Properties

Label 675.2.u.b.124.3
Level $675$
Weight $2$
Character 675.124
Analytic conductor $5.390$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(4\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 27)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 124.3
Character \(\chi\) \(=\) 675.124
Dual form 675.2.u.b.49.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.267057 - 0.318266i) q^{2} +(1.72466 - 0.159815i) q^{3} +(0.317323 + 1.79963i) q^{4} +(0.409719 - 0.591580i) q^{6} +(-1.29958 - 0.229151i) q^{7} +(1.37711 + 0.795075i) q^{8} +(2.94892 - 0.551252i) q^{9} +O(q^{10})\) \(q+(0.267057 - 0.318266i) q^{2} +(1.72466 - 0.159815i) q^{3} +(0.317323 + 1.79963i) q^{4} +(0.409719 - 0.591580i) q^{6} +(-1.29958 - 0.229151i) q^{7} +(1.37711 + 0.795075i) q^{8} +(2.94892 - 0.551252i) q^{9} +(4.90067 - 1.78370i) q^{11} +(0.834881 + 3.05303i) q^{12} +(0.0116078 + 0.0138336i) q^{13} +(-0.419993 + 0.352416i) q^{14} +(-2.81355 + 1.02405i) q^{16} +(-2.71308 + 1.56640i) q^{17} +(0.612083 - 1.08575i) q^{18} +(0.208676 - 0.361438i) q^{19} +(-2.27796 - 0.187516i) q^{21} +(0.741067 - 2.03606i) q^{22} +(-1.01867 + 0.179619i) q^{23} +(2.50212 + 1.15115i) q^{24} +0.00750270 q^{26} +(4.99779 - 1.42200i) q^{27} -2.41147i q^{28} +(5.98068 + 5.01839i) q^{29} +(0.647649 + 3.67300i) q^{31} +(-1.51319 + 4.15744i) q^{32} +(8.16694 - 3.85948i) q^{33} +(-0.226015 + 1.28180i) q^{34} +(1.92781 + 5.13202i) q^{36} +(3.83195 - 2.21238i) q^{37} +(-0.0593049 - 0.162939i) q^{38} +(0.0222303 + 0.0220032i) q^{39} +(-2.81517 + 2.36221i) q^{41} +(-0.668024 + 0.674919i) q^{42} +(-2.84146 - 7.80685i) q^{43} +(4.76508 + 8.25337i) q^{44} +(-0.214876 + 0.372177i) q^{46} +(-6.99008 - 1.23254i) q^{47} +(-4.68877 + 2.21579i) q^{48} +(-4.94145 - 1.79854i) q^{49} +(-4.42881 + 3.13510i) q^{51} +(-0.0212119 + 0.0252794i) q^{52} +1.30057i q^{53} +(0.882118 - 1.97038i) q^{54} +(-1.60747 - 1.34883i) q^{56} +(0.302133 - 0.656707i) q^{57} +(3.19436 - 0.563252i) q^{58} +(-3.47856 - 1.26609i) q^{59} +(1.20064 - 6.80919i) q^{61} +(1.34195 + 0.774775i) q^{62} +(-3.95868 + 0.0406486i) q^{63} +(-2.07506 - 3.59410i) q^{64} +(0.952697 - 3.62996i) q^{66} +(-7.08789 - 8.44702i) q^{67} +(-3.67985 - 4.38548i) q^{68} +(-1.72816 + 0.472581i) q^{69} +(3.04214 + 5.26914i) q^{71} +(4.49927 + 1.58548i) q^{72} +(-0.473692 - 0.273486i) q^{73} +(0.319224 - 1.81041i) q^{74} +(0.716670 + 0.260847i) q^{76} +(-6.77756 + 1.19507i) q^{77} +(0.0129396 - 0.00119904i) q^{78} +(-0.374706 - 0.314416i) q^{79} +(8.39224 - 3.25120i) q^{81} +1.52681i q^{82} +(2.96561 - 3.53428i) q^{83} +(-0.385389 - 4.15898i) q^{84} +(-3.24348 - 1.18053i) q^{86} +(11.1167 + 7.69922i) q^{87} +(8.16694 + 1.44005i) q^{88} +(-1.68653 + 2.92116i) q^{89} +(-0.0119153 - 0.0206379i) q^{91} +(-0.646495 - 1.77623i) q^{92} +(1.70398 + 6.23118i) q^{93} +(-2.25902 + 1.89554i) q^{94} +(-1.94531 + 7.41201i) q^{96} +(-3.40014 - 9.34182i) q^{97} +(-1.89206 + 1.09238i) q^{98} +(13.4684 - 7.96149i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 24 q + 12 q^{4} + 6 q^{11} - 30 q^{14} + 6 q^{19} - 24 q^{21} + 36 q^{24} - 60 q^{26} + 12 q^{29} + 6 q^{31} - 18 q^{34} + 36 q^{36} - 66 q^{39} + 30 q^{41} - 6 q^{44} - 6 q^{46} - 24 q^{49} - 36 q^{51} + 108 q^{54} - 66 q^{56} + 24 q^{59} + 24 q^{61} - 24 q^{64} - 18 q^{66} - 18 q^{69} + 54 q^{71} - 66 q^{74} - 96 q^{76} + 84 q^{79} + 72 q^{81} - 12 q^{84} + 102 q^{86} - 18 q^{89} + 12 q^{91} + 30 q^{94} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.267057 0.318266i 0.188837 0.225048i −0.663316 0.748339i \(-0.730852\pi\)
0.852154 + 0.523291i \(0.175296\pi\)
\(3\) 1.72466 0.159815i 0.995734 0.0922690i
\(4\) 0.317323 + 1.79963i 0.158661 + 0.899813i
\(5\) 0 0
\(6\) 0.409719 0.591580i 0.167267 0.241512i
\(7\) −1.29958 0.229151i −0.491195 0.0866110i −0.0774361 0.996997i \(-0.524673\pi\)
−0.413759 + 0.910386i \(0.635784\pi\)
\(8\) 1.37711 + 0.795075i 0.486882 + 0.281102i
\(9\) 2.94892 0.551252i 0.982973 0.183751i
\(10\) 0 0
\(11\) 4.90067 1.78370i 1.47761 0.537805i 0.527454 0.849584i \(-0.323147\pi\)
0.950155 + 0.311778i \(0.100925\pi\)
\(12\) 0.834881 + 3.05303i 0.241009 + 0.881335i
\(13\) 0.0116078 + 0.0138336i 0.00321942 + 0.00383676i 0.767652 0.640867i \(-0.221425\pi\)
−0.764432 + 0.644704i \(0.776981\pi\)
\(14\) −0.419993 + 0.352416i −0.112248 + 0.0941870i
\(15\) 0 0
\(16\) −2.81355 + 1.02405i −0.703389 + 0.256012i
\(17\) −2.71308 + 1.56640i −0.658019 + 0.379907i −0.791522 0.611141i \(-0.790711\pi\)
0.133503 + 0.991048i \(0.457377\pi\)
\(18\) 0.612083 1.08575i 0.144269 0.255915i
\(19\) 0.208676 0.361438i 0.0478736 0.0829195i −0.841096 0.540886i \(-0.818089\pi\)
0.888969 + 0.457967i \(0.151422\pi\)
\(20\) 0 0
\(21\) −2.27796 0.187516i −0.497092 0.0409194i
\(22\) 0.741067 2.03606i 0.157996 0.434090i
\(23\) −1.01867 + 0.179619i −0.212408 + 0.0374532i −0.278839 0.960338i \(-0.589950\pi\)
0.0664316 + 0.997791i \(0.478839\pi\)
\(24\) 2.50212 + 1.15115i 0.510742 + 0.234978i
\(25\) 0 0
\(26\) 0.00750270 0.00147140
\(27\) 4.99779 1.42200i 0.961825 0.273665i
\(28\) 2.41147i 0.455726i
\(29\) 5.98068 + 5.01839i 1.11058 + 0.931891i 0.998091 0.0617615i \(-0.0196718\pi\)
0.112493 + 0.993652i \(0.464116\pi\)
\(30\) 0 0
\(31\) 0.647649 + 3.67300i 0.116321 + 0.659691i 0.986088 + 0.166227i \(0.0531584\pi\)
−0.869766 + 0.493464i \(0.835730\pi\)
\(32\) −1.51319 + 4.15744i −0.267496 + 0.734939i
\(33\) 8.16694 3.85948i 1.42168 0.671849i
\(34\) −0.226015 + 1.28180i −0.0387613 + 0.219826i
\(35\) 0 0
\(36\) 1.92781 + 5.13202i 0.321301 + 0.855337i
