Properties

Label 675.2.u.a.574.2
Level $675$
Weight $2$
Character 675.574
Analytic conductor $5.390$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 574.2
Root \(-0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 675.574
Dual form 675.2.u.a.274.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.300767 + 0.826352i) q^{2} +(1.62760 + 0.592396i) q^{3} +(0.939693 - 0.788496i) q^{4} +1.52314i q^{6} +(-2.41609 + 2.87939i) q^{7} +(2.45734 + 1.41875i) q^{8} +(2.29813 + 1.92836i) q^{9} +O(q^{10})\) \(q+(0.300767 + 0.826352i) q^{2} +(1.62760 + 0.592396i) q^{3} +(0.939693 - 0.788496i) q^{4} +1.52314i q^{6} +(-2.41609 + 2.87939i) q^{7} +(2.45734 + 1.41875i) q^{8} +(2.29813 + 1.92836i) q^{9} +(-0.180922 + 1.02606i) q^{11} +(1.99654 - 0.726682i) q^{12} +(-1.08926 + 2.99273i) q^{13} +(-3.10607 - 1.13052i) q^{14} +(-0.00727396 + 0.0412527i) q^{16} +(-0.405223 + 0.233956i) q^{17} +(-0.902302 + 2.47906i) q^{18} +(2.34730 - 4.06564i) q^{19} +(-5.63816 + 3.25519i) q^{21} +(-0.902302 + 0.159100i) q^{22} +(-3.45150 - 4.11334i) q^{23} +(3.15910 + 3.76487i) q^{24} -2.80066 q^{26} +(2.59808 + 4.50000i) q^{27} +4.61081i q^{28} +(5.45084 - 1.98394i) q^{29} +(-3.14543 + 2.63933i) q^{31} +(5.55250 - 0.979055i) q^{32} +(-0.902302 + 1.56283i) q^{33} +(-0.315207 - 0.264490i) q^{34} +3.68004 q^{36} +(3.87603 - 2.23783i) q^{37} +(4.06564 + 0.716881i) q^{38} +(-3.54576 + 4.22567i) q^{39} +(-7.52481 - 2.73881i) q^{41} +(-4.38571 - 3.68004i) q^{42} +(11.9854 + 2.11334i) q^{43} +(0.639033 + 1.10684i) q^{44} +(2.36097 - 4.08931i) q^{46} +(-2.22913 + 2.65657i) q^{47} +(-0.0362770 + 0.0628336i) q^{48} +(-1.23783 - 7.02006i) q^{49} +(-0.798133 + 0.140732i) q^{51} +(1.33618 + 3.67112i) q^{52} -8.83750i q^{53} +(-2.93717 + 3.50038i) q^{54} +(-10.0223 + 3.64781i) q^{56} +(6.22892 - 5.22668i) q^{57} +(3.27887 + 3.90760i) q^{58} +(-2.36959 - 13.4386i) q^{59} +(7.46064 + 6.26022i) q^{61} +(-3.12706 - 1.80541i) q^{62} +(-11.1050 + 1.95811i) q^{63} +(2.52094 + 4.36640i) q^{64} +(-1.56283 - 0.275570i) q^{66} +(-0.623485 + 1.71301i) q^{67} +(-0.196312 + 0.539363i) q^{68} +(-3.18092 - 8.73951i) q^{69} +(-3.85117 - 6.67042i) q^{71} +(2.91144 + 7.99912i) q^{72} +(0.705990 + 0.407604i) q^{73} +(3.01501 + 2.52990i) q^{74} +(-1.00000 - 5.67128i) q^{76} +(-2.51730 - 3.00000i) q^{77} +(-4.55834 - 1.65910i) q^{78} +(-3.81180 + 1.38738i) q^{79} +(1.56283 + 8.86327i) q^{81} -7.04189i q^{82} +(-5.81699 - 15.9820i) q^{83} +(-2.73143 + 7.50454i) q^{84} +(1.85844 + 10.5397i) q^{86} +10.0470 q^{87} +(-1.90031 + 2.26470i) q^{88} +(-5.19846 + 9.00400i) q^{89} +(-5.98545 - 10.3671i) q^{91} +(-6.48670 - 1.14378i) q^{92} +(-6.68302 + 2.43242i) q^{93} +(-2.86571 - 1.04303i) q^{94} +(9.61721 + 1.69577i) q^{96} +(-6.02763 - 1.06283i) q^{97} +(5.42874 - 3.13429i) q^{98} +(-2.39440 + 2.00914i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 36 q^{11} + 12 q^{14} - 36 q^{16} + 24 q^{19} - 36 q^{24} + 24 q^{26} + 42 q^{29} - 6 q^{31} - 18 q^{34} - 36 q^{36} + 18 q^{39} - 36 q^{41} + 54 q^{44} - 18 q^{46} + 24 q^{49} + 18 q^{51} - 54 q^{54} - 96 q^{56} + 72 q^{61} + 24 q^{64} - 72 q^{69} + 6 q^{71} - 24 q^{74} - 12 q^{76} + 24 q^{79} - 72 q^{84} + 6 q^{86} - 6 q^{89} - 54 q^{94} + 54 q^{96} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{8}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.300767 + 0.826352i 0.212675 + 0.584319i 0.999458 0.0329100i \(-0.0104775\pi\)
−0.786784 + 0.617229i \(0.788255\pi\)
\(3\) 1.62760 + 0.592396i 0.939693 + 0.342020i
\(4\) 0.939693 0.788496i 0.469846 0.394248i
\(5\) 0 0
\(6\) 1.52314i 0.621819i
\(7\) −2.41609 + 2.87939i −0.913197 + 1.08831i 0.0825881 + 0.996584i \(0.473681\pi\)
−0.995785 + 0.0917216i \(0.970763\pi\)
\(8\) 2.45734 + 1.41875i 0.868802 + 0.501603i
\(9\) 2.29813 + 1.92836i 0.766044 + 0.642788i
\(10\) 0 0
\(11\) −0.180922 + 1.02606i −0.0545501 + 0.309369i −0.999859 0.0168083i \(-0.994649\pi\)
0.945309 + 0.326177i \(0.105761\pi\)
\(12\) 1.99654 0.726682i 0.576352 0.209775i
\(13\) −1.08926 + 2.99273i −0.302107 + 0.830033i 0.692026 + 0.721872i \(0.256718\pi\)
−0.994133 + 0.108160i \(0.965504\pi\)
\(14\) −3.10607 1.13052i −0.830131 0.302143i
\(15\) 0 0
\(16\) −0.00727396 + 0.0412527i −0.00181849 + 0.0103132i
\(17\) −0.405223 + 0.233956i −0.0982810 + 0.0567426i −0.548335 0.836259i \(-0.684738\pi\)
0.450054 + 0.893001i \(0.351405\pi\)
\(18\) −0.902302 + 2.47906i −0.212675 + 0.584319i
\(19\) 2.34730 4.06564i 0.538507 0.932721i −0.460478 0.887671i \(-0.652322\pi\)
0.998985 0.0450499i \(-0.0143447\pi\)
\(20\) 0 0
\(21\) −5.63816 + 3.25519i −1.23035 + 0.710341i
\(22\) −0.902302 + 0.159100i −0.192372 + 0.0339203i
\(23\) −3.45150 4.11334i −0.719688 0.857691i 0.274912 0.961469i \(-0.411351\pi\)
−0.994600 + 0.103778i \(0.966907\pi\)
\(24\) 3.15910 + 3.76487i 0.644849 + 0.768501i
\(25\) 0 0
\(26\) −2.80066 −0.549255
\(27\) 2.59808 + 4.50000i 0.500000 + 0.866025i
\(28\) 4.61081i 0.871362i
\(29\) 5.45084 1.98394i 1.01220 0.368409i 0.217920 0.975967i \(-0.430073\pi\)
0.794275 + 0.607558i \(0.207851\pi\)
\(30\) 0 0
\(31\) −3.14543 + 2.63933i −0.564936 + 0.474037i −0.879961 0.475046i \(-0.842431\pi\)
0.315025 + 0.949083i \(0.397987\pi\)
\(32\) 5.55250 0.979055i 0.981553 0.173074i
\(33\) −0.902302 + 1.56283i −0.157071 + 0.272054i
\(34\) −0.315207 0.264490i −0.0540576 0.0453597i
\(35\) 0 0
\(36\) 3.68004 0.613341
\(37\) 3.87603 2.23783i 0.637215 0.367896i −0.146326 0.989236i \(-0.546745\pi\)
0.783541 + 0.621340i \(0.213411\pi\)
