Properties

Label 675.2.r.a.496.7
Level $675$
Weight $2$
Character 675.496
Analytic conductor $5.390$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(46,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.r (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 496.7
Character \(\chi\) \(=\) 675.496
Dual form 675.2.r.a.181.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62705 + 0.345839i) q^{2} +(0.700584 - 0.311920i) q^{4} +(0.380412 + 2.20347i) q^{5} +(0.694163 + 1.20233i) q^{7} +(1.65942 - 1.20564i) q^{8} +(-1.38100 - 3.45359i) q^{10} +(4.44787 - 0.945423i) q^{11} +(-0.664131 - 0.141165i) q^{13} +(-1.54525 - 1.71617i) q^{14} +(-3.30929 + 3.67534i) q^{16} +(1.73545 - 1.26088i) q^{17} +(5.56870 - 4.04590i) q^{19} +(0.953818 + 1.42506i) q^{20} +(-6.90992 + 3.07649i) q^{22} +(0.0716950 + 0.0796254i) q^{23} +(-4.71057 + 1.67645i) q^{25} +1.12939 q^{26} +(0.861350 + 0.625807i) q^{28} +(0.214650 - 2.04226i) q^{29} +(0.675922 + 6.43096i) q^{31} +(2.06213 - 3.57172i) q^{32} +(-2.38760 + 2.65170i) q^{34} +(-2.38522 + 1.98695i) q^{35} +(-0.886060 - 2.72701i) q^{37} +(-7.66130 + 8.50874i) q^{38} +(3.28786 + 3.19785i) q^{40} +(5.31403 + 1.12953i) q^{41} +(-0.613014 - 1.06177i) q^{43} +(2.82121 - 2.04973i) q^{44} +(-0.144189 - 0.104759i) q^{46} +(-1.23665 + 11.7660i) q^{47} +(2.53627 - 4.39296i) q^{49} +(7.08454 - 4.35677i) q^{50} +(-0.509312 + 0.108258i) q^{52} +(1.07586 + 0.781661i) q^{53} +(3.77524 + 9.44110i) q^{55} +(2.60148 + 1.15825i) q^{56} +(0.357048 + 3.39709i) q^{58} +(-1.69407 - 0.360086i) q^{59} +(3.69259 - 0.784884i) q^{61} +(-3.32384 - 10.2297i) q^{62} +(0.936638 - 2.88268i) q^{64} +(0.0584104 - 1.51709i) q^{65} +(1.48608 + 14.1391i) q^{67} +(0.822536 - 1.42467i) q^{68} +(3.19370 - 4.05776i) q^{70} +(10.9600 + 7.96294i) q^{71} +(-1.83085 + 5.63478i) q^{73} +(2.38477 + 4.13054i) q^{74} +(2.63935 - 4.57148i) q^{76} +(4.22425 + 4.69151i) q^{77} +(0.938478 - 8.92902i) q^{79} +(-9.35740 - 5.89378i) q^{80} -9.03682 q^{82} +(-16.5673 - 7.37623i) q^{83} +(3.43850 + 3.34436i) q^{85} +(1.36460 + 1.51555i) q^{86} +(6.24105 - 6.93138i) q^{88} +(-2.33361 + 7.18212i) q^{89} +(-0.291288 - 0.896494i) q^{91} +(0.0750652 + 0.0334212i) q^{92} +(-2.05704 - 19.5715i) q^{94} +(11.0334 + 10.7314i) q^{95} +(-1.13640 + 10.8121i) q^{97} +(-2.60738 + 8.02469i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 3 q^{2} + 23 q^{4} + 8 q^{5} - 8 q^{7} + 20 q^{8} - 20 q^{10} + 11 q^{11} - 3 q^{13} - q^{14} + 23 q^{16} + 24 q^{17} - 12 q^{19} - q^{20} - 11 q^{22} - q^{23} - 16 q^{25} + 136 q^{26} + 4 q^{28}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62705 + 0.345839i −1.15050 + 0.244545i −0.743404 0.668842i \(-0.766790\pi\)
−0.407091 + 0.913388i \(0.633457\pi\)
\(3\) 0 0
\(4\) 0.700584 0.311920i 0.350292 0.155960i
\(5\) 0.380412 + 2.20347i 0.170126 + 0.985422i
\(6\) 0 0
\(7\) 0.694163 + 1.20233i 0.262369 + 0.454436i 0.966871 0.255266i \(-0.0821629\pi\)
−0.704502 + 0.709702i \(0.748830\pi\)