\(37\) 3.83195 2.21238i 0.629969 0.363713i −0.150771 0.988569i \(-0.548176\pi\)
0.780740 + 0.624856i \(0.214842\pi\)
\(38\) −0.0593049 0.162939i −0.00962052 0.0264322i
\(39\) 0.0222303 + 0.0220032i 0.00355970 + 0.00352334i
\(40\) 0 0
\(41\) −2.81517 + 2.36221i −0.439655 + 0.368915i −0.835580 0.549368i \(-0.814868\pi\)
0.395925 + 0.918283i \(0.370424\pi\)
\(42\) −0.668024 + 0.674919i −0.103078 + 0.104142i
\(43\) −2.84146 7.80685i −0.433319 1.19053i −0.943763 0.330622i \(-0.892741\pi\)
0.510445 0.859911i \(-0.329481\pi\)
\(44\) 4.76508 + 8.25337i 0.718363 + 1.24424i
\(45\) 0 0
\(46\) −0.214876 + 0.372177i −0.0316818 + 0.0548745i
\(47\) −6.99008 1.23254i −1.01961 0.179784i −0.361234 0.932475i \(-0.617644\pi\)
−0.658374 + 0.752691i \(0.728755\pi\)
\(48\) −4.68877 + 2.21579i −0.676766 + 0.319821i
\(49\) −4.94145 1.79854i −0.705921 0.256934i
\(50\) 0 0
\(51\) −4.42881 + 3.13510i −0.620158 + 0.439001i
\(52\) −0.0212119 + 0.0252794i −0.00294157 + 0.00350562i
\(53\) 1.30057i 0.178648i 0.996003 + 0.0893238i \(0.0284706\pi\)
−0.996003 + 0.0893238i \(0.971529\pi\)
\(54\) 0.882118 1.97038i 0.120041 0.268135i
\(55\) 0 0
\(56\) −1.60747 1.34883i −0.214808 0.180245i
\(57\) 0.302133 0.656707i 0.0400185 0.0869830i
\(58\) 3.19436 0.563252i 0.419440 0.0739586i
\(59\) −3.47856 1.26609i −0.452871 0.164831i 0.105507 0.994419i \(-0.466354\pi\)
−0.558377 + 0.829587i \(0.688576\pi\)
\(60\) 0 0
\(61\) 1.20064 6.80919i 0.153727 0.871828i −0.806214 0.591624i \(-0.798487\pi\)
0.959941 0.280204i \(-0.0904020\pi\)
\(62\) 1.34195 + 0.774775i 0.170428 + 0.0983965i
\(63\) −3.95868 + 0.0406486i −0.498747 + 0.00512125i
\(64\) −2.07506 3.59410i −0.259382 0.449263i
\(65\) 0 0
\(66\) 0.952697 3.62996i 0.117269 0.446817i
\(67\) −7.08789 8.44702i −0.865923 1.03197i −0.999164 0.0408835i \(-0.986983\pi\)
0.133241 0.991084i \(-0.457462\pi\)
\(68\) −3.67985 4.38548i −0.446247 0.531817i
\(69\) −1.72816 + 0.472581i −0.208046 + 0.0568921i
\(70\) 0 0
\(71\) 3.04214 + 5.26914i 0.361035 + 0.625332i 0.988132 0.153610i \(-0.0490900\pi\)
−0.627096 + 0.778942i \(0.715757\pi\)
\(72\) 4.49927 + 1.58548i 0.530245 + 0.186850i
\(73\) −0.473692 0.273486i −0.0554415 0.0320092i 0.472023 0.881586i \(-0.343524\pi\)
−0.527465 + 0.849577i \(0.676857\pi\)
\(74\) 0.319224 1.81041i 0.0371090 0.210456i
\(75\) 0 0
\(76\) 0.716670 + 0.260847i 0.0822077 + 0.0299212i
\(77\) −6.77756 + 1.19507i −0.772374 + 0.136190i
\(78\) 0.0129396 0.00119904i 0.00146512 0.000135765i
\(79\) −0.374706 0.314416i −0.0421577 0.0353745i 0.621465 0.783442i \(-0.286538\pi\)
−0.663623 + 0.748067i \(0.730982\pi\)
\(80\) 0 0
\(81\) 8.39224 3.25120i 0.932471 0.361244i
\(82\) 1.52681i 0.168608i
\(83\) 2.96561 3.53428i 0.325518 0.387937i −0.578321 0.815809i \(-0.696292\pi\)
0.903839 + 0.427872i \(0.140737\pi\)
\(84\) −0.385389 4.15898i −0.0420493 0.453782i
\(85\) 0 0
\(86\) −3.24348 1.18053i −0.349754 0.127300i
\(87\) 11.1167 + 7.69922i 1.19183 + 0.825443i
\(88\) 8.16694 + 1.44005i 0.870599 + 0.153510i
\(89\) −1.68653 + 2.92116i −0.178772 + 0.309642i −0.941460 0.337124i \(-0.890546\pi\)
0.762688 + 0.646766i \(0.223879\pi\)
\(90\) 0 0
\(91\) −0.0119153 0.0206379i −0.00124906 0.00216344i
\(92\) −0.646495 1.77623i −0.0674018 0.185185i
\(93\) 1.70398 + 6.23118i 0.176694 + 0.646144i
\(94\) −2.25902 + 1.89554i −0.233000 + 0.195510i
\(95\) 0 0
\(96\) −1.94531 + 7.41201i −0.198543 + 0.756485i
\(97\) −3.40014 9.34182i −0.345232 0.948518i −0.983850 0.178994i \(-0.942716\pi\)
0.638618 0.769524i \(-0.279507\pi\)
\(98\) −1.89206 + 1.09238i −0.191127 + 0.110347i
\(99\) 13.4684 7.96149i 1.35363 0.800160i
\(100\) 0 0
\(101\) 2.39626 13.5898i 0.238436 1.35224i −0.596818 0.802377i \(-0.703569\pi\)
0.835255 0.549863i \(-0.185320\pi\)
\(102\) −0.184950 + 2.24679i −0.0183128 + 0.222465i
\(103\) −1.56136 + 4.28981i −0.153846 + 0.422687i −0.992541 0.121914i \(-0.961097\pi\)
0.838695 + 0.544601i \(0.183319\pi\)
\(104\) 0.00498644 + 0.0282795i 0.000488961 + 0.00277303i
\(105\) 0 0
\(106\) 0.413928 + 0.347327i 0.0402042 + 0.0337354i
\(107\) 11.2965i 1.09207i −0.837762 0.546035i \(-0.816136\pi\)
0.837762 0.546035i \(-0.183864\pi\)
\(108\) 4.14499 + 8.54292i 0.398851 + 0.822043i
\(109\) −14.5032 −1.38915 −0.694577 0.719419i \(-0.744408\pi\)
−0.694577 + 0.719419i \(0.744408\pi\)
\(110\) 0 0
\(111\) 6.25525 4.42801i 0.593722 0.420288i
\(112\) 3.89110 0.686107i 0.367675 0.0648310i
\(113\) −4.29523 + 11.8011i −0.404062 + 1.11015i 0.556200 + 0.831049i \(0.312259\pi\)
−0.960262 + 0.279102i \(0.909963\pi\)
\(114\) −0.128321 0.271536i −0.0120183 0.0254317i
\(115\) 0 0
\(116\) −7.13341 + 12.3554i −0.662321 + 1.14717i
\(117\) 0.0418563 + 0.0343954i 0.00386961 + 0.00317986i
\(118\) −1.33193 + 0.768989i −0.122614 + 0.0707912i
\(119\) 3.88481 1.41395i 0.356120 0.129617i
\(120\) 0 0
\(121\) 12.4085 10.4120i 1.12805 0.946544i
\(122\) −1.84649 2.20056i −0.167174 0.199230i
\(123\) −4.47770 + 4.52391i −0.403740 + 0.407907i
\(124\) −6.40452 + 2.33105i −0.575143 + 0.209335i
\(125\) 0 0
\(126\) −1.04425 + 1.27077i −0.0930295 + 0.113209i
\(127\) 7.27027 + 4.19749i 0.645132 + 0.372467i 0.786589 0.617477i \(-0.211845\pi\)
−0.141456 + 0.989944i \(0.545179\pi\)
\(128\) −10.4121 1.83594i −0.920310 0.162276i
\(129\) −6.14821 13.0101i −0.541319 1.14547i
\(130\) 0 0
\(131\) −2.69761 15.2989i −0.235691 1.33667i −0.841154 0.540796i \(-0.818123\pi\)
0.605463 0.795874i \(-0.292988\pi\)
\(132\) 9.53717 + 13.4727i 0.830104 + 1.17265i
\(133\) −0.354015 + 0.421899i −0.0306970 + 0.0365833i
\(134\) −4.58126 −0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) −7.71820 + 9.19820i −0.659411 + 0.785855i −0.987301 0.158861i \(-0.949218\pi\)
