Properties

Label 675.2.u.a.49.1
Level $675$
Weight $2$
Character 675.49
Analytic conductor $5.390$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 49.1
Root \(0.342020 - 0.939693i\) of defining polynomial
Character \(\chi\) \(=\) 675.49
Dual form 675.2.u.a.124.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62760 - 1.93969i) q^{2} +(-1.32683 - 1.11334i) q^{3} +(-0.766044 + 4.34445i) q^{4} +4.38571i q^{6} +(-3.01763 + 0.532089i) q^{7} +(5.28801 - 3.05303i) q^{8} +(0.520945 + 2.95442i) q^{9} +O(q^{10})\) \(q+(-1.62760 - 1.93969i) q^{2} +(-1.32683 - 1.11334i) q^{3} +(-0.766044 + 4.34445i) q^{4} +4.38571i q^{6} +(-3.01763 + 0.532089i) q^{7} +(5.28801 - 3.05303i) q^{8} +(0.520945 + 2.95442i) q^{9} +(-5.29813 - 1.92836i) q^{11} +(5.85327 - 4.91147i) q^{12} +(-2.71686 + 3.23783i) q^{13} +(5.94356 + 4.98724i) q^{14} +(-6.23783 - 2.27038i) q^{16} +(-1.43128 - 0.826352i) q^{17} +(4.88279 - 5.81908i) q^{18} +(0.120615 + 0.208911i) q^{19} +(4.59627 + 2.65366i) q^{21} +(4.88279 + 13.4153i) q^{22} +(7.34013 + 1.29426i) q^{23} +(-10.4153 - 1.83651i) q^{24} +10.7023 q^{26} +(2.59808 - 4.50000i) q^{27} -13.5175i q^{28} +(5.90033 - 4.95096i) q^{29} +(0.858441 - 4.86846i) q^{31} +(1.57202 + 4.31908i) q^{32} +(4.88279 + 8.45723i) q^{33} +(0.726682 + 4.12122i) q^{34} -13.2344 q^{36} +(-2.15658 - 1.24510i) q^{37} +(0.208911 - 0.573978i) q^{38} +(7.20961 - 1.27125i) q^{39} +(-0.109470 - 0.0918566i) q^{41} +(-2.33359 - 13.2344i) q^{42} +(-0.256867 + 0.705737i) q^{43} +(12.4363 - 21.5403i) q^{44} +(-9.43629 - 16.3441i) q^{46} +(4.58202 - 0.807934i) q^{47} +(5.74881 + 9.95723i) q^{48} +(2.24510 - 0.817150i) q^{49} +(0.979055 + 2.68993i) q^{51} +(-11.9854 - 14.2836i) q^{52} +12.1061i q^{53} +(-12.9572 + 2.28471i) q^{54} +(-14.3327 + 12.0266i) q^{56} +(0.0725540 - 0.411474i) q^{57} +(-19.2067 - 3.38666i) q^{58} +(-4.45336 + 1.62089i) q^{59} +(2.41488 + 13.6955i) q^{61} +(-10.8405 + 6.25877i) q^{62} +(-3.14403 - 8.63816i) q^{63} +(-0.819078 + 1.41868i) q^{64} +(8.45723 - 23.2361i) q^{66} +(4.73708 - 5.64543i) q^{67} +(4.68647 - 5.58512i) q^{68} +(-8.29813 - 9.88933i) q^{69} +(2.45084 - 4.24497i) q^{71} +(11.7747 + 14.0326i) q^{72} +(-0.196312 + 0.113341i) q^{73} +(1.09492 + 6.20961i) q^{74} +(-1.00000 + 0.363970i) q^{76} +(17.0138 + 3.00000i) q^{77} +(-14.2002 - 11.9153i) q^{78} +(7.53596 - 6.32342i) q^{79} +(-8.45723 + 3.07818i) q^{81} +0.361844i q^{82} +(-5.69323 - 6.78493i) q^{83} +(-15.0496 + 17.9355i) q^{84} +(1.78699 - 0.650411i) q^{86} -13.3408 q^{87} +(-33.9039 + 5.97818i) q^{88} +(3.33022 + 5.76811i) q^{89} +(6.47565 - 11.2162i) q^{91} +(-11.2457 + 30.8974i) q^{92} +(-6.55926 + 5.50387i) q^{93} +(-9.02481 - 7.57272i) q^{94} +(2.72281 - 7.48086i) q^{96} +(3.26017 - 8.95723i) q^{97} +(-5.23913 - 3.02481i) q^{98} +(2.93717 - 16.6575i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 36 q^{11} + 12 q^{14} - 36 q^{16} + 24 q^{19} - 36 q^{24} + 24 q^{26} + 42 q^{29} - 6 q^{31} - 18 q^{34} - 36 q^{36} + 18 q^{39} - 36 q^{41} + 54 q^{44} - 18 q^{46} + 24 q^{49} + 18 q^{51} - 54 q^{54} - 96 q^{56} + 72 q^{61} + 24 q^{64} - 72 q^{69} + 6 q^{71} - 24 q^{74} - 12 q^{76} + 24 q^{79} - 72 q^{84} + 6 q^{86} - 6 q^{89} - 54 q^{94} + 54 q^{96} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62760 1.93969i −1.15088 1.37157i −0.916797 0.399354i \(-0.869234\pi\)
−0.234087 0.972216i \(-0.575210\pi\)
\(3\) −1.32683 1.11334i −0.766044 0.642788i
\(4\) −0.766044 + 4.34445i −0.383022 + 2.17223i
\(5\) 0 0
\(6\) 4.38571i 1.79046i
\(7\) −3.01763 + 0.532089i −1.14056 + 0.201111i −0.711849 0.702333i \(-0.752142\pi\)
−0.428707 + 0.903444i \(0.641031\pi\)
\(8\) 5.28801 3.05303i 1.86959 1.07941i
\(9\) 0.520945 + 2.95442i 0.173648 + 0.984808i
\(10\) 0 0
\(11\) −5.29813 1.92836i −1.59745 0.581423i −0.618545 0.785750i \(-0.712277\pi\)
−0.978903 + 0.204326i \(0.934500\pi\)
\(12\) 5.85327 4.91147i 1.68969 1.41782i
\(13\) −2.71686 + 3.23783i −0.753521 + 0.898011i −0.997420 0.0717893i \(-0.977129\pi\)
0.243899 + 0.969801i \(0.421574\pi\)
\(14\) 5.94356 + 4.98724i 1.58848 + 1.33290i
\(15\) 0 0
\(16\) −6.23783 2.27038i −1.55946 0.567596i
\(17\) −1.43128 0.826352i −0.347137 0.200420i 0.316286 0.948664i \(-0.397564\pi\)
−0.663424 + 0.748244i \(0.730897\pi\)
\(18\) 4.88279 5.81908i 1.15088 1.37157i
\(19\) 0.120615 + 0.208911i 0.0276709 + 0.0479274i 0.879529 0.475845i \(-0.157858\pi\)
−0.851858 + 0.523772i \(0.824524\pi\)
\(20\) 0 0
\(21\) 4.59627 + 2.65366i 1.00299 + 0.579075i
\(22\) 4.88279 + 13.4153i 1.04101 + 2.86016i
\(23\) 7.34013 + 1.29426i 1.53052 + 0.269872i 0.874559 0.484920i \(-0.161151\pi\)
0.655964 + 0.754792i \(0.272262\pi\)
\(24\) −10.4153 1.83651i −2.12602 0.374875i
\(25\) 0 0
\(26\) 10.7023 2.09890
\(27\) 2.59808 4.50000i 0.500000 0.866025i
\(28\) 13.5175i 2.55458i
\(29\) 5.90033 4.95096i 1.09566 0.919371i 0.0985378 0.995133i \(-0.468583\pi\)
0.997126 + 0.0757623i \(0.0241390\pi\)
\(30\) 0 0
\(31\) 0.858441 4.86846i 0.154181 0.874401i −0.805351 0.592799i \(-0.798023\pi\)
0.959531 0.281602i \(-0.0908659\pi\)
\(32\) 1.57202 + 4.31908i 0.277896 + 0.763512i
\(33\) 4.88279 + 8.45723i 0.849984 + 1.47222i
\(34\) 0.726682 + 4.12122i 0.124625 + 0.706783i
\(35\) 0 0
\(36\) −13.2344 −2.20574
\(37\) −2.15658 1.24510i −0.354539 0.204693i 0.312144 0.950035i \(-0.398953\pi\)
−0.666683 + 0.745342i \(0.732286\pi\)
\(38\) 0.208911 0.573978i 0.0338898 0.0931115i
\(39\) 7.20961 1.27125i 1.15446 0.203563i