\(38\) 4.06564 + 0.716881i 0.659533 + 0.116294i
\(39\) −3.54576 + 4.22567i −0.567776 + 0.676649i
\(40\) 0 0
\(41\) −7.52481 2.73881i −1.17518 0.427730i −0.320682 0.947187i \(-0.603912\pi\)
−0.854497 + 0.519457i \(0.826134\pi\)
\(42\) −4.38571 3.68004i −0.676729 0.567843i
\(43\) 11.9854 + 2.11334i 1.82775 + 0.322281i 0.978584 0.205847i \(-0.0659948\pi\)
0.849165 + 0.528128i \(0.177106\pi\)
\(44\) 0.639033 + 1.10684i 0.0963379 + 0.166862i
\(45\) 0 0
\(46\) 2.36097 4.08931i 0.348106 0.602937i
\(47\) −2.22913 + 2.65657i −0.325152 + 0.387501i −0.903714 0.428138i \(-0.859170\pi\)
0.578561 + 0.815639i \(0.303614\pi\)
\(48\) −0.0362770 + 0.0628336i −0.00523613 + 0.00906925i
\(49\) −1.23783 7.02006i −0.176832 1.00287i
\(50\) 0 0
\(51\) −0.798133 + 0.140732i −0.111761 + 0.0197065i
\(52\) 1.33618 + 3.67112i 0.185295 + 0.509093i
\(53\) 8.83750i 1.21392i −0.794731 0.606962i \(-0.792388\pi\)
0.794731 0.606962i \(-0.207612\pi\)
\(54\) −2.93717 + 3.50038i −0.399698 + 0.476341i
\(55\) 0 0
\(56\) −10.0223 + 3.64781i −1.33928 + 0.487460i
\(57\) 6.22892 5.22668i 0.825040 0.692291i
\(58\) 3.27887 + 3.90760i 0.430537 + 0.513094i
\(59\) −2.36959 13.4386i −0.308494 1.74955i −0.606586 0.795018i \(-0.707462\pi\)
0.298093 0.954537i \(-0.403650\pi\)
\(60\) 0 0
\(61\) 7.46064 + 6.26022i 0.955237 + 0.801539i 0.980172 0.198150i \(-0.0634934\pi\)
−0.0249349 + 0.999689i \(0.507938\pi\)
\(62\) −3.12706 1.80541i −0.397137 0.229287i
\(63\) −11.1050 + 1.95811i −1.39910 + 0.246699i
\(64\) 2.52094 + 4.36640i 0.315118 + 0.545801i
\(65\) 0 0
\(66\) −1.56283 0.275570i −0.192372 0.0339203i
\(67\) −0.623485 + 1.71301i −0.0761708 + 0.209278i −0.971934 0.235254i \(-0.924408\pi\)
0.895763 + 0.444532i \(0.146630\pi\)
\(68\) −0.196312 + 0.539363i −0.0238063 + 0.0654074i
\(69\) −3.18092 8.73951i −0.382938 1.05211i
\(70\) 0 0
\(71\) −3.85117 6.67042i −0.457049 0.791633i 0.541754 0.840537i \(-0.317760\pi\)
−0.998803 + 0.0489043i \(0.984427\pi\)
\(72\) 2.91144 + 7.99912i 0.343117 + 0.942706i
\(73\) 0.705990 + 0.407604i 0.0826299 + 0.0477064i 0.540746 0.841186i \(-0.318142\pi\)
−0.458116 + 0.888893i \(0.651475\pi\)
\(74\) 3.01501 + 2.52990i 0.350488 + 0.294095i
\(75\) 0 0
\(76\) −1.00000 5.67128i −0.114708 0.650541i
\(77\) −2.51730 3.00000i −0.286873 0.341882i
\(78\) −4.55834 1.65910i −0.516130 0.187856i
\(79\) −3.81180 + 1.38738i −0.428861 + 0.156093i −0.547427 0.836853i \(-0.684393\pi\)
0.118566 + 0.992946i \(0.462170\pi\)
\(80\) 0 0
\(81\) 1.56283 + 8.86327i 0.173648 + 0.984808i
\(82\) 7.04189i 0.777647i
\(83\) −5.81699 15.9820i −0.638498 1.75426i −0.656394 0.754418i \(-0.727919\pi\)
0.0178968 0.999840i \(-0.494303\pi\)
\(84\) −2.73143 + 7.50454i −0.298023 + 0.818812i
\(85\) 0 0
\(86\) 1.85844 + 10.5397i 0.200401 + 1.13653i
\(87\) 10.0470 1.07716
\(88\) −1.90031 + 2.26470i −0.202574 + 0.241418i
\(89\) −5.19846 + 9.00400i −0.551036 + 0.954422i 0.447164 + 0.894452i \(0.352434\pi\)
−0.998200 + 0.0599704i \(0.980899\pi\)
\(90\) 0 0
\(91\) −5.98545 10.3671i −0.627446 1.08677i
\(92\) −6.48670 1.14378i −0.676286 0.119247i
\(93\) −6.68302 + 2.43242i −0.692996 + 0.252230i
\(94\) −2.86571 1.04303i −0.295576 0.107581i
\(95\) 0 0
\(96\) 9.61721 + 1.69577i 0.981553 + 0.173074i
\(97\) −6.02763 1.06283i −0.612013 0.107914i −0.140954 0.990016i \(-0.545017\pi\)
−0.471059 + 0.882102i \(0.656128\pi\)
\(98\) 5.42874 3.13429i 0.548386 0.316611i
\(99\) −2.39440 + 2.00914i −0.240646 + 0.201926i
\(100\) 0 0
\(101\) 1.51501 + 1.27125i 0.150750 + 0.126494i 0.715043 0.699080i \(-0.246407\pi\)
−0.564294 + 0.825574i \(0.690851\pi\)
\(102\) −0.356347 0.617211i −0.0352836 0.0611130i
\(103\) −11.7764 + 2.07650i −1.16037 + 0.204604i −0.720497 0.693458i \(-0.756086\pi\)
−0.439870 + 0.898062i \(0.644975\pi\)
\(104\) −6.92262 + 5.80877i −0.678819 + 0.569596i
\(105\) 0 0
\(106\) 7.30288 2.65803i 0.709319 0.258171i
\(107\) 20.6382i 1.99517i 0.0694862 + 0.997583i \(0.477864\pi\)
−0.0694862 + 0.997583i \(0.522136\pi\)
\(108\) 5.98962 + 2.18004i 0.576352 + 0.209775i
\(109\) −0.433763 −0.0415469 −0.0207735 0.999784i \(-0.506613\pi\)
−0.0207735 + 0.999784i \(0.506613\pi\)
\(110\) 0 0
\(111\) 7.63429 1.34613i 0.724614 0.127769i
\(112\) −0.101208 0.120615i −0.00956324 0.0113970i
\(113\) 5.66366 0.998656i 0.532792 0.0939456i 0.0992218 0.995065i \(-0.468365\pi\)
0.433570 + 0.901120i \(0.357254\pi\)
\(114\) 6.19253 + 3.57526i 0.579984 + 0.334854i
\(115\) 0 0
\(116\) 3.55778 6.16226i 0.330332 0.572151i
\(117\) −8.27433 + 4.77719i −0.764962 + 0.441651i
\(118\) 10.3923 6.00000i 0.956689 0.552345i
\(119\) 0.305407 1.73205i 0.0279966 0.158777i
\(120\) 0 0
\(121\) 9.31655 + 3.39095i 0.846959 + 0.308268i
\(122\) −2.92923 + 8.04798i −0.265200 + 0.728630i
\(123\) −10.6249 8.91534i −0.958014 0.803870i
\(124\) −0.874638 + 4.96032i −0.0785448 + 0.445450i
\(125\) 0 0
\(126\) −4.95811 8.58770i −0.441704 0.765053i
\(127\) −16.9843 9.80587i −1.50711 0.870131i −0.999966 0.00826966i \(-0.997368\pi\)
−0.507145 0.861861i \(-0.669299\pi\)
\(128\) 4.39831 5.24170i 0.388759 0.463305i
\(129\) 18.2554 + 10.5397i 1.60730 + 0.927972i
\(130\) 0 0
\(131\) 13.8701 11.6384i 1.21183 1.01685i 0.212621 0.977135i \(-0.431800\pi\)
0.999211 0.0397131i \(-0.0126444\pi\)
\(132\) 0.384401 + 2.18004i 0.0334578 + 0.189749i
\(133\) 6.03525 + 16.5817i 0.523323 + 1.43782i
\(134\) −1.60307 −0.138484
\(135\) 0 0
\(136\) −1.32770 −0.113849
\(137\) −4.99395 13.7208i −0.426662 1.17224i −0.947826 0.318787i \(-0.896725\pi\)