0.327890 + 0.944716i \(0.393662\pi\)
\(138\) −0.311110 + 0.676219i −0.0264834 + 0.0575636i
\(139\) −1.06709 6.05176i −0.0905093 0.513304i −0.996031 0.0890042i \(-0.971632\pi\)
0.905522 0.424299i \(-0.139480\pi\)
\(140\) 0 0
\(141\) −12.2525 1.00860i −1.03185 0.0849392i
\(142\) 2.48941 + 0.438950i 0.208907 + 0.0368359i
\(143\) 0.0815610 + 0.0470893i 0.00682047 + 0.00393780i
\(144\) −7.73243 + 4.57082i −0.644369 + 0.380901i
\(145\) 0 0
\(146\) −0.213544 + 0.0777237i −0.0176730 + 0.00643246i
\(147\) −8.80976 2.31216i −0.726617 0.190704i
\(148\) 5.19742 + 6.19404i 0.427225 + 0.509147i
\(149\) −0.676280 + 0.567466i −0.0554030 + 0.0464886i −0.670069 0.742299i \(-0.733735\pi\)
0.614666 + 0.788788i \(0.289291\pi\)
\(150\) 0 0
\(151\) −7.72942 + 2.81328i −0.629011 + 0.228941i −0.636801 0.771028i \(-0.719743\pi\)
0.00778980 + 0.999970i \(0.497520\pi\)
\(152\) 0.574740 0.331826i 0.0466176 0.0269147i
\(153\) −7.13717 + 6.11477i −0.577006 + 0.494350i
\(154\) −1.42964 + 2.47621i −0.115204 + 0.199539i
\(155\) 0 0
\(156\) −0.0325434 + 0.0469884i −0.00260556 + 0.00376208i
\(157\) 4.29571 11.8024i 0.342835 0.941932i −0.641733 0.766928i \(-0.721784\pi\)
0.984568 0.175003i \(-0.0559937\pi\)
\(158\) −0.200135 + 0.0352893i −0.0159219 + 0.00280746i
\(159\) 0.207851 + 2.24305i 0.0164836 + 0.177886i
\(160\) 0 0
\(161\) 1.36501 0.107578
\(162\) 1.20646 3.53922i 0.0947884 0.278067i
\(163\) 3.31466i 0.259624i −0.991539 0.129812i \(-0.958563\pi\)
0.991539 0.129812i \(-0.0414374\pi\)
\(164\) −5.14440 4.31667i −0.401710 0.337075i
\(165\) 0 0
\(166\) −0.332853 1.88770i −0.0258344 0.146514i
\(167\) −7.03295 + 19.3229i −0.544226 + 1.49525i 0.297167 + 0.954826i \(0.403958\pi\)
−0.841393 + 0.540424i \(0.818264\pi\)
\(168\) −2.98791 2.06938i −0.230522 0.159656i
\(169\) 2.25737 12.8022i 0.173644 0.984783i
\(170\) 0 0
\(171\) 0.416126 1.18088i 0.0318219 0.0903044i
\(172\) 13.1477 7.59085i 1.00251 0.578797i
\(173\) 4.79966 + 13.1870i 0.364911 + 1.00259i 0.977269 + 0.212005i \(0.0679992\pi\)
−0.612357 + 0.790581i \(0.709779\pi\)
\(174\) 5.41917 1.48192i 0.410827 0.112344i
\(175\) 0 0
\(176\) −11.9617 + 10.0371i −0.901648 + 0.756572i
\(177\) −6.20169 1.62766i −0.466148 0.122342i
\(178\) 0.479305 + 1.31688i 0.0359254 + 0.0987043i
\(179\) 5.09500 + 8.82479i 0.380818 + 0.659596i 0.991179 0.132527i \(-0.0423091\pi\)
−0.610361 + 0.792123i \(0.708976\pi\)
\(180\) 0 0
\(181\) −12.0274 + 20.8320i −0.893987 + 1.54843i −0.0589331 + 0.998262i \(0.518770\pi\)
−0.835054 + 0.550169i \(0.814563\pi\)
\(182\) −0.00975037 0.00171925i −0.000722746 0.000127440i
\(183\) 0.982498 11.9354i 0.0726283 0.882293i
\(184\) −1.54563 0.562565i −0.113946 0.0414728i
\(185\) 0 0
\(186\) 2.43823 + 1.12176i 0.178780 + 0.0822516i
\(187\) −10.5019 + 12.5157i −0.767978 + 0.915240i
\(188\) 12.9706i 0.945981i
\(189\) −6.82089 + 0.702760i −0.496146 + 0.0511182i
\(190\) 0 0
\(191\) 8.38541 + 7.03619i 0.606747 + 0.509121i 0.893606 0.448852i \(-0.148167\pi\)
−0.286860 + 0.957973i \(0.592611\pi\)
\(192\) −4.15316 5.86699i −0.299729 0.423414i
\(193\) −10.6418 + 1.87644i −0.766013 + 0.135069i −0.542984 0.839743i \(-0.682706\pi\)
−0.223029 + 0.974812i \(0.571595\pi\)
\(194\) −3.88121 1.41265i −0.278655 0.101422i
\(195\) 0 0
\(196\) 1.66867 9.46347i 0.119190 0.675962i
\(197\) 19.1161 + 11.0367i 1.36196 + 0.786331i 0.989885 0.141870i \(-0.0453115\pi\)
0.372080 + 0.928201i \(0.378645\pi\)
\(198\) 1.06296 6.41270i 0.0755413 0.455731i
\(199\) 6.44338 + 11.1603i 0.456759 + 0.791130i 0.998787 0.0492301i \(-0.0156768\pi\)
−0.542028 + 0.840360i \(0.682343\pi\)
\(200\) 0 0
\(201\) −13.5742 13.4355i −0.957448 0.947667i
\(202\) −3.68524 4.39190i −0.259293 0.309013i
\(203\) −6.62241 7.89228i −0.464802 0.553929i
\(204\) −7.04736 6.97537i −0.493414 0.488374i
\(205\) 0 0
\(206\) 0.948326 + 1.64255i 0.0660730 + 0.114442i
\(207\) −2.90496 + 1.09123i −0.201909 + 0.0758456i
\(208\) −0.0468255 0.0270347i −0.00324676 0.00187452i
\(209\) 0.377957 2.14350i 0.0261439 0.148269i
\(210\) 0 0
\(211\) 22.5485 + 8.20699i 1.55230 + 0.564992i 0.968957 0.247230i \(-0.0795204\pi\)
0.583347 + 0.812223i \(0.301743\pi\)
\(212\) −2.34055 + 0.412702i −0.160749 + 0.0283445i
\(213\) 6.08875 + 8.60131i 0.417194 + 0.589352i
\(214\) −3.59528 3.01680i −0.245768 0.206224i
\(215\) 0 0
\(216\) 8.01311 + 2.01536i 0.545223 + 0.137128i
\(217\) 4.92177i 0.334112i
\(218\) −3.87317 + 4.61587i −0.262324 + 0.312626i
\(219\) −0.860667 0.395969i −0.0581585 0.0267571i
\(220\) 0 0
\(221\) −0.0531618 0.0193493i −0.00357605 0.00130158i
\(222\) 0.261224 3.17336i 0.0175322 0.212982i
\(223\) −21.3331 3.76160i −1.42857 0.251895i −0.594740 0.803918i \(-0.702745\pi\)
−0.833829 + 0.552023i \(0.813856\pi\)
\(224\) 2.91919 5.05618i 0.195047 0.337831i
\(225\) 0 0
\(226\) 2.60880 + 4.51858i 0.173535 + 0.300571i
\(227\) −7.40196 20.3367i −0.491285 1.34979i −0.899505 0.436911i \(-0.856072\pi\)
0.408220 0.912884i \(-0.366150\pi\)
\(228\) 1.27770 + 0.335338i 0.0846178 + 0.0222083i
\(229\) 8.27739 6.94555i 0.546985 0.458975i −0.326934 0.945047i \(-0.606015\pi\)
0.873919 + 0.486072i \(0.161571\pi\)
\(230\) 0 0
\(231\) −11.4980 + 3.14424i −0.756513 + 0.206876i
\(232\) 4.24606 + 11.6660i 0.278768 + 0.765908i
\(233\) −6.61557 + 3.81950i −0.433400 + 0.250224i −0.700794 0.713364i \(-0.747171\pi\)
0.267394 + 0.963587i \(0.413838\pi\)
\(234\) 0.0221249 0.00413588i 0.00144635 0.000270371i
\(235\) 0 0
\(236\) 1.17467 6.66187i 0.0764644 0.433651i
\(237\) −0.696490 0.482377i −0.0452419 0.0313338i
\(238\) 0.587451 1.61401i 0.0380788 0.104621i