\(40\) 0 0
\(41\) −0.109470 0.0918566i −0.0170964 0.0143456i 0.634199 0.773170i \(-0.281330\pi\)
−0.651296 + 0.758824i \(0.725774\pi\)
\(42\) −2.33359 13.2344i −0.360080 2.04212i
\(43\) −0.256867 + 0.705737i −0.0391719 + 0.107624i −0.957737 0.287647i \(-0.907127\pi\)
0.918565 + 0.395271i \(0.129349\pi\)
\(44\) 12.4363 21.5403i 1.87484 3.24732i
\(45\) 0 0
\(46\) −9.43629 16.3441i −1.39130 2.40981i
\(47\) 4.58202 0.807934i 0.668356 0.117849i 0.170833 0.985300i \(-0.445354\pi\)
0.497523 + 0.867451i \(0.334243\pi\)
\(48\) 5.74881 + 9.95723i 0.829769 + 1.43720i
\(49\) 2.24510 0.817150i 0.320729 0.116736i
\(50\) 0 0
\(51\) 0.979055 + 2.68993i 0.137095 + 0.376666i
\(52\) −11.9854 14.2836i −1.66207 1.98078i
\(53\) 12.1061i 1.66290i 0.555602 + 0.831448i \(0.312488\pi\)
−0.555602 + 0.831448i \(0.687512\pi\)
\(54\) −12.9572 + 2.28471i −1.76326 + 0.310910i
\(55\) 0 0
\(56\) −14.3327 + 12.0266i −1.91529 + 1.60712i
\(57\) 0.0725540 0.411474i 0.00961001 0.0545011i
\(58\) −19.2067 3.38666i −2.52196 0.444690i
\(59\) −4.45336 + 1.62089i −0.579779 + 0.211022i −0.615228 0.788349i \(-0.710936\pi\)
0.0354493 + 0.999371i \(0.488714\pi\)
\(60\) 0 0
\(61\) 2.41488 + 13.6955i 0.309193 + 1.75352i 0.603078 + 0.797682i \(0.293941\pi\)
−0.293885 + 0.955841i \(0.594948\pi\)
\(62\) −10.8405 + 6.25877i −1.37675 + 0.794865i
\(63\) −3.14403 8.63816i −0.396111 1.08831i
\(64\) −0.819078 + 1.41868i −0.102385 + 0.177336i
\(65\) 0 0
\(66\) 8.45723 23.2361i 1.04101 2.86016i
\(67\) 4.73708 5.64543i 0.578726 0.689699i −0.394671 0.918822i \(-0.629141\pi\)
0.973397 + 0.229123i \(0.0735859\pi\)
\(68\) 4.68647 5.58512i 0.568318 0.677296i
\(69\) −8.29813 9.88933i −0.998978 1.19054i
\(70\) 0 0
\(71\) 2.45084 4.24497i 0.290861 0.503786i −0.683153 0.730276i \(-0.739392\pi\)
0.974014 + 0.226490i \(0.0727250\pi\)
\(72\) 11.7747 + 14.0326i 1.38766 + 1.65375i
\(73\) −0.196312 + 0.113341i −0.0229766 + 0.0132655i −0.511444 0.859316i \(-0.670889\pi\)
0.488468 + 0.872582i \(0.337556\pi\)
\(74\) 1.09492 + 6.20961i 0.127282 + 0.721853i
\(75\) 0 0
\(76\) −1.00000 + 0.363970i −0.114708 + 0.0417502i
\(77\) 17.0138 + 3.00000i 1.93891 + 0.341882i
\(78\) −14.2002 11.9153i −1.60785 1.34915i
\(79\) 7.53596 6.32342i 0.847862 0.711440i −0.111456 0.993769i \(-0.535551\pi\)
0.959318 + 0.282329i \(0.0911070\pi\)
\(80\) 0 0
\(81\) −8.45723 + 3.07818i −0.939693 + 0.342020i
\(82\) 0.361844i 0.0399590i
\(83\) −5.69323 6.78493i −0.624913 0.744743i 0.356994 0.934107i \(-0.383802\pi\)
−0.981907 + 0.189364i \(0.939357\pi\)
\(84\) −15.0496 + 17.9355i −1.64205 + 1.95692i
\(85\) 0 0
\(86\) 1.78699 0.650411i 0.192696 0.0701356i
\(87\) −13.3408 −1.43029
\(88\) −33.9039 + 5.97818i −3.61417 + 0.637276i
\(89\) 3.33022 + 5.76811i 0.353003 + 0.611419i 0.986774 0.162102i \(-0.0518273\pi\)
−0.633771 + 0.773521i \(0.718494\pi\)
\(90\) 0 0
\(91\) 6.47565 11.2162i 0.678833 1.17577i
\(92\) −11.2457 + 30.8974i −1.17245 + 3.22128i
\(93\) −6.55926 + 5.50387i −0.680163 + 0.570725i
\(94\) −9.02481 7.57272i −0.930839 0.781066i
\(95\) 0 0
\(96\) 2.72281 7.48086i 0.277896 0.763512i
\(97\) 3.26017 8.95723i 0.331020 0.909469i −0.656827 0.754041i \(-0.728102\pi\)
0.987847 0.155428i \(-0.0496758\pi\)
\(98\) −5.23913 3.02481i −0.529232 0.305552i
\(99\) 2.93717 16.6575i 0.295196 1.67414i
\(100\) 0 0
\(101\) −0.405078 2.29731i −0.0403067 0.228591i 0.957999 0.286770i \(-0.0925816\pi\)
−0.998306 + 0.0581793i \(0.981470\pi\)
\(102\) 3.62414 6.27719i 0.358843 0.621534i
\(103\) 6.37462 + 17.5141i 0.628110 + 1.72572i 0.686205 + 0.727408i \(0.259275\pi\)
−0.0580946 + 0.998311i \(0.518503\pi\)
\(104\) −4.48158 + 25.4163i −0.439455 + 2.49227i
\(105\) 0 0
\(106\) 23.4820 19.7038i 2.28078 1.91380i
\(107\) 10.4037i 1.00577i −0.864354 0.502883i \(-0.832272\pi\)
0.864354 0.502883i \(-0.167728\pi\)
\(108\) 17.5598 + 14.7344i 1.68969 + 1.41782i
\(109\) −0.147956 −0.0141716 −0.00708580 0.999975i \(-0.502255\pi\)
−0.00708580 + 0.999975i \(0.502255\pi\)
\(110\) 0 0
\(111\) 1.47519 + 4.05304i 0.140018 + 0.384697i
\(112\) 20.0315 + 3.53209i 1.89280 + 0.333751i
\(113\) −2.42107 6.65183i −0.227755 0.625751i 0.772199 0.635381i \(-0.219157\pi\)
−0.999954 + 0.00962978i \(0.996935\pi\)
\(114\) −0.916222 + 0.528981i −0.0858120 + 0.0495436i
\(115\) 0 0
\(116\) 16.9893 + 29.4264i 1.57742 + 2.73217i
\(117\) −10.9812 6.34002i −1.01522 0.586135i
\(118\) 10.3923 + 6.00000i 0.956689 + 0.552345i
\(119\) 4.75877 + 1.73205i 0.436236 + 0.158777i
\(120\) 0 0
\(121\) 15.9251 + 13.3628i 1.44774 + 1.21480i
\(122\) 22.6345 26.9748i 2.04923 2.44218i
\(123\) 0.0429807 + 0.243756i 0.00387544 + 0.0219787i
\(124\) 20.4932 + 7.45891i 1.84034 + 0.669830i
\(125\) 0 0
\(126\) −11.6382 + 20.1579i −1.03681 + 1.79581i
\(127\) 0.211239 0.121959i 0.0187444 0.0108221i −0.490599 0.871386i \(-0.663222\pi\)
0.509343 + 0.860564i \(0.329888\pi\)
\(128\) 13.1378 2.31655i 1.16123 0.204756i
\(129\) 1.12654 0.650411i 0.0991867 0.0572655i
\(130\) 0 0
\(131\) 1.57263 8.91885i 0.137402 0.779243i −0.835755 0.549102i \(-0.814970\pi\)
0.973157 0.230142i \(-0.0739190\pi\)
\(132\) −40.4825 + 14.7344i −3.52355 + 1.28247i
\(133\) −0.475129 0.566237i −0.0411989 0.0490990i
\(134\) −18.6604 −1.61202
\(135\) 0 0
\(136\) −10.0915 −0.865341
\(137\) 7.97357 + 9.50253i 0.681228 + 0.811856i 0.990265 0.139194i \(-0.0444513\pi\)
−0.309037 + 0.951050i \(0.600007\pi\)
\(138\) −5.67626 + 32.1917i −0.483195 + 2.74034i
