9851 + 15.5799i −1.08992 + 0.629265i −0.933555 0.358434i \(-0.883311\pi\)
−0.156364 + 0.987699i \(0.549977\pi\)
\(614\) −0.585856 3.32255i −0.0236432 0.134087i
\(615\) 0 0
\(616\) −10.2836 + 3.74293i −0.414339 + 0.150807i
\(617\) 7.03230 + 1.23998i 0.283110 + 0.0499199i 0.313400 0.949621i \(-0.398532\pi\)
−0.0302901 + 0.999541i \(0.509643\pi\)
\(618\) 1.89805 2.68129i 0.0763506 0.107857i
\(619\) 7.68412 6.44774i 0.308851 0.259157i −0.475166 0.879896i \(-0.657612\pi\)
0.784017 + 0.620740i \(0.213168\pi\)
\(620\) 0 0
\(621\) −4.83569 2.34625i −0.194049 0.0941520i
\(622\) 9.90827i 0.397285i
\(623\) 2.86117 + 3.40981i 0.114630 + 0.136611i
\(624\) −0.0850787 + 0.0391423i −0.00340587 + 0.00156695i
\(625\) 0 0
\(626\) 10.5061 3.82392i 0.419909 0.152835i
\(627\) 0.309286 + 3.75722i 0.0123517 + 0.150049i
\(628\) 22.6030 3.98552i 0.901957 0.159039i
\(629\) −6.93093 12.0047i −0.276354 0.478660i
\(630\) 0 0
\(631\) 3.53780 6.12765i 0.140838 0.243938i −0.786975 0.616985i \(-0.788354\pi\)
0.927812 + 0.373047i \(0.121687\pi\)
\(632\) −0.266028 + 0.730905i −0.0105820 + 0.0290738i
\(633\) 40.2002 10.5507i 1.59781 0.419353i
\(634\) −2.65189 2.22520i −0.105320 0.0883741i
\(635\) 0 0
\(636\) −3.97070 1.08582i −0.157448 0.0430557i
\(637\) −0.0324790 + 0.0892352i −0.00128686 + 0.00353563i
\(638\) 14.6498 + 8.45809i 0.579993 + 0.334859i
\(639\) 11.8756 13.8613i 0.469793 0.548344i
\(640\) 0 0
\(641\) −0.870188 4.93508i −0.0343704 0.194924i 0.962788 0.270258i \(-0.0871089\pi\)
−0.997158 + 0.0753337i \(0.975998\pi\)
\(642\) −6.68277 + 4.62838i −0.263748 + 0.182667i
\(643\) −0.560367 1.53960i −0.0220987 0.0607157i 0.928153 0.372199i \(-0.121396\pi\)
−0.950251 + 0.311484i \(0.899174\pi\)
\(644\) 0.433147 2.45650i 0.0170684 0.0967997i
\(645\) 0 0
\(646\) 0.416126 0.349171i 0.0163722 0.0137379i
\(647\) 34.4927i 1.35605i −0.735040 0.678024i \(-0.762836\pi\)
0.735040 0.678024i \(-0.237164\pi\)
\(648\) 14.1420 2.19521i 0.555550 0.0862359i
\(649\) −19.3056 −0.757813
\(650\) 0 0
\(651\) −0.786571 + 8.48840i −0.0308282 + 0.332687i
\(652\) 5.96515 + 1.05182i 0.233613 + 0.0411923i
\(653\) −13.2569 36.4230i −0.518783 1.42534i −0.871862 0.489751i \(-0.837088\pi\)
0.353080 0.935593i \(-0.385134\pi\)
\(654\) −5.94223 8.57980i −0.232360 0.335497i
\(655\) 0 0
\(656\) 5.50161 + 9.52907i 0.214802 + 0.372048i
\(657\) −1.54764 + 0.545365i −0.0603792 + 0.0212767i
\(658\) 3.37015 + 1.94575i 0.131382 + 0.0758534i
\(659\) 8.82552 + 3.21223i 0.343794 + 0.125131i 0.508146 0.861271i \(-0.330331\pi\)
−0.164352 + 0.986402i \(0.552553\pi\)
\(660\) 0 0
\(661\) −18.4980 15.5217i −0.719489 0.603723i 0.207755 0.978181i \(-0.433384\pi\)
−0.927244 + 0.374458i \(0.877829\pi\)
\(662\) 1.71457 2.04335i 0.0666387 0.0794169i
\(663\) −0.0947785 + 0.0248750i −0.00368089 + 0.000966065i
