Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(49,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([14, 9]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.49");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.u (of order \(18\), degree \(6\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{18})\) |
Twist minimal: | no (minimal twist has level 27) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{18}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 | −1.36054 | − | 1.62143i | 1.42389 | + | 0.986166i | −0.430663 | + | 2.44241i | 0 | −0.338267 | − | 3.65046i | −0.957561 | + | 0.168844i | 0.880031 | − | 0.508086i | 1.05495 | + | 2.80839i | 0 | ||||
49.2 | −0.267057 | − | 0.318266i | −1.72466 | − | 0.159815i | 0.317323 | − | 1.79963i | 0 | 0.409719 | + | 0.591580i | 1.29958 | − | 0.229151i | −1.37711 | + | 0.795075i | 2.94892 | + | 0.551252i | 0 | ||||
49.3 | 0.267057 | + | 0.318266i | 1.72466 | + | 0.159815i | 0.317323 | − | 1.79963i | 0 | 0.409719 | + | 0.591580i | −1.29958 | + | 0.229151i | 1.37711 | − | 0.795075i | 2.94892 | + | 0.551252i | 0 | ||||
49.4 | 1.36054 | + | 1.62143i | −1.42389 | − | 0.986166i | −0.430663 | + | 2.44241i | 0 | −0.338267 | − | 3.65046i | 0.957561 | − | 0.168844i | −0.880031 | + | 0.508086i | 1.05495 | + | 2.80839i | 0 | ||||
124.1 | −1.36054 | + | 1.62143i | 1.42389 | − | 0.986166i | −0.430663 | − | 2.44241i | 0 | −0.338267 | + | 3.65046i | −0.957561 | − | 0.168844i | 0.880031 | + | 0.508086i | 1.05495 | − | 2.80839i | 0 | ||||
124.2 | −0.267057 | + | 0.318266i | −1.72466 | + | 0.159815i | 0.317323 | + | 1.79963i | 0 | 0.409719 | − | 0.591580i | 1.29958 | + | 0.229151i | −1.37711 | − | 0.795075i | 2.94892 | − | 0.551252i | 0 | ||||
124.3 | 0.267057 | − | 0.318266i | 1.72466 | − | 0.159815i | 0.317323 | + | 1.79963i | 0 | 0.409719 | − | 0.591580i | −1.29958 | − | 0.229151i | 1.37711 | + | 0.795075i | 2.94892 | − | 0.551252i | 0 | ||||
124.4 | 1.36054 | − | 1.62143i | −1.42389 | + | 0.986166i | −0.430663 | − | 2.44241i | 0 | −0.338267 | + | 3.65046i | 0.957561 | + | 0.168844i | −0.880031 | − | 0.508086i | 1.05495 | − | 2.80839i | 0 | ||||
274.1 | −0.574906 | + | 1.57954i | 0.940501 | + | 1.45446i | −0.632343 | − | 0.530599i | 0 | −2.83808 | + | 0.649381i | 2.51261 | + | 2.99441i | −1.70978 | + | 0.987144i | −1.23092 | + | 2.73584i | 0 | ||||
274.2 | −0.274138 | + | 0.753189i | −0.386327 | + | 1.68842i | 1.03995 | + | 0.872619i | 0 | −1.16579 | − | 0.753837i | 1.52780 | + | 1.82076i | −2.33062 | + | 1.34559i | −2.70150 | − | 1.30456i | 0 | ||||
274.3 | 0.274138 | − | 0.753189i | 0.386327 | − | 1.68842i | 1.03995 | + | 0.872619i | 0 | −1.16579 | − | 0.753837i | −1.52780 | − | 1.82076i | 2.33062 | − | 1.34559i | −2.70150 | − | 1.30456i | 0 | ||||
274.4 | 0.574906 | − | 1.57954i | −0.940501 | − | 1.45446i | −0.632343 | − | 0.530599i | 0 | −2.83808 | + | 0.649381i | −2.51261 | − | 2.99441i | 1.70978 | − | 0.987144i | −1.23092 | + | 2.73584i | 0 | ||||
349.1 | −2.36514 | − | 0.417037i | −1.71926 | + | 0.210069i | 3.54056 | + | 1.28866i | 0 | 4.15390 | + | 0.220155i | 0.198324 | + | 0.544891i | −3.67675 | − | 2.12277i | 2.91174 | − | 0.722330i | 0 | ||||
349.2 | −1.03831 | − | 0.183082i | −0.0916693 | − | 1.72962i | −0.834822 | − | 0.303850i | 0 | −0.221481 | + | 1.81266i | 0.841112 | + | 2.31094i | 2.63732 | + | 1.52266i | −2.98319 | + | 0.317107i | 0 | ||||
349.3 | 1.03831 | + | 0.183082i | 0.0916693 | + | 1.72962i | −0.834822 | − | 0.303850i | 0 | −0.221481 | + | 1.81266i | −0.841112 | − | 2.31094i | −2.63732 | − | 1.52266i | −2.98319 | + | 0.317107i | 0 | ||||