\(139\) −3.21823 + 18.2515i −0.272966 + 1.54807i 0.472382 + 0.881394i \(0.343394\pi\)
−0.745348 + 0.666675i \(0.767717\pi\)
\(140\) 0 0
\(141\) −6.97906 4.02936i −0.587742 0.339333i
\(142\) −12.2229 + 2.15523i −1.02572 + 0.180863i
\(143\) 20.6380 11.9153i 1.72583 0.996411i
\(144\) 3.45811 19.6119i 0.288176 1.63433i
\(145\) 0 0
\(146\) 0.539363 + 0.196312i 0.0446380 + 0.0162469i
\(147\) −3.88863 1.41534i −0.320729 0.116736i
\(148\) 7.06131 8.41534i 0.580436 0.691737i
\(149\) 3.66044 + 3.07148i 0.299875 + 0.251625i 0.780292 0.625415i \(-0.215070\pi\)
−0.480417 + 0.877040i \(0.659515\pi\)
\(150\) 0 0
\(151\) 5.25877 + 1.91404i 0.427953 + 0.155762i 0.547011 0.837125i \(-0.315765\pi\)
−0.119059 + 0.992887i \(0.537988\pi\)
\(152\) 1.27562 + 0.736482i 0.103467 + 0.0597366i
\(153\) 1.69577 4.65910i 0.137095 0.376666i
\(154\) −21.8726 37.8844i −1.76254 3.05281i
\(155\) 0 0
\(156\) 32.2956i 2.58572i
\(157\) 6.84478 + 18.8059i 0.546273 + 1.50087i 0.838705 + 0.544586i \(0.183313\pi\)
−0.292432 + 0.956286i \(0.594465\pi\)
\(158\) −24.5310 4.32547i −1.95158 0.344116i
\(159\) 13.4782 16.0627i 1.06889 1.27385i
\(160\) 0 0
\(161\) −22.8384 −1.79992
\(162\) 19.7357 + 11.3944i 1.55058 + 0.895229i
\(163\) 9.95811i 0.779979i 0.920819 + 0.389990i \(0.127521\pi\)
−0.920819 + 0.389990i \(0.872479\pi\)
\(164\) 0.482926 0.405223i 0.0377102 0.0316426i
\(165\) 0 0
\(166\) −3.89440 + 22.0862i −0.302264 + 1.71422i
\(167\) 1.08164 + 2.97178i 0.0836998 + 0.229963i 0.974481 0.224468i \(-0.0720646\pi\)
−0.890782 + 0.454432i \(0.849842\pi\)
\(168\) 32.4068 2.50024
\(169\) −0.844770 4.79093i −0.0649823 0.368533i
\(170\) 0 0
\(171\) −0.554378 + 0.465178i −0.0423943 + 0.0355731i
\(172\) −2.86927 1.65657i −0.218780 0.126313i
\(173\) 6.75557 18.5608i 0.513616 1.41115i −0.363826 0.931467i \(-0.618530\pi\)
0.877442 0.479682i \(-0.159248\pi\)
\(174\) 21.7135 + 25.8771i 1.64609 + 1.96174i
\(175\) 0 0
\(176\) 28.6707 + 24.0576i 2.16114 + 1.81341i
\(177\) 7.71345 + 2.80747i 0.579779 + 0.211022i
\(178\) 5.76811 15.8478i 0.432338 1.18784i
\(179\) −4.05051 + 7.01568i −0.302749 + 0.524377i −0.976758 0.214347i \(-0.931238\pi\)
0.674009 + 0.738724i \(0.264571\pi\)
\(180\) 0 0
\(181\) 4.45723 + 7.72016i 0.331304 + 0.573835i 0.982768 0.184845i \(-0.0591782\pi\)
−0.651464 + 0.758679i \(0.725845\pi\)
\(182\) −32.2956 + 5.69459i −2.39391 + 0.422111i
\(183\) 12.0436 20.8601i 0.890287 1.54202i
\(184\) 42.7661 15.5656i 3.15276 1.14751i
\(185\) 0 0
\(186\) 21.3516 + 3.76487i 1.56558 + 0.276054i
\(187\) 5.98962 + 7.13816i 0.438005 + 0.521994i
\(188\) 20.5253i 1.49696i
\(189\) −5.44562 + 14.9617i −0.396111 + 1.08831i
\(190\) 0 0
\(191\) −4.27584 + 3.58786i −0.309389 + 0.259608i −0.784240 0.620458i \(-0.786947\pi\)
0.474850 + 0.880067i \(0.342502\pi\)
\(192\) 2.66625 0.970437i 0.192420 0.0700353i
\(193\) 24.9412 + 4.39780i 1.79531 + 0.316561i 0.969074 0.246770i \(-0.0793692\pi\)
0.826232 + 0.563331i \(0.190480\pi\)
\(194\) −22.6805 + 8.25503i −1.62837 + 0.592677i
\(195\) 0 0
\(196\) 1.83022 + 10.3797i 0.130730 + 0.741408i
\(197\) −4.22800 + 2.44104i −0.301233 + 0.173917i −0.642996 0.765869i \(-0.722309\pi\)
0.341764 + 0.939786i \(0.388976\pi\)
\(198\) −37.0909 + 21.4145i −2.63594 + 1.52186i
\(199\) 8.68092 15.0358i 0.615374 1.06586i −0.374944 0.927047i \(-0.622338\pi\)
0.990319 0.138812i \(-0.0443284\pi\)
\(200\) 0 0
\(201\) −12.5706 + 2.21653i −0.886660 + 0.156342i
\(202\) −3.79677 + 4.52481i −0.267140 + 0.318365i
\(203\) −15.1706 + 18.0797i −1.06477 + 1.26894i
\(204\) −12.4363 + 2.19285i −0.870714 + 0.153530i
\(205\) 0 0
\(206\) 23.5967 40.8707i 1.64406 2.84760i
\(207\) 22.3601i 1.55413i
\(208\) 24.2984 14.0287i 1.68479 0.972714i
\(209\) −0.236177 1.33943i −0.0163367 0.0926501i
\(210\) 0 0
\(211\) −10.7699 + 3.91993i −0.741432 + 0.269859i −0.684996 0.728547i \(-0.740196\pi\)
−0.0564359 + 0.998406i \(0.517974\pi\)
\(212\) −52.5942 9.27379i −3.61219 0.636926i
\(213\) −7.97794 + 2.90373i −0.546640 + 0.198961i
\(214\) −20.1800 + 16.9331i −1.37948 + 1.15752i
\(215\) 0 0
\(216\) 31.7281i 2.15882i
\(217\) 15.1480i 1.02831i
\(218\) 0.240812 + 0.286989i 0.0163099 + 0.0194373i
\(219\) 0.386659 + 0.0681784i 0.0261280 + 0.00460707i
\(220\) 0 0
\(221\) 6.56418 2.38917i 0.441554 0.160713i
\(222\) 5.46064 9.45811i 0.366494 0.634787i
\(223\) −0.433877 + 0.0765042i −0.0290545 + 0.00512310i −0.188157 0.982139i \(-0.560251\pi\)
0.159102 + 0.987262i \(0.449140\pi\)
\(224\) −7.04189 12.1969i −0.470506 0.814940i
\(225\) 0 0
\(226\) −8.96198 + 15.5226i −0.596142 + 1.03255i
\(227\) −1.81720 + 4.99273i −0.120612 + 0.331379i −0.985276 0.170972i \(-0.945309\pi\)
0.864664 + 0.502351i \(0.167531\pi\)
\(228\) 1.73205 + 0.630415i 0.114708 + 0.0417502i
\(229\) −0.0603074 0.0506039i −0.00398522 0.00334400i 0.640793 0.767714i \(-0.278606\pi\)
−0.644778 + 0.764370i \(0.723050\pi\)
\(230\) 0 0
\(231\) −19.2344 22.9227i −1.26553 1.50820i
\(232\) 16.0855 44.1946i 1.05607 2.90152i
\(233\) 0.324446 + 0.187319i 0.0212551 + 0.0122717i 0.510590 0.859824i \(-0.329427\pi\)
−0.489335 + 0.872096i \(0.662760\pi\)
\(234\) 5.57532 + 31.6192i 0.364470 + 2.06701i
\(235\) 0 0
\(236\) −3.63041 20.5891i −0.236320 1.34024i
\(237\) −17.0390 −1.10680
\(238\) −4.38571 12.0496i −0.284283 0.781061i
\(239\) 1.88666 10.6998i 0.122038 0.692111i −0.860985 0.508630i \(-0.830152\pi\)
0.983023 0.183481i \(-0.0587367\pi\)
\(240\) 0 0