\(8\) 1.65942 1.20564i 0.586694 0.426258i
\(9\) 0 0
\(10\) −1.38100 3.45359i −0.436709 1.09212i
\(11\) 4.44787 0.945423i 1.34108 0.285056i 0.519170 0.854671i \(-0.326241\pi\)
0.821912 + 0.569615i \(0.192908\pi\)
\(12\) 0 0
\(13\) −0.664131 0.141165i −0.184197 0.0391522i 0.114890 0.993378i \(-0.463349\pi\)
−0.299086 + 0.954226i \(0.596682\pi\)
\(14\) −1.54525 1.71617i −0.412985 0.458666i
\(15\) 0 0
\(16\) −3.30929 + 3.67534i −0.827323 + 0.918835i
\(17\) 1.73545 1.26088i 0.420909 0.305808i −0.357095 0.934068i \(-0.616233\pi\)
0.778003 + 0.628260i \(0.216233\pi\)
\(18\) 0 0
\(19\) 5.56870 4.04590i 1.27755 0.928192i 0.278071 0.960560i \(-0.410305\pi\)
0.999476 + 0.0323680i \(0.0103049\pi\)
\(20\) 0.953818 + 1.42506i 0.213280 + 0.318653i
\(21\) 0 0
\(22\) −6.90992 + 3.07649i −1.47320 + 0.655911i
\(23\) 0.0716950 + 0.0796254i 0.0149494 + 0.0166030i 0.750573 0.660787i \(-0.229777\pi\)
−0.735624 + 0.677390i \(0.763111\pi\)
\(24\) 0 0
\(25\) −4.71057 + 1.67645i −0.942115 + 0.335291i
\(26\) 1.12939 0.221492
\(27\) 0 0
\(28\) 0.861350 + 0.625807i 0.162780 + 0.118266i
\(29\) 0.214650 2.04226i 0.0398595 0.379238i −0.956348 0.292230i \(-0.905603\pi\)
0.996208 0.0870081i \(-0.0277306\pi\)
\(30\) 0 0
\(31\) 0.675922 + 6.43096i 0.121399 + 1.15504i 0.870358 + 0.492419i \(0.163887\pi\)
−0.748959 + 0.662616i \(0.769446\pi\)
\(32\) 2.06213 3.57172i 0.364537 0.631397i
\(33\) 0 0
\(34\) −2.38760 + 2.65170i −0.409470 + 0.454762i
\(35\) −2.38522 + 1.98695i −0.403176 + 0.335856i
\(36\) 0 0
\(37\) −0.886060 2.72701i −0.145667 0.448318i 0.851429 0.524470i \(-0.175737\pi\)
−0.997096 + 0.0761520i \(0.975737\pi\)
\(38\) −7.66130 + 8.50874i −1.24283 + 1.38030i
\(39\) 0 0
\(40\) 3.28786 + 3.19785i 0.519856 + 0.505624i
\(41\) 5.31403 + 1.12953i 0.829913 + 0.176403i 0.603232 0.797566i \(-0.293879\pi\)
0.226681 + 0.973969i \(0.427213\pi\)
\(42\) 0 0
\(43\) −0.613014 1.06177i −0.0934837 0.161919i 0.815491 0.578770i \(-0.196467\pi\)
−0.908975 + 0.416851i \(0.863134\pi\)
\(44\) 2.82121 2.04973i 0.425313 0.309008i
\(45\) 0 0
\(46\) −0.144189 0.104759i −0.0212595 0.0154459i
\(47\) −1.23665 + 11.7660i −0.180385 + 1.71624i 0.412501 + 0.910957i \(0.364655\pi\)
−0.592885 + 0.805287i \(0.702011\pi\)
\(48\) 0 0
\(49\) 2.53627 4.39296i 0.362325 0.627565i
\(50\) 7.08454 4.35677i 1.00190 0.616141i
\(51\) 0 0
\(52\) −0.509312 + 0.108258i −0.0706289 + 0.0150126i
\(53\) 1.07586 + 0.781661i 0.147781 + 0.107369i 0.659219 0.751951i \(-0.270887\pi\)
−0.511438 + 0.859320i \(0.670887\pi\)
\(54\) 0 0
\(55\) 3.77524 + 9.44110i 0.509053 + 1.27304i
\(56\) 2.60148 + 1.15825i 0.347638 + 0.154778i
\(57\) 0 0
\(58\) 0.357048 + 3.39709i 0.0468827 + 0.446059i
\(59\) −1.69407 0.360086i −0.220549 0.0468792i 0.0963115 0.995351i \(-0.469295\pi\)
−0.316861 + 0.948472i \(0.602629\pi\)
\(60\) 0 0
\(61\) 3.69259 0.784884i 0.472788 0.100494i 0.0346452 0.999400i \(-0.488970\pi\)
0.438142 + 0.898906i \(0.355637\pi\)
\(62\) −3.32384 10.2297i −0.422128 1.29918i
\(63\) 0 0
