Properties

Label 675.2.u.a.499.1
Level $675$
Weight $2$
Character 675.499
Analytic conductor $5.390$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 499.1
Root \(-0.642788 - 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 675.499
Dual form 675.2.u.a.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32683 + 0.233956i) q^{2} +(0.300767 - 1.70574i) q^{3} +(-0.173648 + 0.0632028i) q^{4} +2.33359i q^{6} +(-0.237565 + 0.652704i) q^{7} +(2.54920 - 1.47178i) q^{8} +(-2.81908 - 1.02606i) q^{9} +O(q^{10})\) \(q+(-1.32683 + 0.233956i) q^{2} +(0.300767 - 1.70574i) q^{3} +(-0.173648 + 0.0632028i) q^{4} +2.33359i q^{6} +(-0.237565 + 0.652704i) q^{7} +(2.54920 - 1.47178i) q^{8} +(-2.81908 - 1.02606i) q^{9} +(-3.52094 + 2.95442i) q^{11} +(0.0555796 + 0.315207i) q^{12} +(1.39003 + 0.245100i) q^{13} +(0.162504 - 0.921605i) q^{14} +(-2.75490 + 2.31164i) q^{16} +(3.35965 + 1.93969i) q^{17} +(3.98048 + 0.701867i) q^{18} +(3.53209 + 6.11776i) q^{19} +(1.04189 + 0.601535i) q^{21} +(3.98048 - 4.74376i) q^{22} +(-1.30753 - 3.59240i) q^{23} +(-1.74376 - 4.79093i) q^{24} -1.90167 q^{26} +(-2.59808 + 4.50000i) q^{27} -0.128356i q^{28} +(-0.851167 - 4.82721i) q^{29} +(0.786989 - 0.286441i) q^{31} +(-0.669713 + 0.798133i) q^{32} +(3.98048 + 6.89440i) q^{33} +(-4.91147 - 1.78763i) q^{34} +0.554378 q^{36} +(6.91560 + 3.99273i) q^{37} +(-6.11776 - 7.29086i) q^{38} +(0.836152 - 2.29731i) q^{39} +(-1.36571 + 7.74535i) q^{41} +(-1.52314 - 0.554378i) q^{42} +(1.33618 + 1.59240i) q^{43} +(0.424678 - 0.735564i) q^{44} +(2.57532 + 4.46059i) q^{46} +(2.35289 - 6.46451i) q^{47} +(3.11446 + 5.39440i) q^{48} +(4.99273 + 4.18939i) q^{49} +(4.31908 - 5.14728i) q^{51} +(-0.256867 + 0.0452926i) q^{52} -3.05644i q^{53} +(2.39440 - 6.57856i) q^{54} +(0.355037 + 2.01352i) q^{56} +(11.4976 - 4.18479i) q^{57} +(2.25870 + 6.20574i) q^{58} +(6.82295 + 5.72513i) q^{59} +(8.12449 + 2.95707i) q^{61} +(-0.977185 + 0.564178i) q^{62} +(1.33943 - 1.59627i) q^{63} +(4.29813 - 7.44459i) q^{64} +(-6.89440 - 8.21643i) q^{66} +(9.30975 + 1.64156i) q^{67} +(-0.705990 - 0.124485i) q^{68} +(-6.52094 + 1.14982i) q^{69} +(2.90033 - 5.02352i) q^{71} +(-8.69653 + 1.53343i) q^{72} +(-4.68647 + 2.70574i) q^{73} +(-10.1099 - 3.67972i) q^{74} +(-1.00000 - 0.839100i) q^{76} +(-1.09191 - 3.00000i) q^{77} +(-0.571962 + 3.24376i) q^{78} +(2.27584 + 12.9070i) q^{79} +(6.89440 + 5.78509i) q^{81} -10.5963i q^{82} +(-1.11792 + 0.197119i) q^{83} +(-0.218941 - 0.0386052i) q^{84} +(-2.14543 - 1.80023i) q^{86} -8.48995 q^{87} +(-4.62733 + 12.7135i) q^{88} +(0.368241 + 0.637812i) q^{89} +(-0.490200 + 0.849051i) q^{91} +(0.454099 + 0.541174i) q^{92} +(-0.251892 - 1.42855i) q^{93} +(-1.60947 + 9.12776i) q^{94} +(1.15998 + 1.38241i) q^{96} +(-5.36554 - 6.39440i) q^{97} +(-7.60462 - 4.39053i) q^{98} +(12.9572 - 4.71605i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 36 q^{11} + 12 q^{14} - 36 q^{16} + 24 q^{19} - 36 q^{24} + 24 q^{26} + 42 q^{29} - 6 q^{31} - 18 q^{34} - 36 q^{36} + 18 q^{39} - 36 q^{41} + 54 q^{44} - 18 q^{46} + 24 q^{49} + 18 q^{51} - 54 q^{54} - 96 q^{56} + 72 q^{61} + 24 q^{64} - 72 q^{69} + 6 q^{71} - 24 q^{74} - 12 q^{76} + 24 q^{79} - 72 q^{84} + 6 q^{86} - 6 q^{89} - 54 q^{94} + 54 q^{96} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32683 + 0.233956i −0.938209 + 0.165432i −0.621786 0.783187i \(-0.713593\pi\)
−0.316423 + 0.948618i \(0.602482\pi\)
\(3\) 0.300767 1.70574i 0.173648 0.984808i
\(4\) −0.173648 + 0.0632028i −0.0868241 + 0.0316014i
\(5\) 0 0
\(6\) 2.33359i 0.952682i
\(7\) −0.237565 + 0.652704i −0.0897910 + 0.246699i −0.976457 0.215711i \(-0.930793\pi\)
0.886666 + 0.462410i \(0.153015\pi\)
\(8\) 2.54920 1.47178i 0.901278 0.520353i
\(9\) −2.81908 1.02606i −0.939693 0.342020i
\(10\) 0 0
\(11\) −3.52094 + 2.95442i −1.06160 + 0.890792i −0.994266 0.106938i \(-0.965895\pi\)
−0.0673390 + 0.997730i \(0.521451\pi\)
\(12\) 0.0555796 + 0.315207i 0.0160444 + 0.0909926i
\(13\) 1.39003 + 0.245100i 0.385525 + 0.0679785i 0.363052 0.931769i \(-0.381735\pi\)
0.0224733 + 0.999747i \(0.492846\pi\)
\(14\) 0.162504 0.921605i 0.0434310 0.246309i
\(15\) 0 0
\(16\) −2.75490 + 2.31164i −0.688725 + 0.577909i
\(17\) 3.35965 + 1.93969i 0.814834 + 0.470445i 0.848632 0.528984i \(-0.177427\pi\)
−0.0337978 + 0.999429i \(0.510760\pi\)
\(18\) 3.98048 + 0.701867i 0.938209 + 0.165432i
\(19\) 3.53209 + 6.11776i 0.810317 + 1.40351i 0.912642 + 0.408759i \(0.134038\pi\)
−0.102326 + 0.994751i \(0.532628\pi\)
\(20\) 0 0
\(21\) 1.04189 + 0.601535i 0.227359 + 0.131266i
\(22\) 3.98048 4.74376i 0.848642 1.01137i
\(23\) −1.30753 3.59240i −0.272638 0.749066i −0.998147 0.0608535i \(-0.980618\pi\)
0.725509 0.688213i \(-0.241604\pi\)
\(24\) −1.74376 4.79093i −0.355943 0.977944i
\(25\) 0 0
\(26\) −1.90167 −0.372949
\(27\) −2.59808 + 4.50000i −0.500000 + 0.866025i
\(28\) 0.128356i 0.0242569i
\(29\) −0.851167 4.82721i −0.158058 0.896390i −0.955937 0.293572i \(-0.905156\pi\)
0.797879 0.602817i \(-0.205955\pi\)
\(30\) 0 0
\(31\) 0.786989 0.286441i 0.141347 0.0514462i −0.270378 0.962754i \(-0.587149\pi\)
0.411725 + 0.911308i \(0.364926\pi\)
\(32\) −0.669713 + 0.798133i −0.118390 + 0.141091i
\(33\) 3.98048 + 6.89440i 0.692913 + 1.20016i
\(34\) −4.91147 1.78763i −0.842311 0.306576i
\(35\) 0 0
\(36\) 0.554378 0.0923963
\(37\) 6.91560 + 3.99273i 1.13692 + 0.656400i 0.945666 0.325141i \(-0.105412\pi\)
0.191253 + 0.981541i \(0.438745\pi\)
\(38\) −6.11776 7.29086i −0.992431 1.18273i
