Properties

Label 675.2.u.a.349.1
Level $675$
Weight $2$
Character 675.349
Analytic conductor $5.390$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(49,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.u (of order \(18\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{18})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 349.1
Root \(-0.642788 + 0.766044i\) of defining polynomial
Character \(\chi\) \(=\) 675.349
Dual form 675.2.u.a.499.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.32683 - 0.233956i) q^{2} +(0.300767 + 1.70574i) q^{3} +(-0.173648 - 0.0632028i) q^{4} -2.33359i q^{6} +(-0.237565 - 0.652704i) q^{7} +(2.54920 + 1.47178i) q^{8} +(-2.81908 + 1.02606i) q^{9} +O(q^{10})\) \(q+(-1.32683 - 0.233956i) q^{2} +(0.300767 + 1.70574i) q^{3} +(-0.173648 - 0.0632028i) q^{4} -2.33359i q^{6} +(-0.237565 - 0.652704i) q^{7} +(2.54920 + 1.47178i) q^{8} +(-2.81908 + 1.02606i) q^{9} +(-3.52094 - 2.95442i) q^{11} +(0.0555796 - 0.315207i) q^{12} +(1.39003 - 0.245100i) q^{13} +(0.162504 + 0.921605i) q^{14} +(-2.75490 - 2.31164i) q^{16} +(3.35965 - 1.93969i) q^{17} +(3.98048 - 0.701867i) q^{18} +(3.53209 - 6.11776i) q^{19} +(1.04189 - 0.601535i) q^{21} +(3.98048 + 4.74376i) q^{22} +(-1.30753 + 3.59240i) q^{23} +(-1.74376 + 4.79093i) q^{24} -1.90167 q^{26} +(-2.59808 - 4.50000i) q^{27} +0.128356i q^{28} +(-0.851167 + 4.82721i) q^{29} +(0.786989 + 0.286441i) q^{31} +(-0.669713 - 0.798133i) q^{32} +(3.98048 - 6.89440i) q^{33} +(-4.91147 + 1.78763i) q^{34} +0.554378 q^{36} +(6.91560 - 3.99273i) q^{37} +(-6.11776 + 7.29086i) q^{38} +(0.836152 + 2.29731i) q^{39} +(-1.36571 - 7.74535i) q^{41} +(-1.52314 + 0.554378i) q^{42} +(1.33618 - 1.59240i) q^{43} +(0.424678 + 0.735564i) q^{44} +(2.57532 - 4.46059i) q^{46} +(2.35289 + 6.46451i) q^{47} +(3.11446 - 5.39440i) q^{48} +(4.99273 - 4.18939i) q^{49} +(4.31908 + 5.14728i) q^{51} +(-0.256867 - 0.0452926i) q^{52} +3.05644i q^{53} +(2.39440 + 6.57856i) q^{54} +(0.355037 - 2.01352i) q^{56} +(11.4976 + 4.18479i) q^{57} +(2.25870 - 6.20574i) q^{58} +(6.82295 - 5.72513i) q^{59} +(8.12449 - 2.95707i) q^{61} +(-0.977185 - 0.564178i) q^{62} +(1.33943 + 1.59627i) q^{63} +(4.29813 + 7.44459i) q^{64} +(-6.89440 + 8.21643i) q^{66} +(9.30975 - 1.64156i) q^{67} +(-0.705990 + 0.124485i) q^{68} +(-6.52094 - 1.14982i) q^{69} +(2.90033 + 5.02352i) q^{71} +(-8.69653 - 1.53343i) q^{72} +(-4.68647 - 2.70574i) q^{73} +(-10.1099 + 3.67972i) q^{74} +(-1.00000 + 0.839100i) q^{76} +(-1.09191 + 3.00000i) q^{77} +(-0.571962 - 3.24376i) q^{78} +(2.27584 - 12.9070i) q^{79} +(6.89440 - 5.78509i) q^{81} +10.5963i q^{82} +(-1.11792 - 0.197119i) q^{83} +(-0.218941 + 0.0386052i) q^{84} +(-2.14543 + 1.80023i) q^{86} -8.48995 q^{87} +(-4.62733 - 12.7135i) q^{88} +(0.368241 - 0.637812i) q^{89} +(-0.490200 - 0.849051i) q^{91} +(0.454099 - 0.541174i) q^{92} +(-0.251892 + 1.42855i) q^{93} +(-1.60947 - 9.12776i) q^{94} +(1.15998 - 1.38241i) q^{96} +(-5.36554 + 6.39440i) q^{97} +(-7.60462 + 4.39053i) q^{98} +(12.9572 + 4.71605i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q+O(q^{10}) \) Copy content Toggle raw display \( 12 q - 36 q^{11} + 12 q^{14} - 36 q^{16} + 24 q^{19} - 36 q^{24} + 24 q^{26} + 42 q^{29} - 6 q^{31} - 18 q^{34} - 36 q^{36} + 18 q^{39} - 36 q^{41} + 54 q^{44} - 18 q^{46} + 24 q^{49} + 18 q^{51} - 54 q^{54} - 96 q^{56} + 72 q^{61} + 24 q^{64} - 72 q^{69} + 6 q^{71} - 24 q^{74} - 12 q^{76} + 24 q^{79} - 72 q^{84} + 6 q^{86} - 6 q^{89} - 54 q^{94} + 54 q^{96} + 54 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{5}{9}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.32683 0.233956i −0.938209 0.165432i −0.316423 0.948618i \(-0.602482\pi\)
−0.621786 + 0.783187i \(0.713593\pi\)
\(3\) 0.300767 + 1.70574i 0.173648 + 0.984808i
\(4\) −0.173648 0.0632028i −0.0868241 0.0316014i
\(5\) 0 0
\(6\) 2.33359i 0.952682i
\(7\) −0.237565 0.652704i −0.0897910 0.246699i 0.886666 0.462410i \(-0.153015\pi\)
−0.976457 + 0.215711i \(0.930793\pi\)
\(8\) 2.54920 + 1.47178i 0.901278 + 0.520353i
\(9\) −2.81908 + 1.02606i −0.939693 + 0.342020i
\(10\) 0 0
\(11\) −3.52094 2.95442i −1.06160 0.890792i −0.0673390 0.997730i \(-0.521451\pi\)
−0.994266 + 0.106938i \(0.965895\pi\)
\(12\) 0.0555796 0.315207i 0.0160444 0.0909926i
\(13\) 1.39003 0.245100i 0.385525 0.0679785i 0.0224733 0.999747i \(-0.492846\pi\)
0.363052 + 0.931769i \(0.381735\pi\)
\(14\) 0.162504 + 0.921605i 0.0434310 + 0.246309i
\(15\) 0 0
\(16\) −2.75490 2.31164i −0.688725 0.577909i
\(17\) 3.35965 1.93969i 0.814834 0.470445i −0.0337978 0.999429i \(-0.510760\pi\)
0.848632 + 0.528984i \(0.177427\pi\)
\(18\) 3.98048 0.701867i 0.938209 0.165432i
\(19\) 3.53209 6.11776i 0.810317 1.40351i −0.102326 0.994751i \(-0.532628\pi\)
0.912642 0.408759i \(-0.134038\pi\)
\(20\) 0 0
\(21\) 1.04189 0.601535i 0.227359 0.131266i
\(22\) 3.98048 + 4.74376i 0.848642 + 1.01137i
\(23\) −1.30753 + 3.59240i −0.272638 + 0.749066i 0.725509 + 0.688213i \(0.241604\pi\)
−0.998147 + 0.0608535i \(0.980618\pi\)
\(24\) −1.74376 + 4.79093i −0.355943 + 0.977944i
\(25\) 0 0
\(26\) −1.90167 −0.372949
\(27\) −2.59808 4.50000i −0.500000 0.866025i
\(28\) 0.128356i 0.0242569i
\(29\) −0.851167 + 4.82721i −0.158058 + 0.896390i 0.797879 + 0.602817i \(0.205955\pi\)
−0.955937 + 0.293572i \(0.905156\pi\)
\(30\) 0 0
\(31\) 0.786989 + 0.286441i 0.141347 + 0.0514462i 0.411725 0.911308i \(-0.364926\pi\)
−0.270378 + 0.962754i \(0.587149\pi\)
\(32\) −0.669713 0.798133i −0.118390 0.141091i