\(239\) 0.561143 + 3.18240i 0.0362973 + 0.205852i 0.997563 0.0697711i \(-0.0222269\pi\)
−0.961266 + 0.275623i \(0.911116\pi\)
\(240\) 0 0
\(241\) −20.3346 17.0628i −1.30987 1.09911i −0.988349 0.152206i \(-0.951362\pi\)
−0.321518 0.946903i \(-0.604193\pi\)
\(242\) 6.72979i 0.432608i
\(243\) 13.9542 6.94842i 0.895162 0.445741i
\(244\) 12.6350 0.808873
\(245\) 0 0
\(246\) 0.244007 + 2.63324i 0.0155573 + 0.167889i
\(247\) 0.00742226 0.00130875i 0.000472267 8.32735e-5i
\(248\) −2.02843 + 5.57306i −0.128805 + 0.353890i
\(249\) 4.54985 6.56938i 0.288335 0.416318i
\(250\) 0 0
\(251\) 2.24965 3.89651i 0.141997 0.245945i −0.786252 0.617906i \(-0.787981\pi\)
0.928248 + 0.371961i \(0.121314\pi\)
\(252\) −1.32933 7.11124i −0.0837399 0.447966i
\(253\) −4.67179 + 2.69726i −0.293713 + 0.169575i
\(254\) 3.27749 1.19291i 0.205648 0.0748498i
\(255\) 0 0
\(256\) 2.99340 2.51176i 0.187088 0.156985i
\(257\) 8.82895 + 10.5219i 0.550735 + 0.656340i 0.967559 0.252647i \(-0.0813011\pi\)
−0.416824 + 0.908987i \(0.636857\pi\)
\(258\) −5.78258 1.51766i −0.360007 0.0944854i
\(259\) −5.48690 + 1.99707i −0.340939 + 0.124092i
\(260\) 0 0
\(261\) 20.4029 + 11.5020i 1.26291 + 0.711953i
\(262\) −5.58952 3.22711i −0.345322 0.199372i
\(263\) 23.8349 + 4.20273i 1.46972 + 0.259151i 0.850462 0.526036i \(-0.176322\pi\)
0.619258 + 0.785187i \(0.287433\pi\)
\(264\) 14.3154 + 1.17841i 0.881049 + 0.0725260i
\(265\) 0 0
\(266\) 0.0397339 + 0.225342i 0.00243624 + 0.0138166i
\(267\) −2.44185 + 5.30755i −0.149439 + 0.324817i
\(268\) 12.9523 15.4360i 0.791189 0.942902i
\(269\) −12.0062 −0.732032 −0.366016 0.930609i \(-0.619278\pi\)
−0.366016 + 0.930609i \(0.619278\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) 6.02933 7.18547i 0.365582 0.435683i
\(273\) −0.0238481 0.0336891i −0.00144335 0.00203896i
\(274\) 0.866273 + 4.91288i 0.0523335 + 0.296798i
\(275\) 0 0
\(276\) −1.39885 2.96008i −0.0842011 0.178176i
\(277\) −23.1264 4.07780i −1.38953 0.245011i −0.571695 0.820466i \(-0.693714\pi\)
−0.817833 + 0.575455i \(0.804825\pi\)
\(278\) −2.21104 1.27654i −0.132609 0.0765621i
\(279\) 3.93462 + 10.4744i 0.235559 + 0.627084i
\(280\) 0 0
\(281\) 19.1432 6.96754i 1.14199 0.415649i 0.299356 0.954142i \(-0.403228\pi\)
0.842630 + 0.538493i \(0.181006\pi\)
\(282\) −3.59311 + 3.63020i −0.213967 + 0.216175i
\(283\) −7.45630 8.88607i −0.443231 0.528222i 0.497460 0.867487i \(-0.334266\pi\)
−0.940691 + 0.339265i \(0.889822\pi\)
\(284\) −8.51714 + 7.14673i −0.505399 + 0.424080i
\(285\) 0 0
\(286\) 0.0367683 0.0133826i 0.00217416 0.000791328i
\(287\) 4.19984 2.42478i 0.247909 0.143130i
\(288\) −2.17046 + 13.0941i −0.127896 + 0.771578i
\(289\) −3.59280 + 6.22291i −0.211341 + 0.366053i
\(290\) 0 0
\(291\) −7.35706 15.5681i −0.431279 0.912618i
\(292\) 0.341860 0.939253i 0.0200058 0.0549656i
\(293\) 31.0945 5.48280i 1.81656 0.320308i 0.841165 0.540779i \(-0.181870\pi\)
0.975394 + 0.220470i \(0.0707592\pi\)
\(294\) −3.08858 + 2.18637i −0.180130 + 0.127511i
\(295\) 0 0
\(296\) 7.03603 0.408961
\(297\) 21.9561 15.8833i 1.27402 0.921644i
\(298\) 0.366782i 0.0212471i
\(299\) −0.0143093 0.0120069i −0.000827529 0.000694379i
\(300\) 0 0
\(301\) 1.90376 + 10.7968i 0.109731 + 0.622315i
\(302\) −1.16882 + 3.21131i −0.0672581 + 0.184790i
\(303\) 1.96088 23.8208i 0.112649 1.36847i
\(304\) −0.216991 + 1.23062i −0.0124453 + 0.0705809i
\(305\) 0 0
\(306\) 0.0400924 + 3.90451i 0.00229193 + 0.223206i
\(307\) −7.03259 + 4.06027i −0.401371 + 0.231732i −0.687075 0.726586i \(-0.741106\pi\)
0.285704 + 0.958318i \(0.407773\pi\)
\(308\) −4.30134 11.8178i −0.245092 0.673384i
\(309\) −2.00725 + 7.64800i −0.114188 + 0.435079i
\(310\) 0 0
\(311\) −18.2691 + 15.3296i −1.03594 + 0.869259i −0.991546 0.129754i \(-0.958581\pi\)
−0.0443970 + 0.999014i \(0.514137\pi\)
\(312\) 0.0131194 + 0.0479757i 0.000742740 + 0.00271609i
\(313\) 9.20392 + 25.2876i 0.520236 + 1.42934i 0.870258 + 0.492596i \(0.163952\pi\)
−0.350022 + 0.936742i \(0.613826\pi\)
\(314\) −2.60909 4.51908i −0.147240 0.255026i
\(315\) 0 0
\(316\) 0.446928 0.774102i 0.0251417 0.0435466i
\(317\) −8.20574 1.44689i −0.460881 0.0812657i −0.0616130 0.998100i \(-0.519624\pi\)
−0.399268 + 0.916834i \(0.630736\pi\)
\(318\) 0.769394 + 0.532870i 0.0431455 + 0.0298819i
\(319\) 38.2606 + 13.9257i 2.14218 + 0.779692i
\(320\) 0 0
\(321\) −1.80534 19.4826i −0.100764 1.08741i
\(322\) 0.364534 0.434435i 0.0203147 0.0242101i
\(323\) 1.30748i 0.0727501i
\(324\) 8.51398 + 14.0712i 0.472999 + 0.781734i
\(325\) 0 0
\(326\) −1.05494 0.885201i −0.0584278 0.0490268i
\(327\) −25.0131 + 2.31782i −1.38323 + 0.128176i
\(328\) −5.75493 + 1.01475i −0.317763 + 0.0560301i
\(329\) 8.80173 + 3.20357i 0.485255 + 0.176618i
\(330\) 0 0
\(331\) −1.11487 + 6.32272i −0.0612786 + 0.347528i 0.938717 + 0.344688i \(0.112015\pi\)
−0.999996 + 0.00284030i \(0.999096\pi\)
\(332\) 7.30143 + 4.21548i 0.400718 + 0.231355i
\(333\) 10.0805 8.63650i 0.552410 0.473277i
\(334\) 4.27161 + 7.39865i 0.233732 + 0.404836i
\(335\) 0 0
\(336\) 6.60119 1.80516i 0.360124 0.0984794i
\(337\) 4.80477 + 5.72610i 0.261732 + 0.311921i 0.880867 0.473365i \(-0.156961\pi\)
−0.619134 + 0.785285i \(0.712516\pi\)
\(338\) −3.47165 4.13735i −0.188833 0.225042i
\(339\) −5.52185 + 21.0393i −0.299906 + 1.14270i
\(340\) 0 0
\(341\) 9.72545 + 16.8450i 0.526663 + 0.912206i
\(342\) −0.264706 0.447801i −0.0143136 0.0242143i
\(343\) 14.0095 + 8.08839i 0.756442 + 0.436732i
\(344\) 2.29403 13.0101i 0.123686 0.701456i
\(345\) 0 0
\(346\) 5.47874 + 1.99410i 0.294539 + 0.107203i