\(39\) 0.836152 2.29731i 0.133891 0.367864i
\(40\) 0 0
\(41\) −1.36571 + 7.74535i −0.213289 + 1.20962i 0.670563 + 0.741853i \(0.266053\pi\)
−0.883851 + 0.467768i \(0.845058\pi\)
\(42\) −1.52314 0.554378i −0.235026 0.0855423i
\(43\) 1.33618 + 1.59240i 0.203765 + 0.242838i 0.858243 0.513243i \(-0.171556\pi\)
−0.654478 + 0.756081i \(0.727112\pi\)
\(44\) 0.424678 0.735564i 0.0640226 0.110890i
\(45\) 0 0
\(46\) 2.57532 + 4.46059i 0.379711 + 0.657678i
\(47\) 2.35289 6.46451i 0.343204 0.942945i −0.641255 0.767328i \(-0.721586\pi\)
0.984459 0.175617i \(-0.0561921\pi\)
\(48\) 3.11446 + 5.39440i 0.449533 + 0.778615i
\(49\) 4.99273 + 4.18939i 0.713247 + 0.598485i
\(50\) 0 0
\(51\) 4.31908 5.14728i 0.604792 0.720763i
\(52\) −0.256867 + 0.0452926i −0.0356211 + 0.00628096i
\(53\) 3.05644i 0.419834i −0.977719 0.209917i \(-0.932681\pi\)
0.977719 0.209917i \(-0.0673194\pi\)
\(54\) 2.39440 6.57856i 0.325837 0.895229i
\(55\) 0 0
\(56\) 0.355037 + 2.01352i 0.0474438 + 0.269067i
\(57\) 11.4976 4.18479i 1.52290 0.554289i
\(58\) 2.25870 + 6.20574i 0.296582 + 0.814853i
\(59\) 6.82295 + 5.72513i 0.888272 + 0.745349i 0.967863 0.251479i \(-0.0809169\pi\)
−0.0795906 + 0.996828i \(0.525361\pi\)
\(60\) 0 0
\(61\) 8.12449 + 2.95707i 1.04023 + 0.378614i 0.804969 0.593317i \(-0.202182\pi\)
0.235265 + 0.971931i \(0.424404\pi\)
\(62\) −0.977185 + 0.564178i −0.124103 + 0.0716506i
\(63\) 1.33943 1.59627i 0.168752 0.201111i
\(64\) 4.29813 7.44459i 0.537267 0.930573i
\(65\) 0 0
\(66\) −6.89440 8.21643i −0.848642 1.01137i
\(67\) 9.30975 + 1.64156i 1.13737 + 0.200548i 0.710453 0.703744i \(-0.248490\pi\)
0.426913 + 0.904293i \(0.359601\pi\)
\(68\) −0.705990 0.124485i −0.0856139 0.0150960i
\(69\) −6.52094 + 1.14982i −0.785029 + 0.138422i
\(70\) 0 0
\(71\) 2.90033 5.02352i 0.344206 0.596182i −0.641003 0.767538i \(-0.721482\pi\)
0.985209 + 0.171356i \(0.0548149\pi\)
\(72\) −8.69653 + 1.53343i −1.02490 + 0.180717i
\(73\) −4.68647 + 2.70574i −0.548510 + 0.316683i −0.748521 0.663111i \(-0.769236\pi\)
0.200011 + 0.979794i \(0.435902\pi\)
\(74\) −10.1099 3.67972i −1.17526 0.427758i
\(75\) 0 0
\(76\) −1.00000 0.839100i −0.114708 0.0962513i
\(77\) −1.09191 3.00000i −0.124435 0.341882i
\(78\) −0.571962 + 3.24376i −0.0647619 + 0.367283i
\(79\) 2.27584 + 12.9070i 0.256053 + 1.45215i 0.793356 + 0.608757i \(0.208332\pi\)
−0.537304 + 0.843389i \(0.680557\pi\)
\(80\) 0 0
\(81\) 6.89440 + 5.78509i 0.766044 + 0.642788i
\(82\) 10.5963i 1.17016i
\(83\) −1.11792 + 0.197119i −0.122707 + 0.0216366i −0.234665 0.972076i \(-0.575399\pi\)
0.111957 + 0.993713i \(0.464288\pi\)
\(84\) −0.218941 0.0386052i −0.0238884 0.00421217i
\(85\) 0 0
\(86\) −2.14543 1.80023i −0.231348 0.194124i
\(87\) −8.48995 −0.910218
\(88\) −4.62733 + 12.7135i −0.493275 + 1.35526i
\(89\) 0.368241 + 0.637812i 0.0390335 + 0.0676079i 0.884882 0.465815i \(-0.154239\pi\)
−0.845849 + 0.533423i \(0.820905\pi\)
\(90\) 0 0
\(91\) −0.490200 + 0.849051i −0.0513869 + 0.0890047i
\(92\) 0.454099 + 0.541174i 0.0473431 + 0.0564213i
\(93\) −0.251892 1.42855i −0.0261199 0.148134i
\(94\) −1.60947 + 9.12776i −0.166004 + 0.941457i
\(95\) 0 0
\(96\) 1.15998 + 1.38241i 0.118390 + 0.141091i
\(97\) −5.36554 6.39440i −0.544788 0.649253i 0.421466 0.906844i \(-0.361516\pi\)
−0.966254 + 0.257591i \(0.917071\pi\)
\(98\) −7.60462 4.39053i −0.768183 0.443510i
\(99\) 12.9572 4.71605i 1.30225 0.473981i
\(100\) 0 0
\(101\) −11.6099 4.22567i −1.15523 0.420470i −0.307840 0.951438i \(-0.599606\pi\)
−0.847392 + 0.530968i \(0.821828\pi\)
\(102\) −4.52644 + 7.84002i −0.448184 + 0.776278i
\(103\) −5.40182 + 6.43763i −0.532257 + 0.634319i −0.963433 0.267949i \(-0.913654\pi\)
0.431176 + 0.902268i \(0.358099\pi\)
\(104\) 3.90420 1.42101i 0.382838 0.139342i
\(105\) 0 0
\(106\) 0.715070 + 4.05537i 0.0694538 + 0.393892i
\(107\) 13.9581i 1.34938i 0.738101 + 0.674691i \(0.235723\pi\)
−0.738101 + 0.674691i \(0.764277\pi\)
\(108\) 0.166739 0.945622i 0.0160444 0.0909926i
\(109\) 15.5817 1.49246 0.746229 0.665689i \(-0.231862\pi\)
0.746229 + 0.665689i \(0.231862\pi\)
\(110\) 0 0
\(111\) 8.89053 10.5953i 0.843852 1.00566i
\(112\) −0.854346 2.34730i −0.0807281 0.221799i
\(113\) 11.0368 13.1532i 1.03826 1.23735i 0.0673899 0.997727i \(-0.478533\pi\)
0.970867 0.239619i \(-0.0770227\pi\)
\(114\) −14.2763 + 8.24243i −1.33710 + 0.771975i
\(115\) 0 0
\(116\) 0.452896 + 0.784440i 0.0420504 + 0.0728334i
\(117\) −3.66712 2.11721i −0.339025 0.195736i
\(118\) −10.3923 6.00000i −0.956689 0.552345i
\(119\) −2.06418 + 1.73205i −0.189223 + 0.158777i
\(120\) 0 0
\(121\) 1.75830 9.97184i 0.159846 0.906531i
\(122\) −11.4716 2.02276i −1.03859 0.183132i
\(123\) 12.8008 + 4.65910i 1.15421 + 0.420097i
\(124\) −0.118555 + 0.0994798i −0.0106466 + 0.00893355i
\(125\) 0 0
\(126\) −1.40373 + 2.43134i −0.125055 + 0.216601i
\(127\) −19.3711 + 11.1839i −1.71891 + 0.992412i −0.797975 + 0.602690i \(0.794096\pi\)
−0.920933 + 0.389722i \(0.872571\pi\)
\(128\) −3.24849 + 8.92514i −0.287128 + 0.788879i
\(129\) 3.11809 1.80023i 0.274532 0.158501i
\(130\) 0 0
\(131\) −13.9427 + 5.07472i −1.21818 + 0.443381i −0.869533 0.493874i \(-0.835580\pi\)
−0.348645 + 0.937255i \(0.613358\pi\)
\(132\) −1.12695 0.945622i −0.0980883 0.0823059i
\(133\) −4.83218 + 0.852044i −0.419003 + 0.0738816i
\(134\) −12.7365 −1.10026
\(135\) 0 0
\(136\) 11.4192 0.979190
\(137\) −12.6088 + 2.22328i −1.07725 + 0.189947i −0.683997 0.729485i \(-0.739760\pi\)
−0.393249 + 0.919432i \(0.628649\pi\)