\(33\) 3.98048 6.89440i 0.692913 1.20016i
\(34\) −4.91147 + 1.78763i −0.842311 + 0.306576i
\(35\) 0 0
\(36\) 0.554378 0.0923963
\(37\) 6.91560 3.99273i 1.13692 0.656400i 0.191253 0.981541i \(-0.438745\pi\)
0.945666 + 0.325141i \(0.105412\pi\)
\(38\) −6.11776 + 7.29086i −0.992431 + 1.18273i
\(39\) 0.836152 + 2.29731i 0.133891 + 0.367864i
\(40\) 0 0
\(41\) −1.36571 7.74535i −0.213289 1.20962i −0.883851 0.467768i \(-0.845058\pi\)
0.670563 0.741853i \(-0.266053\pi\)
\(42\) −1.52314 + 0.554378i −0.235026 + 0.0855423i
\(43\) 1.33618 1.59240i 0.203765 0.242838i −0.654478 0.756081i \(-0.727112\pi\)
0.858243 + 0.513243i \(0.171556\pi\)
\(44\) 0.424678 + 0.735564i 0.0640226 + 0.110890i
\(45\) 0 0
\(46\) 2.57532 4.46059i 0.379711 0.657678i
\(47\) 2.35289 + 6.46451i 0.343204 + 0.942945i 0.984459 + 0.175617i \(0.0561921\pi\)
−0.641255 + 0.767328i \(0.721586\pi\)
\(48\) 3.11446 5.39440i 0.449533 0.778615i
\(49\) 4.99273 4.18939i 0.713247 0.598485i
\(50\) 0 0
\(51\) 4.31908 + 5.14728i 0.604792 + 0.720763i
\(52\) −0.256867 0.0452926i −0.0356211 0.00628096i
\(53\) 3.05644i 0.419834i 0.977719 + 0.209917i \(0.0673194\pi\)
−0.977719 + 0.209917i \(0.932681\pi\)
\(54\) 2.39440 + 6.57856i 0.325837 + 0.895229i
\(55\) 0 0
\(56\) 0.355037 2.01352i 0.0474438 0.269067i
\(57\) 11.4976 + 4.18479i 1.52290 + 0.554289i
\(58\) 2.25870 6.20574i 0.296582 0.814853i
\(59\) 6.82295 5.72513i 0.888272 0.745349i −0.0795906 0.996828i \(-0.525361\pi\)
0.967863 + 0.251479i \(0.0809169\pi\)
\(60\) 0 0
\(61\) 8.12449 2.95707i 1.04023 0.378614i 0.235265 0.971931i \(-0.424404\pi\)
0.804969 + 0.593317i \(0.202182\pi\)
\(62\) −0.977185 0.564178i −0.124103 0.0716506i
\(63\) 1.33943 + 1.59627i 0.168752 + 0.201111i
\(64\) 4.29813 + 7.44459i 0.537267 + 0.930573i
\(65\) 0 0
\(66\) −6.89440 + 8.21643i −0.848642 + 1.01137i
\(67\) 9.30975 1.64156i 1.13737 0.200548i 0.426913 0.904293i \(-0.359601\pi\)
0.710453 + 0.703744i \(0.248490\pi\)
\(68\) −0.705990 + 0.124485i −0.0856139 + 0.0150960i
\(69\) −6.52094 1.14982i −0.785029 0.138422i
\(70\) 0 0
\(71\) 2.90033 + 5.02352i 0.344206 + 0.596182i 0.985209 0.171356i \(-0.0548149\pi\)
−0.641003 + 0.767538i \(0.721482\pi\)
\(72\) −8.69653 1.53343i −1.02490 0.180717i
\(73\) −4.68647 2.70574i −0.548510 0.316683i 0.200011 0.979794i \(-0.435902\pi\)
−0.748521 + 0.663111i \(0.769236\pi\)
\(74\) −10.1099 + 3.67972i −1.17526 + 0.427758i
\(75\) 0 0
\(76\) −1.00000 + 0.839100i −0.114708 + 0.0962513i
\(77\) −1.09191 + 3.00000i −0.124435 + 0.341882i
\(78\) −0.571962 3.24376i −0.0647619 0.367283i
\(79\) 2.27584 12.9070i 0.256053 1.45215i −0.537304 0.843389i \(-0.680557\pi\)
0.793356 0.608757i \(-0.208332\pi\)
\(80\) 0 0
\(81\) 6.89440 5.78509i 0.766044 0.642788i
\(82\) 10.5963i 1.17016i
\(83\) −1.11792 0.197119i −0.122707 0.0216366i 0.111957 0.993713i \(-0.464288\pi\)
−0.234665 + 0.972076i \(0.575399\pi\)
\(84\) −0.218941 + 0.0386052i −0.0238884 + 0.00421217i
\(85\) 0 0
\(86\) −2.14543 + 1.80023i −0.231348 + 0.194124i
\(87\) −8.48995 −0.910218
\(88\) −4.62733 12.7135i −0.493275 1.35526i
\(89\) 0.368241 0.637812i 0.0390335 0.0676079i −0.845849 0.533423i \(-0.820905\pi\)
0.884882 + 0.465815i \(0.154239\pi\)
\(90\) 0 0
\(91\) −0.490200 0.849051i −0.0513869 0.0890047i
\(92\) 0.454099 0.541174i 0.0473431 0.0564213i
\(93\) −0.251892 + 1.42855i −0.0261199 + 0.148134i
\(94\) −1.60947 9.12776i −0.166004 0.941457i
\(95\) 0 0
\(96\) 1.15998 1.38241i 0.118390 0.141091i
\(97\) −5.36554 + 6.39440i −0.544788 + 0.649253i −0.966254 0.257591i \(-0.917071\pi\)
0.421466 + 0.906844i \(0.361516\pi\)
\(98\) −7.60462 + 4.39053i −0.768183 + 0.443510i
\(99\) 12.9572 + 4.71605i 1.30225 + 0.473981i
\(100\) 0 0
\(101\) −11.6099 + 4.22567i −1.15523 + 0.420470i −0.847392 0.530968i \(-0.821828\pi\)
−0.307840 + 0.951438i \(0.599606\pi\)
\(102\) −4.52644 7.84002i −0.448184 0.776278i
\(103\) −5.40182 6.43763i −0.532257 0.634319i 0.431176 0.902268i \(-0.358099\pi\)
−0.963433 + 0.267949i \(0.913654\pi\)
\(104\) 3.90420 + 1.42101i 0.382838 + 0.139342i
\(105\) 0 0
\(106\) 0.715070 4.05537i 0.0694538 0.393892i
\(107\) 13.9581i 1.34938i −0.738101 0.674691i \(-0.764277\pi\)
0.738101 0.674691i \(-0.235723\pi\)
\(108\) 0.166739 + 0.945622i 0.0160444 + 0.0909926i
\(109\) 15.5817 1.49246 0.746229 0.665689i \(-0.231862\pi\)
0.746229 + 0.665689i \(0.231862\pi\)
\(110\) 0 0
\(111\) 8.89053 + 10.5953i 0.843852 + 1.00566i
\(112\) −0.854346 + 2.34730i −0.0807281 + 0.221799i
\(113\) 11.0368 + 13.1532i 1.03826 + 1.23735i 0.970867 + 0.239619i \(0.0770227\pi\)
0.0673899 + 0.997727i \(0.478533\pi\)
\(114\) −14.2763 8.24243i −1.33710 0.771975i
\(115\) 0 0
\(116\) 0.452896 0.784440i 0.0420504 0.0728334i
\(117\) −3.66712 + 2.11721i −0.339025 + 0.195736i
\(118\) −10.3923 + 6.00000i −0.956689 + 0.552345i
\(119\) −2.06418 1.73205i −0.189223 0.158777i
\(120\) 0 0
\(121\) 1.75830 + 9.97184i 0.159846 + 0.906531i
\(122\) −11.4716 + 2.02276i −1.03859 + 0.183132i
\(123\) 12.8008 4.65910i 1.15421 0.420097i
\(124\) −0.118555 0.0994798i −0.0106466 0.00893355i
\(125\) 0 0
\(126\) −1.40373 2.43134i −0.125055 0.216601i
\(127\) −19.3711 11.1839i −1.71891 0.992412i −0.920933 0.389722i \(-0.872571\pi\)
−0.797975 0.602690i \(-0.794096\pi\)
\(128\) −3.24849 8.92514i −0.287128 0.788879i
\(129\) 3.11809 + 1.80023i 0.274532 + 0.158501i
\(130\) 0 0
\(131\) −13.9427 5.07472i −1.21818 0.443381i −0.348645 0.937255i \(-0.613358\pi\)
−0.869533 + 0.493874i \(0.835580\pi\)
\(132\) −1.12695 + 0.945622i −0.0980883 + 0.0823059i