\(64\) 0.936638 2.88268i 0.117080 0.360334i
\(65\) 0.0584104 1.51709i 0.00724492 0.188172i
\(66\) 0 0
\(67\) 1.48608 + 14.1391i 0.181553 + 1.72737i 0.583854 + 0.811858i \(0.301544\pi\)
−0.402301 + 0.915508i \(0.631789\pi\)
\(68\) 0.822536 1.42467i 0.0997472 0.172767i
\(69\) 0 0
\(70\) 3.19370 4.05776i 0.381721 0.484995i
\(71\) 10.9600 + 7.96294i 1.30072 + 0.945027i 0.999962 0.00867479i \(-0.00276131\pi\)
0.300755 + 0.953701i \(0.402761\pi\)
\(72\) 0 0
\(73\) −1.83085 + 5.63478i −0.214285 + 0.659501i 0.784919 + 0.619599i \(0.212705\pi\)
−0.999204 + 0.0399023i \(0.987295\pi\)
\(74\) 2.38477 + 4.13054i 0.277224 + 0.480166i
\(75\) 0 0
\(76\) 2.63935 4.57148i 0.302754 0.524385i
\(77\) 4.22425 + 4.69151i 0.481398 + 0.534647i
\(78\) 0 0
\(79\) 0.938478 8.92902i 0.105587 1.00459i −0.805561 0.592513i \(-0.798136\pi\)
0.911148 0.412080i \(-0.135198\pi\)
\(80\) −9.35740 5.89378i −1.04619 0.658945i
\(81\) 0 0
\(82\) −9.03682 −0.997950
\(83\) −16.5673 7.37623i −1.81850 0.809647i −0.948653 0.316320i \(-0.897553\pi\)
−0.869844 0.493327i \(-0.835781\pi\)
\(84\) 0 0
\(85\) 3.43850 + 3.34436i 0.372958 + 0.362747i
\(86\) 1.36460 + 1.51555i 0.147149 + 0.163426i
\(87\) 0 0
\(88\) 6.24105 6.93138i 0.665298 0.738888i
\(89\) −2.33361 + 7.18212i −0.247363 + 0.761304i 0.747876 + 0.663838i \(0.231074\pi\)
−0.995239 + 0.0974656i \(0.968926\pi\)
\(90\) 0 0
\(91\) −0.291288 0.896494i −0.0305353 0.0939781i
\(92\) 0.0750652 + 0.0334212i 0.00782608 + 0.00348440i
\(93\) 0 0
\(94\) −2.05704 19.5715i −0.212168 2.01864i
\(95\) 11.0334 + 10.7314i 1.13200 + 1.10101i
\(96\) 0 0
\(97\) −1.13640 + 10.8121i −0.115384 + 1.09781i 0.771633 + 0.636068i \(0.219440\pi\)
−0.887017 + 0.461737i \(0.847226\pi\)
\(98\) −2.60738 + 8.02469i −0.263385 + 0.810616i
\(99\) 0 0
\(100\) −2.77723 + 2.64382i −0.277723 + 0.264382i
\(101\) 6.10657 + 10.5769i 0.607626 + 1.05244i 0.991630 + 0.129108i \(0.0412115\pi\)
−0.384004 + 0.923331i \(0.625455\pi\)
\(102\) 0 0
\(103\) −0.775688 + 0.345359i −0.0764309 + 0.0340292i −0.444596 0.895731i \(-0.646653\pi\)
0.368165 + 0.929760i \(0.379986\pi\)
\(104\) −1.27227 + 0.566450i −0.124756 + 0.0555450i
\(105\) 0 0
\(106\) −2.02081 0.899723i −0.196278 0.0873888i
\(107\) −19.0764 −1.84419 −0.922095 0.386964i \(-0.873524\pi\)
−0.922095 + 0.386964i \(0.873524\pi\)
\(108\) 0 0
\(109\) 4.05014 + 12.4651i 0.387933 + 1.19394i 0.934330 + 0.356409i \(0.115999\pi\)
−0.546397 + 0.837526i \(0.684001\pi\)
\(110\) −9.40759 14.0555i −0.896978 1.34014i
\(111\) 0 0
\(112\) −6.71614 1.42756i −0.634616 0.134892i
\(113\) −6.81089 1.44770i −0.640714 0.136188i −0.123913 0.992293i \(-0.539544\pi\)
−0.516802 + 0.856105i \(0.672878\pi\)
\(114\) 0 0
\(115\) −0.148179 + 0.188268i −0.0138177 + 0.0175561i
\(116\) −0.486642 1.49773i −0.0451835 0.139061i
\(117\) 0 0
\(118\) 2.88087 0.265205
\(119\) 2.72067 + 1.21132i 0.249404 + 0.111042i
\(120\) 0 0
\(121\) 8.84069 3.93613i 0.803699 0.357830i
\(122\) −5.73657 + 2.55409i −0.519365 + 0.231236i
\(123\) 0 0