\(138\) 8.38316 3.05122i 0.713622 0.259737i
\(139\) −10.7258 + 3.90387i −0.909751 + 0.331122i −0.754153 0.656698i \(-0.771952\pi\)
−0.155597 + 0.987821i \(0.549730\pi\)
\(140\) 0 0
\(141\) −10.3191 5.95772i −0.869023 0.501731i
\(142\) −2.67296 + 7.34389i −0.224310 + 0.616286i
\(143\) −5.61835 + 3.24376i −0.469830 + 0.271256i
\(144\) 10.1382 3.68999i 0.844846 0.307499i
\(145\) 0 0
\(146\) 5.58512 4.68647i 0.462228 0.387855i
\(147\) 8.64766 7.25624i 0.713247 0.598485i
\(148\) −1.45323 0.256244i −0.119455 0.0210631i
\(149\) −2.26352 + 12.8370i −0.185435 + 1.05165i 0.739961 + 0.672650i \(0.234844\pi\)
−0.925396 + 0.379002i \(0.876267\pi\)
\(150\) 0 0
\(151\) −1.56418 + 1.31250i −0.127291 + 0.106810i −0.704211 0.709991i \(-0.748699\pi\)
0.576920 + 0.816801i \(0.304255\pi\)
\(152\) 18.0080 + 10.3969i 1.46064 + 0.843302i
\(153\) −7.48086 8.91534i −0.604792 0.720763i
\(154\) 2.15064 + 3.72503i 0.173304 + 0.300171i
\(155\) 0 0
\(156\) 0.451771i 0.0361706i
\(157\) 7.44956 8.87804i 0.594540 0.708545i −0.381932 0.924190i \(-0.624741\pi\)
0.976472 + 0.215646i \(0.0691856\pi\)
\(158\) −6.03931 16.5929i −0.480462 1.32006i
\(159\) −5.21348 0.919277i −0.413456 0.0729034i
\(160\) 0 0
\(161\) 2.65539 0.209274
\(162\) −10.5011 6.06283i −0.825047 0.476341i
\(163\) 16.6382i 1.30320i −0.758562 0.651600i \(-0.774098\pi\)
0.758562 0.651600i \(-0.225902\pi\)
\(164\) −0.252374 1.43128i −0.0197071 0.111764i
\(165\) 0 0
\(166\) 1.43717 0.523086i 0.111546 0.0405993i
\(167\) 0.0681784 0.0812519i 0.00527581 0.00628746i −0.763400 0.645926i \(-0.776471\pi\)
0.768676 + 0.639638i \(0.220916\pi\)
\(168\) 3.54131 0.273218
\(169\) −10.3439 3.76487i −0.795684 0.289605i
\(170\) 0 0
\(171\) −3.68004 20.8706i −0.281420 1.59601i
\(172\) −0.332669 0.192066i −0.0253658 0.0146449i
\(173\) 4.93837 + 5.88532i 0.375457 + 0.447452i 0.920375 0.391037i \(-0.127884\pi\)
−0.544918 + 0.838489i \(0.683439\pi\)
\(174\) 11.2647 1.98627i 0.853975 0.150579i
\(175\) 0 0
\(176\) 2.87030 16.2783i 0.216357 1.22702i
\(177\) 11.8177 9.91622i 0.888272 0.745349i
\(178\) −0.637812 0.760115i −0.0478060 0.0569730i
\(179\) −11.2515 + 19.4882i −0.840976 + 1.45661i 0.0480938 + 0.998843i \(0.484685\pi\)
−0.889070 + 0.457771i \(0.848648\pi\)
\(180\) 0 0
\(181\) −10.8944 18.8697i −0.809774 1.40257i −0.913020 0.407914i \(-0.866256\pi\)
0.103246 0.994656i \(-0.467077\pi\)
\(182\) 0.451771 1.24123i 0.0334875 0.0920061i
\(183\) 7.48757 12.9688i 0.553497 0.958685i
\(184\) −8.62037 7.23335i −0.635502 0.533249i
\(185\) 0 0
\(186\) 0.668434 + 1.83651i 0.0490119 + 0.134659i
\(187\) −17.5598 + 3.09627i −1.28410 + 0.226421i
\(188\) 1.27126i 0.0927161i
\(189\) −2.31996 2.76481i −0.168752 0.201111i
\(190\) 0 0
\(191\) 1.81180 + 10.2753i 0.131098 + 0.743491i 0.977498 + 0.210944i \(0.0676539\pi\)
−0.846401 + 0.532547i \(0.821235\pi\)
\(192\) −11.4058 9.57057i −0.823140 0.690697i
\(193\) −3.41117 9.37211i −0.245541 0.674619i −0.999836 0.0180838i \(-0.994243\pi\)
0.754295 0.656536i \(-0.227979\pi\)
\(194\) 8.61515 + 7.22897i 0.618532 + 0.519010i
\(195\) 0 0
\(196\) −1.13176 0.411927i −0.0808399 0.0294233i
\(197\) 14.5246 8.38578i 1.03483 0.597462i 0.116469 0.993194i \(-0.462842\pi\)
0.918366 + 0.395732i \(0.129509\pi\)
\(198\) −16.0887 + 9.28880i −1.14337 + 0.660126i
\(199\) 13.7981 23.8991i 0.978124 1.69416i 0.308908 0.951092i \(-0.400037\pi\)
0.669216 0.743068i \(-0.266630\pi\)
\(200\) 0 0
\(201\) 5.60014 15.3863i 0.395003 1.08526i
\(202\) 16.3930 + 2.89053i 1.15341 + 0.203377i
\(203\) 3.35294 + 0.591214i 0.235330 + 0.0414951i
\(204\) −0.424678 + 1.16679i −0.0297334 + 0.0816918i
\(205\) 0 0
\(206\) 5.66116 9.80542i 0.394432 0.683176i
\(207\) 11.4688i 0.797140i
\(208\) −4.39598 + 2.53802i −0.304806 + 0.175980i
\(209\) −30.5107 11.1050i −2.11047 0.768149i
\(210\) 0 0
\(211\) −6.10220 5.12035i −0.420093 0.352499i 0.408106 0.912935i \(-0.366189\pi\)
−0.828198 + 0.560435i \(0.810634\pi\)
\(212\) 0.193175 + 0.530745i 0.0132673 + 0.0364517i
\(213\) −7.69648 6.45811i −0.527354 0.442502i
\(214\) −3.26558 18.5200i −0.223230 1.26600i
\(215\) 0 0
\(216\) 15.2952i 1.04071i
\(217\) 0.581719i 0.0394896i
\(218\) −20.6743 + 3.64543i −1.40024 + 0.246900i
\(219\) 3.20574 + 8.80769i 0.216624 + 0.595169i
\(220\) 0 0
\(221\) 4.19459 + 3.51968i 0.282159 + 0.236759i
\(222\) −9.31737 + 16.1382i −0.625341 + 1.08312i
\(223\) −7.10257 + 19.5141i −0.475623 + 1.30676i 0.437551 + 0.899194i \(0.355846\pi\)
−0.913174 + 0.407570i \(0.866376\pi\)
\(224\) −0.361844 0.626733i −0.0241767 0.0418753i
\(225\) 0 0
\(226\) −11.5667 + 20.0341i −0.769406 + 1.33265i
\(227\) 1.03866 + 1.23783i 0.0689382 + 0.0821574i 0.799411 0.600784i \(-0.205145\pi\)
−0.730473 + 0.682941i \(0.760700\pi\)
\(228\) −1.73205 + 1.45336i −0.114708 + 0.0962513i
\(229\) −1.76604 + 10.0157i −0.116704 + 0.661858i 0.869189 + 0.494480i \(0.164641\pi\)
−0.985893 + 0.167379i \(0.946470\pi\)
\(230\) 0 0
\(231\) −5.44562 + 0.960210i −0.358296 + 0.0631772i
\(232\) −9.27439 11.0528i −0.608893 0.725651i
\(233\) 18.1806 + 10.4966i 1.19105 + 0.687655i 0.958545 0.284940i \(-0.0919736\pi\)
0.232508 + 0.972595i \(0.425307\pi\)
\(234\) 5.36097 + 1.95123i 0.350457 + 0.127556i
\(235\) 0 0
\(236\) −1.54664 0.562930i −0.100677 0.0366436i
\(237\) 22.7004 1.47455
\(238\) 2.33359 2.78106i 0.151264 0.180269i
\(239\) 4.70574 1.71275i 0.304389 0.110788i −0.185310 0.982680i \(-0.559329\pi\)
0.489699 + 0.871892i \(0.337107\pi\)
\(240\) 0 0