\(241\) 20.4893 17.1926i 1.31983 1.10747i 0.333493 0.942753i \(-0.391773\pi\)
0.986341 0.164719i \(-0.0526717\pi\)
\(242\) 52.6391i 3.38377i
\(243\) 14.6484 + 5.33157i 0.939693 + 0.342020i
\(244\) −61.3492 −3.92748
\(245\) 0 0
\(246\) 0.402856 0.480105i 0.0256852 0.0306104i
\(247\) −1.00411 0.177052i −0.0638900 0.0112655i
\(248\) −10.3241 28.3653i −0.655583 1.80120i
\(249\) 15.3409i 0.972193i
\(250\) 0 0
\(251\) 2.99660 + 5.19026i 0.189143 + 0.327606i 0.944965 0.327172i \(-0.106096\pi\)
−0.755821 + 0.654778i \(0.772762\pi\)
\(252\) 39.9365 7.04189i 2.51577 0.443597i
\(253\) −36.3932 21.0116i −2.28802 1.32099i
\(254\) −0.580375 0.211239i −0.0364159 0.0132543i
\(255\) 0 0
\(256\) −23.3666 19.6069i −1.46042 1.22543i
\(257\) −4.06564 + 4.84524i −0.253607 + 0.302238i −0.877795 0.479037i \(-0.840986\pi\)
0.624187 + 0.781275i \(0.285430\pi\)
\(258\) −3.09516 1.12654i −0.192696 0.0701356i
\(259\) 7.17024 + 2.60976i 0.445537 + 0.162162i
\(260\) 0 0
\(261\) 17.7010 + 14.8529i 1.09566 + 0.919371i
\(262\) −19.8594 + 11.4659i −1.22692 + 0.708363i
\(263\) 0.460802 0.0812519i 0.0284143 0.00501021i −0.159423 0.987210i \(-0.550963\pi\)
0.187837 + 0.982200i \(0.439852\pi\)
\(264\) 51.6404 + 29.8146i 3.17825 + 1.83496i
\(265\) 0 0
\(266\) −0.325008 + 1.84321i −0.0199275 + 0.113014i
\(267\) 2.00324 11.3610i 0.122597 0.695280i
\(268\) 20.8975 + 24.9047i 1.27652 + 1.52129i
\(269\) −1.84524 −0.112506 −0.0562530 0.998417i \(-0.517915\pi\)
−0.0562530 + 0.998417i \(0.517915\pi\)
\(270\) 0 0
\(271\) −4.12567 −0.250616 −0.125308 0.992118i \(-0.539992\pi\)
−0.125308 + 0.992118i \(0.539992\pi\)
\(272\) 7.05196 + 8.40420i 0.427588 + 0.509579i
\(273\) −21.0795 + 7.67230i −1.27579 + 0.464349i
\(274\) 5.45424 30.9325i 0.329503 1.86870i
\(275\) 0 0
\(276\) 49.3205 28.4752i 2.96874 1.71401i
\(277\) 0.0605553 0.0106775i 0.00363841 0.000641550i −0.171829 0.985127i \(-0.554968\pi\)
0.175467 + 0.984485i \(0.443856\pi\)
\(278\) 40.6402 23.4636i 2.43744 1.40726i
\(279\) 14.8307 0.887890
\(280\) 0 0
\(281\) 5.68479 + 2.06910i 0.339126 + 0.123432i 0.505969 0.862552i \(-0.331135\pi\)
−0.166843 + 0.985984i \(0.553357\pi\)
\(282\) 3.54336 + 20.0954i 0.211004 + 1.19666i
\(283\) −5.37051 + 6.40033i −0.319244 + 0.380460i −0.901671 0.432423i \(-0.857659\pi\)
0.582427 + 0.812883i \(0.302103\pi\)
\(284\) 16.5646 + 13.8994i 0.982931 + 0.824777i
\(285\) 0 0
\(286\) −56.7024 20.6380i −3.35288 1.22035i
\(287\) 0.379217 + 0.218941i 0.0223844 + 0.0129237i
\(288\) −11.9415 + 6.89440i −0.703657 + 0.406256i
\(289\) −7.13429 12.3569i −0.419664 0.726879i
\(290\) 0 0
\(291\) −14.2981 + 8.25503i −0.838171 + 0.483918i
\(292\) −0.342020 0.939693i −0.0200152 0.0549914i
\(293\) −11.8303 2.08600i −0.691133 0.121865i −0.182960 0.983120i \(-0.558568\pi\)
−0.508173 + 0.861255i \(0.669679\pi\)
\(294\) 3.58378 + 9.84635i 0.209010 + 0.574251i
\(295\) 0 0
\(296\) −15.2053 −0.883792
\(297\) −22.4426 + 18.8316i −1.30225 + 1.09272i
\(298\) 12.0993i 0.700891i
\(299\) −24.1327 + 20.2497i −1.39563 + 1.17107i
\(300\) 0 0
\(301\) 0.399615 2.26633i 0.0230334 0.130629i
\(302\) −4.84651 13.3157i −0.278885 0.766231i
\(303\) −2.02022 + 3.49912i −0.116059 + 0.201019i
\(304\) −0.278066 1.57699i −0.0159482 0.0904467i
\(305\) 0 0
\(306\) −11.7973 + 4.29385i −0.674404 + 0.245463i
\(307\) 9.33667 + 5.39053i 0.532872 + 0.307654i 0.742185 0.670195i \(-0.233789\pi\)
−0.209313 + 0.977849i \(0.567123\pi\)
\(308\) −26.0667 + 71.6177i −1.48529 + 4.08080i
\(309\) 11.0412 30.3354i 0.628110 1.72572i
\(310\) 0 0
\(311\) −11.8341 9.92998i −0.671050 0.563078i 0.242326 0.970195i \(-0.422090\pi\)
−0.913376 + 0.407117i \(0.866534\pi\)
\(312\) 34.2433 28.7335i 1.93865 1.62672i
\(313\) −1.58370 + 4.35117i −0.0895157 + 0.245942i −0.976370 0.216108i \(-0.930664\pi\)
0.886854 + 0.462050i \(0.152886\pi\)
\(314\) 25.3371 43.8851i 1.42985 2.47658i
\(315\) 0 0
\(316\) 21.6989 + 37.5836i 1.22066 + 2.11425i
\(317\) 7.65787 1.35029i 0.430109 0.0758398i 0.0455972 0.998960i \(-0.485481\pi\)
0.384512 + 0.923120i \(0.374370\pi\)
\(318\) −53.0937 −2.97734
\(319\) −40.8080 + 14.8529i −2.28481 + 0.831602i
\(320\) 0 0
\(321\) −11.5829 + 13.8040i −0.646494 + 0.770462i
\(322\) 37.1717 + 44.2995i 2.07150 + 2.46872i
\(323\) 0.398681i 0.0221832i
\(324\) −6.89440 39.1001i −0.383022 2.17223i
\(325\) 0 0
\(326\) 19.3157 16.2078i 1.06980 0.897666i
\(327\) 0.196312 + 0.164725i 0.0108561 + 0.00910933i
\(328\) −0.859322 0.151522i −0.0474481 0.00836638i
\(329\) −13.3969 + 4.87608i −0.738596 + 0.268827i
\(330\) 0 0
\(331\) 1.31655 + 7.46654i 0.0723642 + 0.410398i 0.999375 + 0.0353621i \(0.0112585\pi\)
−0.927010 + 0.375036i \(0.877630\pi\)
\(332\) 33.8381 19.5364i 1.85711 1.07220i
\(333\) 2.55510 7.02007i 0.140018 0.384697i
\(334\) 4.00387 6.93491i 0.219082 0.379461i
\(335\) 0 0
\(336\) −22.6459 26.9883i −1.23543 1.47233i
\(337\) 10.6348 12.6741i 0.579317 0.690403i −0.394198 0.919025i \(-0.628978\pi\)
0.973515 + 0.228622i \(0.0734221\pi\)
\(338\) −7.91799 + 9.43629i −0.430682 + 0.513266i
\(339\) −4.19341 + 11.5213i −0.227755 + 0.625751i
\(340\) 0 0
\(341\) −13.9363 + 24.1384i −0.754692 + 1.30717i
\(342\) 1.80460 + 0.318201i 0.0975819 + 0.0172063i
\(343\) 12.2355 7.06418i 0.660656 0.381430i
\(344\) 0.796322 + 4.51617i 0.0429348 + 0.243495i
\(345\) 0 0
\(346\) −46.9975 + 17.1057i −2.52660 + 0.919608i
\(347\) 14.9550 + 2.63697i 0.802828 + 0.141560i 0.559982 0.828505i \(-0.310808\pi\)
0.242846 + 0.970065i \(0.421919\pi\)