349.4 | 2.36514 | + | 0.417037i | 1.71926 | − | 0.210069i | 3.54056 | + | 1.28866i | 0 | 4.15390 | + | 0.220155i | −0.198324 | − | 0.544891i | 3.67675 | + | 2.12277i | 2.91174 | − | 0.722330i | 0 | ||||
499.1 | −2.36514 | + | 0.417037i | −1.71926 | − | 0.210069i | 3.54056 | − | 1.28866i | 0 | 4.15390 | − | 0.220155i | 0.198324 | − | 0.544891i | −3.67675 | + | 2.12277i | 2.91174 | + | 0.722330i | 0 | ||||
499.2 | −1.03831 | + | 0.183082i | −0.0916693 | + | 1.72962i | −0.834822 | + | 0.303850i | 0 | −0.221481 | − | 1.81266i | 0.841112 | − | 2.31094i | 2.63732 | − | 1.52266i | −2.98319 | − | 0.317107i | 0 | ||||
499.3 | 1.03831 | − | 0.183082i | 0.0916693 | − | 1.72962i | −0.834822 | + | 0.303850i | 0 | −0.221481 | − | 1.81266i | −0.841112 | + | 2.31094i | −2.63732 | + | 1.52266i | −2.98319 | − | 0.317107i | 0 | ||||
499.4 | 2.36514 | − | 0.417037i | 1.71926 | + | 0.210069i | 3.54056 | − | 1.28866i | 0 | 4.15390 | − | 0.220155i | −0.198324 | + | 0.544891i | 3.67675 | − | 2.12277i | 2.91174 | + | 0.722330i | 0 | ||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
27.e | even | 9 | 1 | inner |
135.p | even | 18 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 675.2.u.b | 24 | |
5.b | even | 2 | 1 | inner | 675.2.u.b | 24 | |
5.c | odd | 4 | 1 | 27.2.e.a | ✓ | 12 | |
5.c | odd | 4 | 1 | 675.2.l.c | 12 | ||
15.e | even | 4 | 1 | 81.2.e.a | 12 | ||
20.e | even | 4 | 1 | 432.2.u.c | 12 | ||
27.e | even | 9 | 1 | inner | 675.2.u.b | 24 | |
45.k | odd | 12 | 1 | 243.2.e.c | 12 | ||
45.k | odd | 12 | 1 | 243.2.e.d | 12 | ||
45.l | even | 12 | 1 | 243.2.e.a | 12 | ||
45.l | even | 12 | 1 | 243.2.e.b | 12 | ||
135.p | even | 18 | 1 | inner | 675.2.u.b | 24 | |
135.q | even | 36 | 1 | 81.2.e.a | 12 | ||
135.q | even | 36 | 1 | 243.2.e.a | 12 | ||
135.q | even | 36 | 1 | 243.2.e.b | 12 | ||
135.q | even | 36 | 1 | 729.2.a.d | 6 | ||
135.q | even | 36 | 2 | 729.2.c.b | 12 | ||
135.r | odd | 36 | 1 | 27.2.e.a | ✓ | 12 | |
135.r | odd | 36 | 1 | 243.2.e.c | 12 | ||
135.r | odd | 36 | 1 | 243.2.e.d | 12 | ||
135.r | odd | 36 | 1 | 675.2.l.c | 12 | ||
135.r | odd | 36 | 1 | 729.2.a.a | 6 | ||
135.r | odd | 36 | 2 | 729.2.c.e | 12 | ||
540.bh | even | 36 | 1 | 432.2.u.c | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
27.2.e.a | ✓ | 12 | 5.c | odd | 4 | 1 | |
27.2.e.a | ✓ | 12 | 135.r | odd | 36 | 1 | |
81.2.e.a | 12 | 15.e | even | 4 | 1 | ||
81.2.e.a | 12 | 135.q | even | 36 | 1 | ||
243.2.e.a | 12 | 45.l | even | 12 | 1 | ||
243.2.e.a | 12 | 135.q | even | 36 | 1 | ||
243.2.e.b | 12 | 45.l | even | 12 | 1 | ||
243.2.e.b | 12 | 135.q | even | 36 | 1 | ||
243.2.e.c | 12 | 45.k | odd | 12 | 1 | ||
243.2.e.c | 12 | 135.r | odd | 36 | 1 | ||
243.2.e.d | 12 | 45.k | odd | 12 | 1 | ||
243.2.e.d | 12 | 135.r | odd | 36 | 1 | ||
432.2.u.c | 12 | 20.e | even | 4 | 1 | ||
432.2.u.c | 12 | 540.bh | even | 36 | 1 | ||
675.2.l.c | 12 | 5.c | odd | 4 | 1 | ||
675.2.l.c | 12 | 135.r | odd | 36 | 1 | ||
675.2.u.b | 24 | 1.a | even | 1 | 1 | trivial | |
675.2.u.b | 24 | 5.b | even | 2 | 1 | inner | |
675.2.u.b | 24 | 27.e | even | 9 | 1 | inner | |
675.2.u.b | 24 | 135.p | even | 18 | 1 | inner | |
729.2.a.a | 6 | 135.r | odd | 36 | 1 | ||
729.2.a.d | 6 | 135.q | even | 36 | 1 | ||
729.2.c.b | 12 | 135.q | even | 36 | 2 | ||
729.2.c.e | 12 | 135.r | odd | 36 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 6 T_{2}^{22} + 9 T_{2}^{20} - 84 T_{2}^{18} + 324 T_{2}^{16} + 1350 T_{2}^{14} + 3564 T_{2}^{12} + \cdots + 81 \) acting on \(S_{2}^{\mathrm{new}}(675, [\chi])\).