\(124\) 2.47949 + 4.29460i 0.222665 + 0.385666i
\(125\) −5.48598 9.74187i −0.490681 0.871339i
\(126\) 0 0
\(127\) 6.85641 21.1019i 0.608408 1.87249i 0.137000 0.990571i \(-0.456254\pi\)
0.471407 0.881916i \(-0.343746\pi\)
\(128\) −1.38922 + 13.2175i −0.122791 + 1.16828i
\(129\) 0 0
\(130\) 0.429635 + 2.48858i 0.0376814 + 0.218263i
\(131\) −1.21480 11.5581i −0.106138 1.00983i −0.909885 0.414862i \(-0.863830\pi\)
0.803747 0.594972i \(-0.202837\pi\)
\(132\) 0 0
\(133\) 8.73007 + 3.88688i 0.756993 + 0.337035i
\(134\) −7.30778 22.4910i −0.631296 1.94293i
\(135\) 0 0
\(136\) 1.35968 4.18466i 0.116591 0.358832i
\(137\) 11.0828 12.3087i 0.946869 1.05160i −0.0517289 0.998661i \(-0.516473\pi\)
0.998598 0.0529430i \(-0.0168602\pi\)
\(138\) 0 0
\(139\) −11.2616 12.5073i −0.955198 1.06085i −0.998090 0.0617748i \(-0.980324\pi\)
0.0428925 0.999080i \(-0.486343\pi\)
\(140\) −1.05128 + 2.13602i −0.0888494 + 0.180527i
\(141\) 0 0
\(142\) −20.5864 9.16565i −1.72757 0.769164i
\(143\) −3.08743 −0.258184
\(144\) 0 0
\(145\) 4.58172 0.303925i 0.380491 0.0252396i
\(146\) 1.03015 9.80123i 0.0852559 0.811155i
\(147\) 0 0
\(148\) −1.47137 1.63412i −0.120946 0.134324i
\(149\) 7.97992 13.8216i 0.653740 1.13231i −0.328468 0.944515i \(-0.606532\pi\)
0.982208 0.187796i \(-0.0601345\pi\)
\(150\) 0 0
\(151\) −4.20769 7.28793i −0.342417 0.593084i 0.642464 0.766316i \(-0.277912\pi\)
−0.984881 + 0.173232i \(0.944579\pi\)
\(152\) 4.36292 13.4277i 0.353880 1.08913i
\(153\) 0 0
\(154\) −8.49556 6.17239i −0.684592 0.497385i
\(155\) −13.9133 + 3.93579i −1.11754 + 0.316130i
\(156\) 0 0
\(157\) 0.0425739 0.0737402i 0.00339777 0.00588511i −0.864322 0.502940i \(-0.832252\pi\)
0.867719 + 0.497055i \(0.165585\pi\)
\(158\) 1.56106 + 14.8525i 0.124191 + 1.18160i
\(159\) 0 0
\(160\) 8.65465 + 3.18513i 0.684210 + 0.251806i
\(161\) −0.0459676 + 0.141474i −0.00362275 + 0.0111497i
\(162\) 0 0
\(163\) 3.81218 + 11.7327i 0.298593 + 0.918974i 0.981991 + 0.188928i \(0.0605013\pi\)
−0.683398 + 0.730046i \(0.739499\pi\)
\(164\) 4.07525 0.866222i 0.318224 0.0676406i
\(165\) 0 0
\(166\) 29.5067 + 6.27185i 2.29017 + 0.486790i
\(167\) −0.700044 6.66047i −0.0541710 0.515403i −0.987639 0.156743i \(-0.949901\pi\)
0.933468 0.358660i \(-0.116766\pi\)
\(168\) 0 0
\(169\) −11.4549 5.10007i −0.881150 0.392313i
\(170\) −6.75121 4.25227i −0.517794 0.326134i
\(171\) 0 0
\(172\) −0.760656 0.552649i −0.0579995 0.0421391i
\(173\) 11.2482 2.39087i 0.855181 0.181774i 0.240596 0.970625i \(-0.422657\pi\)
0.614585 + 0.788851i \(0.289324\pi\)
\(174\) 0 0
\(175\) −5.28555 4.49991i −0.399550 0.340161i
\(176\) −11.2445 + 19.4761i −0.847588 + 1.46807i
\(177\) 0 0
\(178\) 1.31304 12.4927i 0.0984162 0.936368i
\(179\) 3.97320 + 2.88670i 0.296971 + 0.215762i 0.726286 0.687393i \(-0.241245\pi\)
−0.429315 + 0.903155i \(0.641245\pi\)
\(180\) 0 0
\(181\) −1.69167 + 1.22907i −0.125741 + 0.0913562i −0.648878 0.760892i \(-0.724762\pi\)
0.523137 + 0.852248i \(0.324762\pi\)
\(182\) 0.783983 + 1.35790i 0.0581127 + 0.100654i