\(348\) 10.2197 57.9586i 0.547832 3.10691i
\(349\) −10.8191 + 9.07828i −0.579132 + 0.485949i −0.884662 0.466233i \(-0.845611\pi\)
0.305530 + 0.952182i \(0.401166\pi\)
\(350\) 0 0
\(351\) 7.51161 + 20.6380i 0.400940 + 1.10157i
\(352\) 25.9145i 1.38125i
\(353\) 2.67733 + 3.19072i 0.142500 + 0.169825i 0.832574 0.553914i \(-0.186866\pi\)
−0.690074 + 0.723739i \(0.742422\pi\)
\(354\) −7.10876 19.5311i −0.377826 1.03807i
\(355\) 0 0
\(356\) −27.6104 + 10.0494i −1.46335 + 0.532615i
\(357\) −4.38571 7.59627i −0.232116 0.402037i
\(358\) 20.2009 3.56196i 1.06765 0.188255i
\(359\) −3.29679 5.71021i −0.173998 0.301373i 0.765816 0.643060i \(-0.222335\pi\)
−0.939814 + 0.341686i \(0.889002\pi\)
\(360\) 0 0
\(361\) 9.47090 16.4041i 0.498469 0.863373i
\(362\) 7.72016 21.2110i 0.405762 1.11482i
\(363\) −6.25259 35.4602i −0.328176 1.86118i
\(364\) 43.7674 + 36.7252i 2.29404 + 1.92493i
\(365\) 0 0
\(366\) −60.0642 + 10.5909i −3.13961 + 0.553598i
\(367\) −4.34008 + 11.9243i −0.226550 + 0.622442i −0.999934 0.0114966i \(-0.996340\pi\)
0.773384 + 0.633938i \(0.218563\pi\)
\(368\) −42.8480 24.7383i −2.23361 1.28957i
\(369\) 0.214355 0.371274i 0.0111589 0.0193278i
\(370\) 0 0
\(371\) −6.44150 36.5316i −0.334426 1.89663i
\(372\) −18.8866 32.7126i −0.979226 1.69607i
\(373\) −2.61159 7.17530i −0.135223 0.371523i 0.853537 0.521032i \(-0.174453\pi\)
−0.988760 + 0.149509i \(0.952231\pi\)
\(374\) 4.09714 23.2361i 0.211858 1.20151i
\(375\) 0 0
\(376\) 21.7631 18.2614i 1.12235 0.941761i
\(377\) 32.5553i 1.67668i
\(378\) 37.8844 13.7888i 1.94856 0.709219i
\(379\) 27.0838 1.39120 0.695600 0.718429i \(-0.255139\pi\)
0.695600 + 0.718429i \(0.255139\pi\)
\(380\) 0 0
\(381\) −0.416060 0.0733626i −0.0213154 0.00375848i
\(382\) 13.9187 + 2.45424i 0.712142 + 0.125570i
\(383\) 3.52201 + 9.67664i 0.179966 + 0.494453i 0.996571 0.0827443i \(-0.0263685\pi\)
−0.816605 + 0.577198i \(0.804146\pi\)
\(384\) −20.0107 11.5532i −1.02117 0.589572i
\(385\) 0 0
\(386\) −32.0638 55.5361i −1.63200 2.82671i
\(387\) −2.21886 0.391245i −0.112791 0.0198881i
\(388\) 36.4169 + 21.0253i 1.84879 + 1.06740i
\(389\) 3.89780 + 1.41868i 0.197626 + 0.0719302i 0.438937 0.898518i \(-0.355355\pi\)
−0.241311 + 0.970448i \(0.577577\pi\)
\(390\) 0 0
\(391\) −9.43629 7.91799i −0.477214 0.400430i
\(392\) 9.37732 11.1755i 0.473626 0.564446i
\(393\) −12.0163 + 10.0829i −0.606144 + 0.508615i
\(394\) 11.6163 + 4.22800i 0.585222 + 0.213004i
\(395\) 0 0
\(396\) 70.1177 + 25.5208i 3.52355 + 1.28247i
\(397\) 19.1444 11.0530i 0.960831 0.554736i 0.0644021 0.997924i \(-0.479486\pi\)
0.896429 + 0.443188i \(0.146153\pi\)
\(398\) −43.2939 + 7.63387i −2.17012 + 0.382652i
\(399\) 1.28028i 0.0640942i
\(400\) 0 0
\(401\) −2.92855 + 16.6086i −0.146245 + 0.829395i 0.820115 + 0.572199i \(0.193910\pi\)
−0.966359 + 0.257196i \(0.917201\pi\)
\(402\) 24.7592 + 20.7754i 1.23488 + 1.03618i
\(403\) 13.4310 + 16.0064i 0.669044 + 0.797335i
\(404\) 10.2909 0.511989
\(405\) 0 0
\(406\) 59.7606 2.96587
\(407\) 9.02482 + 10.7554i 0.447344 + 0.533124i
\(408\) 13.3897 + 11.2353i 0.662889 + 0.556230i
\(409\) 6.09199 34.5494i 0.301229 1.70836i −0.339514 0.940601i \(-0.610263\pi\)
0.640743 0.767755i \(-0.278626\pi\)
\(410\) 0 0
\(411\) 21.4855i 1.05980i
\(412\) −80.9726 + 14.2777i −3.98923 + 0.703410i
\(413\) 12.5761 7.26083i 0.618831 0.357282i
\(414\) 43.3717 36.3932i 2.13160 1.78863i
\(415\) 0 0
\(416\) −18.2554 6.64441i −0.895043 0.325769i
\(417\) 24.5901 20.6336i 1.20418 1.01043i
\(418\) −2.21368 + 2.63816i −0.108274 + 0.129036i
\(419\) −12.7665 10.7124i −0.623685 0.523334i 0.275275 0.961366i \(-0.411231\pi\)
−0.898959 + 0.438032i \(0.855676\pi\)
\(420\) 0 0
\(421\) 25.7841 + 9.38463i 1.25664 + 0.457379i 0.882639 0.470051i \(-0.155764\pi\)
0.373998 + 0.927429i \(0.377987\pi\)
\(422\) 25.1325 + 14.5103i 1.22343 + 0.706349i
\(423\) 4.77396 + 13.1163i 0.232118 + 0.637738i
\(424\) 36.9602 + 64.0170i 1.79495 + 3.10894i
\(425\) 0 0
\(426\) 18.6172 + 10.7487i 0.902007 + 0.520774i
\(427\) −14.5744 40.0428i −0.705304 1.93781i
\(428\) 45.1985 + 7.96972i 2.18475 + 0.385231i
\(429\) −40.6489 7.16750i −1.96255 0.346050i
\(430\) 0 0
\(431\) −14.9436 −0.719806 −0.359903 0.932990i \(-0.617190\pi\)
−0.359903 + 0.932990i \(0.617190\pi\)
\(432\) −26.4231 + 22.1716i −1.27128 + 1.06673i
\(433\) 23.3919i 1.12414i 0.827089 + 0.562071i \(0.189995\pi\)
−0.827089 + 0.562071i \(0.810005\pi\)
\(434\) 29.3824 24.6547i 1.41040 1.18347i
\(435\) 0 0
\(436\) 0.113341 0.642788i 0.00542804 0.0307839i
\(437\) 0.614942 + 1.68954i 0.0294167 + 0.0808217i
\(438\) −0.497079 0.860967i −0.0237514 0.0411386i
\(439\) 4.55959 + 25.8587i 0.217617 + 1.23417i 0.876306 + 0.481754i \(0.160000\pi\)
−0.658689 + 0.752415i \(0.728889\pi\)
\(440\) 0 0
\(441\) 3.58378 + 6.20729i 0.170656 + 0.295585i
\(442\) −15.3181 8.84389i −0.728606 0.420661i
\(443\) 10.8554 29.8251i 0.515757 1.41703i −0.359396 0.933185i \(-0.617017\pi\)
0.875153 0.483846i \(-0.160761\pi\)
\(444\) −18.7383 + 3.30407i −0.889280 + 0.156804i
\(445\) 0 0
\(446\) 0.854570 + 0.717070i 0.0404651 + 0.0339542i
\(447\) −1.43718 8.15064i −0.0679762 0.385512i
\(448\) 1.71680 4.71688i 0.0811114 0.222852i
\(449\) −9.23695 + 15.9989i −0.435919 + 0.755033i −0.997370 0.0724765i \(-0.976910\pi\)
0.561452 + 0.827510i \(0.310243\pi\)
\(450\) 0 0
\(451\) 0.402856 + 0.697767i 0.0189697 + 0.0328566i
\(452\) 30.7532 5.42262i 1.44651 0.255059i