\(347\) 30.9766 5.46202i 1.66291 0.293216i 0.738399 0.674364i \(-0.235582\pi\)
0.924514 + 0.381148i \(0.124471\pi\)
\(348\) −10.3281 + 22.4490i −0.553647 + 1.20339i
\(349\) −9.07988 7.61893i −0.486035 0.407832i 0.366568 0.930391i \(-0.380533\pi\)
−0.852603 + 0.522560i \(0.824977\pi\)
\(350\) 0 0
\(351\) 0.0776848 + 0.0526312i 0.00414651 + 0.00280925i
\(352\) 23.0733i 1.22981i
\(353\) −5.27541 + 6.28699i −0.280782 + 0.334623i −0.887941 0.459958i \(-0.847865\pi\)
0.607159 + 0.794580i \(0.292309\pi\)
\(354\) −2.17423 + 1.53911i −0.115559 + 0.0818026i
\(355\) 0 0
\(356\) −5.79217 2.10818i −0.306984 0.111733i
\(357\) 6.47401 3.05944i 0.342641 0.161923i
\(358\) 4.16928 + 0.735157i 0.220353 + 0.0388542i
\(359\) 8.86365 15.3523i 0.467806 0.810263i −0.531517 0.847047i \(-0.678378\pi\)
0.999323 + 0.0367840i \(0.0117114\pi\)
\(360\) 0 0
\(361\) 9.41291 + 16.3036i 0.495416 + 0.858086i
\(362\) 3.41812 + 9.39122i 0.179653 + 0.493591i
\(363\) 19.7365 19.9402i 1.03590 1.04659i
\(364\) 0.0333594 0.0279919i 0.00174851 0.00146717i
\(365\) 0 0
\(366\) −3.53626 3.50013i −0.184843 0.182955i
\(367\) 6.94969 + 19.0941i 0.362771 + 0.996704i 0.978045 + 0.208392i \(0.0668229\pi\)
−0.615275 + 0.788313i \(0.710955\pi\)
\(368\) 2.68215 1.54854i 0.139817 0.0807232i
\(369\) −6.99953 + 8.51782i −0.364381 + 0.443420i
\(370\) 0 0
\(371\) 0.298028 1.69020i 0.0154728 0.0877509i
\(372\) −10.6731 + 5.04381i −0.553374 + 0.261510i
\(373\) 3.31125 9.09758i 0.171450 0.471055i −0.823972 0.566630i \(-0.808247\pi\)
0.995422 + 0.0955754i \(0.0304691\pi\)
\(374\) 1.17871 + 6.68481i 0.0609498 + 0.345663i
\(375\) 0 0
\(376\) −8.64615 7.25498i −0.445891 0.374147i
\(377\) 0.140987i 0.00726119i
\(378\) −1.59790 + 2.35853i −0.0821870 + 0.121310i
\(379\) 4.12905 0.212095 0.106048 0.994361i \(-0.466180\pi\)
0.106048 + 0.994361i \(0.466180\pi\)
\(380\) 0 0
\(381\) 13.2096 + 6.07736i 0.676748 + 0.311353i
\(382\) 4.47876 0.789725i 0.229153 0.0404059i
\(383\) −1.62466 + 4.46371i −0.0830162 + 0.228085i −0.974255 0.225450i \(-0.927615\pi\)
0.891239 + 0.453535i \(0.149837\pi\)
\(384\) −18.2508 1.50236i −0.931357 0.0766672i
\(385\) 0 0
\(386\) −2.24476 + 3.88803i −0.114255 + 0.197896i
\(387\) −12.6828 21.4554i −0.644702 1.09064i
\(388\) 15.7328 9.08336i 0.798714 0.461138i
\(389\) −20.4978 + 7.46059i −1.03928 + 0.378267i −0.804607 0.593807i \(-0.797624\pi\)
−0.234673 + 0.972074i \(0.575402\pi\)
\(390\) 0 0
\(391\) 2.48238 2.08297i 0.125539 0.105340i
\(392\) −5.37495 6.40561i −0.271476 0.323532i
\(393\) −7.09745 25.9543i −0.358019 1.30922i
\(394\) 8.61767 3.13658i 0.434152 0.158018i
\(395\) 0 0
\(396\) 18.6015 + 21.7117i 0.934762 + 1.09106i
\(397\) 30.1802 + 17.4245i 1.51470 + 0.874512i 0.999852 + 0.0172294i \(0.00548457\pi\)
0.514847 + 0.857282i \(0.327849\pi\)
\(398\) 5.27268 + 0.929715i 0.264295 + 0.0466024i
\(399\) −0.543131 + 0.784210i −0.0271906 + 0.0392596i
\(400\) 0 0
\(401\) −3.26911 18.5401i −0.163252 0.925847i −0.950849 0.309656i \(-0.899786\pi\)
0.787597 0.616191i \(-0.211325\pi\)
\(402\) −7.90113 + 0.732152i −0.394072 + 0.0365164i
\(403\) −0.0432932 + 0.0515948i −0.00215659 + 0.00257012i
\(404\) 25.2170 1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) 14.8329 17.6772i 0.735241 0.876226i
\(408\) −8.59160 + 0.796135i −0.425348 + 0.0394145i
\(409\) 1.10439 + 6.26334i 0.0546088 + 0.309702i 0.999862 0.0166371i \(-0.00529599\pi\)
−0.945253 + 0.326339i \(0.894185\pi\)
\(410\) 0 0
\(411\) −11.8413 + 17.0973i −0.584088 + 0.843346i
\(412\) −8.21551 1.44862i −0.404749 0.0713682i
\(413\) 4.23055 + 2.44251i 0.208172 + 0.120188i
\(414\) −0.428490 + 1.21597i −0.0210591 + 0.0597617i
\(415\) 0 0
\(416\) −0.0750772 + 0.0273259i −0.00368096 + 0.00133976i
\(417\) −2.80753 10.2667i −0.137485 0.502763i
\(418\) −0.581267 0.692727i −0.0284307 0.0338824i
\(419\) 18.6286 15.6313i 0.910069 0.763638i −0.0620632 0.998072i \(-0.519768\pi\)
0.972132 + 0.234434i \(0.0753236\pi\)
\(420\) 0 0
\(421\) 7.50818 2.73275i 0.365926 0.133186i −0.152511 0.988302i \(-0.548736\pi\)
0.518438 + 0.855115i \(0.326514\pi\)
\(422\) 8.63373 4.98469i 0.420283 0.242651i
\(423\) −21.2926 + 0.218637i −1.03528 + 0.0106305i
\(424\) −1.03405 + 1.79103i −0.0502181 + 0.0869803i
\(425\) 0 0
\(426\) 4.36354 + 0.359197i 0.211414 + 0.0174031i
\(427\) −3.12067 + 8.57397i −0.151020 + 0.414924i
\(428\) 20.3294 3.58462i 0.982659 0.173269i
\(429\) 0.148191 + 0.0681784i 0.00715472 + 0.00329169i
\(430\) 0 0
\(431\) 9.87124 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(432\) −12.6053 + 9.11887i −0.606475 + 0.438732i
\(433\) 6.10369i 0.293325i 0.989187 + 0.146662i \(0.0468531\pi\)
−0.989187 + 0.146662i \(0.953147\pi\)
\(434\) −1.56643 1.31439i −0.0751911 0.0630928i
\(435\) 0 0
\(436\) −4.60219 26.1003i −0.220405 1.24998i
\(437\) −0.147651 + 0.405669i −0.00706312 + 0.0194058i
\(438\) −0.355870 + 0.168174i −0.0170041 + 0.00803569i
\(439\) 2.62800 14.9041i 0.125427 0.711334i −0.855626 0.517595i \(-0.826827\pi\)
0.981053 0.193739i \(-0.0620615\pi\)
\(440\) 0 0
\(441\) −15.5634 2.57976i −0.741113 0.122846i
\(442\) −0.0203554 + 0.0117522i −0.000968210 + 0.000558996i
\(443\) −0.247210 0.679204i −0.0117453 0.0322699i 0.933681 0.358105i \(-0.116577\pi\)
−0.945427 + 0.325835i \(0.894355\pi\)
\(444\) 9.95369 + 9.85201i 0.472381 + 0.467555i
\(445\) 0 0
\(446\) −6.89432 + 5.78502i −0.326456 + 0.273929i
\(447\) −1.07566 + 1.08677i −0.0508772 + 0.0514023i
\(448\) 1.87311 + 5.14633i 0.0884962 + 0.243141i
\(449\) 0.834224 + 1.44492i 0.0393695 + 0.0681899i 0.885039 0.465517i \(-0.154132\pi\)
−0.845669 + 0.533707i \(0.820798\pi\)
\(450\) 0 0