\(183\) 0 0
\(184\) 0.214972 + 0.0456937i 0.0158479 + 0.00336858i
\(185\) 5.67183 2.98980i 0.417001 0.219814i
\(186\) 0 0
\(187\) 6.52699 7.24896i 0.477301 0.530096i
\(188\) 2.80367 + 8.62880i 0.204478 + 0.629320i
\(189\) 0 0
\(190\) −21.6632 13.6446i −1.57161 0.989886i
\(191\) −6.87172 + 7.63182i −0.497220 + 0.552219i −0.938558 0.345122i \(-0.887838\pi\)
0.441337 + 0.897341i \(0.354504\pi\)
\(192\) 0 0
\(193\) 0.879316 1.52302i 0.0632945 0.109629i −0.832642 0.553812i \(-0.813173\pi\)
0.895936 + 0.444183i \(0.146506\pi\)
\(194\) −1.89028 17.9848i −0.135714 1.29124i
\(195\) 0 0
\(196\) 0.406622 3.86875i 0.0290444 0.276339i
\(197\) −1.28192 0.931373i −0.0913333 0.0663576i 0.541181 0.840906i \(-0.317977\pi\)
−0.632515 + 0.774548i \(0.717977\pi\)
\(198\) 0 0
\(199\) −4.83781 −0.342943 −0.171471 0.985189i \(-0.554852\pi\)
−0.171471 + 0.985189i \(0.554852\pi\)
\(200\) −5.79563 + 8.46120i −0.409813 + 0.598297i
\(201\) 0 0
\(202\) −13.5936 15.0972i −0.956441 1.06224i
\(203\) 2.60446 1.15958i 0.182798 0.0813867i
\(204\) 0 0
\(205\) −0.467370 + 12.1390i −0.0326425 + 0.847825i
\(206\) 1.14264 0.830178i 0.0796117 0.0578413i
\(207\) 0 0
\(208\) 2.71663 1.97375i 0.188365 0.136855i
\(209\) 20.9437 23.2604i 1.44871 1.60895i
\(210\) 0 0
\(211\) −2.87300 3.19079i −0.197785 0.219663i 0.636091 0.771614i \(-0.280550\pi\)
−0.833877 + 0.551951i \(0.813884\pi\)
\(212\) 0.997550 + 0.212036i 0.0685120 + 0.0145627i
\(213\) 0 0
\(214\) 31.0383 6.59739i 2.12173 0.450988i
\(215\) 2.10638 1.75467i 0.143654 0.119667i
\(216\) 0 0
\(217\) −7.26291 + 5.27682i −0.493039 + 0.358214i
\(218\) −10.9007 18.8805i −0.738287 1.27875i
\(219\) 0 0
\(220\) 5.58974 + 5.43671i 0.376860 + 0.366543i
\(221\) −1.33056 + 0.592403i −0.0895031 + 0.0398494i
\(222\) 0 0
\(223\) −15.8538 + 3.36984i −1.06165 + 0.225661i −0.705459 0.708751i \(-0.749259\pi\)
−0.356193 + 0.934412i \(0.615926\pi\)
\(224\) 5.72583 0.382573
\(225\) 0 0
\(226\) 11.5823 0.770443
\(227\) 9.01077 1.91530i 0.598066 0.127123i 0.101075 0.994879i \(-0.467772\pi\)
0.496990 + 0.867756i \(0.334438\pi\)
\(228\) 0 0
\(229\) −7.49545 + 3.33719i −0.495314 + 0.220528i −0.639162 0.769072i \(-0.720719\pi\)
0.143849 + 0.989600i \(0.454052\pi\)
\(230\) 0.175983 0.357567i 0.0116040 0.0235773i
\(231\) 0 0
\(232\) −2.10604 3.64776i −0.138268 0.239487i
\(233\) 6.70215 4.86940i 0.439073 0.319005i −0.346194 0.938163i \(-0.612526\pi\)
0.785266 + 0.619158i \(0.212526\pi\)
\(234\) 0 0
\(235\) −26.3964 + 1.75099i −1.72191 + 0.114222i
\(236\) −1.29916 + 0.276145i −0.0845680 + 0.0179755i
\(237\) 0 0
\(238\) −4.84559 1.02996i −0.314093 0.0667625i
\(239\) −0.722110 0.801984i −0.0467094 0.0518760i 0.719337 0.694661i \(-0.244446\pi\)
−0.766047 + 0.642785i \(0.777779\pi\)
\(240\) 0 0
\(241\) −16.7927 + 18.6502i −1.08172 + 1.20137i −0.103315 + 0.994649i \(0.532945\pi\)
−0.978401 + 0.206718i \(0.933722\pi\)
\(242\) −13.0229 + 9.46173i −0.837147 + 0.608223i
\(243\) 0 0
\(244\) 2.34215 1.70167i 0.149941 0.108938i