\(133\) −4.83218 0.852044i −0.419003 0.0738816i
\(134\) −12.7365 −1.10026
\(135\) 0 0
\(136\) 11.4192 0.979190
\(137\) −12.6088 2.22328i −1.07725 0.189947i −0.393249 0.919432i \(-0.628649\pi\)
−0.683997 + 0.729485i \(0.739760\pi\)
\(138\) 8.38316 + 3.05122i 0.713622 + 0.259737i
\(139\) −10.7258 3.90387i −0.909751 0.331122i −0.155597 0.987821i \(-0.549730\pi\)
−0.754153 + 0.656698i \(0.771952\pi\)
\(140\) 0 0
\(141\) −10.3191 + 5.95772i −0.869023 + 0.501731i
\(142\) −2.67296 7.34389i −0.224310 0.616286i
\(143\) −5.61835 3.24376i −0.469830 0.271256i
\(144\) 10.1382 + 3.68999i 0.844846 + 0.307499i
\(145\) 0 0
\(146\) 5.58512 + 4.68647i 0.462228 + 0.387855i
\(147\) 8.64766 + 7.25624i 0.713247 + 0.598485i
\(148\) −1.45323 + 0.256244i −0.119455 + 0.0210631i
\(149\) −2.26352 12.8370i −0.185435 1.05165i −0.925396 0.379002i \(-0.876267\pi\)
0.739961 0.672650i \(-0.234844\pi\)
\(150\) 0 0
\(151\) −1.56418 1.31250i −0.127291 0.106810i 0.576920 0.816801i \(-0.304255\pi\)
−0.704211 + 0.709991i \(0.748699\pi\)
\(152\) 18.0080 10.3969i 1.46064 0.843302i
\(153\) −7.48086 + 8.91534i −0.604792 + 0.720763i
\(154\) 2.15064 3.72503i 0.173304 0.300171i
\(155\) 0 0
\(156\) 0.451771i 0.0361706i
\(157\) 7.44956 + 8.87804i 0.594540 + 0.708545i 0.976472 0.215646i \(-0.0691856\pi\)
−0.381932 + 0.924190i \(0.624741\pi\)
\(158\) −6.03931 + 16.5929i −0.480462 + 1.32006i
\(159\) −5.21348 + 0.919277i −0.413456 + 0.0729034i
\(160\) 0 0
\(161\) 2.65539 0.209274
\(162\) −10.5011 + 6.06283i −0.825047 + 0.476341i
\(163\) 16.6382i 1.30320i 0.758562 + 0.651600i \(0.225902\pi\)
−0.758562 + 0.651600i \(0.774098\pi\)
\(164\) −0.252374 + 1.43128i −0.0197071 + 0.111764i
\(165\) 0 0
\(166\) 1.43717 + 0.523086i 0.111546 + 0.0405993i
\(167\) 0.0681784 + 0.0812519i 0.00527581 + 0.00628746i 0.768676 0.639638i \(-0.220916\pi\)
−0.763400 + 0.645926i \(0.776471\pi\)
\(168\) 3.54131 0.273218
\(169\) −10.3439 + 3.76487i −0.795684 + 0.289605i
\(170\) 0 0
\(171\) −3.68004 + 20.8706i −0.281420 + 1.59601i
\(172\) −0.332669 + 0.192066i −0.0253658 + 0.0146449i
\(173\) 4.93837 5.88532i 0.375457 0.447452i −0.544918 0.838489i \(-0.683439\pi\)
0.920375 + 0.391037i \(0.127884\pi\)
\(174\) 11.2647 + 1.98627i 0.853975 + 0.150579i
\(175\) 0 0
\(176\) 2.87030 + 16.2783i 0.216357 + 1.22702i
\(177\) 11.8177 + 9.91622i 0.888272 + 0.745349i
\(178\) −0.637812 + 0.760115i −0.0478060 + 0.0569730i
\(179\) −11.2515 19.4882i −0.840976 1.45661i −0.889070 0.457771i \(-0.848648\pi\)
0.0480938 0.998843i \(-0.484685\pi\)
\(180\) 0 0
\(181\) −10.8944 + 18.8697i −0.809774 + 1.40257i 0.103246 + 0.994656i \(0.467077\pi\)
−0.913020 + 0.407914i \(0.866256\pi\)
\(182\) 0.451771 + 1.24123i 0.0334875 + 0.0920061i
\(183\) 7.48757 + 12.9688i 0.553497 + 0.958685i
\(184\) −8.62037 + 7.23335i −0.635502 + 0.533249i
\(185\) 0 0
\(186\) 0.668434 1.83651i 0.0490119 0.134659i
\(187\) −17.5598 3.09627i −1.28410 0.226421i
\(188\) 1.27126i 0.0927161i
\(189\) −2.31996 + 2.76481i −0.168752 + 0.201111i
\(190\) 0 0
\(191\) 1.81180 10.2753i 0.131098 0.743491i −0.846401 0.532547i \(-0.821235\pi\)
0.977498 0.210944i \(-0.0676539\pi\)
\(192\) −11.4058 + 9.57057i −0.823140 + 0.690697i
\(193\) −3.41117 + 9.37211i −0.245541 + 0.674619i 0.754295 + 0.656536i \(0.227979\pi\)
−0.999836 + 0.0180838i \(0.994243\pi\)
\(194\) 8.61515 7.22897i 0.618532 0.519010i
\(195\) 0 0
\(196\) −1.13176 + 0.411927i −0.0808399 + 0.0294233i
\(197\) 14.5246 + 8.38578i 1.03483 + 0.597462i 0.918366 0.395732i \(-0.129509\pi\)
0.116469 + 0.993194i \(0.462842\pi\)
\(198\) −16.0887 9.28880i −1.14337 0.660126i
\(199\) 13.7981 + 23.8991i 0.978124 + 1.69416i 0.669216 + 0.743068i \(0.266630\pi\)
0.308908 + 0.951092i \(0.400037\pi\)
\(200\) 0 0
\(201\) 5.60014 + 15.3863i 0.395003 + 1.08526i
\(202\) 16.3930 2.89053i 1.15341 0.203377i
\(203\) 3.35294 0.591214i 0.235330 0.0414951i
\(204\) −0.424678 1.16679i −0.0297334 0.0816918i
\(205\) 0 0
\(206\) 5.66116 + 9.80542i 0.394432 + 0.683176i
\(207\) 11.4688i 0.797140i
\(208\) −4.39598 2.53802i −0.304806 0.175980i
\(209\) −30.5107 + 11.1050i −2.11047 + 0.768149i
\(210\) 0 0
\(211\) −6.10220 + 5.12035i −0.420093 + 0.352499i −0.828198 0.560435i \(-0.810634\pi\)
0.408106 + 0.912935i \(0.366189\pi\)
\(212\) 0.193175 0.530745i 0.0132673 0.0364517i
\(213\) −7.69648 + 6.45811i −0.527354 + 0.442502i
\(214\) −3.26558 + 18.5200i −0.223230 + 1.26600i
\(215\) 0 0
\(216\) 15.2952i 1.04071i
\(217\) 0.581719i 0.0394896i
\(218\) −20.6743 3.64543i −1.40024 0.246900i
\(219\) 3.20574 8.80769i 0.216624 0.595169i
\(220\) 0 0
\(221\) 4.19459 3.51968i 0.282159 0.236759i
\(222\) −9.31737 16.1382i −0.625341 1.08312i
\(223\) −7.10257 19.5141i −0.475623 1.30676i −0.913174 0.407570i \(-0.866376\pi\)
0.437551 0.899194i \(-0.355846\pi\)
\(224\) −0.361844 + 0.626733i −0.0241767 + 0.0418753i
\(225\) 0 0
\(226\) −11.5667 20.0341i −0.769406 1.33265i
\(227\) 1.03866 1.23783i 0.0689382 0.0821574i −0.730473 0.682941i \(-0.760700\pi\)
0.799411 + 0.600784i \(0.205145\pi\)
\(228\) −1.73205 1.45336i −0.114708 0.0962513i
\(229\) −1.76604 10.0157i −0.116704 0.661858i −0.985893 0.167379i \(-0.946470\pi\)
0.869189 0.494480i \(-0.164641\pi\)
\(230\) 0 0
\(231\) −5.44562 0.960210i −0.358296 0.0631772i
\(232\) −9.27439 + 11.0528i −0.608893 + 0.725651i
\(233\) 18.1806 10.4966i 1.19105 0.687655i 0.232508 0.972595i \(-0.425307\pi\)
0.958545 + 0.284940i \(0.0919736\pi\)
\(234\) 5.36097 1.95123i 0.350457 0.127556i
\(235\) 0 0
\(236\) −1.54664 + 0.562930i −0.100677 + 0.0366436i