0.521165 0.853456i \(-0.325498\pi\)
\(138\) 6.26519 5.25712i 0.533329 0.447516i
\(139\) 16.9440 14.2177i 1.43717 1.20593i 0.495859 0.868403i \(-0.334853\pi\)
0.941315 0.337529i \(-0.109591\pi\)
\(140\) 0 0
\(141\) −5.20187 + 3.00330i −0.438076 + 0.252923i
\(142\) 4.35381 5.18866i 0.365363 0.435423i
\(143\) −2.87365 1.65910i −0.240306 0.138741i
\(144\) −0.0962667 + 0.0807773i −0.00802222 + 0.00673144i
\(145\) 0 0
\(146\) −0.124485 + 0.705990i −0.0103025 + 0.0584282i
\(147\) 2.14398 12.1591i 0.176832 1.00287i
\(148\) 1.87776 5.15910i 0.154351 0.424075i
\(149\) −13.3969 4.87608i −1.09752 0.399464i −0.271118 0.962546i \(-0.587393\pi\)
−0.826401 + 0.563082i \(0.809616\pi\)
\(150\) 0 0
\(151\) 0.805407 4.56769i 0.0655431 0.371713i −0.934339 0.356384i \(-0.884009\pi\)
0.999883 0.0153290i \(-0.00487956\pi\)
\(152\) 11.5362 6.66044i 0.935712 0.540233i
\(153\) −1.38241 0.243756i −0.111761 0.0197065i
\(154\) 1.72193 2.98248i 0.138757 0.240335i
\(155\) 0 0
\(156\) 6.76665i 0.541765i
\(157\) −12.3856 + 2.18392i −0.988478 + 0.174295i −0.644436 0.764659i \(-0.722908\pi\)
−0.344043 + 0.938954i \(0.611797\pi\)
\(158\) −2.29293 2.73261i −0.182416 0.217395i
\(159\) 5.23530 14.3839i 0.415186 1.14071i
\(160\) 0 0
\(161\) 20.1830 1.59065
\(162\) −6.85413 + 3.95723i −0.538511 + 0.310910i
\(163\) 6.40373i 0.501579i −0.968042 0.250790i \(-0.919310\pi\)
0.968042 0.250790i \(-0.0806902\pi\)
\(164\) −9.23055 + 3.35965i −0.720785 + 0.262344i
\(165\) 0 0
\(166\) 11.4572 9.61376i 0.889254 0.746173i
\(167\) −8.80769 + 1.55303i −0.681560 + 0.120177i −0.503700 0.863879i \(-0.668028\pi\)
−0.177859 + 0.984056i \(0.556917\pi\)
\(168\) −18.4732 −1.42524
\(169\) 2.18866 + 1.83651i 0.168359 + 0.141270i
\(170\) 0 0
\(171\) 13.2344 4.81694i 1.01206 0.368360i
\(172\) 12.9289 7.46451i 0.985820 0.569163i
\(173\) 5.97702 + 1.05391i 0.454425 + 0.0801274i 0.396176 0.918175i \(-0.370337\pi\)
0.0582491 + 0.998302i \(0.481448\pi\)
\(174\) 3.02182 + 8.30239i 0.229084 + 0.629402i
\(175\) 0 0
\(176\) −0.0410117 0.0149270i −0.00309137 0.00112517i
\(177\) 4.10424 23.2763i 0.308494 1.74955i
\(178\) −9.00400 1.58765i −0.674878 0.118999i
\(179\) 1.80200 + 3.12116i 0.134688 + 0.233287i 0.925478 0.378801i \(-0.123663\pi\)
−0.790790 + 0.612087i \(0.790330\pi\)
\(180\) 0 0
\(181\) −5.56283 + 9.63511i −0.413482 + 0.716172i −0.995268 0.0971701i \(-0.969021\pi\)
0.581786 + 0.813342i \(0.302354\pi\)
\(182\) 6.76665 8.06418i 0.501577 0.597757i
\(183\) 8.43437 + 14.6088i 0.623486 + 1.07991i
\(184\) −2.64573 15.0047i −0.195046 1.10616i
\(185\) 0 0
\(186\) −4.02007 4.79093i −0.294766 0.351288i
\(187\) −0.166739 0.458111i −0.0121931 0.0335004i
\(188\) 4.25402i 0.310256i
\(189\) −19.2344 3.39155i −1.39910 0.246699i
\(190\) 0 0
\(191\) −9.53596 + 3.47081i −0.689998 + 0.251139i −0.663134 0.748500i \(-0.730774\pi\)
−0.0268635 + 0.999639i \(0.508552\pi\)
\(192\) 1.51644 + 8.60014i 0.109439 + 0.620661i
\(193\) 0.226485 + 0.269915i 0.0163028 + 0.0194289i 0.774134 0.633021i \(-0.218186\pi\)
−0.757831 + 0.652450i \(0.773741\pi\)
\(194\) −0.934640 5.30061i −0.0671033 0.380561i
\(195\) 0 0
\(196\) −6.69846 5.62068i −0.478462 0.401477i
\(197\) 18.7526 + 10.8268i 1.33607 + 0.771379i 0.986222 0.165428i \(-0.0529007\pi\)
0.349846 + 0.936807i \(0.386234\pi\)
\(198\) −2.38041 1.37433i −0.169169 0.0976696i
\(199\) 12.0209 + 20.8209i 0.852142 + 1.47595i 0.879271 + 0.476322i \(0.158030\pi\)
−0.0271290 + 0.999632i \(0.508636\pi\)
\(200\) 0 0
\(201\) −2.02956 + 2.41874i −0.143154 + 0.170605i
\(202\) −0.594831 + 1.63429i −0.0418522 + 0.114988i
\(203\) −7.45718 + 20.4884i −0.523392 + 1.43801i
\(204\) −0.639033 + 0.761570i −0.0447413 + 0.0533206i
\(205\) 0 0
\(206\) −5.25789 9.10694i −0.366335 0.634510i
\(207\) 16.1088i 1.11964i
\(208\) −0.115535 0.0667040i −0.00801089 0.00462509i
\(209\) 3.74691 + 3.14403i 0.259179 + 0.217477i
\(210\) 0 0
\(211\) −1.12789 6.39657i −0.0776471 0.440358i −0.998702 0.0509266i \(-0.983783\pi\)
0.921055 0.389432i \(-0.127329\pi\)
\(212\) −6.96833 8.30453i −0.478587 0.570357i
\(213\) −2.31661 13.1382i −0.158732 0.900212i
\(214\) −17.0544 + 6.20729i −1.16581 + 0.424321i
\(215\) 0 0
\(216\) 14.7441i 1.00321i
\(217\) 15.4338i 1.04771i
\(218\) −0.130462 0.358441i −0.00883598 0.0242767i
\(219\) 0.907604 + 1.08164i 0.0613302 + 0.0730905i
\(220\) 0 0
\(221\) −0.258770 1.46756i −0.0174068 0.0987188i
\(222\) 3.40852 + 5.90373i 0.228765 + 0.396233i
\(223\) 3.72362 4.43763i 0.249352 0.297166i −0.626821 0.779164i \(-0.715644\pi\)
0.876173 + 0.481998i \(0.160089\pi\)
\(224\) −10.5963 + 18.3533i −0.707993 + 1.22628i
\(225\) 0 0
\(226\) 2.52869 + 4.37981i 0.168206 + 0.291341i
\(227\) −12.7326 2.24510i −0.845092 0.149013i −0.265694 0.964057i \(-0.585601\pi\)
−0.579398 + 0.815045i \(0.696712\pi\)
\(228\) 1.73205 9.82295i 0.114708 0.650541i
\(229\) −1.17365 0.427173i −0.0775569 0.0282284i 0.302950 0.953006i \(-0.402028\pi\)
−0.380507 + 0.924778i \(0.624251\pi\)
\(230\) 0 0
\(231\) −2.31996 6.37402i −0.152642 0.419380i
\(232\) 16.2093 + 2.85814i 1.06419 + 0.187646i
\(233\) −0.330341 + 0.190722i −0.0216413 + 0.0124946i −0.510782 0.859710i \(-0.670644\pi\)
0.489140 + 0.872205i \(0.337311\pi\)
\(234\) −6.43629 5.40069i −0.420753 0.353054i
\(235\) 0 0
\(236\) −12.8229 10.7597i −0.834703 0.700399i
\(237\) −7.02595 −0.456385
\(238\) 1.52314 0.268571i 0.0987305 0.0174089i
\(239\) 2.40760 2.02022i 0.155735 0.130677i −0.561591 0.827415i \(-0.689810\pi\)