\(245\) 10.6446 + 3.91748i 0.680058 + 0.250278i
\(246\) 0 0
\(247\) −4.26949 + 1.90090i −0.271661 + 0.120951i
\(248\) 8.87507 + 9.85676i 0.563567 + 0.625905i
\(249\) 0 0
\(250\) 12.2951 + 13.9532i 0.777608 + 0.882478i
\(251\) 23.1900 1.46374 0.731869 0.681445i \(-0.238648\pi\)
0.731869 + 0.681445i \(0.238648\pi\)
\(252\) 0 0
\(253\) 0.394169 + 0.286381i 0.0247812 + 0.0180046i
\(254\) −3.85784 + 36.7049i −0.242062 + 2.30307i
\(255\) 0 0
\(256\) −1.67716 15.9571i −0.104823 0.997321i
\(257\) 10.4244 18.0555i 0.650253 1.12627i −0.332808 0.942995i \(-0.607996\pi\)
0.983061 0.183277i \(-0.0586705\pi\)
\(258\) 0 0
\(259\) 2.66369 2.95833i 0.165514 0.183821i
\(260\) −0.432291 1.08107i −0.0268096 0.0670452i
\(261\) 0 0
\(262\) 5.97377 + 18.3854i 0.369061 + 1.13585i
\(263\) 6.07004 6.74146i 0.374295 0.415696i −0.526339 0.850275i \(-0.676436\pi\)
0.900634 + 0.434578i \(0.143103\pi\)
\(264\) 0 0
\(265\) −1.31310 + 2.66799i −0.0806629 + 0.163893i
\(266\) −15.5485 3.30493i −0.953338 0.202638i
\(267\) 0 0
\(268\) 5.45140 + 9.44209i 0.332997 + 0.576768i
\(269\) −12.0005 + 8.71886i −0.731683 + 0.531599i −0.890095 0.455774i \(-0.849362\pi\)
0.158413 + 0.987373i \(0.449362\pi\)
\(270\) 0 0
\(271\) 6.34725 + 4.61155i 0.385568 + 0.280132i 0.763637 0.645646i \(-0.223412\pi\)
−0.378069 + 0.925777i \(0.623412\pi\)
\(272\) −1.10895 + 10.5510i −0.0672402 + 0.639748i
\(273\) 0 0
\(274\) −13.7754 + 23.8597i −0.832203 + 1.44142i
\(275\) −19.3670 + 11.9101i −1.16788 + 0.718208i
\(276\) 0 0
\(277\) 21.7610 4.62545i 1.30749 0.277916i 0.499092 0.866549i \(-0.333667\pi\)
0.808400 + 0.588633i \(0.200334\pi\)
\(278\) 22.6487 + 16.4552i 1.35838 + 0.986919i
\(279\) 0 0
\(280\) −1.56255 + 6.17291i −0.0933799 + 0.368902i
\(281\) −9.27859 4.13109i −0.553514 0.246440i 0.110866 0.993835i \(-0.464638\pi\)
−0.664380 + 0.747395i \(0.731304\pi\)
\(282\) 0 0
\(283\) −0.0797346 0.758624i −0.00473973 0.0450955i 0.991896 0.127049i \(-0.0405507\pi\)
−0.996636 + 0.0819538i \(0.973884\pi\)
\(284\) 10.1622 + 2.16005i 0.603018 + 0.128175i
\(285\) 0 0
\(286\) 5.02339 1.06775i 0.297039 0.0631376i
\(287\) 2.33074 + 7.17328i 0.137579 + 0.423425i
\(288\) 0 0
\(289\) −3.83131 + 11.7916i −0.225371 + 0.693622i
\(290\) −7.34956 + 2.07904i −0.431581 + 0.122085i
\(291\) 0 0
\(292\) 0.474936 + 4.51872i 0.0277935 + 0.264438i
\(293\) −3.29507 + 5.70722i −0.192500 + 0.333419i −0.946078 0.323939i \(-0.894993\pi\)
0.753578 + 0.657358i \(0.228326\pi\)
\(294\) 0 0
\(295\) 0.148994 3.86982i 0.00867476 0.225310i
\(296\) −4.75815 3.45699i −0.276562 0.200934i
\(297\) 0 0
\(298\) −8.20364 + 25.2482i −0.475224 + 1.46259i
\(299\) −0.0363745 0.0630025i −0.00210359 0.00364353i
\(300\) 0 0
\(301\) 0.851063 1.47408i 0.0490545 0.0849648i
\(302\) 9.36656 + 10.4026i 0.538985 + 0.598604i
\(303\) 0 0
\(304\) −3.55840 + 33.8559i −0.204088 + 1.94177i
\(305\) 3.13418 + 7.83794i 0.179462 + 0.448799i
\(306\) 0 0
\(307\) 20.2069 1.15327 0.576634 0.817002i \(-0.304366\pi\)