\(241\) 3.95290 + 22.4180i 0.254628 + 1.44407i 0.797025 + 0.603947i \(0.206406\pi\)
−0.542396 + 0.840123i \(0.682483\pi\)
\(242\) 13.6423i 0.876959i
\(243\) 11.9415 10.0201i 0.766044 0.642788i
\(244\) −1.59770 −0.102282
\(245\) 0 0
\(246\) −18.0744 3.18701i −1.15238 0.203196i
\(247\) 3.41025 + 9.36959i 0.216989 + 0.596172i
\(248\) 1.58461 1.88847i 0.100623 0.119918i
\(249\) 1.96616i 0.124600i
\(250\) 0 0
\(251\) −7.30928 12.6600i −0.461358 0.799095i 0.537671 0.843154i \(-0.319304\pi\)
−0.999029 + 0.0440598i \(0.985971\pi\)
\(252\) −0.131701 + 0.361844i −0.00829635 + 0.0227940i
\(253\) 15.2172 + 8.78564i 0.956696 + 0.552349i
\(254\) 23.0856 19.3711i 1.44852 1.21545i
\(255\) 0 0
\(256\) −0.763356 + 4.32921i −0.0477098 + 0.270575i
\(257\) 0.208911 + 0.0368366i 0.0130315 + 0.00229781i 0.180160 0.983637i \(-0.442338\pi\)
−0.167129 + 0.985935i \(0.553450\pi\)
\(258\) −3.71599 + 3.11809i −0.231348 + 0.194124i
\(259\) −4.24897 + 3.56531i −0.264018 + 0.221538i
\(260\) 0 0
\(261\) −2.55350 + 14.4816i −0.158058 + 0.896390i
\(262\) 17.3123 9.99525i 1.06956 0.617509i
\(263\) 0.565258 1.55303i 0.0348553 0.0957641i −0.921044 0.389458i \(-0.872662\pi\)
0.955900 + 0.293694i \(0.0948846\pi\)
\(264\) 20.2941 + 11.7168i 1.24902 + 0.721119i
\(265\) 0 0
\(266\) 6.21213 2.26103i 0.380890 0.138633i
\(267\) 1.19869 0.436289i 0.0733589 0.0267005i
\(268\) −1.72037 + 0.303348i −0.105088 + 0.0185299i
\(269\) 3.03684 0.185159 0.0925796 0.995705i \(-0.470489\pi\)
0.0925796 + 0.995705i \(0.470489\pi\)
\(270\) 0 0
\(271\) 15.9145 0.966735 0.483368 0.875418i \(-0.339413\pi\)
0.483368 + 0.875418i \(0.339413\pi\)
\(272\) −13.7394 + 2.42262i −0.833071 + 0.146893i
\(273\) 1.30082 + 1.09152i 0.0787293 + 0.0660617i
\(274\) 16.2096 5.89981i 0.979258 0.356421i
\(275\) 0 0
\(276\) 1.05968 0.611806i 0.0637851 0.0368264i
\(277\) −6.02265 + 16.5471i −0.361866 + 0.994219i 0.616503 + 0.787353i \(0.288549\pi\)
−0.978369 + 0.206867i \(0.933673\pi\)
\(278\) 13.3180 7.68913i 0.798758 0.461163i
\(279\) −2.51249 −0.150419
\(280\) 0 0
\(281\) 6.72668 5.64436i 0.401280 0.336714i −0.419708 0.907659i \(-0.637868\pi\)
0.820988 + 0.570945i \(0.193423\pi\)
\(282\) 15.0855 + 5.49067i 0.898327 + 0.326964i
\(283\) 1.99157 + 0.351167i 0.118386 + 0.0208747i 0.232527 0.972590i \(-0.425300\pi\)
−0.114141 + 0.993465i \(0.536412\pi\)
\(284\) −0.186137 + 1.05563i −0.0110452 + 0.0626403i
\(285\) 0 0
\(286\) 6.69569 5.61835i 0.395924 0.332220i
\(287\) −4.73097 2.73143i −0.279261 0.161231i
\(288\) 2.70691 1.56283i 0.159506 0.0920909i
\(289\) −0.975185 1.68907i −0.0573638 0.0993571i
\(290\) 0 0
\(291\) −12.5209 + 7.22897i −0.733991 + 0.423770i
\(292\) 0.642788 0.766044i 0.0376163 0.0448294i
\(293\) 6.69999 + 18.4081i 0.391418 + 1.07541i 0.966355 + 0.257213i \(0.0828043\pi\)
−0.574937 + 0.818198i \(0.694973\pi\)
\(294\) −9.77631 + 11.6510i −0.570166 + 0.679497i
\(295\) 0 0
\(296\) 23.5057 1.36624
\(297\) −4.14722 23.5201i −0.240646 1.36477i
\(298\) 17.5621i 1.01735i
\(299\) −0.937004 5.31402i −0.0541884 0.307317i
\(300\) 0 0
\(301\) −1.35679 + 0.493832i −0.0782042 + 0.0284640i
\(302\) 1.76833 2.10741i 0.101756 0.121268i
\(303\) −10.6998 + 18.5326i −0.614686 + 1.06467i
\(304\) −23.8726 8.68891i −1.36919 0.498343i
\(305\) 0 0
\(306\) 12.0116 + 10.0789i 0.686658 + 0.576175i
\(307\) −7.16079 4.13429i −0.408688 0.235956i 0.281538 0.959550i \(-0.409155\pi\)
−0.690226 + 0.723594i \(0.742489\pi\)
\(308\) 0.379217 + 0.451933i 0.0216079 + 0.0257513i
\(309\) 9.35622 + 11.1503i 0.532257 + 0.634319i
\(310\) 0 0
\(311\) −4.79679 + 27.2039i −0.272001 + 1.54259i 0.476329 + 0.879267i \(0.341967\pi\)
−0.748330 + 0.663327i \(0.769144\pi\)
\(312\) −1.24962 7.08693i −0.0707457 0.401219i
\(313\) 1.63695 + 1.95084i 0.0925257 + 0.110268i 0.810321 0.585987i \(-0.199293\pi\)
−0.717795 + 0.696255i \(0.754848\pi\)
\(314\) −7.80722 + 13.5225i −0.440587 + 0.763119i
\(315\) 0 0
\(316\) −1.21095 2.09743i −0.0681214 0.117990i
\(317\) 9.82115 26.9834i 0.551611 1.51554i −0.279900 0.960029i \(-0.590301\pi\)
0.831510 0.555509i \(-0.187477\pi\)
\(318\) 7.13246 0.399968
\(319\) 17.2585 + 14.4816i 0.966292 + 0.810815i
\(320\) 0 0
\(321\) 23.8089 + 4.19815i 1.32888 + 0.234318i
\(322\) −3.52325 + 0.621244i −0.196343 + 0.0346206i
\(323\) 27.4047i 1.52484i
\(324\) −1.56283 0.568825i −0.0868241 0.0316014i
\(325\) 0 0
\(326\) 3.89259 + 22.0760i 0.215591 + 1.22267i
\(327\) 4.68647 26.5783i 0.259163 1.46978i
\(328\) 7.91799 + 21.7545i 0.437198 + 1.20119i
\(329\) 3.66044 + 3.07148i 0.201807 + 0.169336i
\(330\) 0 0
\(331\) 7.92514 + 2.88452i 0.435605 + 0.158547i 0.550509 0.834829i \(-0.314434\pi\)
−0.114904 + 0.993377i \(0.536656\pi\)
\(332\) 0.181666 0.104885i 0.00997021 0.00575630i
\(333\) −15.3988 18.3516i −0.843852 1.00566i
\(334\) −0.0714517 + 0.123758i −0.00390966 + 0.00677174i
\(335\) 0 0
\(336\) −4.26083 + 0.751299i −0.232447 + 0.0409867i
\(337\) −15.9954 2.82042i −0.871325 0.153638i −0.279931 0.960020i \(-0.590311\pi\)
−0.591395 + 0.806382i \(0.701423\pi\)
\(338\) 14.6054 + 2.57532i 0.794428 + 0.140079i
\(339\) −19.1163 22.7820i −1.03826 1.23735i
\(340\) 0 0
\(341\) −1.92468 + 3.33364i −0.104227 + 0.180527i
\(342\) 9.76557 + 26.8307i 0.528062 + 1.45084i
\(343\) −8.13127 + 4.69459i −0.439047 + 0.253484i
\(344\) 5.74985 + 2.09277i 0.310011 + 0.112835i
\(345\) 0 0
\(346\) −7.92926 6.65344i −0.426280 0.357691i
\(347\) −4.28715 11.7788i −0.230146 0.632321i 0.769836 0.638241i \(-0.220338\pi\)
−0.999982 + 0.00592013i \(0.998116\pi\)