0.717326 + 0.696738i \(0.245366\pi\)
\(240\) 0 0
\(241\) 7.05778 2.56882i 0.454632 0.165472i −0.104546 0.994520i \(-0.533339\pi\)
0.559178 + 0.829048i \(0.311117\pi\)
\(242\) 8.71864i 0.560455i
\(243\) −2.70691 + 15.3516i −0.173648 + 0.984808i
\(244\) 11.9469 0.764819
\(245\) 0 0
\(246\) 4.17159 11.4613i 0.265971 0.730749i
\(247\) 9.61051 + 11.4534i 0.611502 + 0.728760i
\(248\) −11.4739 + 2.02317i −0.728596 + 0.128471i
\(249\) 29.4583i 1.86684i
\(250\) 0 0
\(251\) −7.68732 + 13.3148i −0.485219 + 0.840424i −0.999856 0.0169841i \(-0.994594\pi\)
0.514637 + 0.857408i \(0.327927\pi\)
\(252\) −8.89132 + 10.5963i −0.560101 + 0.667502i
\(253\) 4.84499 2.79726i 0.304602 0.175862i
\(254\) 2.99479 16.9843i 0.187910 1.06569i
\(255\) 0 0
\(256\) 15.1300 + 5.50687i 0.945625 + 0.344179i
\(257\) −6.11776 + 16.8084i −0.381615 + 1.04848i 0.589061 + 0.808089i \(0.299498\pi\)
−0.970676 + 0.240391i \(0.922724\pi\)
\(258\) −3.21891 + 18.2554i −0.200401 + 1.13653i
\(259\) −2.92127 + 16.5674i −0.181519 + 1.02945i
\(260\) 0 0
\(261\) 16.3525 + 5.95183i 1.01220 + 0.368409i
\(262\) 13.7890 + 7.96110i 0.851890 + 0.491839i
\(263\) −2.49362 + 2.97178i −0.153763 + 0.183248i −0.837427 0.546549i \(-0.815941\pi\)
0.683664 + 0.729797i \(0.260386\pi\)
\(264\) −4.43453 + 2.56028i −0.272927 + 0.157574i
\(265\) 0 0
\(266\) −11.8871 + 9.97448i −0.728846 + 0.611575i
\(267\) −13.7949 + 11.5753i −0.844236 + 0.708398i
\(268\) 0.764818 + 2.10132i 0.0467187 + 0.128358i
\(269\) 19.8084 1.20774 0.603870 0.797083i \(-0.293625\pi\)
0.603870 + 0.797083i \(0.293625\pi\)
\(270\) 0 0
\(271\) −14.7888 −0.898356 −0.449178 0.893442i \(-0.648283\pi\)
−0.449178 + 0.893442i \(0.648283\pi\)
\(272\) −0.00670372 0.0184183i −0.000406473 0.00111677i
\(273\) −3.60046 20.4192i −0.217910 1.23583i
\(274\) 9.83615 8.25351i 0.594224 0.498613i
\(275\) 0 0
\(276\) −9.88016 5.70431i −0.594716 0.343359i
\(277\) −11.2794 + 13.4422i −0.677711 + 0.807665i −0.989811 0.142385i \(-0.954523\pi\)
0.312100 + 0.950049i \(0.398967\pi\)
\(278\) 16.8451 + 9.72550i 1.01030 + 0.583297i
\(279\) −12.3182 −0.737471
\(280\) 0 0
\(281\) 1.08853 6.17334i 0.0649360 0.368270i −0.934972 0.354721i \(-0.884576\pi\)
0.999908 0.0135494i \(-0.00431304\pi\)
\(282\) −4.04633 3.39528i −0.240956 0.202186i
\(283\) 2.16593 5.95084i 0.128751 0.353741i −0.858522 0.512777i \(-0.828617\pi\)
0.987273 + 0.159037i \(0.0508389\pi\)
\(284\) −8.87851 3.23151i −0.526843 0.191755i
\(285\) 0 0
\(286\) 0.506701 2.87365i 0.0299619 0.169922i
\(287\) 26.0667 15.0496i 1.53867 0.888352i
\(288\) 14.6484 + 8.45723i 0.863163 + 0.498347i
\(289\) −8.39053 + 14.5328i −0.493561 + 0.854872i
\(290\) 0 0
\(291\) −9.18092 5.30061i −0.538195 0.310727i
\(292\) 0.984808 0.173648i 0.0576315 0.0101620i
\(293\) 2.94182 + 3.50593i 0.171863 + 0.204819i 0.845100 0.534608i \(-0.179541\pi\)
−0.673237 + 0.739427i \(0.735096\pi\)
\(294\) 10.6925 1.88538i 0.623601 0.109958i
\(295\) 0 0
\(296\) 12.6996 0.738152
\(297\) −5.08732 + 1.85163i −0.295196 + 0.107443i
\(298\) 12.5371i 0.726257i
\(299\) 16.0697 5.84889i 0.929335 0.338250i
\(300\) 0 0
\(301\) −35.0428 + 29.4044i −2.01983 + 1.69484i
\(302\) 4.01676 0.708263i 0.231139 0.0407560i
\(303\) 1.71275 + 2.96657i 0.0983948 + 0.170425i
\(304\) 0.150644 + 0.126406i 0.00864004 + 0.00724985i
\(305\) 0 0
\(306\) −0.214355 1.21567i −0.0122539 0.0694952i
\(307\) −3.50708 + 2.02481i −0.200160 + 0.115562i −0.596730 0.802442i \(-0.703534\pi\)
0.396570 + 0.918004i \(0.370200\pi\)
\(308\) −4.73097 0.834198i −0.269572 0.0475329i
\(309\) −20.3974 3.59661i −1.16037 0.204604i
\(310\) 0 0
\(311\) 4.63088 + 1.68550i 0.262593 + 0.0955761i 0.469962 0.882687i \(-0.344268\pi\)
−0.207369 + 0.978263i \(0.566490\pi\)
\(312\) −14.7083 + 5.35339i −0.832694 + 0.303076i
\(313\) 13.6129 + 2.40033i 0.769449 + 0.135675i 0.544574 0.838713i \(-0.316691\pi\)
0.224875 + 0.974388i \(0.427803\pi\)
\(314\) −5.52987 9.57801i −0.312068 0.540518i
\(315\) 0 0
\(316\) −2.48798 + 4.30930i −0.139960 + 0.242417i
\(317\) 9.95751 11.8669i 0.559269 0.666511i −0.410122 0.912031i \(-0.634514\pi\)
0.969392 + 0.245519i \(0.0789584\pi\)
\(318\) 13.4607 0.754841
\(319\) 1.04947 + 5.95183i 0.0587589 + 0.333238i
\(320\) 0 0
\(321\) −12.2260 + 33.5906i −0.682387 + 1.87484i
\(322\) 6.07040 + 16.6783i 0.338290 + 0.929445i
\(323\) 2.19665i 0.122225i
\(324\) 8.45723 + 7.09646i 0.469846 + 0.394248i
\(325\) 0 0
\(326\) 5.29174 1.92603i 0.293082 0.106673i
\(327\) −0.705990 0.256959i −0.0390414 0.0142099i
\(328\) −14.6054 17.4060i −0.806447 0.961086i
\(329\) −2.26352 12.8370i −0.124792 0.707729i
\(330\) 0 0
\(331\) −6.24170 5.23741i −0.343075 0.287874i 0.454927 0.890529i \(-0.349665\pi\)
−0.798002 + 0.602655i \(0.794110\pi\)
\(332\) −18.0680 10.4315i −0.991608 0.572505i
\(333\) 13.2230 + 2.33157i 0.724614 + 0.127769i
\(334\) −3.93242 6.81115i −0.215172 0.372689i
\(335\) 0 0
\(336\) −0.0932736 0.256267i −0.00508849 0.0139805i
\(337\) 1.94858 5.35369i 0.106146 0.291634i −0.875237 0.483694i \(-0.839295\pi\)
0.981383 + 0.192060i \(0.0615169\pi\)
\(338\) −0.859322 + 2.36097i −0.0467409 + 0.128420i
\(339\) 9.80974 + 1.72972i 0.532792 + 0.0939456i
\(340\) 0 0
\(341\) −2.13903 3.70491i −0.115835 0.200632i
\(342\) 7.96097 + 9.48751i 0.430480 + 0.513026i
\(343\) 0.417822 + 0.241230i 0.0225603 + 0.0130252i
\(344\) 26.4538 + 22.1974i 1.42629 + 1.19680i
\(345\) 0 0
\(346\) 0.926794 + 5.25611i 0.0498247 + 0.282570i
\(347\) 17.1309 + 20.4158i 0.919635 + 1.09598i 0.995104 + 0.0988301i \(0.0315100\pi\)