0.576634 + 0.817002i \(0.304366\pi\)
\(308\) 4.42282 + 1.96917i 0.252014 + 0.112204i
\(309\) 0 0
\(310\) 21.2765 11.2155i 1.20842 0.636997i
\(311\) −11.9608 13.2838i −0.678234 0.753255i 0.301520 0.953460i \(-0.402506\pi\)
−0.979754 + 0.200205i \(0.935839\pi\)
\(312\) 0 0
\(313\) 12.2784 13.6366i 0.694019 0.770786i −0.288393 0.957512i \(-0.593121\pi\)
0.982412 + 0.186726i \(0.0597877\pi\)
\(314\) −0.0437675 + 0.134702i −0.00246994 + 0.00760170i
\(315\) 0 0
\(316\) −2.12766 6.54826i −0.119690 0.368369i
\(317\) −2.89860 1.29054i −0.162802 0.0724841i 0.323718 0.946154i \(-0.395067\pi\)
−0.486520 + 0.873670i \(0.661734\pi\)
\(318\) 0 0
\(319\) −0.976064 9.28663i −0.0546491 0.519952i
\(320\) 6.70820 + 0.967250i 0.375000 + 0.0540709i
\(321\) 0 0
\(322\) 0.0258642 0.246082i 0.00144136 0.0137136i
\(323\) 4.56282 14.0429i 0.253882 0.781369i
\(324\) 0 0
\(325\) 3.36509 0.448416i 0.186662 0.0248736i
\(326\) −10.2602 17.7712i −0.568261 0.984256i
\(327\) 0 0
\(328\) 10.1800 4.53244i 0.562098 0.250262i
\(329\) −15.0050 + 6.68065i −0.827251 + 0.368316i
\(330\) 0 0
\(331\) −13.4822 6.00268i −0.741051 0.329937i 0.00125393 0.999999i \(-0.499601\pi\)
−0.742305 + 0.670062i \(0.766268\pi\)
\(332\) −13.9076 −0.763278
\(333\) 0 0
\(334\) 3.44246 + 10.5948i 0.188363 + 0.579721i
\(335\) −30.5898 + 8.65322i −1.67130 + 0.472776i
\(336\) 0 0
\(337\) 11.9319 + 2.53619i 0.649970 + 0.138155i 0.521086 0.853504i \(-0.325527\pi\)
0.128884 + 0.991660i \(0.458861\pi\)
\(338\) 20.4015 + 4.33648i 1.10970 + 0.235873i
\(339\) 0 0
\(340\) 3.45213 + 1.27047i 0.187218 + 0.0689010i
\(341\) 9.08639 + 27.9650i 0.492056 + 1.51439i
\(342\) 0 0
\(343\) 16.7606 0.904989
\(344\) −2.29736 1.02285i −0.123865 0.0551485i
\(345\) 0 0
\(346\) −17.4744 + 7.78011i −0.939430 + 0.418261i
\(347\) −19.8592 + 8.84187i −1.06610 + 0.474656i −0.863366 0.504578i \(-0.831648\pi\)
−0.202730 + 0.979235i \(0.564981\pi\)
\(348\) 0 0
\(349\) 5.54554 + 9.60516i 0.296846 + 0.514152i 0.975413 0.220387i \(-0.0707319\pi\)
−0.678567 + 0.734539i \(0.737399\pi\)
\(350\) 10.1561 + 5.49361i 0.542866 + 0.293646i
\(351\) 0 0
\(352\) 5.79531 17.8361i 0.308891 0.950669i
\(353\) 0.530083 5.04340i 0.0282135 0.268433i −0.971317 0.237789i \(-0.923577\pi\)
0.999530 0.0306445i \(-0.00975596\pi\)
\(354\) 0 0
\(355\) −13.3768 + 27.1793i −0.709965 + 1.44253i
\(356\) 0.605357 + 5.75959i 0.0320838 + 0.305257i
\(357\) 0 0
\(358\) −7.46292 3.32271i −0.394427 0.175610i
\(359\) 9.46581 + 29.1328i 0.499586 + 1.53757i 0.809685 + 0.586864i \(0.199638\pi\)
−0.310099 + 0.950704i \(0.600362\pi\)
\(360\) 0 0
\(361\) 8.76981 26.9907i 0.461569 1.42056i
\(362\) 2.32737 2.58480i 0.122324 0.135854i
\(363\) 0 0
\(364\) −0.483707 0.537211i −0.0253531 0.0281575i
\(365\) −13.1126 1.89069i −0.686342 0.0989632i
\(366\) 0 0
\(367\) −14.5972 6.49910i −0.761968 0.339250i −0.0113057 0.999936i \(-0.503599\pi\)
−0.750662 + 0.660686i \(0.770265\pi\)
\(368\) −0.529910 −0.0276235
\(369\) 0 0
\(370\) −8.19434 + 6.82608i −0.426003 + 0.354871i