\(348\) 1.47426 0.536588i 0.0790288 0.0287641i
\(349\) −5.70187 32.3369i −0.305214 1.73095i −0.622496 0.782623i \(-0.713881\pi\)
0.317282 0.948331i \(-0.397230\pi\)
\(350\) 0 0
\(351\) −4.71436 + 5.61835i −0.251634 + 0.299885i
\(352\) 4.78880i 0.255244i
\(353\) 15.9515 2.81268i 0.849013 0.149704i 0.267819 0.963469i \(-0.413697\pi\)
0.581194 + 0.813765i \(0.302586\pi\)
\(354\) −13.3601 + 15.9219i −0.710081 + 0.846241i
\(355\) 0 0
\(356\) −0.104256 0.0874810i −0.00552555 0.00463649i
\(357\) 2.33359 + 4.04189i 0.123506 + 0.213919i
\(358\) 10.3694 28.4898i 0.548042 1.50573i
\(359\) 6.13088 + 10.6190i 0.323576 + 0.560449i 0.981223 0.192877i \(-0.0617817\pi\)
−0.657647 + 0.753326i \(0.728448\pi\)
\(360\) 0 0
\(361\) −15.4513 + 26.7624i −0.813227 + 1.40855i
\(362\) 18.8697 + 22.4880i 0.991767 + 1.18194i
\(363\) −16.4805 5.99841i −0.865001 0.314835i
\(364\) 0.0314599 0.178418i 0.00164895 0.00935165i
\(365\) 0 0
\(366\) −6.90058 + 18.9592i −0.360699 + 0.991012i
\(367\) 20.3685 + 24.2743i 1.06323 + 1.26711i 0.962235 + 0.272218i \(0.0877573\pi\)
0.100992 + 0.994887i \(0.467798\pi\)
\(368\) 11.9064 + 6.87417i 0.620665 + 0.358341i
\(369\) 11.7973 20.4334i 0.614141 1.06372i
\(370\) 0 0
\(371\) 1.99495 + 0.726102i 0.103573 + 0.0376973i
\(372\) 0.134029 + 0.232145i 0.00694907 + 0.0120361i
\(373\) 23.2393 27.6955i 1.20329 1.43402i 0.331975 0.943288i \(-0.392285\pi\)
0.871311 0.490732i \(-0.163271\pi\)
\(374\) 22.5744 8.21643i 1.16730 0.424861i
\(375\) 0 0
\(376\) −3.51636 19.9423i −0.181342 1.02844i
\(377\) 6.91859i 0.356325i
\(378\) 3.72503 + 3.12567i 0.191595 + 0.160767i
\(379\) 13.7237 0.704939 0.352469 0.935823i \(-0.385342\pi\)
0.352469 + 0.935823i \(0.385342\pi\)
\(380\) 0 0
\(381\) 13.2506 + 36.4058i 0.678850 + 1.86512i
\(382\) −4.80790 13.2096i −0.245994 0.675862i
\(383\) −14.7209 + 17.5437i −0.752203 + 0.896441i −0.997328 0.0730503i \(-0.976727\pi\)
0.245125 + 0.969492i \(0.421171\pi\)
\(384\) 14.2469 + 8.22546i 0.727035 + 0.419754i
\(385\) 0 0
\(386\) 6.71869 + 11.6371i 0.341972 + 0.592314i
\(387\) −2.13290 5.86009i −0.108421 0.297885i
\(388\) 1.33586 + 0.771259i 0.0678180 + 0.0391547i
\(389\) 8.87211 7.44459i 0.449834 0.377455i −0.389540 0.921009i \(-0.627366\pi\)
0.839374 + 0.543554i \(0.182922\pi\)
\(390\) 0 0
\(391\) 2.57532 14.6054i 0.130240 0.738626i
\(392\) 18.8933 + 3.33140i 0.954257 + 0.168261i
\(393\) 4.46264 + 25.3089i 0.225110 + 1.27666i
\(394\) −17.3097 + 14.5246i −0.872052 + 0.731739i
\(395\) 0 0
\(396\) −1.95193 + 1.63787i −0.0980883 + 0.0823059i
\(397\) −11.3072 + 6.52822i −0.567492 + 0.327642i −0.756147 0.654402i \(-0.772921\pi\)
0.188655 + 0.982043i \(0.439587\pi\)
\(398\) −12.7164 + 34.9381i −0.637417 + 1.75129i
\(399\) 8.49870i 0.425467i
\(400\) 0 0
\(401\) 0.932419 0.339373i 0.0465628 0.0169475i −0.318634 0.947878i \(-0.603224\pi\)
0.365197 + 0.930930i \(0.381002\pi\)
\(402\) −3.83072 + 21.7251i −0.191059 + 1.08355i
\(403\) 1.16415 0.205270i 0.0579902 0.0102252i
\(404\) 2.28312 0.113589
\(405\) 0 0
\(406\) −4.58710 −0.227654
\(407\) −36.1457 + 6.37346i −1.79167 + 0.315920i
\(408\) 3.43453 19.4782i 0.170034 0.964314i
\(409\) −29.7999 + 10.8463i −1.47351 + 0.536315i −0.949052 0.315120i \(-0.897955\pi\)
−0.524461 + 0.851435i \(0.675733\pi\)
\(410\) 0 0
\(411\) 22.1760i 1.09386i
\(412\) 0.531139 1.45929i 0.0261674 0.0718942i
\(413\) −5.35771 + 3.09327i −0.263636 + 0.152210i
\(414\) −2.68320 15.2172i −0.131872 0.747884i
\(415\) 0 0
\(416\) −1.12654 + 0.945283i −0.0552334 + 0.0463463i
\(417\) 3.43301 + 19.4696i 0.168115 + 0.953428i
\(418\) 43.0806 + 7.59627i 2.10714 + 0.371546i
\(419\) 2.20708 12.5170i 0.107823 0.611494i −0.882232 0.470815i \(-0.843960\pi\)
0.990055 0.140680i \(-0.0449288\pi\)
\(420\) 0 0
\(421\) −2.83544 + 2.37921i −0.138191 + 0.115956i −0.709263 0.704944i \(-0.750972\pi\)
0.571072 + 0.820900i \(0.306528\pi\)
\(422\) 9.29450 + 5.36618i 0.452449 + 0.261222i
\(423\) −13.2660 + 15.8097i −0.645013 + 0.768696i
\(424\) −4.49841 7.79147i −0.218462 0.378387i
\(425\) 0 0
\(426\) 11.7228 + 6.76817i 0.567972 + 0.327919i
\(427\) −3.86018 + 4.60039i −0.186807 + 0.222628i
\(428\) −0.882191 2.42380i −0.0426423 0.117159i
\(429\) 3.84318 + 10.5590i 0.185550 + 0.509795i
\(430\) 0 0
\(431\) −9.16250 −0.441342 −0.220671 0.975348i \(-0.570825\pi\)
−0.220671 + 0.975348i \(0.570825\pi\)
\(432\) −3.24492 18.4029i −0.156121 0.885408i
\(433\) 29.7861i 1.43143i −0.698393 0.715715i \(-0.746101\pi\)
0.698393 0.715715i \(-0.253899\pi\)
\(434\) −0.136096 0.771841i −0.00653283 0.0370495i
\(435\) 0 0
\(436\) −2.70574 + 0.984808i −0.129581 + 0.0471637i
\(437\) 17.3591 20.6878i 0.830399 0.989631i
\(438\) −6.31407 10.9363i −0.301698 0.522556i
\(439\) 11.2604 + 4.09846i 0.537430 + 0.195609i 0.596453 0.802648i \(-0.296576\pi\)
−0.0590226 + 0.998257i \(0.518798\pi\)
\(440\) 0 0
\(441\) −9.77631 16.9331i −0.465539 0.806337i
\(442\) −6.38895 3.68866i −0.303891 0.175452i
\(443\) −23.0804 27.5061i −1.09658 1.30686i −0.948111 0.317940i \(-0.897009\pi\)
−0.148472 0.988917i \(-0.547435\pi\)
\(444\) −0.874171 + 2.40176i −0.0414863 + 0.113983i
\(445\) 0 0
\(446\) 4.85844 27.5536i 0.230054 1.30470i
\(447\) 21.2158 + 7.72193i 1.00347 + 0.365235i
\(448\) 3.83802 + 4.57398i 0.181330 + 0.216100i
\(449\) 16.2777 28.1937i 0.768190 1.33054i −0.170353 0.985383i \(-0.554491\pi\)
0.938543 0.345161i \(-0.112176\pi\)
\(450\) 0 0
\(451\) −18.0744 31.3059i −0.851092 1.47414i
\(452\) −1.08521 + 2.98158i −0.0510438 + 0.140242i