−0.0754694 + 0.997148i \(0.524046\pi\)
\(348\) 9.44113 7.92205i 0.506098 0.424666i
\(349\) −7.47906 + 2.72215i −0.400345 + 0.145714i −0.534342 0.845268i \(-0.679441\pi\)
0.133998 + 0.990982i \(0.457218\pi\)
\(350\) 0 0
\(351\) −16.2973 + 2.87365i −0.869883 + 0.153384i
\(352\) 5.87433i 0.313103i
\(353\) −4.91236 13.4966i −0.261459 0.718351i −0.999070 0.0431256i \(-0.986268\pi\)
0.737611 0.675226i \(-0.235954\pi\)
\(354\) 20.4688 3.60921i 1.08791 0.191827i
\(355\) 0 0
\(356\) 2.21466 + 12.5600i 0.117377 + 0.665677i
\(357\) 1.52314 2.63816i 0.0806131 0.139626i
\(358\) −2.03719 + 2.42783i −0.107669 + 0.128315i
\(359\) −10.3341 + 17.8992i −0.545413 + 0.944682i 0.453168 + 0.891425i \(0.350294\pi\)
−0.998581 + 0.0532573i \(0.983040\pi\)
\(360\) 0 0
\(361\) −1.51960 2.63203i −0.0799790 0.138528i
\(362\) −9.63511 1.69893i −0.506410 0.0892938i
\(363\) 13.1548 + 11.0382i 0.690447 + 0.579354i
\(364\) −13.7989 5.02239i −0.723259 0.263245i
\(365\) 0 0
\(366\) −9.53519 + 11.3636i −0.498412 + 0.593985i
\(367\) 6.52206 + 1.15002i 0.340449 + 0.0600303i 0.341259 0.939969i \(-0.389147\pi\)
−0.000810039 1.00000i \(0.500258\pi\)
\(368\) 0.194792 0.112463i 0.0101543 0.00586256i
\(369\) −12.0116 20.8047i −0.625300 1.08305i
\(370\) 0 0
\(371\) 25.4466 + 21.3522i 1.32112 + 1.10855i
\(372\) −4.36203 + 7.55525i −0.226161 + 0.391722i
\(373\) −31.3068 + 5.52023i −1.62100 + 0.285827i −0.909140 0.416491i \(-0.863260\pi\)
−0.711864 + 0.702318i \(0.752149\pi\)
\(374\) 0.328411 0.275570i 0.0169817 0.0142494i
\(375\) 0 0
\(376\) −9.24675 + 3.36554i −0.476865 + 0.173565i
\(377\) 18.4739i 0.951454i
\(378\) −2.98248 16.9145i −0.153402 0.869986i
\(379\) 34.1925 1.75635 0.878176 0.478337i \(-0.158760\pi\)
0.878176 + 0.478337i \(0.158760\pi\)
\(380\) 0 0
\(381\) −21.8346 26.0214i −1.11862 1.33312i
\(382\) −5.73621 6.83615i −0.293490 0.349768i
\(383\) −23.4391 + 4.13294i −1.19768 + 0.211183i −0.736696 0.676224i \(-0.763615\pi\)
−0.460985 + 0.887408i \(0.652504\pi\)
\(384\) 10.2638 5.92582i 0.523774 0.302401i
\(385\) 0 0
\(386\) −0.154925 + 0.268338i −0.00788548 + 0.0136581i
\(387\) 23.4686 + 27.9688i 1.19298 + 1.42174i
\(388\) −6.50216 + 3.75402i −0.330097 + 0.190582i
\(389\) −0.769915 + 4.36640i −0.0390362 + 0.221385i −0.998085 0.0618550i \(-0.980298\pi\)
0.959049 + 0.283241i \(0.0914095\pi\)
\(390\) 0 0
\(391\) 2.36097 + 0.859322i 0.119399 + 0.0434578i
\(392\) 6.91793 19.0069i 0.349408 0.959992i
\(393\) 29.4694 10.7260i 1.48653 0.541053i
\(394\) −3.30659 + 18.7526i −0.166584 + 0.944742i
\(395\) 0 0
\(396\) −0.665802 + 3.77595i −0.0334578 + 0.189749i
\(397\) 16.3138 + 9.41875i 0.818764 + 0.472713i 0.849990 0.526799i \(-0.176608\pi\)
−0.0312263 + 0.999512i \(0.509941\pi\)
\(398\) −13.5899 + 16.1958i −0.681199 + 0.811821i
\(399\) 30.5636i 1.53009i
\(400\) 0 0
\(401\) −7.00387 + 5.87695i −0.349757 + 0.293481i −0.800692 0.599076i \(-0.795535\pi\)
0.450936 + 0.892556i \(0.351090\pi\)
\(402\) −2.60916 0.949655i −0.130133 0.0473645i
\(403\) −4.47259 12.2883i −0.222795 0.612125i
\(404\) 2.42602 0.120699
\(405\) 0 0
\(406\) −19.1735 −0.951567
\(407\) 1.59489 + 4.38191i 0.0790555 + 0.217203i
\(408\) −2.16095 0.786522i −0.106983 0.0389386i
\(409\) −21.2920 + 17.8661i −1.05282 + 0.883424i −0.993388 0.114808i \(-0.963375\pi\)
−0.0594360 + 0.998232i \(0.518930\pi\)
\(410\) 0 0
\(411\) 25.2902i 1.24747i
\(412\) −9.42892 + 11.2369i −0.464530 + 0.553605i
\(413\) 44.4200 + 25.6459i 2.18577 + 1.26195i
\(414\) 13.3115 4.84499i 0.654224 0.238118i
\(415\) 0 0
\(416\) −3.11809 + 17.6836i −0.152877 + 0.867008i
\(417\) 36.0006 13.1031i 1.76295 0.641663i
\(418\) −1.47113 + 4.04189i −0.0719552 + 0.197695i
\(419\) 7.55943 + 2.75141i 0.369302 + 0.134415i 0.520003 0.854164i \(-0.325931\pi\)
−0.150701 + 0.988579i \(0.548153\pi\)
\(420\) 0 0
\(421\) −3.44862 + 19.5581i −0.168075 + 0.953202i 0.777762 + 0.628559i \(0.216355\pi\)
−0.945837 + 0.324643i \(0.894756\pi\)
\(422\) 4.94659 2.85591i 0.240796 0.139024i
\(423\) −10.2457 + 1.80659i −0.498162 + 0.0878394i
\(424\) 12.5382 21.7168i 0.608908 1.05466i
\(425\) 0 0
\(426\) 10.1600 5.86587i 0.492253 0.284202i
\(427\) −36.0512 + 6.35679i −1.74464 + 0.307627i
\(428\) 16.2731 + 19.3935i 0.786590 + 0.937421i
\(429\) −3.69429 4.40268i −0.178362 0.212563i
\(430\) 0 0
\(431\) −5.89393 −0.283901 −0.141950 0.989874i \(-0.545337\pi\)
−0.141950 + 0.989874i \(0.545337\pi\)
\(432\) −0.204535 + 0.0744448i −0.00984071 + 0.00358173i
\(433\) 3.82201i 0.183674i −0.995774 0.0918372i \(-0.970726\pi\)
0.995774 0.0918372i \(-0.0292739\pi\)
\(434\) 12.7537 4.64197i 0.612198 0.222822i
\(435\) 0 0
\(436\) −0.407604 + 0.342020i −0.0195207 + 0.0163798i
\(437\) −24.8250 + 4.37733i −1.18754 + 0.209396i
\(438\) −0.620838 + 1.07532i −0.0296648 + 0.0513809i
\(439\) −29.3200 24.6024i −1.39937 1.17421i −0.961379 0.275229i \(-0.911246\pi\)
−0.437989 0.898980i \(-0.644309\pi\)
\(440\) 0 0
\(441\) 10.6925 18.5200i 0.509168 0.881905i
\(442\) 1.13489 0.655230i 0.0539813 0.0311661i
\(443\) −13.1512 2.31892i −0.624834 0.110175i −0.147738 0.989027i \(-0.547199\pi\)
−0.477095 + 0.878852i \(0.658310\pi\)
\(444\) 6.11246 7.28455i 0.290085 0.345709i
\(445\) 0 0
\(446\) 4.78699 + 1.74232i 0.226670 + 0.0825013i
\(447\) −18.9162 15.8726i −0.894706 0.750747i
\(448\) −18.6634 3.29086i −0.881762 0.155478i
\(449\) 3.45929 + 5.99167i 0.163254 + 0.282764i 0.936034 0.351910i \(-0.114468\pi\)
−0.772780 + 0.634674i \(0.781134\pi\)
\(450\) 0 0