\(237\) 22.7004 1.47455
\(238\) 2.33359 + 2.78106i 0.151264 + 0.180269i
\(239\) 4.70574 + 1.71275i 0.304389 + 0.110788i 0.489699 0.871892i \(-0.337107\pi\)
−0.185310 + 0.982680i \(0.559329\pi\)
\(240\) 0 0
\(241\) 3.95290 22.4180i 0.254628 1.44407i −0.542396 0.840123i \(-0.682483\pi\)
0.797025 0.603947i \(-0.206406\pi\)
\(242\) 13.6423i 0.876959i
\(243\) 11.9415 + 10.0201i 0.766044 + 0.642788i
\(244\) −1.59770 −0.102282
\(245\) 0 0
\(246\) −18.0744 + 3.18701i −1.15238 + 0.203196i
\(247\) 3.41025 9.36959i 0.216989 0.596172i
\(248\) 1.58461 + 1.88847i 0.100623 + 0.119918i
\(249\) 1.96616i 0.124600i
\(250\) 0 0
\(251\) −7.30928 + 12.6600i −0.461358 + 0.799095i −0.999029 0.0440598i \(-0.985971\pi\)
0.537671 + 0.843154i \(0.319304\pi\)
\(252\) −0.131701 0.361844i −0.00829635 0.0227940i
\(253\) 15.2172 8.78564i 0.956696 0.552349i
\(254\) 23.0856 + 19.3711i 1.44852 + 1.21545i
\(255\) 0 0
\(256\) −0.763356 4.32921i −0.0477098 0.270575i
\(257\) 0.208911 0.0368366i 0.0130315 0.00229781i −0.167129 0.985935i \(-0.553450\pi\)
0.180160 + 0.983637i \(0.442338\pi\)
\(258\) −3.71599 3.11809i −0.231348 0.194124i
\(259\) −4.24897 3.56531i −0.264018 0.221538i
\(260\) 0 0
\(261\) −2.55350 14.4816i −0.158058 0.896390i
\(262\) 17.3123 + 9.99525i 1.06956 + 0.617509i
\(263\) 0.565258 + 1.55303i 0.0348553 + 0.0957641i 0.955900 0.293694i \(-0.0948846\pi\)
−0.921044 + 0.389458i \(0.872662\pi\)
\(264\) 20.2941 11.7168i 1.24902 0.721119i
\(265\) 0 0
\(266\) 6.21213 + 2.26103i 0.380890 + 0.138633i
\(267\) 1.19869 + 0.436289i 0.0733589 + 0.0267005i
\(268\) −1.72037 0.303348i −0.105088 0.0185299i
\(269\) 3.03684 0.185159 0.0925796 0.995705i \(-0.470489\pi\)
0.0925796 + 0.995705i \(0.470489\pi\)
\(270\) 0 0
\(271\) 15.9145 0.966735 0.483368 0.875418i \(-0.339413\pi\)
0.483368 + 0.875418i \(0.339413\pi\)
\(272\) −13.7394 2.42262i −0.833071 0.146893i
\(273\) 1.30082 1.09152i 0.0787293 0.0660617i
\(274\) 16.2096 + 5.89981i 0.979258 + 0.356421i
\(275\) 0 0
\(276\) 1.05968 + 0.611806i 0.0637851 + 0.0368264i
\(277\) −6.02265 16.5471i −0.361866 0.994219i −0.978369 0.206867i \(-0.933673\pi\)
0.616503 0.787353i \(-0.288549\pi\)
\(278\) 13.3180 + 7.68913i 0.798758 + 0.461163i
\(279\) −2.51249 −0.150419
\(280\) 0 0
\(281\) 6.72668 + 5.64436i 0.401280 + 0.336714i 0.820988 0.570945i \(-0.193423\pi\)
−0.419708 + 0.907659i \(0.637868\pi\)
\(282\) 15.0855 5.49067i 0.898327 0.326964i
\(283\) 1.99157 0.351167i 0.118386 0.0208747i −0.114141 0.993465i \(-0.536412\pi\)
0.232527 + 0.972590i \(0.425300\pi\)
\(284\) −0.186137 1.05563i −0.0110452 0.0626403i
\(285\) 0 0
\(286\) 6.69569 + 5.61835i 0.395924 + 0.332220i
\(287\) −4.73097 + 2.73143i −0.279261 + 0.161231i
\(288\) 2.70691 + 1.56283i 0.159506 + 0.0920909i
\(289\) −0.975185 + 1.68907i −0.0573638 + 0.0993571i
\(290\) 0 0
\(291\) −12.5209 7.22897i −0.733991 0.423770i
\(292\) 0.642788 + 0.766044i 0.0376163 + 0.0448294i
\(293\) 6.69999 18.4081i 0.391418 1.07541i −0.574937 0.818198i \(-0.694973\pi\)
0.966355 0.257213i \(-0.0828043\pi\)
\(294\) −9.77631 11.6510i −0.570166 0.679497i
\(295\) 0 0
\(296\) 23.5057 1.36624
\(297\) −4.14722 + 23.5201i −0.240646 + 1.36477i
\(298\) 17.5621i 1.01735i
\(299\) −0.937004 + 5.31402i −0.0541884 + 0.307317i
\(300\) 0 0
\(301\) −1.35679 0.493832i −0.0782042 0.0284640i
\(302\) 1.76833 + 2.10741i 0.101756 + 0.121268i
\(303\) −10.6998 18.5326i −0.614686 1.06467i
\(304\) −23.8726 + 8.68891i −1.36919 + 0.498343i
\(305\) 0 0
\(306\) 12.0116 10.0789i 0.686658 0.576175i
\(307\) −7.16079 + 4.13429i −0.408688 + 0.235956i −0.690226 0.723594i \(-0.742489\pi\)
0.281538 + 0.959550i \(0.409155\pi\)
\(308\) 0.379217 0.451933i 0.0216079 0.0257513i
\(309\) 9.35622 11.1503i 0.532257 0.634319i
\(310\) 0 0
\(311\) −4.79679 27.2039i −0.272001 1.54259i −0.748330 0.663327i \(-0.769144\pi\)
0.476329 0.879267i \(-0.341967\pi\)
\(312\) −1.24962 + 7.08693i −0.0707457 + 0.401219i
\(313\) 1.63695 1.95084i 0.0925257 0.110268i −0.717795 0.696255i \(-0.754848\pi\)
0.810321 + 0.585987i \(0.199293\pi\)
\(314\) −7.80722 13.5225i −0.440587 0.763119i
\(315\) 0 0
\(316\) −1.21095 + 2.09743i −0.0681214 + 0.117990i
\(317\) 9.82115 + 26.9834i 0.551611 + 1.51554i 0.831510 + 0.555509i \(0.187477\pi\)
−0.279900 + 0.960029i \(0.590301\pi\)
\(318\) 7.13246 0.399968
\(319\) 17.2585 14.4816i 0.966292 0.810815i
\(320\) 0 0
\(321\) 23.8089 4.19815i 1.32888 0.234318i
\(322\) −3.52325 0.621244i −0.196343 0.0346206i
\(323\) 27.4047i 1.52484i
\(324\) −1.56283 + 0.568825i −0.0868241 + 0.0316014i
\(325\) 0 0
\(326\) 3.89259 22.0760i 0.215591 1.22267i
\(327\) 4.68647 + 26.5783i 0.259163 + 1.46978i
\(328\) 7.91799 21.7545i 0.437198 1.20119i
\(329\) 3.66044 3.07148i 0.201807 0.169336i
\(330\) 0 0
\(331\) 7.92514 2.88452i 0.435605 0.158547i −0.114904 0.993377i \(-0.536656\pi\)
0.550509 + 0.834829i \(0.314434\pi\)
\(332\) 0.181666 + 0.104885i 0.00997021 + 0.00575630i
\(333\) −15.3988 + 18.3516i −0.843852 + 1.00566i
\(334\) −0.0714517 0.123758i −0.00390966 0.00677174i
\(335\) 0 0
\(336\) −4.26083 0.751299i −0.232447 0.0409867i
\(337\) −15.9954 + 2.82042i −0.871325 + 0.153638i −0.591395 0.806382i \(-0.701423\pi\)
−0.279931 + 0.960020i \(0.590311\pi\)
\(338\) 14.6054 2.57532i 0.794428 0.140079i
\(339\) −19.1163 + 22.7820i −1.03826 + 1.23735i
\(340\) 0 0
\(341\) −1.92468 3.33364i −0.104227 0.180527i
\(342\) 9.76557 26.8307i 0.528062 1.45084i
\(343\) −8.13127 4.69459i −0.439047 0.253484i
\(344\) 5.74985 2.09277i 0.310011 0.112835i
\(345\) 0 0