\(453\) −4.84651 8.39440i −0.227709 0.394403i
\(454\) 12.6420 4.60132i 0.593320 0.215951i
\(455\) 0 0
\(456\) −0.872578 2.39739i −0.0408622 0.112268i
\(457\) −6.86998 8.18732i −0.321364 0.382987i 0.581042 0.813874i \(-0.302645\pi\)
−0.902406 + 0.430887i \(0.858201\pi\)
\(458\) 0.199340i 0.00931457i
\(459\) −7.43717 + 4.29385i −0.347137 + 0.200420i
\(460\) 0 0
\(461\) 21.1689 17.7628i 0.985934 0.827297i 0.000959987 1.00000i \(-0.499694\pi\)
0.984974 + 0.172703i \(0.0552500\pi\)
\(462\) −13.1571 + 74.6177i −0.612125 + 3.47153i
\(463\) −4.54077 0.800660i −0.211027 0.0372098i 0.0671350 0.997744i \(-0.478614\pi\)
−0.278162 + 0.960534i \(0.589725\pi\)
\(464\) −48.0458 + 17.4872i −2.23047 + 0.811825i
\(465\) 0 0
\(466\) −0.164725 0.934204i −0.00763075 0.0432762i
\(467\) 16.9310 9.77513i 0.783474 0.452339i −0.0541859 0.998531i \(-0.517256\pi\)
0.837660 + 0.546192i \(0.183923\pi\)
\(468\) 35.9561 42.8508i 1.66207 1.98078i
\(469\) −11.2909 + 19.5563i −0.521363 + 0.903028i
\(470\) 0 0
\(471\) 11.8555 32.5727i 0.546273 1.50087i
\(472\) −18.6008 + 22.1676i −0.856171 + 1.02034i
\(473\) 2.72183 3.24376i 0.125150 0.149148i
\(474\) 27.7327 + 33.0505i 1.27380 + 1.51806i
\(475\) 0 0
\(476\) −11.1702 + 19.3474i −0.511987 + 0.886788i
\(477\) −35.7664 + 6.30659i −1.63763 + 0.288759i
\(478\) −23.8250 + 13.7554i −1.08973 + 0.629156i
\(479\) 0.449493 + 2.54920i 0.0205379 + 0.116476i 0.993353 0.115106i \(-0.0367209\pi\)
−0.972815 + 0.231582i \(0.925610\pi\)
\(480\) 0 0
\(481\) 9.89053 3.59986i 0.450969 0.164139i
\(482\) −66.6967 11.7604i −3.03795 0.535672i
\(483\) 30.3027 + 25.4270i 1.37882 + 1.15697i
\(484\) −70.2534 + 58.9496i −3.19333 + 2.67953i
\(485\) 0 0
\(486\) −13.5000 37.0909i −0.612372 1.68248i
\(487\) 40.7870i 1.84824i −0.382105 0.924119i \(-0.624801\pi\)
0.382105 0.924119i \(-0.375199\pi\)
\(488\) 54.5826 + 65.0490i 2.47084 + 2.94463i
\(489\) 11.0868 13.2127i 0.501361 0.597499i
\(490\) 0 0
\(491\) −37.9761 + 13.8222i −1.71384 + 0.623786i −0.997278 0.0737387i \(-0.976507\pi\)
−0.716561 + 0.697525i \(0.754285\pi\)
\(492\) −1.09191 −0.0492271
\(493\) −12.5363 + 2.21048i −0.564606 + 0.0995552i
\(494\) 1.29086 + 2.23583i 0.0580785 + 0.100595i
\(495\) 0 0
\(496\) −16.4081 + 28.4196i −0.736744 + 1.27608i
\(497\) −5.13701 + 14.1138i −0.230426 + 0.633091i
\(498\) 29.7567 24.9688i 1.33343 1.11888i
\(499\) 10.2226 + 8.57775i 0.457625 + 0.383993i 0.842256 0.539077i \(-0.181227\pi\)
−0.384631 + 0.923070i \(0.625671\pi\)
\(500\) 0 0
\(501\) 1.87346 5.14728i 0.0836998 0.229963i
\(502\) 5.19026 14.2601i 0.231653 0.636460i
\(503\) −15.6373 9.02822i −0.697234 0.402548i 0.109082 0.994033i \(-0.465209\pi\)
−0.806316 + 0.591484i \(0.798542\pi\)
\(504\) −42.9982 36.0798i −1.91529 1.60712i
\(505\) 0 0
\(506\) 18.4773 + 104.790i 0.821416 + 4.65848i
\(507\) −4.21307 + 7.29726i −0.187109 + 0.324083i
\(508\) 0.368026 + 1.01114i 0.0163285 + 0.0448623i
\(509\) −4.18779 + 23.7501i −0.185620 + 1.05271i 0.739535 + 0.673118i \(0.235045\pi\)
−0.925156 + 0.379588i \(0.876066\pi\)
\(510\) 0 0
\(511\) 0.532089 0.446476i 0.0235382 0.0197509i
\(512\) 50.5553i 2.23425i
\(513\) 1.25347 0.0553418
\(514\) 16.0155 0.706413
\(515\) 0 0
\(516\) 1.96270 + 5.39246i 0.0864029 + 0.237390i
\(517\) −25.8341 4.55525i −1.13618 0.200340i
\(518\) −6.60813 18.1557i −0.290345 0.797716i
\(519\) −29.6279 + 17.1057i −1.30052 + 0.750857i
\(520\) 0 0
\(521\) 20.6682 + 35.7983i 0.905490 + 1.56835i 0.820259 + 0.571993i \(0.193829\pi\)
0.0852310 + 0.996361i \(0.472837\pi\)
\(522\) 58.5090i 2.56087i
\(523\) −5.66955 3.27332i −0.247912 0.143132i 0.370896 0.928675i \(-0.379051\pi\)
−0.618808 + 0.785542i \(0.712384\pi\)
\(524\) 37.5428 + 13.6645i 1.64007 + 0.596935i
\(525\) 0 0
\(526\) −0.907604 0.761570i −0.0395734 0.0332060i
\(527\) −5.25173 + 6.25877i −0.228769 + 0.272636i
\(528\) −11.2568 63.8405i −0.489890 2.77830i
\(529\) 30.5895 + 11.1337i 1.32998 + 0.484072i
\(530\) 0 0
\(531\) −7.10876 12.3127i −0.308494 0.534327i
\(532\) 2.82396 1.63041i 0.122434 0.0706875i
\(533\) 0.594831 0.104885i 0.0257650 0.00454306i
\(534\) −25.2973 + 14.6054i −1.09472 + 0.632037i
\(535\) 0 0
\(536\) 7.81403 44.3155i 0.337514 1.91414i
\(537\) 13.1852 4.79901i 0.568982 0.207093i
\(538\) 3.00330 + 3.57919i 0.129481 + 0.154310i
\(539\) −13.4706 −0.580220
\(540\) 0 0
\(541\) −30.3560 −1.30511 −0.652553 0.757743i \(-0.726302\pi\)
−0.652553 + 0.757743i \(0.726302\pi\)
\(542\) 6.71492 + 8.00253i 0.288430 + 0.343738i
\(543\) 2.68118 15.2057i 0.115061 0.652541i
\(544\) 1.31908 7.48086i 0.0565550 0.320739i
\(545\) 0 0
\(546\) 49.1908 + 28.4003i 2.10517 + 1.21542i
\(547\) −38.0907 + 6.71641i −1.62864 + 0.287173i −0.911975 0.410245i \(-0.865443\pi\)
−0.716664 + 0.697418i \(0.754332\pi\)
\(548\) −47.3914 + 27.3614i −2.02446 + 1.16882i
\(549\) −39.2041 + 14.2691i −1.67319 + 0.608992i
\(550\) 0 0
\(551\) 1.74598 + 0.635484i 0.0743811 + 0.0270725i
\(552\) −74.0731 26.9604i −3.15276 1.14751i
\(553\) −19.3761 + 23.0915i −0.823955 + 0.981951i
\(554\) −0.119271 0.100080i −0.00506732 0.00425199i
\(555\) 0 0
\(556\) −76.8273 27.9629i −3.25821 1.18589i
\(557\) −12.8808 7.43676i −0.545779 0.315105i 0.201639 0.979460i \(-0.435373\pi\)
−0.747418 + 0.664354i \(0.768707\pi\)
\(558\) −24.1384 28.7670i −1.02186 1.21780i
\(559\) −1.58718 2.74908i −0.0671306 0.116274i
\(560\) 0 0
\(561\) 16.1396i 0.681414i
\(562\) −5.23913 14.3944i −0.220999 0.607191i