\(453\) 1.76833 + 3.06283i 0.0830833 + 0.143904i
\(454\) −1.66772 1.39938i −0.0782699 0.0656762i
\(455\) 0 0
\(456\) 23.1506 27.5899i 1.08413 1.29201i
\(457\) 14.1589 2.49660i 0.662325 0.116786i 0.167627 0.985850i \(-0.446390\pi\)
0.494699 + 0.869065i \(0.335278\pi\)
\(458\) 13.7023i 0.640268i
\(459\) −17.4572 + 10.0789i −0.814834 + 0.470445i
\(460\) 0 0
\(461\) 2.09920 + 11.9052i 0.0977696 + 0.554479i 0.993863 + 0.110614i \(0.0352819\pi\)
−0.896094 + 0.443865i \(0.853607\pi\)
\(462\) 7.00076 2.54807i 0.325705 0.118547i
\(463\) −4.62327 12.7023i −0.214862 0.590328i 0.784702 0.619873i \(-0.212816\pi\)
−0.999563 + 0.0295460i \(0.990594\pi\)
\(464\) 13.5036 + 11.3309i 0.626890 + 0.526023i
\(465\) 0 0
\(466\) −26.5783 9.67372i −1.23122 0.448126i
\(467\) −15.0387 + 8.68257i −0.695906 + 0.401781i −0.805821 0.592160i \(-0.798276\pi\)
0.109915 + 0.993941i \(0.464942\pi\)
\(468\) 0.770602 + 0.135878i 0.0356211 + 0.00628096i
\(469\) −3.28312 + 5.68653i −0.151600 + 0.262579i
\(470\) 0 0
\(471\) −12.9030 15.3772i −0.594540 0.708545i
\(472\) 25.8192 + 4.55262i 1.18843 + 0.209551i
\(473\) −9.40923 1.65910i −0.432637 0.0762855i
\(474\) −30.1195 + 5.31088i −1.38343 + 0.243937i
\(475\) 0 0
\(476\) 0.248970 0.431229i 0.0114115 0.0197654i
\(477\) −3.13609 + 8.61633i −0.143592 + 0.394515i
\(478\) −5.84300 + 3.37346i −0.267252 + 0.154298i
\(479\) −6.75150 2.45734i −0.308484 0.112279i 0.183139 0.983087i \(-0.441374\pi\)
−0.491623 + 0.870808i \(0.663596\pi\)
\(480\) 0 0
\(481\) 8.63429 + 7.24503i 0.393690 + 0.330345i
\(482\) −10.4896 28.8200i −0.477789 1.31272i
\(483\) 0.798656 4.52940i 0.0363401 0.206095i
\(484\) 0.324921 + 1.84272i 0.0147692 + 0.0837600i
\(485\) 0 0
\(486\) −13.5000 + 16.0887i −0.612372 + 0.729797i
\(487\) 13.9394i 0.631657i −0.948816 0.315828i \(-0.897718\pi\)
0.948816 0.315828i \(-0.102282\pi\)
\(488\) 25.0631 4.41930i 1.13455 0.200052i
\(489\) −28.3803 5.00422i −1.28340 0.226298i
\(490\) 0 0
\(491\) −16.6291 13.9534i −0.750459 0.629710i 0.185165 0.982707i \(-0.440718\pi\)
−0.935624 + 0.352997i \(0.885163\pi\)
\(492\) −2.51730 −0.113489
\(493\) 6.50368 17.8687i 0.292911 0.804766i
\(494\) −6.71688 11.6340i −0.302207 0.523438i
\(495\) 0 0
\(496\) −1.50593 + 2.60835i −0.0676182 + 0.117118i
\(497\) 2.58985 + 3.08647i 0.116171 + 0.138447i
\(498\) −0.459994 2.60876i −0.0206128 0.116901i
\(499\) −0.726377 + 4.11949i −0.0325171 + 0.184414i −0.996740 0.0806786i \(-0.974291\pi\)
0.964223 + 0.265092i \(0.0854024\pi\)
\(500\) 0 0
\(501\) −0.118089 0.140732i −0.00527581 0.00628746i
\(502\) 12.6600 + 15.0876i 0.565045 + 0.673395i
\(503\) 20.6439 + 11.9187i 0.920465 + 0.531431i 0.883783 0.467896i \(-0.154988\pi\)
0.0366816 + 0.999327i \(0.488321\pi\)
\(504\) 1.06511 6.04055i 0.0474438 0.269067i
\(505\) 0 0
\(506\) −22.2460 8.09689i −0.988957 0.359951i
\(507\) −9.53298 + 16.5116i −0.423375 + 0.733306i
\(508\) 2.65690 3.16637i 0.117881 0.140485i
\(509\) 20.8773 7.59873i 0.925371 0.336808i 0.164998 0.986294i \(-0.447238\pi\)
0.760373 + 0.649486i \(0.225016\pi\)
\(510\) 0 0
\(511\) −0.652704 3.70167i −0.0288739 0.163752i
\(512\) 24.9186i 1.10126i
\(513\) −36.7065 −1.62063
\(514\) −0.285807 −0.0126064
\(515\) 0 0
\(516\) −0.427671 + 0.509678i −0.0188272 + 0.0224373i
\(517\) 10.8145 + 29.7126i 0.475621 + 1.30676i
\(518\) 4.80353 5.72462i 0.211055 0.251525i
\(519\) 11.5241 6.65344i 0.505852 0.292054i
\(520\) 0 0
\(521\) 6.59358 + 11.4204i 0.288870 + 0.500337i 0.973540 0.228515i \(-0.0733872\pi\)
−0.684670 + 0.728853i \(0.740054\pi\)
\(522\) 19.8120i 0.867149i
\(523\) 15.4351 + 8.91147i 0.674931 + 0.389672i 0.797942 0.602734i \(-0.205922\pi\)
−0.123011 + 0.992405i \(0.539255\pi\)
\(524\) 2.10039 1.76243i 0.0917558 0.0769922i
\(525\) 0 0
\(526\) −0.386659 + 2.19285i −0.0168591 + 0.0956129i
\(527\) 3.19961 + 0.564178i 0.139377 + 0.0245760i
\(528\) −26.9032 9.79196i −1.17081 0.426140i
\(529\) 6.42333 5.38982i 0.279275 0.234340i
\(530\) 0 0
\(531\) −13.3601 23.1404i −0.579779 1.00421i
\(532\) 0.785248 0.453363i 0.0340448 0.0196558i
\(533\) −3.79677 + 10.4315i −0.164456 + 0.451840i
\(534\) −1.48839 + 0.859322i −0.0644089 + 0.0371865i
\(535\) 0 0
\(536\) 26.1484 9.51725i 1.12944 0.411082i
\(537\) 29.8576 + 25.0535i 1.28845 + 1.08114i
\(538\) −4.02936 + 0.710485i −0.173718 + 0.0306312i
\(539\) −29.9564 −1.29031
\(540\) 0 0
\(541\) 8.78375 0.377643 0.188821 0.982011i \(-0.439533\pi\)
0.188821 + 0.982011i \(0.439533\pi\)
\(542\) −21.1158 + 3.72328i −0.907000 + 0.159928i
\(543\) −35.4633 + 12.9076i −1.52188 + 0.553918i
\(544\) −3.79813 + 1.38241i −0.162844 + 0.0592702i
\(545\) 0 0
\(546\) −1.98133 1.14392i −0.0847932 0.0489554i
\(547\) 7.62689 20.9547i 0.326102 0.895959i −0.662986 0.748632i \(-0.730711\pi\)
0.989088 0.147326i \(-0.0470668\pi\)
\(548\) 2.04898 1.18298i 0.0875283 0.0505345i
\(549\) −19.8694 16.6724i −0.848006 0.711562i
\(550\) 0 0
\(551\) 26.5253 22.2574i 1.13001 0.948195i
\(552\) −14.9309 + 12.5285i −0.635502 + 0.533249i
\(553\) −8.96508 1.58079i −0.381234 0.0672218i
\(554\) 4.11974 23.3642i 0.175031 0.992649i
\(555\) 0 0
\(556\) 1.61578 1.35580i 0.0685244 0.0574988i
\(557\) −32.8328 18.9561i −1.39117 0.803194i −0.397727 0.917504i \(-0.630201\pi\)
−0.993445 + 0.114310i \(0.963534\pi\)
\(558\) 3.33364 0.587811i 0.141124 0.0248840i
\(559\) 1.46703 + 2.54098i 0.0620489 + 0.107472i
\(560\) 0 0
\(561\) 30.8837i 1.30391i
\(562\) −7.60462 + 9.06283i −0.320782 + 0.382293i