\(346\) −7.92926 + 6.65344i −0.426280 + 0.357691i
\(347\) −4.28715 + 11.7788i −0.230146 + 0.632321i −0.999982 0.00592013i \(-0.998116\pi\)
0.769836 + 0.638241i \(0.220338\pi\)
\(348\) 1.47426 + 0.536588i 0.0790288 + 0.0287641i
\(349\) −5.70187 + 32.3369i −0.305214 + 1.73095i 0.317282 + 0.948331i \(0.397230\pi\)
−0.622496 + 0.782623i \(0.713881\pi\)
\(350\) 0 0
\(351\) −4.71436 5.61835i −0.251634 0.299885i
\(352\) 4.78880i 0.255244i
\(353\) 15.9515 + 2.81268i 0.849013 + 0.149704i 0.581194 0.813765i \(-0.302586\pi\)
0.267819 + 0.963469i \(0.413697\pi\)
\(354\) −13.3601 15.9219i −0.710081 0.846241i
\(355\) 0 0
\(356\) −0.104256 + 0.0874810i −0.00552555 + 0.00463649i
\(357\) 2.33359 4.04189i 0.123506 0.213919i
\(358\) 10.3694 + 28.4898i 0.548042 + 1.50573i
\(359\) 6.13088 10.6190i 0.323576 0.560449i −0.657647 0.753326i \(-0.728448\pi\)
0.981223 + 0.192877i \(0.0617817\pi\)
\(360\) 0 0
\(361\) −15.4513 26.7624i −0.813227 1.40855i
\(362\) 18.8697 22.4880i 0.991767 1.18194i
\(363\) −16.4805 + 5.99841i −0.865001 + 0.314835i
\(364\) 0.0314599 + 0.178418i 0.00164895 + 0.00935165i
\(365\) 0 0
\(366\) −6.90058 18.9592i −0.360699 0.991012i
\(367\) 20.3685 24.2743i 1.06323 1.26711i 0.100992 0.994887i \(-0.467798\pi\)
0.962235 0.272218i \(-0.0877573\pi\)
\(368\) 11.9064 6.87417i 0.620665 0.358341i
\(369\) 11.7973 + 20.4334i 0.614141 + 1.06372i
\(370\) 0 0
\(371\) 1.99495 0.726102i 0.103573 0.0376973i
\(372\) 0.134029 0.232145i 0.00694907 0.0120361i
\(373\) 23.2393 + 27.6955i 1.20329 + 1.43402i 0.871311 + 0.490732i \(0.163271\pi\)
0.331975 + 0.943288i \(0.392285\pi\)
\(374\) 22.5744 + 8.21643i 1.16730 + 0.424861i
\(375\) 0 0
\(376\) −3.51636 + 19.9423i −0.181342 + 1.02844i
\(377\) 6.91859i 0.356325i
\(378\) 3.72503 3.12567i 0.191595 0.160767i
\(379\) 13.7237 0.704939 0.352469 0.935823i \(-0.385342\pi\)
0.352469 + 0.935823i \(0.385342\pi\)
\(380\) 0 0
\(381\) 13.2506 36.4058i 0.678850 1.86512i
\(382\) −4.80790 + 13.2096i −0.245994 + 0.675862i
\(383\) −14.7209 17.5437i −0.752203 0.896441i 0.245125 0.969492i \(-0.421171\pi\)
−0.997328 + 0.0730503i \(0.976727\pi\)
\(384\) 14.2469 8.22546i 0.727035 0.419754i
\(385\) 0 0
\(386\) 6.71869 11.6371i 0.341972 0.592314i
\(387\) −2.13290 + 5.86009i −0.108421 + 0.297885i
\(388\) 1.33586 0.771259i 0.0678180 0.0391547i
\(389\) 8.87211 + 7.44459i 0.449834 + 0.377455i 0.839374 0.543554i \(-0.182922\pi\)
−0.389540 + 0.921009i \(0.627366\pi\)
\(390\) 0 0
\(391\) 2.57532 + 14.6054i 0.130240 + 0.738626i
\(392\) 18.8933 3.33140i 0.954257 0.168261i
\(393\) 4.46264 25.3089i 0.225110 1.27666i
\(394\) −17.3097 14.5246i −0.872052 0.731739i
\(395\) 0 0
\(396\) −1.95193 1.63787i −0.0980883 0.0823059i
\(397\) −11.3072 6.52822i −0.567492 0.327642i 0.188655 0.982043i \(-0.439587\pi\)
−0.756147 + 0.654402i \(0.772921\pi\)
\(398\) −12.7164 34.9381i −0.637417 1.75129i
\(399\) 8.49870i 0.425467i
\(400\) 0 0
\(401\) 0.932419 + 0.339373i 0.0465628 + 0.0169475i 0.365197 0.930930i \(-0.381002\pi\)
−0.318634 + 0.947878i \(0.603224\pi\)
\(402\) −3.83072 21.7251i −0.191059 1.08355i
\(403\) 1.16415 + 0.205270i 0.0579902 + 0.0102252i
\(404\) 2.28312 0.113589
\(405\) 0 0
\(406\) −4.58710 −0.227654
\(407\) −36.1457 6.37346i −1.79167 0.315920i
\(408\) 3.43453 + 19.4782i 0.170034 + 0.964314i
\(409\) −29.7999 10.8463i −1.47351 0.536315i −0.524461 0.851435i \(-0.675733\pi\)
−0.949052 + 0.315120i \(0.897955\pi\)
\(410\) 0 0
\(411\) 22.1760i 1.09386i
\(412\) 0.531139 + 1.45929i 0.0261674 + 0.0718942i
\(413\) −5.35771 3.09327i −0.263636 0.152210i
\(414\) −2.68320 + 15.2172i −0.131872 + 0.747884i
\(415\) 0 0
\(416\) −1.12654 0.945283i −0.0552334 0.0463463i
\(417\) 3.43301 19.4696i 0.168115 0.953428i
\(418\) 43.0806 7.59627i 2.10714 0.371546i
\(419\) 2.20708 + 12.5170i 0.107823 + 0.611494i 0.990055 + 0.140680i \(0.0449288\pi\)
−0.882232 + 0.470815i \(0.843960\pi\)
\(420\) 0 0
\(421\) −2.83544 2.37921i −0.138191 0.115956i 0.571072 0.820900i \(-0.306528\pi\)
−0.709263 + 0.704944i \(0.750972\pi\)
\(422\) 9.29450 5.36618i 0.452449 0.261222i
\(423\) −13.2660 15.8097i −0.645013 0.768696i
\(424\) −4.49841 + 7.79147i −0.218462 + 0.378387i
\(425\) 0 0
\(426\) 11.7228 6.76817i 0.567972 0.327919i
\(427\) −3.86018 4.60039i −0.186807 0.222628i
\(428\) −0.882191 + 2.42380i −0.0426423 + 0.117159i
\(429\) 3.84318 10.5590i 0.185550 0.509795i
\(430\) 0 0
\(431\) −9.16250 −0.441342 −0.220671 0.975348i \(-0.570825\pi\)
−0.220671 + 0.975348i \(0.570825\pi\)
\(432\) −3.24492 + 18.4029i −0.156121 + 0.885408i
\(433\) 29.7861i 1.43143i 0.698393 + 0.715715i \(0.253899\pi\)
−0.698393 + 0.715715i \(0.746101\pi\)
\(434\) −0.136096 + 0.771841i −0.00653283 + 0.0370495i
\(435\) 0 0
\(436\) −2.70574 0.984808i −0.129581 0.0471637i
\(437\) 17.3591 + 20.6878i 0.830399 + 0.989631i
\(438\) −6.31407 + 10.9363i −0.301698 + 0.522556i
\(439\) 11.2604 4.09846i 0.537430 0.195609i −0.0590226 0.998257i \(-0.518798\pi\)
0.596453 + 0.802648i \(0.296576\pi\)
\(440\) 0 0
\(441\) −9.77631 + 16.9331i −0.465539 + 0.806337i
\(442\) −6.38895 + 3.68866i −0.303891 + 0.175452i
\(443\) −23.0804 + 27.5061i −1.09658 + 1.30686i −0.148472 + 0.988917i \(0.547435\pi\)
−0.948111 + 0.317940i \(0.897009\pi\)
\(444\) −0.874171 2.40176i −0.0414863 0.113983i
\(445\) 0 0
\(446\) 4.85844 + 27.5536i 0.230054 + 1.30470i
\(447\) 21.2158 7.72193i 1.00347 0.365235i
\(448\) 3.83802 4.57398i 0.181330 0.216100i
\(449\) 16.2777 + 28.1937i 0.768190 + 1.33054i 0.938543 + 0.345161i \(0.112176\pi\)