\(451\) −9.58275 + 16.5978i −0.451234 + 0.781560i
\(452\) −22.6005 3.98507i −1.06304 0.187442i
\(453\) −12.8810 + 6.08723i −0.605204 + 0.286003i
\(454\) −8.44922 3.07526i −0.396541 0.144329i
\(455\) 0 0
\(456\) 0.938202 0.664140i 0.0439353 0.0311012i
\(457\) −7.12430 + 8.49041i −0.333261 + 0.397165i −0.906488 0.422232i \(-0.861247\pi\)
0.573227 + 0.819397i \(0.305691\pi\)
\(458\) 4.48926i 0.209769i
\(459\) −11.3320 + 11.6865i −0.528932 + 0.545481i
\(460\) 0 0
\(461\) −16.7644 14.0670i −0.780797 0.655166i 0.162653 0.986683i \(-0.447995\pi\)
−0.943449 + 0.331517i \(0.892439\pi\)
\(462\) −2.06992 + 4.49911i −0.0963012 + 0.209318i
\(463\) 24.4742 4.31546i 1.13741 0.200556i 0.426938 0.904281i \(-0.359592\pi\)
0.710473 + 0.703724i \(0.248481\pi\)
\(464\) −21.9660 7.99499i −1.01975 0.371158i
\(465\) 0 0
\(466\) −0.551115 + 3.12553i −0.0255299 + 0.144787i
\(467\) 10.2499 + 5.91777i 0.474308 + 0.273842i 0.718041 0.696001i \(-0.245039\pi\)
−0.243734 + 0.969842i \(0.578372\pi\)
\(468\) −0.0486170 + 0.0862400i −0.00224732 + 0.00398645i
\(469\) 7.27564 + 12.6018i 0.335958 + 0.581896i
\(470\) 0 0
\(471\) 5.52246 21.0416i 0.254462 0.969547i
\(472\) −3.78373 4.50927i −0.174160 0.207556i
\(473\) −27.8501 33.1905i −1.28055 1.52610i
\(474\) −0.339526 + 0.0928466i −0.0155950 + 0.00426459i
\(475\) 0 0
\(476\) 3.77733 + 6.54252i 0.173134 + 0.299876i
\(477\) 0.716944 + 3.83529i 0.0328266 + 0.175606i
\(478\) 1.16270 + 0.671288i 0.0531809 + 0.0307040i
\(479\) −0.501383 + 2.84349i −0.0229088 + 0.129922i −0.994117 0.108309i \(-0.965456\pi\)
0.971209 + 0.238231i \(0.0765676\pi\)
\(480\) 0 0
\(481\) 0.0750857 + 0.0273290i 0.00342361 + 0.00124609i
\(482\) −10.8610 + 1.91508i −0.494704 + 0.0872297i
\(483\) 2.35417 0.218148i 0.107119 0.00992607i
\(484\) 22.6752 + 19.0267i 1.03069 + 0.864852i
\(485\) 0 0
\(486\) 1.51512 6.29676i 0.0687271 0.285627i
\(487\) 8.75903i 0.396910i 0.980110 + 0.198455i \(0.0635923\pi\)
−0.980110 + 0.198455i \(0.936408\pi\)
\(488\) 7.06724 8.42241i 0.319919 0.381265i
\(489\) −0.529731 5.71667i −0.0239553 0.258517i
\(490\) 0 0
\(491\) 21.2117 + 7.72044i 0.957272 + 0.348418i 0.772964 0.634450i \(-0.218773\pi\)
0.184308 + 0.982869i \(0.440996\pi\)
\(492\) −9.56222 6.62264i −0.431098 0.298572i
\(493\) −24.0869 4.24716i −1.08482 0.191283i
\(494\) 0.00156564 0.00271176i 7.04413e−5 0.000122008i
\(495\) 0 0
\(496\) −5.58354 9.67097i −0.250708 0.434239i
\(497\) −2.74608 7.54478i −0.123178 0.338430i
\(498\) −0.875741 3.20246i −0.0392429 0.143505i
\(499\) 19.4061 16.2836i 0.868734 0.728955i −0.0950968 0.995468i \(-0.530316\pi\)
0.963831 + 0.266513i \(0.0858716\pi\)
\(500\) 0 0
\(501\) −9.04139 + 34.4494i −0.403940 + 1.53909i
\(502\) −0.639340 1.75657i −0.0285352 0.0783997i
\(503\) −3.24252 + 1.87207i −0.144577 + 0.0834714i −0.570543 0.821267i \(-0.693267\pi\)
0.425967 + 0.904739i \(0.359934\pi\)
\(504\) −5.48386 3.09147i −0.244270 0.137705i
\(505\) 0 0
\(506\) −0.389187 + 2.20719i −0.0173015 + 0.0981216i
\(507\) 1.84723 22.4402i 0.0820382 0.996604i
\(508\) −5.24690 + 14.4157i −0.232793 + 0.639595i
\(509\) −4.22831 23.9800i −0.187417 1.06289i −0.922811 0.385253i \(-0.874114\pi\)
0.735394 0.677640i \(-0.236997\pi\)
\(510\) 0 0
\(511\) 0.552932 + 0.463965i 0.0244603 + 0.0205246i
\(512\) 22.7690i 1.00626i
\(513\) 0.528954 2.10313i 0.0233539 0.0928554i
\(514\) 5.70660 0.251707
\(515\) 0 0
\(516\) 21.4623 15.1929i 0.944824 0.668828i
\(517\) −36.4546 + 6.42792i −1.60327 + 0.282700i
\(518\) −0.829715 + 2.27962i −0.0364556 + 0.100161i
\(519\) 10.3853 + 21.9760i 0.455862 + 0.964639i
\(520\) 0 0
\(521\) −9.81046 + 16.9922i −0.429804 + 0.744443i −0.996856 0.0792397i \(-0.974751\pi\)
0.567051 + 0.823682i \(0.308084\pi\)
\(522\) 9.10941 3.42188i 0.398708 0.149772i
\(523\) −18.0267 + 10.4077i −0.788251 + 0.455097i −0.839346 0.543597i \(-0.817062\pi\)
0.0510956 + 0.998694i \(0.483729\pi\)
\(524\) 26.6763 9.70937i 1.16536 0.424156i
\(525\) 0 0
\(526\) 7.70284 6.46345i 0.335860 0.281820i
\(527\) −7.51051 8.95067i −0.327163 0.389897i
\(528\) −19.0258 + 19.2222i −0.827993 + 0.836539i
\(529\) −20.6075 + 7.50052i −0.895978 + 0.326109i
\(530\) 0 0
\(531\) −10.9559 1.81604i −0.475447 0.0788095i
\(532\) −0.871598 0.503217i −0.0377886 0.0218172i
\(533\) −0.0653558 0.0115240i −0.00283087 0.000499159i
\(534\) 1.03710 + 2.19457i 0.0448795 + 0.0949685i
\(535\) 0 0
\(536\) −3.04479 17.2679i −0.131515 0.745859i
\(537\) 10.1975 + 14.4055i 0.440054 + 0.621645i
\(538\) −3.20634 + 3.82117i −0.138235 + 0.164742i
\(539\) −27.4245 −1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) 0.992856 1.18324i 0.0426468 0.0508245i
\(543\) −17.4139 + 37.8503i −0.747301 + 1.62431i
\(544\) −2.40681 13.6497i −0.103191 0.585227i
\(545\) 0 0
\(546\) −0.0170909 0.00140688i −0.000731421 6.02089e-5i
\(547\) 22.3036 + 3.93273i 0.953633 + 0.168151i 0.628754 0.777604i \(-0.283565\pi\)
0.324879 + 0.945756i \(0.394676\pi\)
\(548\) −19.0025 10.9711i −0.811745 0.468661i
\(549\) −0.212980 20.7416i −0.00908976 0.885231i
\(550\) 0 0
\(551\) 3.06186 1.11443i 0.130440 0.0474761i
\(552\) −2.75560 0.723220i −0.117286 0.0307823i
\(553\) 0.414912 + 0.494473i 0.0176439 + 0.0210271i
\(554\) −7.47387 + 6.27132i −0.317534 + 0.266443i
\(555\) 0 0
\(556\) 10.5523 3.84072i 0.447517 0.162883i
\(557\) 31.5682 18.2259i 1.33759 0.772256i 0.351138 0.936324i \(-0.385795\pi\)
0.986449 + 0.164067i \(0.0524615\pi\)
\(558\) 4.38440 + 1.54500i 0.185606 + 0.0654049i
\(559\) 0.0750139 0.129928i 0.00317275 0.00549537i
\(560\) 0 0
\(561\) −16.1121 + 23.2637i −0.680253 + 0.982196i
\(562\) 2.89478 7.95334i 0.122109 0.335491i