\(451\) 4.17159 7.22540i 0.196432 0.340231i
\(452\) 4.53466 5.40420i 0.213293 0.254192i
\(453\) 4.01676 6.95723i 0.188724 0.326879i
\(454\) −1.97431 11.1969i −0.0926589 0.525494i
\(455\) 0 0
\(456\) 22.7219 4.00649i 1.06405 0.187621i
\(457\) 2.84234 + 7.80928i 0.132959 + 0.365303i 0.988250 0.152846i \(-0.0488438\pi\)
−0.855291 + 0.518148i \(0.826622\pi\)
\(458\) 1.09833i 0.0513214i
\(459\) −2.10560 1.21567i −0.0982810 0.0567426i
\(460\) 0 0
\(461\) 23.2319 8.45572i 1.08202 0.393822i 0.261359 0.965242i \(-0.415829\pi\)
0.820658 + 0.571420i \(0.193607\pi\)
\(462\) 4.56942 3.83420i 0.212589 0.178383i
\(463\) −0.0825054 0.0983261i −0.00383435 0.00456960i 0.764124 0.645070i \(-0.223172\pi\)
−0.767958 + 0.640500i \(0.778727\pi\)
\(464\) 0.0421938 + 0.239293i 0.00195880 + 0.0111089i
\(465\) 0 0
\(466\) −0.256959 0.215615i −0.0119034 0.00998815i
\(467\) −34.5678 19.9577i −1.59960 0.923532i −0.991563 0.129627i \(-0.958622\pi\)
−0.608042 0.793905i \(-0.708045\pi\)
\(468\) −4.00854 + 11.0134i −0.185295 + 0.509093i
\(469\) −3.42602 5.93404i −0.158199 0.274009i
\(470\) 0 0
\(471\) −21.4525 3.78265i −0.988478 0.174295i
\(472\) 13.2431 36.3851i 0.609562 1.67476i
\(473\) −4.33683 + 11.9153i −0.199408 + 0.547868i
\(474\) −2.11318 5.80591i −0.0970615 0.266674i
\(475\) 0 0
\(476\) −1.07873 1.86841i −0.0494433 0.0856383i
\(477\) 17.0419 20.3097i 0.780295 0.929919i
\(478\) 2.39354 + 1.38191i 0.109478 + 0.0632072i
\(479\) 6.30200 + 5.28801i 0.287946 + 0.241615i 0.775306 0.631586i \(-0.217596\pi\)
−0.487360 + 0.873201i \(0.662040\pi\)
\(480\) 0 0
\(481\) 2.47519 + 14.0375i 0.112859 + 0.640054i
\(482\) 4.24550 + 5.05959i 0.193377 + 0.230458i
\(483\) 32.8498 + 11.9564i 1.49472 + 0.544033i
\(484\) 11.4284 4.15961i 0.519475 0.189073i
\(485\) 0 0
\(486\) −13.5000 + 2.38041i −0.612372 + 0.107978i
\(487\) 2.84760i 0.129037i −0.997917 0.0645186i \(-0.979449\pi\)
0.997917 0.0645186i \(-0.0205512\pi\)
\(488\) 9.45168 + 25.9683i 0.427857 + 1.17553i
\(489\) 3.79355 10.4227i 0.171550 0.471330i
\(490\) 0 0
\(491\) −6.89481 39.1024i −0.311158 1.76467i −0.592996 0.805205i \(-0.702055\pi\)
0.281838 0.959462i \(-0.409056\pi\)
\(492\) −17.0138 −0.767043
\(493\) −1.74465 + 2.07919i −0.0785751 + 0.0936421i
\(494\) −6.57398 + 11.3865i −0.295777 + 0.512301i
\(495\) 0 0
\(496\) −0.0859997 0.148956i −0.00386150 0.00668831i
\(497\) 28.5115 + 5.02734i 1.27891 + 0.225507i
\(498\) 24.3429 8.86009i 1.09083 0.397030i
\(499\) −36.4962 13.2835i −1.63379 0.594652i −0.647856 0.761763i \(-0.724334\pi\)
−0.985938 + 0.167111i \(0.946556\pi\)
\(500\) 0 0
\(501\) −15.2554 2.68993i −0.681560 0.120177i
\(502\) −13.3148 2.34776i −0.594270 0.104786i
\(503\) −23.4745 + 13.5530i −1.04668 + 0.604300i −0.921718 0.387862i \(-0.873214\pi\)
−0.124961 + 0.992162i \(0.539880\pi\)
\(504\) −30.0669 10.9434i −1.33928 0.487460i
\(505\) 0 0
\(506\) 3.76873 + 3.16234i 0.167541 + 0.140583i
\(507\) 2.47432 + 4.28564i 0.109888 + 0.190332i
\(508\) −23.6919 + 4.17752i −1.05116 + 0.185347i
\(509\) 14.8105 12.4275i 0.656462 0.550837i −0.252562 0.967581i \(-0.581273\pi\)
0.909024 + 0.416744i \(0.136829\pi\)
\(510\) 0 0
\(511\) −2.87939 + 1.04801i −0.127377 + 0.0463613i
\(512\) 0.473897i 0.0209435i
\(513\) 24.3938 1.07701
\(514\) −15.7297 −0.693806
\(515\) 0 0
\(516\) 25.4650 4.49016i 1.12103 0.197668i
\(517\) −2.32251 2.76786i −0.102144 0.121730i
\(518\) −14.5691 + 2.56893i −0.640130 + 0.112872i
\(519\) 9.10385 + 5.25611i 0.399614 + 0.230718i
\(520\) 0 0
\(521\) −12.2618 + 21.2380i −0.537198 + 0.930454i 0.461856 + 0.886955i \(0.347184\pi\)
−0.999053 + 0.0434986i \(0.986150\pi\)
\(522\) 15.3030i 0.669796i
\(523\) −7.47416 + 4.31521i −0.326822 + 0.188691i −0.654429 0.756123i \(-0.727091\pi\)
0.327607 + 0.944814i \(0.393758\pi\)
\(524\) 3.85679 21.8730i 0.168485 0.955524i
\(525\) 0 0
\(526\) −3.20574 1.16679i −0.139777 0.0508746i
\(527\) 0.657115 1.80541i 0.0286244 0.0786448i
\(528\) −0.0579078 0.0485904i −0.00252011 0.00211462i
\(529\) −1.01279 + 5.74384i −0.0440345 + 0.249732i
\(530\) 0 0
\(531\) 20.4688 35.4531i 0.888272 1.53853i
\(532\) 18.7459 + 10.8229i 0.812738 + 0.469234i
\(533\) 16.3930 19.5364i 0.710060 0.846217i
\(534\) −13.7144 7.91799i −0.593478 0.342645i
\(535\) 0 0
\(536\) −3.96245 + 3.32489i −0.171152 + 0.143613i
\(537\) 1.08397 + 6.14749i 0.0467767 + 0.265284i
\(538\) 5.95772 + 16.3687i 0.256856 + 0.705705i
\(539\) 7.42696 0.319902
\(540\) 0 0
\(541\) 21.5722 0.927462 0.463731 0.885976i \(-0.346510\pi\)
0.463731 + 0.885976i \(0.346510\pi\)
\(542\) −4.44799 12.2208i −0.191058 0.524926i
\(543\) −14.7618 + 12.3867i −0.633491 + 0.531562i
\(544\) −2.02094 + 1.69577i −0.0866473 + 0.0727057i
\(545\) 0 0
\(546\) 15.7906 9.11668i 0.675773 0.390158i
\(547\) 14.5407 17.3289i 0.621714 0.740929i −0.359651 0.933087i \(-0.617104\pi\)
0.981364 + 0.192158i \(0.0615485\pi\)
\(548\) −15.5115 8.95558i −0.662620 0.382564i
\(549\) 5.07357 + 28.7736i 0.216535 + 1.22803i
\(550\) 0 0
\(551\) 4.72874 26.8180i 0.201451 1.14249i
\(552\) 4.58255 25.9889i 0.195046 1.10616i
\(553\) 5.21485 14.3277i 0.221758 0.609276i
\(554\) −14.5005 5.27774i −0.616066 0.224230i
\(555\) 0 0
\(556\) 4.71156 26.7206i 0.199815 1.13321i
\(557\) 39.8037 22.9807i 1.68654 0.973724i 0.729403 0.684084i \(-0.239798\pi\)
0.957136 0.289640i \(-0.0935354\pi\)
\(558\) −3.70491 10.1792i −0.156842 0.430919i
\(559\) −19.3799 + 33.5669i −0.819680 + 1.41973i
\(560\) 0 0
\(561\) 0.844395i 0.0356504i
\(562\) 5.42874 0.957234i 0.228998 0.0403785i