\(563\) −12.5134 34.3803i −0.527377 1.44896i −0.862147 0.506658i \(-0.830881\pi\)
0.334770 0.942300i \(-0.391341\pi\)
\(564\) 2.16843 + 0.382353i 0.0913075 + 0.0161000i
\(565\) 0 0
\(566\) −2.72462 −0.114524
\(567\) −5.41381 + 3.12567i −0.227359 + 0.131266i
\(568\) 17.0746i 0.716435i
\(569\) 0.440103 + 2.49595i 0.0184501 + 0.104636i 0.992642 0.121085i \(-0.0386374\pi\)
−0.974192 + 0.225721i \(0.927526\pi\)
\(570\) 0 0
\(571\) 20.5205 7.46886i 0.858758 0.312562i 0.125152 0.992138i \(-0.460058\pi\)
0.733606 + 0.679575i \(0.237836\pi\)
\(572\) 0.770602 0.918368i 0.0322205 0.0383989i
\(573\) 18.0718 0.754961
\(574\) 6.91622 + 2.51730i 0.288678 + 0.105070i
\(575\) 0 0
\(576\) −19.7554 + 16.5767i −0.823140 + 0.690697i
\(577\) 8.70323 + 5.02481i 0.362320 + 0.209186i 0.670098 0.742272i \(-0.266252\pi\)
−0.307778 + 0.951458i \(0.599585\pi\)
\(578\) 1.68907 + 2.01296i 0.0702561 + 0.0837279i
\(579\) −17.0123 + 2.99973i −0.707008 + 0.124665i
\(580\) 0 0
\(581\) 0.136917 0.776497i 0.00568029 0.0322145i
\(582\) 14.9219 12.5209i 0.618532 0.519010i
\(583\) 9.03001 + 10.7615i 0.373985 + 0.445698i
\(584\) −7.96451 + 13.7949i −0.329574 + 0.570838i
\(585\) 0 0
\(586\) −13.1964 22.8568i −0.545138 0.944207i
\(587\) 2.11003 5.79726i 0.0870902 0.239278i −0.888500 0.458876i \(-0.848252\pi\)
0.975591 + 0.219598i \(0.0704744\pi\)
\(588\) −1.04303 + 1.80659i −0.0430140 + 0.0745025i
\(589\) 4.53209 + 3.80287i 0.186741 + 0.156695i
\(590\) 0 0
\(591\) −9.93541 27.2973i −0.408688 1.12286i
\(592\) −28.2815 + 4.98680i −1.16236 + 0.204956i
\(593\) 21.7965i 0.895077i 0.894265 + 0.447538i \(0.147699\pi\)
−0.894265 + 0.447538i \(0.852301\pi\)
\(594\) 11.0053 + 30.2368i 0.451553 + 1.24063i
\(595\) 0 0
\(596\) −0.418281 2.37219i −0.0171335 0.0971687i
\(597\) −36.6155 30.7240i −1.49857 1.25745i
\(598\) 2.48649 + 6.83157i 0.101680 + 0.279364i
\(599\) 9.54395 + 8.00832i 0.389955 + 0.327211i 0.816596 0.577210i \(-0.195859\pi\)
−0.426641 + 0.904421i \(0.640303\pi\)
\(600\) 0 0
\(601\) 14.9162 + 5.42906i 0.608445 + 0.221456i 0.627823 0.778356i \(-0.283946\pi\)
−0.0193775 + 0.999812i \(0.506168\pi\)
\(602\) 1.68469 0.972659i 0.0686630 0.0396426i
\(603\) −24.5606 14.1800i −1.00018 0.577456i
\(604\) 0.188663 0.326774i 0.00767659 0.0132962i
\(605\) 0 0
\(606\) 9.86097 27.0928i 0.400574 1.10057i
\(607\) −39.1211 6.89811i −1.58788 0.279986i −0.691198 0.722666i \(-0.742917\pi\)
−0.896680 + 0.442680i \(0.854028\pi\)
\(608\) −7.24827 1.27807i −0.293956 0.0518324i
\(609\) 2.01691 5.54142i 0.0817294 0.224550i
\(610\) 0 0
\(611\) 4.85504 8.40917i 0.196414 0.340199i
\(612\) 1.86251 + 1.07532i 0.0752876 + 0.0434673i
\(613\) 17.1242 9.88666i 0.691640 0.399318i −0.112586 0.993642i \(-0.535913\pi\)
0.804226 + 0.594324i \(0.202580\pi\)
\(614\) 10.4684 + 3.81018i 0.422469 + 0.153766i
\(615\) 0 0
\(616\) −7.19884 6.04055i −0.290050 0.243381i
\(617\) 5.83986 + 16.0449i 0.235104 + 0.645943i 0.999998 + 0.00178707i \(0.000568843\pi\)
−0.764895 + 0.644156i \(0.777209\pi\)
\(618\) −15.0228 12.6056i −0.604304 0.507072i
\(619\) −0.835847 4.74033i −0.0335955 0.190530i 0.963391 0.268099i \(-0.0863953\pi\)
−0.996987 + 0.0775689i \(0.975284\pi\)
\(620\) 0 0
\(621\) 19.5628 + 3.44946i 0.785029 + 0.138422i
\(622\) 37.2172i 1.49227i
\(623\) −0.503783 + 0.0888306i −0.0201836 + 0.00355892i
\(624\) 3.00703 + 8.26173i 0.120377 + 0.330734i
\(625\) 0 0
\(626\) −2.62836 2.20545i −0.105050 0.0881476i
\(627\) −28.1188 + 48.7033i −1.12296 + 1.94502i
\(628\) −0.732486 + 2.01249i −0.0292294 + 0.0803070i
\(629\) 15.4893 + 26.8283i 0.617600 + 1.06971i
\(630\) 0 0
\(631\) −11.9277 + 20.6593i −0.474833 + 0.822435i −0.999585 0.0288204i \(-0.990825\pi\)
0.524752 + 0.851255i \(0.324158\pi\)
\(632\) 24.7978 + 29.5529i 0.986404 + 1.17555i
\(633\) −10.5693 + 8.86871i −0.420093 + 0.352499i
\(634\) −6.71806 + 38.1000i −0.266808 + 1.51315i
\(635\) 0 0
\(636\) 0.963412 0.169875i 0.0382018 0.00673600i
\(637\) 5.91322 + 7.04710i 0.234290 + 0.279216i
\(638\) −26.2871 15.1769i −1.04072 0.600859i
\(639\) −13.3307 + 11.1858i −0.527354 + 0.442502i
\(640\) 0 0
\(641\) 41.6159 + 15.1470i 1.64373 + 0.598269i 0.987685 0.156453i \(-0.0500060\pi\)
0.656045 + 0.754722i \(0.272228\pi\)
\(642\) −32.5724 −1.28553
\(643\) −4.66107 + 5.55484i −0.183815 + 0.219062i −0.850081 0.526652i \(-0.823447\pi\)
0.666266 + 0.745714i \(0.267891\pi\)
\(644\) −0.461104 + 0.167828i −0.0181700 + 0.00661335i
\(645\) 0 0
\(646\) −6.41147 36.3613i −0.252256 1.43062i
\(647\) 26.8239i 1.05456i −0.849693 0.527278i \(-0.823213\pi\)
0.849693 0.527278i \(-0.176787\pi\)
\(648\) 26.0896 + 4.60030i 1.02490 + 0.180717i
\(649\) −40.9377 −1.60694
\(650\) 0 0
\(651\) 0.992259 + 0.174962i 0.0388897 + 0.00685730i
\(652\) 1.05158 + 2.88919i 0.0411830 + 0.113149i
\(653\) 5.09840 6.07604i 0.199516 0.237774i −0.657005 0.753886i \(-0.728177\pi\)
0.856521 + 0.516113i \(0.172621\pi\)
\(654\) 36.3613i 1.42184i
\(655\) 0 0
\(656\) −14.1420 24.4947i −0.552153 0.956358i
\(657\) 15.9878 2.81908i 0.623743 0.109983i
\(658\) −5.57537 3.21894i −0.217351 0.125487i
\(659\) 33.9302 28.4708i 1.32173 1.10907i 0.335798 0.941934i \(-0.390994\pi\)
0.985935 0.167132i \(-0.0534505\pi\)
\(660\) 0 0
\(661\) −0.707796 + 4.01411i −0.0275301 + 0.156131i −0.995474 0.0950363i \(-0.969703\pi\)
0.967944 + 0.251167i \(0.0808144\pi\)
\(662\) −11.1902 1.97313i −0.434918 0.0766877i
\(663\) 7.26525 6.09627i 0.282159 0.236759i
\(664\) −2.55968 + 2.14783i −0.0993348 + 0.0833518i
\(665\) 0 0