\(563\) 26.1134 4.60450i 1.10055 0.194056i 0.406263 0.913756i \(-0.366832\pi\)
0.694285 + 0.719700i \(0.255721\pi\)
\(564\) −2.07290 22.3700i −0.0872847 0.941945i
\(565\) 0 0
\(566\) −4.81938 −0.202574
\(567\) −11.6514 + 2.30210i −0.489313 + 0.0966791i
\(568\) 9.67492i 0.405950i
\(569\) −17.5941 14.7632i −0.737581 0.618904i 0.194606 0.980882i \(-0.437657\pi\)
−0.932187 + 0.361978i \(0.882102\pi\)
\(570\) 0 0
\(571\) −0.833165 4.72511i −0.0348669 0.197740i 0.962399 0.271641i \(-0.0875662\pi\)
−0.997266 + 0.0739009i \(0.976455\pi\)
\(572\) −0.0588619 + 0.161722i −0.00246114 + 0.00676193i
\(573\) 15.5865 + 10.7949i 0.651134 + 0.450965i
\(574\) 0.349871 1.98422i 0.0146033 0.0828197i
\(575\) 0 0
\(576\) −8.10043 9.45484i −0.337518 0.393952i
\(577\) −3.73545 + 2.15666i −0.155509 + 0.0897831i −0.575735 0.817636i \(-0.695284\pi\)
0.420226 + 0.907419i \(0.361951\pi\)
\(578\) 1.02106 + 2.80533i 0.0424704 + 0.116686i
\(579\) −18.0536 + 4.93693i −0.750283 + 0.205172i
\(580\) 0 0
\(581\) −4.66393 + 3.91351i −0.193493 + 0.162360i
\(582\) −6.91954 1.81606i −0.286824 0.0752782i
\(583\) 2.31983 + 6.37369i 0.0960777 + 0.263971i
\(584\) −0.434885 0.753242i −0.0179957 0.0311694i
\(585\) 0 0
\(586\) 6.55900 11.3605i 0.270950 0.469299i
\(587\) 41.1868 + 7.26235i 1.69996 + 0.299749i 0.937681 0.347497i \(-0.112968\pi\)
0.762281 + 0.647246i \(0.224079\pi\)
\(588\) 1.36548 16.5880i 0.0563116 0.684076i
\(589\) 1.46271 + 0.532383i 0.0602699 + 0.0219365i
\(590\) 0 0
\(591\) 34.7326 + 15.9795i 1.42871 + 0.657309i
\(592\) −8.51582 + 10.1488i −0.349998 + 0.417111i
\(593\) 31.5370i 1.29507i 0.762035 + 0.647536i \(0.224200\pi\)
−0.762035 + 0.647536i \(0.775800\pi\)
\(594\) 0.808405 11.2296i 0.0331693 0.460757i
\(595\) 0 0
\(596\) −1.23583 1.03698i −0.0506214 0.0424764i
\(597\) 12.8962 + 18.2179i 0.527807 + 0.745611i
\(598\) −0.00764279 + 0.00134763i −0.000312537 + 5.51087e-5i
\(599\) −11.8686 4.31982i −0.484938 0.176503i 0.0879695 0.996123i \(-0.471962\pi\)
−0.572907 + 0.819620i \(0.694184\pi\)
\(600\) 0 0
\(601\) 3.56725 20.2309i 0.145511 0.825235i −0.821444 0.570289i \(-0.806831\pi\)
0.966955 0.254946i \(-0.0820577\pi\)
\(602\) 3.94465 + 2.27744i 0.160772 + 0.0928216i
\(603\) −25.5580 21.0023i −1.04080 0.855282i
\(604\) −7.51556 13.0173i −0.305804 0.529668i
\(605\) 0 0
\(606\) −7.05769 6.98559i −0.286699 0.283770i
\(607\) 8.30003 + 9.89160i 0.336888 + 0.401487i 0.907718 0.419581i \(-0.137823\pi\)
−0.570830 + 0.821068i \(0.693378\pi\)
\(608\) 1.18689 + 1.41448i 0.0481348 + 0.0573648i
\(609\) −12.6827 12.5532i −0.513930 0.508680i
\(610\) 0 0
\(611\) −0.0640889 0.111005i −0.00259276 0.00449079i
\(612\) −13.2691 10.9039i −0.536371 0.440763i
\(613\) −26.9851 15.5799i −1.08992 0.629265i −0.156364 0.987699i \(-0.549977\pi\)
−0.933555 + 0.358434i \(0.883311\pi\)
\(614\) −0.585856 + 3.32255i −0.0236432 + 0.134087i
\(615\) 0 0
\(616\) −10.2836 3.74293i −0.414339 0.150807i
\(617\) 7.03230 1.23998i 0.283110 0.0499199i −0.0302901 0.999541i \(-0.509643\pi\)
0.313400 + 0.949621i \(0.398532\pi\)
\(618\) 1.89805 + 2.68129i 0.0763506 + 0.107857i
\(619\) 7.68412 + 6.44774i 0.308851 + 0.259157i 0.784017 0.620740i \(-0.213168\pi\)
−0.475166 + 0.879896i \(0.657612\pi\)
\(620\) 0 0
\(621\) −4.83569 + 2.34625i −0.194049 + 0.0941520i
\(622\) 9.90827i 0.397285i
\(623\) 2.86117 3.40981i 0.114630 0.136611i
\(624\) −0.0850787 0.0391423i −0.00340587 0.00156695i
\(625\) 0 0
\(626\) 10.5061 + 3.82392i 0.419909 + 0.152835i
\(627\) 0.309286 3.75722i 0.0123517 0.150049i
\(628\) 22.6030 + 3.98552i 0.901957 + 0.159039i
\(629\) −6.93093 + 12.0047i −0.276354 + 0.478660i
\(630\) 0 0
\(631\) 3.53780 + 6.12765i 0.140838 + 0.243938i 0.927812 0.373047i \(-0.121687\pi\)
−0.786975 + 0.616985i \(0.788354\pi\)
\(632\) −0.266028 0.730905i −0.0105820 0.0290738i
\(633\) 40.2002 + 10.5507i 1.59781 + 0.419353i
\(634\) −2.65189 + 2.22520i −0.105320 + 0.0883741i
\(635\) 0 0
\(636\) −3.97070 + 1.08582i −0.157448 + 0.0430557i
\(637\) −0.0324790 0.0892352i −0.00128686 0.00353563i
\(638\) 14.6498 8.45809i 0.579993 0.334859i
\(639\) 11.8756 + 13.8613i 0.469793 + 0.548344i
\(640\) 0 0
\(641\) −0.870188 + 4.93508i −0.0343704 + 0.194924i −0.997158 0.0753337i \(-0.975998\pi\)
0.962788 + 0.270258i \(0.0871089\pi\)
\(642\) −6.68277 4.62838i −0.263748 0.182667i
\(643\) −0.560367 + 1.53960i −0.0220987 + 0.0607157i −0.950251 0.311484i \(-0.899174\pi\)
0.928153 + 0.372199i \(0.121396\pi\)
\(644\) 0.433147 + 2.45650i 0.0170684 + 0.0967997i
\(645\) 0 0
\(646\) 0.416126 + 0.349171i 0.0163722 + 0.0137379i
\(647\) 34.4927i 1.35605i 0.735040 + 0.678024i \(0.237164\pi\)
−0.735040 + 0.678024i \(0.762836\pi\)
\(648\) 14.1420 + 2.19521i 0.555550 + 0.0862359i
\(649\) −19.3056 −0.757813
\(650\) 0 0
\(651\) −0.786571 8.48840i −0.0308282 0.332687i
\(652\) 5.96515 1.05182i 0.233613 0.0411923i
\(653\) −13.2569 + 36.4230i −0.518783 + 1.42534i 0.353080 + 0.935593i \(0.385134\pi\)
−0.871862 + 0.489751i \(0.837088\pi\)
\(654\) −5.94223 + 8.57980i −0.232360 + 0.335497i
\(655\) 0 0
\(656\) 5.50161 9.52907i 0.214802 0.372048i
\(657\) −1.54764 0.545365i −0.0603792 0.0212767i
\(658\) 3.37015 1.94575i 0.131382 0.0758534i
\(659\) 8.82552 3.21223i 0.343794 0.125131i −0.164352 0.986402i \(-0.552553\pi\)
0.508146 + 0.861271i \(0.330331\pi\)
\(660\) 0 0
\(661\) −18.4980 + 15.5217i −0.719489 + 0.603723i −0.927244 0.374458i \(-0.877829\pi\)
0.207755 + 0.978181i \(0.433384\pi\)
\(662\) 1.71457 + 2.04335i 0.0666387 + 0.0794169i
\(663\) −0.0947785 0.0248750i −0.00368089 0.000966065i
\(664\) 6.89399 2.50921i 0.267539 0.0973761i