\(563\) −1.85143 2.20645i −0.0780286 0.0929909i 0.725618 0.688098i \(-0.241554\pi\)
−0.803646 + 0.595107i \(0.797110\pi\)
\(564\) −2.52007 + 6.92383i −0.106114 + 0.291546i
\(565\) 0 0
\(566\) 5.56893 0.234079
\(567\) −29.2967 16.9145i −1.23035 0.710341i
\(568\) 21.8553i 0.917030i
\(569\) 35.1472 12.7925i 1.47345 0.536292i 0.524414 0.851463i \(-0.324284\pi\)
0.949035 + 0.315172i \(0.102062\pi\)
\(570\) 0 0
\(571\) −19.2324 + 16.1379i −0.804849 + 0.675349i −0.949372 0.314153i \(-0.898280\pi\)
0.144523 + 0.989501i \(0.453835\pi\)
\(572\) −4.00854 + 0.706813i −0.167605 + 0.0295533i
\(573\) −17.5768 −0.734280
\(574\) 20.2763 + 17.0138i 0.846317 + 0.710144i
\(575\) 0 0
\(576\) −2.62654 + 14.8959i −0.109439 + 0.620661i
\(577\) 4.14052 2.39053i 0.172372 0.0995190i −0.411332 0.911486i \(-0.634936\pi\)
0.583704 + 0.811967i \(0.301603\pi\)
\(578\) −14.5328 2.56253i −0.604486 0.106587i
\(579\) 0.208730 + 0.573481i 0.00867453 + 0.0238331i
\(580\) 0 0
\(581\) 60.0729 + 21.8647i 2.49224 + 0.907102i
\(582\) 1.61884 9.18092i 0.0671033 0.380561i
\(583\) 9.06781 + 1.59890i 0.375550 + 0.0662196i
\(584\) 1.15657 + 2.00324i 0.0478594 + 0.0828949i
\(585\) 0 0
\(586\) −2.01233 + 3.48545i −0.0831284 + 0.143983i
\(587\) −15.1135 + 18.0116i −0.623802 + 0.743419i −0.981719 0.190335i \(-0.939043\pi\)
0.357917 + 0.933753i \(0.383487\pi\)
\(588\) −7.57272 13.1163i −0.312294 0.540908i
\(589\) 3.34730 + 18.9835i 0.137923 + 0.782200i
\(590\) 0 0
\(591\) 24.1079 + 28.7307i 0.991666 + 1.18182i
\(592\) 0.0641222 + 0.176174i 0.00263541 + 0.00724072i
\(593\) 2.98276i 0.122487i 0.998123 + 0.0612437i \(0.0195067\pi\)
−0.998123 + 0.0612437i \(0.980493\pi\)
\(594\) −3.06020 3.64701i −0.125562 0.149638i
\(595\) 0 0
\(596\) −16.4338 + 5.98140i −0.673153 + 0.245008i
\(597\) 7.23102 + 41.0091i 0.295946 + 1.67839i
\(598\) 9.66648 + 11.5201i 0.395292 + 0.471091i
\(599\) 5.51930 + 31.3015i 0.225512 + 1.27894i 0.861703 + 0.507412i \(0.169398\pi\)
−0.636191 + 0.771532i \(0.719491\pi\)
\(600\) 0 0
\(601\) 28.2763 + 23.7266i 1.15341 + 0.967830i 0.999794 0.0202999i \(-0.00646211\pi\)
0.153621 + 0.988130i \(0.450907\pi\)
\(602\) −34.8381 20.1138i −1.41990 0.819778i
\(603\) −4.73616 + 2.73442i −0.192871 + 0.111354i
\(604\) −2.84477 4.92729i −0.115752 0.200488i
\(605\) 0 0
\(606\) −1.93629 + 2.30758i −0.0786564 + 0.0937390i
\(607\) −10.7501 + 29.5355i −0.436331 + 1.19881i 0.505530 + 0.862809i \(0.331297\pi\)
−0.941861 + 0.336002i \(0.890925\pi\)
\(608\) 9.05288 24.8726i 0.367143 1.00872i
\(609\) −24.2746 + 28.9293i −0.983655 + 1.17227i
\(610\) 0 0
\(611\) −5.52229 9.56488i −0.223408 0.386954i
\(612\) −1.49124 + 0.860967i −0.0602797 + 0.0348025i
\(613\) −22.0070 12.7057i −0.888854 0.513180i −0.0152863 0.999883i \(-0.504866\pi\)
−0.873567 + 0.486703i \(0.838199\pi\)
\(614\) −2.72803 2.28909i −0.110094 0.0923800i
\(615\) 0 0
\(616\) −1.92962 10.9434i −0.0777468 0.440924i
\(617\) −14.0483 16.7422i −0.565565 0.674014i 0.405149 0.914250i \(-0.367219\pi\)
−0.970714 + 0.240236i \(0.922775\pi\)
\(618\) −3.16281 17.9372i −0.127227 0.721539i
\(619\) −37.8619 + 13.7806i −1.52180 + 0.553889i −0.961597 0.274467i \(-0.911499\pi\)
−0.560202 + 0.828356i \(0.689276\pi\)
\(620\) 0 0
\(621\) 9.54277 26.2185i 0.382938 1.05211i
\(622\) 4.33368i 0.173765i
\(623\) −13.3660 36.7229i −0.535499 1.47127i
\(624\) −0.148529 0.177009i −0.00594590 0.00708605i
\(625\) 0 0
\(626\) 2.11081 + 11.9710i 0.0843651 + 0.478458i
\(627\) 4.23594 + 7.33687i 0.169167 + 0.293006i
\(628\) −9.91665 + 11.8182i −0.395717 + 0.471598i
\(629\) −1.04710 + 1.81364i −0.0417508 + 0.0723144i
\(630\) 0 0
\(631\) 13.9650 + 24.1880i 0.555937 + 0.962911i 0.997830 + 0.0658432i \(0.0209737\pi\)
−0.441893 + 0.897068i \(0.645693\pi\)
\(632\) −11.3353 1.99871i −0.450892 0.0795045i
\(633\) 1.95356 11.0792i 0.0776471 0.440358i
\(634\) 12.8011 + 4.65923i 0.508398 + 0.185042i
\(635\) 0 0
\(636\) −6.42205 17.6444i −0.254651 0.699647i
\(637\) 22.3574 + 3.94222i 0.885834 + 0.156196i
\(638\) −4.60266 + 2.65735i −0.182221 + 0.105205i
\(639\) 4.01249 22.7560i 0.158732 0.900212i
\(640\) 0 0
\(641\) −23.7230 19.9060i −0.937003 0.786239i 0.0400580 0.999197i \(-0.487246\pi\)
−0.977061 + 0.212958i \(0.931690\pi\)
\(642\) −31.4348 −1.24063
\(643\) 32.3302 5.70068i 1.27498 0.224813i 0.505132 0.863042i \(-0.331444\pi\)
0.769846 + 0.638229i \(0.220333\pi\)
\(644\) 18.9659 15.9142i 0.747359 0.627109i
\(645\) 0 0
\(646\) −1.81521 + 0.660681i −0.0714184 + 0.0259942i
\(647\) 11.1310i 0.437606i 0.975769 + 0.218803i \(0.0702153\pi\)
−0.975769 + 0.218803i \(0.929785\pi\)
\(648\) −8.73433 + 23.9974i −0.343117 + 0.942706i
\(649\) 14.2175 0.558086
\(650\) 0 0
\(651\) 9.14290 25.1199i 0.358339 0.984527i
\(652\) −5.04932 6.01754i −0.197746 0.235665i
\(653\) 4.91469 0.866592i 0.192327 0.0339124i −0.0766550 0.997058i \(-0.524424\pi\)
0.268982 + 0.963145i \(0.413313\pi\)
\(654\) 0.660681i 0.0258347i
\(655\) 0 0
\(656\) 0.167718 0.290497i 0.00654830 0.0113420i
\(657\) 0.836452 + 2.29813i 0.0326331 + 0.0896587i
\(658\) 9.92713 5.73143i 0.387000 0.223434i
\(659\) −3.68825 + 20.9171i −0.143674 + 0.814815i 0.824748 + 0.565500i \(0.191317\pi\)
−0.968422 + 0.249315i \(0.919794\pi\)
\(660\) 0 0
\(661\) −1.06506 0.387648i −0.0414258 0.0150778i 0.321224 0.947003i \(-0.395906\pi\)
−0.362650 + 0.931925i \(0.618128\pi\)
\(662\) 2.45064 6.73308i 0.0952468 0.261689i
\(663\) 0.448204 2.54189i 0.0174068 0.0987188i