\(664\) 6.89399 + 2.50921i 0.267539 + 0.0973761i
\(665\) 0 0
\(666\) −0.0566265 + 5.51472i −0.00219423 + 0.213691i
\(667\) −6.99375 + 4.03784i −0.270799 + 0.156346i
\(668\) −37.0057 + 6.52510i −1.43179 + 0.252464i
\(669\) −37.3935 + 3.07815i −1.44572 + 0.119008i
\(670\) 0 0
\(671\) −6.26159 + 35.5112i −0.241726 + 1.37090i
\(672\) 4.22656 + 9.18674i 0.163043 + 0.354386i
\(673\) −17.0121 20.2742i −0.655768 0.781514i 0.331003 0.943630i \(-0.392613\pi\)
−0.986772 + 0.162115i \(0.948168\pi\)
\(674\) 3.10557 0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) −19.9694 23.7986i −0.767486 0.914654i 0.230811 0.972999i \(-0.425862\pi\)
−0.998296 + 0.0583448i \(0.981418\pi\)
\(678\) 5.22143 7.37609i 0.200528 0.283277i
\(679\) 2.27807 12.9196i 0.0874245 0.495809i
\(680\) 0 0
\(681\) −16.0160 + 33.8910i −0.613734 + 1.29871i
\(682\) 7.95842 1.40328i 0.304744 0.0537345i
\(683\) 33.0268 19.0681i 1.26374 0.729619i 0.289942 0.957044i \(-0.406364\pi\)
0.973796 + 0.227425i \(0.0730308\pi\)
\(684\) 2.25719 0.374149i 0.0863060 0.0143060i
\(685\) 0 0
\(686\) 6.31558 + 2.29868i 0.241130 + 0.0877642i
\(687\) 13.1657 + 13.3016i 0.502303 + 0.507487i
\(688\) 15.9892 19.0552i 0.609583 0.726472i
\(689\) −0.0179917 0.0150968i −0.000685428 0.000575142i
\(690\) 0 0
\(691\) −30.9436 11.2626i −1.17715 0.428448i −0.321957 0.946754i \(-0.604341\pi\)
−0.855195 + 0.518306i \(0.826563\pi\)
\(692\) −22.2085 12.8221i −0.844242 0.487424i
\(693\) −19.3277 7.26030i −0.734198 0.275796i
\(694\) 6.53414 + 11.3175i 0.248033 + 0.429605i
\(695\) 0 0
\(696\) 9.18742 19.4413i 0.348248 0.736919i
\(697\) 3.93762 + 10.8185i 0.149148 + 0.409781i
\(698\) −4.84968 0.855130i −0.183563 0.0323672i
\(699\) −10.7992 7.64461i −0.408463 0.289146i
\(700\) 0 0
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) 0.0374969 + 0.0106689i 0.00141523 + 0.000402671i
\(703\) 1.84668i 0.0696490i
\(704\) −16.5800 + 13.9123i −0.624881 + 0.524338i
\(705\) 0 0
\(706\) 0.592100 3.35796i 0.0222840 0.126379i
\(707\) −6.22826 17.1120i −0.234238 0.643563i
\(708\) 0.961241 + 11.6772i 0.0361257 + 0.438857i
\(709\) 1.93654 + 10.9826i 0.0727281 + 0.412462i 0.999336 + 0.0364329i \(0.0115995\pi\)
−0.926608 + 0.376029i \(0.877289\pi\)
\(710\) 0 0
\(711\) −1.27830 + 0.720629i −0.0479400 + 0.0270257i
\(712\) −4.64508 2.68184i −0.174082 0.100506i
\(713\) −1.31948 + 3.62525i −0.0494151 + 0.135767i
\(714\) 0.755212 + 2.87750i 0.0282631 + 0.107688i
\(715\) 0 0
\(716\) −14.2646 11.9694i −0.533092 0.447317i
\(717\) 1.47637 5.39888i 0.0551362 0.201625i
\(718\) −2.51901 + 6.92093i −0.0940087 + 0.258287i
\(719\) −16.0850 + 27.8600i −0.599869 + 1.03900i 0.392971 + 0.919551i \(0.371447\pi\)
−0.992840 + 0.119453i \(0.961886\pi\)
\(720\) 0 0
\(721\) 3.01213 + 5.21717i 0.112178 + 0.194297i
\(722\) 7.70267 1.35819i 0.286664 0.0505465i