\(666\) 24.7251 + 20.7468i 0.958078 + 0.803923i
\(667\) −16.2283 + 9.36942i −0.628363 + 0.362786i
\(668\) −0.00670372 + 0.0184183i −0.000259375 + 0.000712626i
\(669\) 31.1498 + 17.9843i 1.20432 + 0.695314i
\(670\) 0 0
\(671\) −37.3423 + 13.5915i −1.44158 + 0.524693i
\(672\) −1.17787 + 0.428710i −0.0454374 + 0.0165379i
\(673\) −6.23064 + 1.09863i −0.240174 + 0.0423491i −0.292439 0.956284i \(-0.594467\pi\)
0.0522655 + 0.998633i \(0.483356\pi\)
\(674\) 21.8830 0.842902
\(675\) 0 0
\(676\) 2.03415 0.0782365
\(677\) −38.6357 + 6.81252i −1.48489 + 0.261826i −0.856531 0.516096i \(-0.827385\pi\)
−0.628360 + 0.777922i \(0.716274\pi\)
\(678\) 30.6941 + 25.7554i 1.17880 + 0.989129i
\(679\) 5.44831 1.98302i 0.209087 0.0761014i
\(680\) 0 0
\(681\) 2.42380 1.39938i 0.0928802 0.0536244i
\(682\) 1.77379 4.87346i 0.0679220 0.186614i
\(683\) −29.8836 + 17.2533i −1.14346 + 0.660179i −0.947286 0.320389i \(-0.896186\pi\)
−0.196178 + 0.980568i \(0.562853\pi\)
\(684\) 1.95811 + 3.39155i 0.0748702 + 0.129679i
\(685\) 0 0
\(686\) 9.69047 8.13127i 0.369984 0.310453i
\(687\) 16.5530 + 6.02481i 0.631538 + 0.229861i
\(688\) −7.36208 1.29813i −0.280677 0.0494909i
\(689\) 0.749132 4.24854i 0.0285397 0.161857i
\(690\) 0 0
\(691\) 23.2704 19.5262i 0.885247 0.742810i −0.0820040 0.996632i \(-0.526132\pi\)
0.967251 + 0.253822i \(0.0816876\pi\)
\(692\) −1.22951 0.709856i −0.0467388 0.0269847i
\(693\) 9.57760i 0.363823i
\(694\) 8.44403 + 14.6255i 0.320531 + 0.555176i
\(695\) 0 0
\(696\) −21.6426 + 12.4953i −0.820360 + 0.473635i
\(697\) −19.6119 + 23.3726i −0.742855 + 0.885300i
\(698\) 15.1308 + 41.5715i 0.572709 + 1.57350i
\(699\) 23.3726 27.8544i 0.884032 1.05355i
\(700\) 0 0
\(701\) −14.3952 −0.543698 −0.271849 0.962340i \(-0.587635\pi\)
−0.271849 + 0.962340i \(0.587635\pi\)
\(702\) 4.94069 8.55753i 0.186474 0.322983i
\(703\) 56.4107i 2.12757i
\(704\) 6.86097 + 38.9105i 0.258582 + 1.46649i
\(705\) 0 0
\(706\) −20.5069 + 7.46389i −0.771786 + 0.280907i
\(707\) 5.51622 6.57398i 0.207459 0.247240i
\(708\) −1.42539 + 2.46884i −0.0535694 + 0.0927849i
\(709\) 14.1001 + 5.13203i 0.529542 + 0.192737i 0.592934 0.805251i \(-0.297970\pi\)
−0.0633920 + 0.997989i \(0.520192\pi\)
\(710\) 0 0
\(711\) 6.82753 38.7209i 0.256053 1.45215i
\(712\) 1.87744 + 1.08394i 0.0703600 + 0.0406224i
\(713\) −2.05802 2.45265i −0.0770733 0.0918524i
\(714\) −4.04189 4.81694i −0.151264 0.180269i
\(715\) 0 0
\(716\) 0.722096 4.09521i 0.0269860 0.153045i
\(717\) −1.50617 8.54189i −0.0562488 0.319003i
\(718\) −10.6190 12.6552i −0.396298 0.472289i
\(719\) −10.2943 + 17.8302i −0.383911 + 0.664954i −0.991617 0.129208i \(-0.958756\pi\)
0.607706 + 0.794162i \(0.292090\pi\)
\(720\) 0 0
\(721\) −2.91859 5.05514i −0.108694 0.188263i
\(722\) 14.2400 39.1241i 0.529958 1.45605i
\(723\) 39.4281 1.46635
\(724\) 3.08441 + 2.58812i 0.114631 + 0.0961869i
\(725\) 0 0
\(726\) 23.2701 + 4.10315i 0.863636 + 0.152282i
\(727\) 31.5121 5.55644i 1.16872 0.206077i 0.444586 0.895736i \(-0.353351\pi\)
0.724134 + 0.689659i \(0.242240\pi\)
\(728\) 2.88587i 0.106957i
\(729\) −13.5000 23.3827i −0.500000 0.866025i
\(730\) 0 0
\(731\) 1.40033 + 7.94166i 0.0517931 + 0.293733i
\(732\) −0.480535 + 2.72525i −0.0177611 + 0.100728i
\(733\) −14.1259 38.8105i −0.521751 1.43350i −0.868570 0.495567i \(-0.834960\pi\)
0.346819 0.937932i \(-0.387262\pi\)
\(734\) −32.7046 27.4424i −1.20715 1.01292i
\(735\) 0 0
\(736\) 3.74288 + 1.36230i 0.137964 + 0.0502149i
\(737\) −37.6290 + 21.7251i −1.38608 + 0.800254i
\(738\) −10.8724 + 29.8717i −0.400219 + 1.09959i
\(739\) 12.1755 21.0885i 0.447882 0.775754i −0.550366 0.834923i \(-0.685512\pi\)
0.998248 + 0.0591697i \(0.0188453\pi\)
\(740\) 0 0
\(741\) 17.0077 2.99892i 0.624795 0.110168i
\(742\) −2.81683 0.496683i −0.103409 0.0182338i
\(743\) −14.4544 2.54870i −0.530280 0.0935026i −0.0979034 0.995196i \(-0.531214\pi\)
−0.432376 + 0.901693i \(0.642325\pi\)
\(744\) −2.74463 3.27093i −0.100623 0.119918i
\(745\) 0 0
\(746\) −24.3550 + 42.1842i −0.891701 + 1.54447i
\(747\) 3.35375 + 0.591357i 0.122707 + 0.0216366i
\(748\) 2.85353 1.64749i 0.104336 0.0602382i
\(749\) −9.11051 3.31595i −0.332891 0.121162i
\(750\) 0 0
\(751\) 6.54260 + 5.48990i 0.238743 + 0.200329i 0.754307 0.656522i \(-0.227973\pi\)
−0.515564 + 0.856851i \(0.672418\pi\)
\(752\) 8.46161 + 23.2481i 0.308563 + 0.847771i
\(753\) −23.7931 + 8.65998i −0.867069 + 0.315587i
\(754\) 1.61864 + 9.17977i 0.0589475 + 0.334308i
\(755\) 0 0
\(756\) 0.577600 + 0.333477i 0.0210071 + 0.0121285i
\(757\) 17.3337i 0.630003i −0.949091 0.315002i \(-0.897995\pi\)
0.949091 0.315002i \(-0.102005\pi\)
\(758\) −18.2090 + 3.21073i −0.661380 + 0.116619i
\(759\) 19.5628 23.3141i 0.710086 0.846247i
\(760\) 0 0
\(761\) 3.14227 + 2.63668i 0.113907 + 0.0955796i 0.697962 0.716135i \(-0.254090\pi\)
−0.584055 + 0.811714i \(0.698535\pi\)
\(762\) −26.0986 45.2041i −0.945453 1.63757i
\(763\) −3.70167 + 10.1702i −0.134009 + 0.368188i
\(764\) −0.964041 1.66977i −0.0348778 0.0604101i
\(765\) 0 0
\(766\) 15.4277 26.7215i 0.557424 0.965487i
\(767\) 8.08088 + 9.63041i 0.291784 + 0.347734i
\(768\) 7.15490 + 2.60417i 0.258180 + 0.0939699i
\(769\) 0.930770 5.27866i 0.0335644 0.190353i −0.963416 0.268012i \(-0.913633\pi\)
0.996980 + 0.0776587i \(0.0247444\pi\)
\(770\) 0 0
\(771\) 0.125667 0.345268i 0.00452579 0.0124345i
\(772\) 1.18469 + 1.41185i 0.0426378 + 0.0508138i
\(773\) −5.32196 3.07263i −0.191418 0.110515i 0.401228 0.915978i \(-0.368583\pi\)