\(664\) 8.38016 47.5262i 0.325213 1.84438i
\(665\) 0 0
\(666\) 2.05035 + 11.6281i 0.0794493 + 0.450579i
\(667\) −26.9742 15.5736i −1.04445 0.603011i
\(668\) −7.05196 + 8.40420i −0.272849 + 0.325168i
\(669\) 8.68938 5.01681i 0.335951 0.193961i
\(670\) 0 0
\(671\) −7.77316 + 6.52245i −0.300079 + 0.251796i
\(672\) −28.1188 + 23.5945i −1.08471 + 0.910178i
\(673\) −14.9986 41.2083i −0.578154 1.58846i −0.791290 0.611441i \(-0.790590\pi\)
0.213136 0.977023i \(-0.431632\pi\)
\(674\) 5.01010 0.192982
\(675\) 0 0
\(676\) 3.50475 0.134798
\(677\) −3.46876 9.53033i −0.133315 0.366280i 0.855016 0.518602i \(-0.173547\pi\)
−0.988331 + 0.152321i \(0.951325\pi\)
\(678\) 1.52109 + 8.62654i 0.0584172 + 0.331300i
\(679\) 17.6236 14.7880i 0.676332 0.567510i
\(680\) 0 0
\(681\) −19.3935 11.1969i −0.743161 0.429064i
\(682\) 2.41821 2.88191i 0.0925981 0.110354i
\(683\) −4.38366 2.53091i −0.167736 0.0968425i 0.413782 0.910376i \(-0.364208\pi\)
−0.581518 + 0.813534i \(0.697541\pi\)
\(684\) 8.63816 14.9617i 0.330288 0.572076i
\(685\) 0 0
\(686\) −0.0736733 + 0.417822i −0.00281286 + 0.0159525i
\(687\) −1.65717 1.39053i −0.0632249 0.0530520i
\(688\) −0.174362 + 0.479055i −0.00664749 + 0.0182638i
\(689\) 26.4482 + 9.62636i 1.00760 + 0.366735i
\(690\) 0 0
\(691\) 4.22147 23.9411i 0.160592 0.910763i −0.792901 0.609350i \(-0.791430\pi\)
0.953494 0.301413i \(-0.0974584\pi\)
\(692\) 6.44757 3.72251i 0.245100 0.141508i
\(693\) 11.7487i 0.446295i
\(694\) −11.7182 + 20.2966i −0.444818 + 0.770447i
\(695\) 0 0
\(696\) 24.6890 + 14.2542i 0.935835 + 0.540305i
\(697\) 3.68999 0.650644i 0.139768 0.0246449i
\(698\) −4.49891 5.36160i −0.170286 0.202939i
\(699\) −0.650644 + 0.114726i −0.0246096 + 0.00433934i
\(700\) 0 0
\(701\) 46.7256 1.76480 0.882400 0.470500i \(-0.155926\pi\)
0.882400 + 0.470500i \(0.155926\pi\)
\(702\) −7.27633 12.6030i −0.274627 0.475668i
\(703\) 21.0114i 0.792459i
\(704\) −4.93629 + 1.79666i −0.186043 + 0.0677143i
\(705\) 0 0
\(706\) 9.67546 8.11867i 0.364141 0.305550i
\(707\) −7.32083 + 1.29086i −0.275328 + 0.0485478i
\(708\) −14.4965 25.1088i −0.544814 0.943645i
\(709\) 6.47044 + 5.42934i 0.243002 + 0.203903i 0.756152 0.654396i \(-0.227077\pi\)
−0.513150 + 0.858299i \(0.671521\pi\)
\(710\) 0 0
\(711\) −11.4354 4.16215i −0.428861 0.156093i
\(712\) −25.5488 + 14.7506i −0.957483 + 0.552803i
\(713\) 21.7129 + 3.82857i 0.813155 + 0.143381i
\(714\) 2.63816 + 0.465178i 0.0987305 + 0.0174089i
\(715\) 0 0
\(716\) 4.15435 + 1.51206i 0.155255 + 0.0565084i
\(717\) 5.11538 1.86184i 0.191037 0.0695318i
\(718\) −17.8992 3.15611i −0.667991 0.117785i
\(719\) −12.5924 21.8107i −0.469617 0.813401i 0.529779 0.848135i \(-0.322275\pi\)
−0.999397 + 0.0347347i \(0.988941\pi\)
\(720\) 0 0
\(721\) 22.4739 38.9259i 0.836972 1.44968i
\(722\) 1.71793 2.04735i 0.0639348 0.0761946i
\(723\) 13.0090 0.483809
\(724\) 2.36989 + 13.4403i 0.0880763 + 0.499505i
\(725\) 0 0
\(726\) −5.16489 + 14.1904i −0.191687 + 0.526656i
\(727\) −4.12651 11.3375i −0.153044 0.420484i 0.839349 0.543592i \(-0.182936\pi\)
−0.992393 + 0.123108i \(0.960714\pi\)
\(728\) 33.9674i 1.25892i
\(729\) −13.5000 + 23.3827i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) −5.35117 + 1.94767i −0.197920 + 0.0720370i
\(732\) 19.4447 + 7.07728i 0.718695 + 0.261584i
\(733\) 25.9968 + 30.9818i 0.960214 + 1.14434i 0.989466 + 0.144767i \(0.0462432\pi\)
−0.0292515 + 0.999572i \(0.509312\pi\)
\(734\) 1.01131 + 5.73540i 0.0373280 + 0.211698i
\(735\) 0 0
\(736\) −23.1917 19.4601i −0.854856 0.717309i
\(737\) −1.64485 0.949655i −0.0605889 0.0349810i
\(738\) 13.5793 16.1832i 0.499862 0.595712i
\(739\) 4.33140 + 7.50221i 0.159333 + 0.275973i 0.934628 0.355626i \(-0.115732\pi\)
−0.775295 + 0.631599i \(0.782399\pi\)
\(740\) 0 0
\(741\) 8.85710 + 24.3347i 0.325374 + 0.893957i
\(742\) −9.99093 + 27.4499i −0.366779 + 1.00772i
\(743\) 5.99837 16.4804i 0.220059 0.604607i −0.779709 0.626142i \(-0.784633\pi\)
0.999768 + 0.0215347i \(0.00685525\pi\)
\(744\) −19.8735 3.50423i −0.728596 0.128471i
\(745\) 0 0
\(746\) −13.9777 24.2101i −0.511760 0.886395i
\(747\) 17.4510 47.9461i 0.638498 1.75426i
\(748\) −0.517902 0.299011i −0.0189364 0.0109329i
\(749\) −59.4252 49.8637i −2.17135 1.82198i
\(750\) 0 0
\(751\) −5.13253 29.1080i −0.187289 1.06217i −0.922979 0.384849i \(-0.874253\pi\)
0.735691 0.677318i \(-0.236858\pi\)
\(752\) −0.0933762 0.111281i −0.00340508 0.00405802i
\(753\) −20.3995 + 17.1172i −0.743399 + 0.623786i
\(754\) −15.2659 + 5.55635i −0.555953 + 0.202350i
\(755\) 0 0
\(756\) −20.7487 + 11.9792i −0.754622 + 0.435681i
\(757\) 26.1165i 0.949220i 0.880196 + 0.474610i \(0.157411\pi\)
−0.880196 + 0.474610i \(0.842589\pi\)
\(758\) 10.2840 + 28.2551i 0.373532 + 1.02627i
\(759\) 9.54277 1.68265i 0.346380 0.0610762i
\(760\) 0 0
\(761\) −1.78136 10.1026i −0.0645744 0.366220i −0.999922 0.0124897i \(-0.996024\pi\)
0.935348 0.353730i \(-0.115087\pi\)
\(762\) 14.9357 25.8694i 0.541064 0.937150i
\(763\) 1.04801 1.24897i 0.0379405 0.0452158i
\(764\) −6.22416 + 10.7806i −0.225182 + 0.390027i
\(765\) 0 0
\(766\) −10.4650 18.1259i −0.378115 0.654914i
\(767\) 42.7991 + 7.54664i 1.54539 + 0.272493i
\(768\) 21.3633 + 17.9259i 0.770881 + 0.646846i
\(769\) 26.7520 + 9.73692i 0.964700 + 0.351122i 0.775874 0.630888i \(-0.217309\pi\)
0.188827 + 0.982010i \(0.439532\pi\)
\(770\) 0 0
\(771\) −19.9145 + 23.7331i −0.717202 + 0.854728i
\(772\) 0.425653 + 0.0750542i 0.0153196 + 0.00270126i
\(773\) −21.5514 + 12.4427i −0.775149 + 0.447532i