−0.170353 + 0.985383i \(0.554491\pi\)
\(450\) 0 0
\(451\) −18.0744 + 31.3059i −0.851092 + 1.47414i
\(452\) −1.08521 2.98158i −0.0510438 0.140242i
\(453\) 1.76833 3.06283i 0.0830833 0.143904i
\(454\) −1.66772 + 1.39938i −0.0782699 + 0.0656762i
\(455\) 0 0
\(456\) 23.1506 + 27.5899i 1.08413 + 1.29201i
\(457\) 14.1589 + 2.49660i 0.662325 + 0.116786i 0.494699 0.869065i \(-0.335278\pi\)
0.167627 + 0.985850i \(0.446390\pi\)
\(458\) 13.7023i 0.640268i
\(459\) −17.4572 10.0789i −0.814834 0.470445i
\(460\) 0 0
\(461\) 2.09920 11.9052i 0.0977696 0.554479i −0.896094 0.443865i \(-0.853607\pi\)
0.993863 0.110614i \(-0.0352819\pi\)
\(462\) 7.00076 + 2.54807i 0.325705 + 0.118547i
\(463\) −4.62327 + 12.7023i −0.214862 + 0.590328i −0.999563 0.0295460i \(-0.990594\pi\)
0.784702 + 0.619873i \(0.212816\pi\)
\(464\) 13.5036 11.3309i 0.626890 0.526023i
\(465\) 0 0
\(466\) −26.5783 + 9.67372i −1.23122 + 0.448126i
\(467\) −15.0387 8.68257i −0.695906 0.401781i 0.109915 0.993941i \(-0.464942\pi\)
−0.805821 + 0.592160i \(0.798276\pi\)
\(468\) 0.770602 0.135878i 0.0356211 0.00628096i
\(469\) −3.28312 5.68653i −0.151600 0.262579i
\(470\) 0 0
\(471\) −12.9030 + 15.3772i −0.594540 + 0.708545i
\(472\) 25.8192 4.55262i 1.18843 0.209551i
\(473\) −9.40923 + 1.65910i −0.432637 + 0.0762855i
\(474\) −30.1195 5.31088i −1.38343 0.243937i
\(475\) 0 0
\(476\) 0.248970 + 0.431229i 0.0114115 + 0.0197654i
\(477\) −3.13609 8.61633i −0.143592 0.394515i
\(478\) −5.84300 3.37346i −0.267252 0.154298i
\(479\) −6.75150 + 2.45734i −0.308484 + 0.112279i −0.491623 0.870808i \(-0.663596\pi\)
0.183139 + 0.983087i \(0.441374\pi\)
\(480\) 0 0
\(481\) 8.63429 7.24503i 0.393690 0.330345i
\(482\) −10.4896 + 28.8200i −0.477789 + 1.31272i
\(483\) 0.798656 + 4.52940i 0.0363401 + 0.206095i
\(484\) 0.324921 1.84272i 0.0147692 0.0837600i
\(485\) 0 0
\(486\) −13.5000 16.0887i −0.612372 0.729797i
\(487\) 13.9394i 0.631657i 0.948816 + 0.315828i \(0.102282\pi\)
−0.948816 + 0.315828i \(0.897718\pi\)
\(488\) 25.0631 + 4.41930i 1.13455 + 0.200052i
\(489\) −28.3803 + 5.00422i −1.28340 + 0.226298i
\(490\) 0 0
\(491\) −16.6291 + 13.9534i −0.750459 + 0.629710i −0.935624 0.352997i \(-0.885163\pi\)
0.185165 + 0.982707i \(0.440718\pi\)
\(492\) −2.51730 −0.113489
\(493\) 6.50368 + 17.8687i 0.292911 + 0.804766i
\(494\) −6.71688 + 11.6340i −0.302207 + 0.523438i
\(495\) 0 0
\(496\) −1.50593 2.60835i −0.0676182 0.117118i
\(497\) 2.58985 3.08647i 0.116171 0.138447i
\(498\) −0.459994 + 2.60876i −0.0206128 + 0.116901i
\(499\) −0.726377 4.11949i −0.0325171 0.184414i 0.964223 0.265092i \(-0.0854024\pi\)
−0.996740 + 0.0806786i \(0.974291\pi\)
\(500\) 0 0
\(501\) −0.118089 + 0.140732i −0.00527581 + 0.00628746i
\(502\) 12.6600 15.0876i 0.565045 0.673395i
\(503\) 20.6439 11.9187i 0.920465 0.531431i 0.0366816 0.999327i \(-0.488321\pi\)
0.883783 + 0.467896i \(0.154988\pi\)
\(504\) 1.06511 + 6.04055i 0.0474438 + 0.269067i
\(505\) 0 0
\(506\) −22.2460 + 8.09689i −0.988957 + 0.359951i
\(507\) −9.53298 16.5116i −0.423375 0.733306i
\(508\) 2.65690 + 3.16637i 0.117881 + 0.140485i
\(509\) 20.8773 + 7.59873i 0.925371 + 0.336808i 0.760373 0.649486i \(-0.225016\pi\)
0.164998 + 0.986294i \(0.447238\pi\)
\(510\) 0 0
\(511\) −0.652704 + 3.70167i −0.0288739 + 0.163752i
\(512\) 24.9186i 1.10126i
\(513\) −36.7065 −1.62063
\(514\) −0.285807 −0.0126064
\(515\) 0 0
\(516\) −0.427671 0.509678i −0.0188272 0.0224373i
\(517\) 10.8145 29.7126i 0.475621 1.30676i
\(518\) 4.80353 + 5.72462i 0.211055 + 0.251525i
\(519\) 11.5241 + 6.65344i 0.505852 + 0.292054i
\(520\) 0 0
\(521\) 6.59358 11.4204i 0.288870 0.500337i −0.684670 0.728853i \(-0.740054\pi\)
0.973540 + 0.228515i \(0.0733872\pi\)
\(522\) 19.8120i 0.867149i
\(523\) 15.4351 8.91147i 0.674931 0.389672i −0.123011 0.992405i \(-0.539255\pi\)
0.797942 + 0.602734i \(0.205922\pi\)
\(524\) 2.10039 + 1.76243i 0.0917558 + 0.0769922i
\(525\) 0 0
\(526\) −0.386659 2.19285i −0.0168591 0.0956129i
\(527\) 3.19961 0.564178i 0.139377 0.0245760i
\(528\) −26.9032 + 9.79196i −1.17081 + 0.426140i
\(529\) 6.42333 + 5.38982i 0.279275 + 0.234340i
\(530\) 0 0
\(531\) −13.3601 + 23.1404i −0.579779 + 1.00421i
\(532\) 0.785248 + 0.453363i 0.0340448 + 0.0196558i
\(533\) −3.79677 10.4315i −0.164456 0.451840i
\(534\) −1.48839 0.859322i −0.0644089 0.0371865i
\(535\) 0 0
\(536\) 26.1484 + 9.51725i 1.12944 + 0.411082i
\(537\) 29.8576 25.0535i 1.28845 1.08114i
\(538\) −4.02936 0.710485i −0.173718 0.0306312i
\(539\) −29.9564 −1.29031
\(540\) 0 0
\(541\) 8.78375 0.377643 0.188821 0.982011i \(-0.439533\pi\)
0.188821 + 0.982011i \(0.439533\pi\)
\(542\) −21.1158 3.72328i −0.907000 0.159928i
\(543\) −35.4633 12.9076i −1.52188 0.553918i
\(544\) −3.79813 1.38241i −0.162844 0.0592702i
\(545\) 0 0
\(546\) −1.98133 + 1.14392i −0.0847932 + 0.0489554i
\(547\) 7.62689 + 20.9547i 0.326102 + 0.895959i 0.989088 + 0.147326i \(0.0470668\pi\)
−0.662986 + 0.748632i \(0.730711\pi\)
\(548\) 2.04898 + 1.18298i 0.0875283 + 0.0505345i
\(549\) −19.8694 + 16.6724i −0.848006 + 0.711562i
\(550\) 0 0
\(551\) 26.5253 + 22.2574i 1.13001 + 0.948195i
\(552\) −14.9309 12.5285i −0.635502 0.533249i
\(553\) −8.96508 + 1.58079i −0.381234 + 0.0672218i
\(554\) 4.11974 + 23.3642i 0.175031 + 0.992649i
\(555\) 0 0
\(556\) 1.61578 + 1.35580i 0.0685244 + 0.0574988i
\(557\) −32.8328 + 18.9561i −1.39117 + 0.803194i −0.993445 0.114310i \(-0.963534\pi\)
−0.397727 + 0.917504i \(0.630201\pi\)
\(558\) 3.33364 + 0.587811i 0.141124 + 0.0248840i
\(559\) 1.46703 2.54098i 0.0620489 0.107472i