\(563\) −28.8485 5.08677i −1.21582 0.214382i −0.471294 0.881976i \(-0.656213\pi\)
−0.744525 + 0.667594i \(0.767324\pi\)
\(564\) 22.8516 27.2335i 0.962227 1.14674i
\(565\) 0 0
\(566\) 21.1557 0.889240
\(567\) 23.8829 13.7888i 1.00299 0.579075i
\(568\) 29.9299i 1.25583i
\(569\) 24.4127 20.4847i 1.02343 0.858761i 0.0333769 0.999443i \(-0.489374\pi\)
0.990055 + 0.140682i \(0.0449294\pi\)
\(570\) 0 0
\(571\) −2.78817 + 15.8125i −0.116681 + 0.661733i 0.869223 + 0.494421i \(0.164620\pi\)
−0.985904 + 0.167312i \(0.946491\pi\)
\(572\) 35.9561 + 98.7884i 1.50340 + 4.13055i
\(573\) 9.66782 0.403879
\(574\) −0.192533 1.09191i −0.00803619 0.0455755i
\(575\) 0 0
\(576\) −4.61809 1.68085i −0.192420 0.0700353i
\(577\) 1.96464 + 1.13429i 0.0817890 + 0.0472209i 0.540337 0.841449i \(-0.318297\pi\)
−0.458548 + 0.888670i \(0.651630\pi\)
\(578\) −12.3569 + 33.9504i −0.513981 + 1.41215i
\(579\) −28.1964 33.6032i −1.17180 1.39650i
\(580\) 0 0
\(581\) 20.7902 + 17.4451i 0.862524 + 0.723744i
\(582\) 39.2838 + 14.2981i 1.62837 + 0.592677i
\(583\) 23.3449 64.1396i 0.966847 2.65639i
\(584\) −0.692066 + 1.19869i −0.0286379 + 0.0496023i
\(585\) 0 0
\(586\) 15.2087 + 26.3423i 0.628267 + 1.08819i
\(587\) 32.8120 5.78564i 1.35430 0.238799i 0.551064 0.834463i \(-0.314222\pi\)
0.803234 + 0.595664i \(0.203111\pi\)
\(588\) 9.12776 15.8097i 0.376422 0.651983i
\(589\) 1.12061 0.407870i 0.0461741 0.0168060i
\(590\) 0 0
\(591\) 8.32753 + 1.46837i 0.342549 + 0.0604006i
\(592\) 10.6255 + 12.6630i 0.436705 + 0.520445i
\(593\) 24.7793i 1.01756i 0.860895 + 0.508782i \(0.169904\pi\)
−0.860895 + 0.508782i \(0.830096\pi\)
\(594\) 73.0549 + 12.8816i 2.99748 + 0.528536i
\(595\) 0 0
\(596\) −16.1480 + 13.5497i −0.661446 + 0.555019i
\(597\) −28.2581 + 10.2851i −1.15653 + 0.420941i
\(598\) 78.5565 + 13.8516i 3.21241 + 0.566435i
\(599\) 35.9368 13.0799i 1.46834 0.534431i 0.520688 0.853747i \(-0.325676\pi\)
0.947648 + 0.319316i \(0.103453\pi\)
\(600\) 0 0
\(601\) 7.80747 + 44.2783i 0.318473 + 1.80615i 0.552048 + 0.833812i \(0.313847\pi\)
−0.233575 + 0.972339i \(0.575042\pi\)
\(602\) −5.04639 + 2.91353i −0.205675 + 0.118747i
\(603\) 19.1467 + 11.0544i 0.779716 + 0.450169i
\(604\) −12.3439 + 21.3802i −0.502266 + 0.869950i
\(605\) 0 0
\(606\) 10.0753 1.77655i 0.409282 0.0721675i
\(607\) −10.1845 + 12.1374i −0.413377 + 0.492644i −0.932050 0.362329i \(-0.881982\pi\)
0.518673 + 0.854973i \(0.326426\pi\)
\(608\) −0.712694 + 0.849356i −0.0289036 + 0.0344459i
\(609\) 40.2576 7.09851i 1.63132 0.287646i
\(610\) 0 0
\(611\) −9.83275 + 17.0308i −0.397790 + 0.688993i
\(612\) 18.9422 + 10.9363i 0.765693 + 0.442073i
\(613\) −18.0265 + 10.4076i −0.728083 + 0.420359i −0.817721 0.575615i \(-0.804763\pi\)
0.0896372 + 0.995974i \(0.471429\pi\)
\(614\) −4.74035 26.8839i −0.191305 1.08494i
\(615\) 0 0
\(616\) 99.1285 36.0798i 3.99400 1.45370i
\(617\) −29.4752 5.19728i −1.18663 0.209235i −0.454718 0.890635i \(-0.650260\pi\)
−0.731911 + 0.681401i \(0.761371\pi\)
\(618\) −76.8119 + 27.9572i −3.08983 + 1.12460i
\(619\) 2.69775 2.26368i 0.108432 0.0909850i −0.586960 0.809616i \(-0.699675\pi\)
0.695392 + 0.718631i \(0.255231\pi\)
\(620\) 0 0
\(621\) 24.8944 29.6680i 0.998978 1.19054i
\(622\) 39.1165i 1.56843i
\(623\) −13.1185 15.6340i −0.525582 0.626364i
\(624\) −47.8585 8.43874i −1.91587 0.337820i
\(625\) 0 0
\(626\) 11.0175 4.01006i 0.440349 0.160274i
\(627\) −1.17787 + 2.04013i −0.0470397 + 0.0814751i
\(628\) −86.9447 + 15.3307i −3.46947 + 0.611761i
\(629\) 2.05778 + 3.56418i 0.0820491 + 0.142113i
\(630\) 0 0
\(631\) −9.53730 + 16.5191i −0.379674 + 0.657615i −0.991015 0.133753i \(-0.957297\pi\)
0.611341 + 0.791368i \(0.290631\pi\)
\(632\) 20.5446 56.4458i 0.817221 2.24529i
\(633\) 18.6540 + 6.78952i 0.741432 + 0.269859i
\(634\) −15.0831 12.6562i −0.599025 0.502642i
\(635\) 0 0
\(636\) 59.4586 + 70.8600i 2.35769 + 2.80978i
\(637\) −3.45383 + 9.48932i −0.136846 + 0.375981i
\(638\) 95.2289 + 54.9805i 3.77015 + 2.17670i
\(639\) 13.8182 + 5.02941i 0.546640 + 0.198961i
\(640\) 0 0
\(641\) 1.60711 + 9.11435i 0.0634769 + 0.359995i 0.999957 + 0.00927459i \(0.00295224\pi\)
−0.936480 + 0.350721i \(0.885937\pi\)
\(642\) 45.6277 1.80078
\(643\) 9.77411 + 26.8542i 0.385453 + 1.05902i 0.969025 + 0.246963i \(0.0794326\pi\)
−0.583571 + 0.812062i \(0.698345\pi\)
\(644\) 17.4953 99.2205i 0.689410 3.90984i
\(645\) 0 0
\(646\) −0.773318 + 0.648891i −0.0304258 + 0.0255303i
\(647\) 21.6928i 0.852833i −0.904527 0.426417i \(-0.859776\pi\)
0.904527 0.426417i \(-0.140224\pi\)
\(648\) −35.3241 + 42.0977i −1.38766 + 1.65375i
\(649\) 26.7202 1.04886
\(650\) 0 0
\(651\) 16.8648 20.0987i 0.660985 0.787731i
\(652\) −43.2626 7.62836i −1.69429 0.298749i
\(653\) 10.5760 + 29.0574i 0.413872 + 1.13710i 0.955115 + 0.296237i \(0.0957317\pi\)
−0.541243 + 0.840866i \(0.682046\pi\)
\(654\) 0.648891i 0.0253737i
\(655\) 0 0
\(656\) 0.474308 + 0.821525i 0.0185186 + 0.0320752i
\(657\) −0.437124 0.520945i −0.0170538 0.0203240i
\(658\) 31.2629 + 18.0496i 1.21875 + 0.703648i
\(659\) 35.7581 + 13.0149i 1.39294 + 0.506987i 0.926074 0.377343i \(-0.123162\pi\)
0.466862 + 0.884330i \(0.345384\pi\)
\(660\) 0 0
\(661\) −20.7271 17.3921i −0.806193 0.676476i 0.143503 0.989650i \(-0.454163\pi\)
−0.949696 + 0.313174i \(0.898608\pi\)
\(662\) 12.3400 14.7062i 0.479607 0.571573i
\(663\) −11.3695 4.13816i −0.441554 0.160713i
\(664\) −50.8205 18.4971i −1.97222 0.717828i
\(665\) 0 0
\(666\) −17.7754 + 6.46973i −0.688784 + 0.250697i