\(665\) 0 0
\(666\) −0.0566265 5.51472i −0.00219423 0.213691i
\(667\) −6.99375 4.03784i −0.270799 0.156346i
\(668\) −37.0057 6.52510i −1.43179 0.252464i
\(669\) −37.3935 3.07815i −1.44572 0.119008i
\(670\) 0 0
\(671\) −6.26159 35.5112i −0.241726 1.37090i
\(672\) 4.22656 9.18674i 0.163043 0.354386i
\(673\) −17.0121 + 20.2742i −0.655768 + 0.781514i −0.986772 0.162115i \(-0.948168\pi\)
0.331003 + 0.943630i \(0.392613\pi\)
\(674\) 3.10557 0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) −19.9694 + 23.7986i −0.767486 + 0.914654i −0.998296 0.0583448i \(-0.981418\pi\)
0.230811 + 0.972999i \(0.425862\pi\)
\(678\) 5.22143 + 7.37609i 0.200528 + 0.283277i
\(679\) 2.27807 + 12.9196i 0.0874245 + 0.495809i
\(680\) 0 0
\(681\) −16.0160 33.8910i −0.613734 1.29871i
\(682\) 7.95842 + 1.40328i 0.304744 + 0.0537345i
\(683\) 33.0268 + 19.0681i 1.26374 + 0.729619i 0.973796 0.227425i \(-0.0730308\pi\)
0.289942 + 0.957044i \(0.406364\pi\)
\(684\) 2.25719 + 0.374149i 0.0863060 + 0.0143060i
\(685\) 0 0
\(686\) 6.31558 2.29868i 0.241130 0.0877642i
\(687\) 13.1657 13.3016i 0.502303 0.507487i
\(688\) 15.9892 + 19.0552i 0.609583 + 0.726472i
\(689\) −0.0179917 + 0.0150968i −0.000685428 + 0.000575142i
\(690\) 0 0
\(691\) −30.9436 + 11.2626i −1.17715 + 0.428448i −0.855195 0.518306i \(-0.826563\pi\)
−0.321957 + 0.946754i \(0.604341\pi\)
\(692\) −22.2085 + 12.8221i −0.844242 + 0.487424i
\(693\) −19.3277 + 7.26030i −0.734198 + 0.275796i
\(694\) 6.53414 11.3175i 0.248033 0.429605i
\(695\) 0 0
\(696\) 9.18742 + 19.4413i 0.348248 + 0.736919i
\(697\) 3.93762 10.8185i 0.149148 0.409781i
\(698\) −4.84968 + 0.855130i −0.183563 + 0.0323672i
\(699\) −10.7992 + 7.64461i −0.408463 + 0.289146i
\(700\) 0 0
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) 0.0374969 0.0106689i 0.00141523 0.000402671i
\(703\) 1.84668i 0.0696490i
\(704\) −16.5800 13.9123i −0.624881 0.524338i
\(705\) 0 0
\(706\) 0.592100 + 3.35796i 0.0222840 + 0.126379i
\(707\) −6.22826 + 17.1120i −0.234238 + 0.643563i
\(708\) 0.961241 11.6772i 0.0361257 0.438857i
\(709\) 1.93654 10.9826i 0.0727281 0.412462i −0.926608 0.376029i \(-0.877289\pi\)
0.999336 0.0364329i \(-0.0115995\pi\)
\(710\) 0 0
\(711\) −1.27830 0.720629i −0.0479400 0.0270257i
\(712\) −4.64508 + 2.68184i −0.174082 + 0.100506i
\(713\) −1.31948 3.62525i −0.0494151 0.135767i
\(714\) 0.755212 2.87750i 0.0282631 0.107688i
\(715\) 0 0
\(716\) −14.2646 + 11.9694i −0.533092 + 0.447317i
\(717\) 1.47637 + 5.39888i 0.0551362 + 0.201625i
\(718\) −2.51901 6.92093i −0.0940087 0.258287i
\(719\) −16.0850 27.8600i −0.599869 1.03900i −0.992840 0.119453i \(-0.961886\pi\)
0.392971 0.919551i \(-0.371447\pi\)
\(720\) 0 0
\(721\) 3.01213 5.21717i 0.112178 0.194297i
\(722\) 7.70267 + 1.35819i 0.286664 + 0.0505465i
\(723\) −37.7972 26.1777i −1.40569 0.973560i
\(724\) −41.3064 15.0343i −1.53514 0.558745i
\(725\) 0 0
\(726\) −1.07552 11.6066i −0.0399163 0.430762i
\(727\) 3.44888 4.11022i 0.127912 0.152440i −0.698287 0.715818i \(-0.746054\pi\)
0.826199 + 0.563378i \(0.190499\pi\)
\(728\) 0.0378942i 0.00140445i
\(729\) 22.9558 14.2138i 0.850215 0.526435i
\(730\) 0 0
\(731\) 19.9377 + 16.7297i 0.737424 + 0.618772i
\(732\) 21.7911 2.01926i 0.805422 0.0746338i
\(733\) −14.3746 + 2.53463i −0.530938 + 0.0936187i −0.432689 0.901543i \(-0.642435\pi\)
−0.0982489 + 0.995162i \(0.531324\pi\)
\(734\) 7.93296 + 2.88736i 0.292811 + 0.106574i
\(735\) 0 0
\(736\) 0.794682 4.50687i 0.0292924 0.166125i
\(737\) −49.8023 28.7534i −1.83449 1.05915i
\(738\) 0.841659 + 4.50245i 0.0309819 + 0.165737i
\(739\) −21.6083 37.4266i −0.794873 1.37676i −0.922920 0.384992i \(-0.874204\pi\)
0.128047 0.991768i \(-0.459129\pi\)
\(740\) 0 0
\(741\) 0.0125917 0.00344333i 0.000462569 0.000126494i
\(742\) −0.458343 0.546231i −0.0168263 0.0200528i
\(743\) −5.21443 6.21431i −0.191299 0.227981i 0.661866 0.749622i \(-0.269765\pi\)
−0.853165 + 0.521641i \(0.825320\pi\)
\(744\) −2.60770 + 9.93582i −0.0956028 + 0.364265i
\(745\) 0 0
\(746\) −2.01116 3.48342i −0.0736336 0.127537i
\(747\) 6.79706 12.0571i 0.248692 0.441146i
\(748\) −25.8561 14.9280i −0.945393 0.545823i
\(749\) −2.58860 + 14.6807i −0.0945854 + 0.536420i
\(750\) 0 0
\(751\) −8.22744 2.99454i −0.300223 0.109272i 0.187516 0.982261i \(-0.439956\pi\)
−0.487740 + 0.872989i \(0.662178\pi\)
\(752\) 20.9291 3.69037i 0.763207 0.134574i
\(753\) 3.25717 7.07968i 0.118698 0.257998i
\(754\) 0.0448713 + 0.0376515i 0.00163412 + 0.00137119i
\(755\) 0 0
\(756\) −3.42913 12.0520i −0.124716 0.438329i
\(757\) 32.1511i 1.16855i −0.811555 0.584276i \(-0.801378\pi\)
0.811555 0.584276i \(-0.198622\pi\)
\(758\) 1.10269 1.31414i 0.0400515 0.0477316i
\(759\) −7.62620 + 5.39848i −0.276813 + 0.195952i
\(760\) 0 0
\(761\) 23.0656 + 8.39520i 0.836128 + 0.304326i 0.724371 0.689410i \(-0.242130\pi\)
0.111756 + 0.993736i \(0.464352\pi\)
\(762\) 5.46192 2.58116i 0.197865 0.0935054i
\(763\) 18.8481 + 3.32342i 0.682346 + 0.120316i
\(764\) −10.0016 + 17.3233i −0.361846 + 0.626736i
\(765\) 0 0
\(766\) 0.986770 + 1.70914i 0.0356535 + 0.0617536i
\(767\) −0.0228638 0.0628177i −0.000825563 0.00226822i
\(768\) 4.76119 4.81033i 0.171805 0.173578i
\(769\) −24.0648 + 20.1928i −0.867800 + 0.728170i −0.963634 0.267227i \(-0.913893\pi\)
0.0958338 + 0.995397i \(0.469448\pi\)
\(770\) 0 0
\(771\) 16.9085 + 16.7358i 0.608945 + 0.602725i
\(772\) −6.75377 18.5558i −0.243073 0.667839i
\(773\) −24.8675 + 14.3573i −0.894422 + 0.516395i −0.875386 0.483424i \(-0.839393\pi\)
−0.0190355 + 0.999819i \(0.506060\pi\)
\(774\) −10.2155 1.69331i −0.367190 0.0608649i