\(560\) 0 0
\(561\) 30.8837i 1.30391i
\(562\) −7.60462 9.06283i −0.320782 0.382293i
\(563\) −12.5134 + 34.3803i −0.527377 + 1.44896i 0.334770 + 0.942300i \(0.391341\pi\)
−0.862147 + 0.506658i \(0.830881\pi\)
\(564\) 2.16843 0.382353i 0.0913075 0.0161000i
\(565\) 0 0
\(566\) −2.72462 −0.114524
\(567\) −5.41381 3.12567i −0.227359 0.131266i
\(568\) 17.0746i 0.716435i
\(569\) 0.440103 2.49595i 0.0184501 0.104636i −0.974192 0.225721i \(-0.927526\pi\)
0.992642 + 0.121085i \(0.0386374\pi\)
\(570\) 0 0
\(571\) 20.5205 + 7.46886i 0.858758 + 0.312562i 0.733606 0.679575i \(-0.237836\pi\)
0.125152 + 0.992138i \(0.460058\pi\)
\(572\) 0.770602 + 0.918368i 0.0322205 + 0.0383989i
\(573\) 18.0718 0.754961
\(574\) 6.91622 2.51730i 0.288678 0.105070i
\(575\) 0 0
\(576\) −19.7554 16.5767i −0.823140 0.690697i
\(577\) 8.70323 5.02481i 0.362320 0.209186i −0.307778 0.951458i \(-0.599585\pi\)
0.670098 + 0.742272i \(0.266252\pi\)
\(578\) 1.68907 2.01296i 0.0702561 0.0837279i
\(579\) −17.0123 2.99973i −0.707008 0.124665i
\(580\) 0 0
\(581\) 0.136917 + 0.776497i 0.00568029 + 0.0322145i
\(582\) 14.9219 + 12.5209i 0.618532 + 0.519010i
\(583\) 9.03001 10.7615i 0.373985 0.445698i
\(584\) −7.96451 13.7949i −0.329574 0.570838i
\(585\) 0 0
\(586\) −13.1964 + 22.8568i −0.545138 + 0.944207i
\(587\) 2.11003 + 5.79726i 0.0870902 + 0.239278i 0.975591 0.219598i \(-0.0704744\pi\)
−0.888500 + 0.458876i \(0.848252\pi\)
\(588\) −1.04303 1.80659i −0.0430140 0.0745025i
\(589\) 4.53209 3.80287i 0.186741 0.156695i
\(590\) 0 0
\(591\) −9.93541 + 27.2973i −0.408688 + 1.12286i
\(592\) −28.2815 4.98680i −1.16236 0.204956i
\(593\) 21.7965i 0.895077i −0.894265 0.447538i \(-0.852301\pi\)
0.894265 0.447538i \(-0.147699\pi\)
\(594\) 11.0053 30.2368i 0.451553 1.24063i
\(595\) 0 0
\(596\) −0.418281 + 2.37219i −0.0171335 + 0.0971687i
\(597\) −36.6155 + 30.7240i −1.49857 + 1.25745i
\(598\) 2.48649 6.83157i 0.101680 0.279364i
\(599\) 9.54395 8.00832i 0.389955 0.327211i −0.426641 0.904421i \(-0.640303\pi\)
0.816596 + 0.577210i \(0.195859\pi\)
\(600\) 0 0
\(601\) 14.9162 5.42906i 0.608445 0.221456i −0.0193775 0.999812i \(-0.506168\pi\)
0.627823 + 0.778356i \(0.283946\pi\)
\(602\) 1.68469 + 0.972659i 0.0686630 + 0.0396426i
\(603\) −24.5606 + 14.1800i −1.00018 + 0.577456i
\(604\) 0.188663 + 0.326774i 0.00767659 + 0.0132962i
\(605\) 0 0
\(606\) 9.86097 + 27.0928i 0.400574 + 1.10057i
\(607\) −39.1211 + 6.89811i −1.58788 + 0.279986i −0.896680 0.442680i \(-0.854028\pi\)
−0.691198 + 0.722666i \(0.742917\pi\)
\(608\) −7.24827 + 1.27807i −0.293956 + 0.0518324i
\(609\) 2.01691 + 5.54142i 0.0817294 + 0.224550i
\(610\) 0 0
\(611\) 4.85504 + 8.40917i 0.196414 + 0.340199i
\(612\) 1.86251 1.07532i 0.0752876 0.0434673i
\(613\) 17.1242 + 9.88666i 0.691640 + 0.399318i 0.804226 0.594324i \(-0.202580\pi\)
−0.112586 + 0.993642i \(0.535913\pi\)
\(614\) 10.4684 3.81018i 0.422469 0.153766i
\(615\) 0 0
\(616\) −7.19884 + 6.04055i −0.290050 + 0.243381i
\(617\) 5.83986 16.0449i 0.235104 0.645943i −0.764895 0.644156i \(-0.777209\pi\)
0.999998 0.00178707i \(-0.000568843\pi\)
\(618\) −15.0228 + 12.6056i −0.604304 + 0.507072i
\(619\) −0.835847 + 4.74033i −0.0335955 + 0.190530i −0.996987 0.0775689i \(-0.975284\pi\)
0.963391 + 0.268099i \(0.0863953\pi\)
\(620\) 0 0
\(621\) 19.5628 3.44946i 0.785029 0.138422i
\(622\) 37.2172i 1.49227i
\(623\) −0.503783 0.0888306i −0.0201836 0.00355892i
\(624\) 3.00703 8.26173i 0.120377 0.330734i
\(625\) 0 0
\(626\) −2.62836 + 2.20545i −0.105050 + 0.0881476i
\(627\) −28.1188 48.7033i −1.12296 1.94502i
\(628\) −0.732486 2.01249i −0.0292294 0.0803070i
\(629\) 15.4893 26.8283i 0.617600 1.06971i
\(630\) 0 0
\(631\) −11.9277 20.6593i −0.474833 0.822435i 0.524752 0.851255i \(-0.324158\pi\)
−0.999585 + 0.0288204i \(0.990825\pi\)
\(632\) 24.7978 29.5529i 0.986404 1.17555i
\(633\) −10.5693 8.86871i −0.420093 0.352499i
\(634\) −6.71806 38.1000i −0.266808 1.51315i
\(635\) 0 0
\(636\) 0.963412 + 0.169875i 0.0382018 + 0.00673600i
\(637\) 5.91322 7.04710i 0.234290 0.279216i
\(638\) −26.2871 + 15.1769i −1.04072 + 0.600859i
\(639\) −13.3307 11.1858i −0.527354 0.442502i
\(640\) 0 0
\(641\) 41.6159 15.1470i 1.64373 0.598269i 0.656045 0.754722i \(-0.272228\pi\)
0.987685 + 0.156453i \(0.0500060\pi\)
\(642\) −32.5724 −1.28553
\(643\) −4.66107 5.55484i −0.183815 0.219062i 0.666266 0.745714i \(-0.267891\pi\)
−0.850081 + 0.526652i \(0.823447\pi\)
\(644\) −0.461104 0.167828i −0.0181700 0.00661335i
\(645\) 0 0
\(646\) −6.41147 + 36.3613i −0.252256 + 1.43062i
\(647\) 26.8239i 1.05456i 0.849693 + 0.527278i \(0.176787\pi\)
−0.849693 + 0.527278i \(0.823213\pi\)
\(648\) 26.0896 4.60030i 1.02490 0.180717i
\(649\) −40.9377 −1.60694
\(650\) 0 0
\(651\) 0.992259 0.174962i 0.0388897 0.00685730i
\(652\) 1.05158 2.88919i 0.0411830 0.113149i
\(653\) 5.09840 + 6.07604i 0.199516 + 0.237774i 0.856521 0.516113i \(-0.172621\pi\)
−0.657005 + 0.753886i \(0.728177\pi\)
\(654\) 36.3613i 1.42184i
\(655\) 0 0
\(656\) −14.1420 + 24.4947i −0.552153 + 0.956358i
\(657\) 15.9878 + 2.81908i 0.623743 + 0.109983i
\(658\) −5.57537 + 3.21894i −0.217351 + 0.125487i
\(659\) 33.9302 + 28.4708i 1.32173 + 1.10907i 0.985935 + 0.167132i \(0.0534505\pi\)
0.335798 + 0.941934i \(0.390994\pi\)
\(660\) 0 0
\(661\) −0.707796 4.01411i −0.0275301 0.156131i 0.967944 0.251167i \(-0.0808144\pi\)
−0.995474 + 0.0950363i \(0.969703\pi\)
\(662\) −11.1902 + 1.97313i −0.434918 + 0.0766877i
\(663\) 7.26525 + 6.09627i 0.282159 + 0.236759i