\(667\) 49.7170 28.7041i 1.92505 1.11143i
\(668\) −13.7394 + 2.42262i −0.531591 + 0.0937339i
\(669\) 0.660855 + 0.381545i 0.0255501 + 0.0147514i
\(670\) 0 0
\(671\) 13.6155 77.2171i 0.525619 2.98093i
\(672\) −4.23594 + 24.0232i −0.163405 + 0.926716i
\(673\) −19.8109 23.6097i −0.763653 0.910087i 0.234420 0.972135i \(-0.424681\pi\)
−0.998073 + 0.0620488i \(0.980237\pi\)
\(674\) −41.8931 −1.61366
\(675\) 0 0
\(676\) 21.4611 0.825427
\(677\) −29.9708 35.7178i −1.15187 1.37275i −0.916105 0.400937i \(-0.868685\pi\)
−0.235766 0.971810i \(-0.575760\pi\)
\(678\) 29.1730 10.6181i 1.12038 0.407785i
\(679\) −5.07192 + 28.7643i −0.194642 + 1.10387i
\(680\) 0 0
\(681\) 7.96972 4.60132i 0.305400 0.176323i
\(682\) 69.5036 12.2554i 2.66143 0.469282i
\(683\) −35.8923 + 20.7224i −1.37338 + 0.792921i −0.991352 0.131231i \(-0.958107\pi\)
−0.382027 + 0.924151i \(0.624774\pi\)
\(684\) −1.59627 2.76481i −0.0610348 0.105715i
\(685\) 0 0
\(686\) −33.6168 12.2355i −1.28350 0.467154i
\(687\) 0.0236781 + 0.134285i 0.000903377 + 0.00512330i
\(688\) 3.20459 3.81908i 0.122174 0.145601i
\(689\) −39.1973 32.8905i −1.49330 1.25303i
\(690\) 0 0
\(691\) −4.99185 1.81688i −0.189899 0.0691175i 0.245320 0.969442i \(-0.421107\pi\)
−0.435219 + 0.900325i \(0.643329\pi\)
\(692\) 75.4614 + 43.5676i 2.86861 + 1.65619i
\(693\) 51.8289i 1.96882i
\(694\) −19.2258 33.3001i −0.729802 1.26405i
\(695\) 0 0
\(696\) −70.5464 + 40.7300i −2.67406 + 1.54387i
\(697\) 0.0807773 + 0.221934i 0.00305966 + 0.00840634i
\(698\) 35.2182 + 6.20991i 1.33303 + 0.235049i
\(699\) −0.221934 0.609758i −0.00839431 0.0230632i
\(700\) 0 0
\(701\) 9.66962 0.365216 0.182608 0.983186i \(-0.441546\pi\)
0.182608 + 0.983186i \(0.441546\pi\)
\(702\) 27.8055 48.1605i 1.04945 1.81770i
\(703\) 0.600710i 0.0226562i
\(704\) 7.07532 5.93690i 0.266661 0.223755i
\(705\) 0 0
\(706\) 1.83140 10.3864i 0.0689258 0.390898i
\(707\) 2.44474 + 6.71688i 0.0919441 + 0.252614i
\(708\) −18.1058 + 31.3601i −0.680456 + 1.17858i
\(709\) −4.07057 23.0854i −0.152874 0.866989i −0.960704 0.277575i \(-0.910469\pi\)
0.807830 0.589415i \(-0.200642\pi\)
\(710\) 0 0
\(711\) 22.6079 + 18.9703i 0.847862 + 0.711440i
\(712\) 35.2205 + 20.3346i 1.31994 + 0.762070i
\(713\) 12.6021 34.6241i 0.471954 1.29668i
\(714\) −7.59627 + 20.8706i −0.284283 + 0.781061i
\(715\) 0 0
\(716\) −27.3764 22.9716i −1.02311 0.858488i
\(717\) −14.4158 + 12.0963i −0.538367 + 0.451743i
\(718\) −5.71021 + 15.6887i −0.213103 + 0.585496i
\(719\) −13.1133 + 22.7130i −0.489045 + 0.847051i −0.999921 0.0126038i \(-0.995988\pi\)
0.510875 + 0.859655i \(0.329321\pi\)
\(720\) 0 0
\(721\) −28.5553 49.4592i −1.06346 1.84196i
\(722\) −47.2337 + 8.32857i −1.75786 + 0.309957i
\(723\) −46.3270 −1.72292
\(724\) −36.9543 + 13.4503i −1.37340 + 0.499875i
\(725\) 0 0
\(726\) −58.6052 + 69.8430i −2.17504 + 2.59212i
\(727\) 12.2559 + 14.6061i 0.454548 + 0.541709i 0.943836 0.330413i \(-0.107188\pi\)
−0.489289 + 0.872122i \(0.662744\pi\)
\(728\) 79.0815i 2.93096i
\(729\) −13.5000 23.3827i −0.500000 0.866025i
\(730\) 0 0
\(731\) 0.950837 0.797847i 0.0351680 0.0295094i
\(732\) 81.3998 + 68.3025i 3.00862 + 2.52453i
\(733\) 6.64268 + 1.17128i 0.245353 + 0.0432624i 0.294972 0.955506i \(-0.404690\pi\)
−0.0496191 + 0.998768i \(0.515801\pi\)
\(734\) 30.1933 10.9895i 1.11446 0.405629i
\(735\) 0 0
\(736\) 5.94878 + 33.7372i 0.219275 + 1.24357i
\(737\) −35.9841 + 20.7754i −1.32549 + 0.765273i
\(738\) −1.06904 + 0.188501i −0.0393519 + 0.00693881i
\(739\) −18.0069 + 31.1888i −0.662393 + 1.14730i 0.317592 + 0.948228i \(0.397126\pi\)
−0.979985 + 0.199071i \(0.936208\pi\)
\(740\) 0 0
\(741\) 1.13516 + 1.35283i 0.0417012 + 0.0496976i
\(742\) −60.3759 + 71.9532i −2.21647 + 2.64148i
\(743\) −23.0508 + 27.4709i −0.845653 + 1.00781i 0.154152 + 0.988047i \(0.450735\pi\)
−0.999805 + 0.0197626i \(0.993709\pi\)
\(744\) −17.8819 + 49.1301i −0.655583 + 1.80120i
\(745\) 0 0
\(746\) −9.66725 + 16.7442i −0.353943 + 0.613048i
\(747\) 17.0797 20.3548i 0.624913 0.744743i
\(748\) −35.5997 + 20.5535i −1.30165 + 0.751510i
\(749\) 5.53571 + 31.3946i 0.202270 + 1.14713i
\(750\) 0 0
\(751\) 45.0899 16.4114i 1.64535 0.598860i 0.657392 0.753549i \(-0.271660\pi\)
0.987963 + 0.154689i \(0.0494376\pi\)
\(752\) −30.4162 5.36319i −1.10916 0.195575i
\(753\) 1.80256 10.2228i 0.0656888 0.372540i
\(754\) 63.1473 52.9869i 2.29969 1.92967i
\(755\) 0 0
\(756\) −60.8289 35.1196i −2.21233 1.27729i
\(757\) 24.2172i 0.880189i −0.897952 0.440094i \(-0.854945\pi\)
0.897952 0.440094i \(-0.145055\pi\)
\(758\) −44.0814 52.5342i −1.60111 1.90813i
\(759\) 24.8944 + 68.3968i 0.903609 + 2.48265i
\(760\) 0 0
\(761\) 42.1391 15.3374i 1.52754 0.555979i 0.564523 0.825417i \(-0.309060\pi\)
0.963018 + 0.269438i \(0.0868379\pi\)
\(762\) 0.534876 + 0.926433i 0.0193765 + 0.0335611i
\(763\) 0.446476 0.0787257i 0.0161635 0.00285006i
\(764\) −12.3118 21.3247i −0.445425 0.771499i
\(765\) 0 0
\(766\) 13.0373 22.5813i 0.471057 0.815895i
\(767\) 6.85099 18.8229i 0.247375 0.679657i
\(768\) 9.17431 + 52.0301i 0.331049 + 1.87747i
\(769\) −0.682733 0.572881i −0.0246200 0.0206586i 0.630395 0.776275i \(-0.282893\pi\)
−0.655015 + 0.755616i \(0.727338\pi\)
\(770\) 0 0
\(771\) 10.7888 1.90236i 0.388549 0.0685117i
\(772\) −38.2121 + 104.987i −1.37528 + 3.77856i
\(773\) 26.6217 + 15.3701i 0.957516 + 0.552822i 0.895408 0.445247i \(-0.146884\pi\)
0.0621086 + 0.998069i \(0.480217\pi\)