\(723\) −37.7972 + 26.1777i −1.40569 + 0.973560i
\(724\) −41.3064 + 15.0343i −1.53514 + 0.558745i
\(725\) 0 0
\(726\) −1.07552 + 11.6066i −0.0399163 + 0.430762i
\(727\) 3.44888 + 4.11022i 0.127912 + 0.152440i 0.826199 0.563378i \(-0.190499\pi\)
−0.698287 + 0.715818i \(0.746054\pi\)
\(728\) 0.0378942i 0.00140445i
\(729\) 22.9558 + 14.2138i 0.850215 + 0.526435i
\(730\) 0 0
\(731\) 19.9377 16.7297i 0.737424 0.618772i
\(732\) 21.7911 + 2.01926i 0.805422 + 0.0746338i
\(733\) −14.3746 2.53463i −0.530938 0.0936187i −0.0982489 0.995162i \(-0.531324\pi\)
−0.432689 + 0.901543i \(0.642435\pi\)
\(734\) 7.93296 2.88736i 0.292811 0.106574i
\(735\) 0 0
\(736\) 0.794682 + 4.50687i 0.0292924 + 0.166125i
\(737\) −49.8023 + 28.7534i −1.83449 + 1.05915i
\(738\) 0.841659 4.50245i 0.0309819 0.165737i
\(739\) −21.6083 + 37.4266i −0.794873 + 1.37676i 0.128047 + 0.991768i \(0.459129\pi\)
−0.922920 + 0.384992i \(0.874204\pi\)
\(740\) 0 0
\(741\) 0.0125917 + 0.00344333i 0.000462569 + 0.000126494i
\(742\) −0.458343 + 0.546231i −0.0168263 + 0.0200528i
\(743\) −5.21443 + 6.21431i −0.191299 + 0.227981i −0.853165 0.521641i \(-0.825320\pi\)
0.661866 + 0.749622i \(0.269765\pi\)
\(744\) −2.60770 9.93582i −0.0956028 0.364265i
\(745\) 0 0
\(746\) −2.01116 + 3.48342i −0.0736336 + 0.127537i
\(747\) 6.79706 + 12.0571i 0.248692 + 0.441146i
\(748\) −25.8561 + 14.9280i −0.945393 + 0.545823i
\(749\) −2.58860 14.6807i −0.0945854 0.536420i
\(750\) 0 0
\(751\) −8.22744 + 2.99454i −0.300223 + 0.109272i −0.487740 0.872989i \(-0.662178\pi\)
0.187516 + 0.982261i \(0.439956\pi\)
\(752\) 20.9291 + 3.69037i 0.763207 + 0.134574i
\(753\) 3.25717 + 7.07968i 0.118698 + 0.257998i
\(754\) 0.0448713 0.0376515i 0.00163412 0.00137119i
\(755\) 0 0
\(756\) −3.42913 + 12.0520i −0.124716 + 0.438329i
\(757\) 32.1511i 1.16855i 0.811555 + 0.584276i \(0.198622\pi\)
−0.811555 + 0.584276i \(0.801378\pi\)
\(758\) 1.10269 + 1.31414i 0.0400515 + 0.0477316i
\(759\) −7.62620 5.39848i −0.276813 0.195952i
\(760\) 0 0
\(761\) 23.0656 8.39520i 0.836128 0.304326i 0.111756 0.993736i \(-0.464352\pi\)
0.724371 + 0.689410i \(0.242130\pi\)
\(762\) 5.46192 + 2.58116i 0.197865 + 0.0935054i
\(763\) 18.8481 3.32342i 0.682346 0.120316i
\(764\) −10.0016 17.3233i −0.361846 0.626736i
\(765\) 0 0
\(766\) 0.986770 1.70914i 0.0356535 0.0617536i
\(767\) −0.0228638 + 0.0628177i −0.000825563 + 0.00226822i
\(768\) 4.76119 + 4.81033i 0.171805 + 0.173578i
\(769\) −24.0648 20.1928i −0.867800 0.728170i 0.0958338 0.995397i \(-0.469448\pi\)
−0.963634 + 0.267227i \(0.913893\pi\)
\(770\) 0 0
\(771\) 16.9085 16.7358i 0.608945 0.602725i
\(772\) −6.75377 + 18.5558i −0.243073 + 0.667839i
\(773\) −24.8675 14.3573i −0.894422 0.516395i −0.0190355 0.999819i \(-0.506060\pi\)
−0.875386 + 0.483424i \(0.839393\pi\)
\(774\) −10.2155 + 1.69331i −0.367190 + 0.0608649i