\(664\) −2.55968 2.14783i −0.0993348 0.0833518i
\(665\) 0 0
\(666\) 24.7251 20.7468i 0.958078 0.803923i
\(667\) −16.2283 9.36942i −0.628363 0.362786i
\(668\) −0.00670372 0.0184183i −0.000259375 0.000712626i
\(669\) 31.1498 17.9843i 1.20432 0.695314i
\(670\) 0 0
\(671\) −37.3423 13.5915i −1.44158 0.524693i
\(672\) −1.17787 0.428710i −0.0454374 0.0165379i
\(673\) −6.23064 1.09863i −0.240174 0.0423491i 0.0522655 0.998633i \(-0.483356\pi\)
−0.292439 + 0.956284i \(0.594467\pi\)
\(674\) 21.8830 0.842902
\(675\) 0 0
\(676\) 2.03415 0.0782365
\(677\) −38.6357 6.81252i −1.48489 0.261826i −0.628360 0.777922i \(-0.716274\pi\)
−0.856531 + 0.516096i \(0.827385\pi\)
\(678\) 30.6941 25.7554i 1.17880 0.989129i
\(679\) 5.44831 + 1.98302i 0.209087 + 0.0761014i
\(680\) 0 0
\(681\) 2.42380 + 1.39938i 0.0928802 + 0.0536244i
\(682\) 1.77379 + 4.87346i 0.0679220 + 0.186614i
\(683\) −29.8836 17.2533i −1.14346 0.660179i −0.196178 0.980568i \(-0.562853\pi\)
−0.947286 + 0.320389i \(0.896186\pi\)
\(684\) 1.95811 3.39155i 0.0748702 0.129679i
\(685\) 0 0
\(686\) 9.69047 + 8.13127i 0.369984 + 0.310453i
\(687\) 16.5530 6.02481i 0.631538 0.229861i
\(688\) −7.36208 + 1.29813i −0.280677 + 0.0494909i
\(689\) 0.749132 + 4.24854i 0.0285397 + 0.161857i
\(690\) 0 0
\(691\) 23.2704 + 19.5262i 0.885247 + 0.742810i 0.967251 0.253822i \(-0.0816876\pi\)
−0.0820040 + 0.996632i \(0.526132\pi\)
\(692\) −1.22951 + 0.709856i −0.0467388 + 0.0269847i
\(693\) 9.57760i 0.363823i
\(694\) 8.44403 14.6255i 0.320531 0.555176i
\(695\) 0 0
\(696\) −21.6426 12.4953i −0.820360 0.473635i
\(697\) −19.6119 23.3726i −0.742855 0.885300i
\(698\) 15.1308 41.5715i 0.572709 1.57350i
\(699\) 23.3726 + 27.8544i 0.884032 + 1.05355i
\(700\) 0 0
\(701\) −14.3952 −0.543698 −0.271849 0.962340i \(-0.587635\pi\)
−0.271849 + 0.962340i \(0.587635\pi\)
\(702\) 4.94069 + 8.55753i 0.186474 + 0.322983i
\(703\) 56.4107i 2.12757i
\(704\) 6.86097 38.9105i 0.258582 1.46649i
\(705\) 0 0
\(706\) −20.5069 7.46389i −0.771786 0.280907i
\(707\) 5.51622 + 6.57398i 0.207459 + 0.247240i
\(708\) −1.42539 2.46884i −0.0535694 0.0927849i
\(709\) 14.1001 5.13203i 0.529542 0.192737i −0.0633920 0.997989i \(-0.520192\pi\)
0.592934 + 0.805251i \(0.297970\pi\)
\(710\) 0 0
\(711\) 6.82753 + 38.7209i 0.256053 + 1.45215i
\(712\) 1.87744 1.08394i 0.0703600 0.0406224i
\(713\) −2.05802 + 2.45265i −0.0770733 + 0.0918524i
\(714\) −4.04189 + 4.81694i −0.151264 + 0.180269i
\(715\) 0 0
\(716\) 0.722096 + 4.09521i 0.0269860 + 0.153045i
\(717\) −1.50617 + 8.54189i −0.0562488 + 0.319003i
\(718\) −10.6190 + 12.6552i −0.396298 + 0.472289i
\(719\) −10.2943 17.8302i −0.383911 0.664954i 0.607706 0.794162i \(-0.292090\pi\)
−0.991617 + 0.129208i \(0.958756\pi\)
\(720\) 0 0
\(721\) −2.91859 + 5.05514i −0.108694 + 0.188263i
\(722\) 14.2400 + 39.1241i 0.529958 + 1.45605i
\(723\) 39.4281 1.46635
\(724\) 3.08441 2.58812i 0.114631 0.0961869i
\(725\) 0 0
\(726\) 23.2701 4.10315i 0.863636 0.152282i
\(727\) 31.5121 + 5.55644i 1.16872 + 0.206077i 0.724134 0.689659i \(-0.242240\pi\)
0.444586 + 0.895736i \(0.353351\pi\)
\(728\) 2.88587i 0.106957i
\(729\) −13.5000 + 23.3827i −0.500000 + 0.866025i
\(730\) 0 0
\(731\) 1.40033 7.94166i 0.0517931 0.293733i
\(732\) −0.480535 2.72525i −0.0177611 0.100728i
\(733\) −14.1259 + 38.8105i −0.521751 + 1.43350i 0.346819 + 0.937932i \(0.387262\pi\)
−0.868570 + 0.495567i \(0.834960\pi\)
\(734\) −32.7046 + 27.4424i −1.20715 + 1.01292i
\(735\) 0 0
\(736\) 3.74288 1.36230i 0.137964 0.0502149i
\(737\) −37.6290 21.7251i −1.38608 0.800254i
\(738\) −10.8724 29.8717i −0.400219 1.09959i
\(739\) 12.1755 + 21.0885i 0.447882 + 0.775754i 0.998248 0.0591697i \(-0.0188453\pi\)
−0.550366 + 0.834923i \(0.685512\pi\)
\(740\) 0 0
\(741\) 17.0077 + 2.99892i 0.624795 + 0.110168i
\(742\) −2.81683 + 0.496683i −0.103409 + 0.0182338i
\(743\) −14.4544 + 2.54870i −0.530280 + 0.0935026i −0.432376 0.901693i \(-0.642325\pi\)
−0.0979034 + 0.995196i \(0.531214\pi\)
\(744\) −2.74463 + 3.27093i −0.100623 + 0.119918i
\(745\) 0 0
\(746\) −24.3550 42.1842i −0.891701 1.54447i
\(747\) 3.35375 0.591357i 0.122707 0.0216366i
\(748\) 2.85353 + 1.64749i 0.104336 + 0.0602382i
\(749\) −9.11051 + 3.31595i −0.332891 + 0.121162i
\(750\) 0 0
\(751\) 6.54260 5.48990i 0.238743 0.200329i −0.515564 0.856851i \(-0.672418\pi\)
0.754307 + 0.656522i \(0.227973\pi\)
\(752\) 8.46161 23.2481i 0.308563 0.847771i
\(753\) −23.7931 8.65998i −0.867069 0.315587i
\(754\) 1.61864 9.17977i 0.0589475 0.334308i
\(755\) 0 0
\(756\) 0.577600 0.333477i 0.0210071 0.0121285i
\(757\) 17.3337i 0.630003i 0.949091 + 0.315002i \(0.102005\pi\)
−0.949091 + 0.315002i \(0.897995\pi\)
\(758\) −18.2090 3.21073i −0.661380 0.116619i
\(759\) 19.5628 + 23.3141i 0.710086 + 0.846247i
\(760\) 0 0
\(761\) 3.14227 2.63668i 0.113907 0.0955796i −0.584055 0.811714i \(-0.698535\pi\)
0.697962 + 0.716135i \(0.254090\pi\)
\(762\) −26.0986 + 45.2041i −0.945453 + 1.63757i
\(763\) −3.70167 10.1702i −0.134009 0.368188i
\(764\) −0.964041 + 1.66977i −0.0348778 + 0.0604101i
\(765\) 0 0
\(766\) 15.4277 + 26.7215i 0.557424 + 0.965487i
\(767\) 8.08088 9.63041i 0.291784 0.347734i
\(768\) 7.15490 2.60417i 0.258180 0.0939699i
\(769\) 0.930770 + 5.27866i 0.0335644 + 0.190353i 0.996980 0.0776587i \(-0.0247444\pi\)
−0.963416 + 0.268012i \(0.913633\pi\)
\(770\) 0 0
\(771\) 0.125667 + 0.345268i 0.00452579 + 0.0124345i
\(772\) 1.18469 1.41185i 0.0426378 0.0508138i
\(773\) −5.32196 + 3.07263i −0.191418 + 0.110515i −0.592646 0.805463i </