\(371\) −0.192986 + 1.83614i −0.0100193 + 0.0953276i
\(372\) 0 0
\(373\) 7.53730 + 8.37102i 0.390267 + 0.433435i 0.905976 0.423328i \(-0.139138\pi\)
−0.515710 + 0.856763i \(0.672472\pi\)
\(374\) −8.11274 + 14.0517i −0.419500 + 0.726595i
\(375\) 0 0
\(376\) 12.1334 + 21.0157i 0.625733 + 1.08380i
\(377\) −0.430852 + 1.32603i −0.0221900 + 0.0682938i
\(378\) 0 0
\(379\) −17.8996 13.0048i −0.919440 0.668012i 0.0239446 0.999713i \(-0.492377\pi\)
−0.943385 + 0.331701i \(0.892377\pi\)
\(380\) 11.0772 + 4.07668i 0.568247 + 0.209129i
\(381\) 0 0
\(382\) 8.54123 14.7938i 0.437007 0.756919i
\(383\) 0.661282 + 6.29168i 0.0337899 + 0.321490i 0.998340 + 0.0575909i \(0.0183419\pi\)
−0.964550 + 0.263899i \(0.914991\pi\)
\(384\) 0 0
\(385\) −8.73065 + 11.0927i −0.444955 + 0.565338i
\(386\) −0.903967 + 2.78213i −0.0460107 + 0.141606i
\(387\) 0 0
\(388\) 2.57638 + 7.92927i 0.130796 + 0.402548i
\(389\) 32.3577 6.87784i 1.64060 0.348720i 0.707049 0.707165i \(-0.250026\pi\)
0.933551 + 0.358444i \(0.116693\pi\)
\(390\) 0 0
\(391\) 0.224821 + 0.0477872i 0.0113697 + 0.00241670i
\(392\) −1.08758 10.3476i −0.0549309 0.522633i
\(393\) 0 0
\(394\) 2.40786 + 1.07205i 0.121306 + 0.0540089i
\(395\) 20.0319 1.32880i 1.00791 0.0668591i
\(396\) 0 0
\(397\) 22.9141 + 16.6480i 1.15002 + 0.835541i 0.988484 0.151325i \(-0.0483539\pi\)
0.161540 + 0.986866i \(0.448354\pi\)
\(398\) 7.87134 1.67310i 0.394554 0.0838651i
\(399\) 0 0
\(400\) 9.42712 22.8608i 0.471356 1.14304i
\(401\) 4.98614 8.63625i 0.248996 0.431274i −0.714251 0.699889i \(-0.753233\pi\)
0.963248 + 0.268615i \(0.0865660\pi\)
\(402\) 0 0
\(403\) 0.458929 4.36642i 0.0228609 0.217507i
\(404\) 7.57731 + 5.50524i 0.376985 + 0.273896i
\(405\) 0 0
\(406\) −3.83655 + 2.78742i −0.190405 + 0.138337i
\(407\) −6.51926 11.2917i −0.323148 0.559708i
\(408\) 0 0
\(409\) 9.44969 + 2.00859i 0.467257 + 0.0993186i 0.435523 0.900178i \(-0.356564\pi\)
0.0317346 + 0.999496i \(0.489897\pi\)
\(410\) −3.43772 19.9124i −0.169777 0.983402i
\(411\) 0 0
\(412\) −0.435711 + 0.483906i −0.0214659 + 0.0238403i
\(413\) −0.743021 2.28678i −0.0365617 0.112525i
\(414\) 0 0
\(415\) 9.95092 39.3116i 0.488471 1.92973i
\(416\) −1.87373 + 2.08099i −0.0918672 + 0.102029i
\(417\) 0 0
\(418\) −26.0321 + 45.0889i −1.27327 + 2.20537i
\(419\) −1.32174 12.5755i −0.0645710 0.614352i −0.978180 0.207758i \(-0.933383\pi\)
0.913609 0.406594i \(-0.133283\pi\)
\(420\) 0 0
\(421\) 2.39672 22.8033i 0.116809 1.11136i −0.766393 0.642372i \(-0.777951\pi\)
0.883202 0.468992i \(-0.155383\pi\)
\(422\) 5.77800 + 4.19797i 0.281269 + 0.204354i
\(423\) 0 0
\(424\) 2.72771 0.132470
\(425\) −6.06116 + 8.84887i −0.294010 + 0.429233i
\(426\) 0 0
\(427\) 3.50695 + 3.89486i 0.169713 + 0.188485i
\(428\) −13.3647 + 5.95033i −0.646005 + 0.287620i
\(429\) 0 0
\(430\) −2.82035 + 3.58340i −0.136009 + 0.172807i
\(431\) −10.6124 + 7.71039i −0.511183 + 0.371397i −0.813272 0.581883i \(-0.802316\pi\)
0.302089 + 0.953280i \(0.402316\pi\)
\(432\) 0 0
\(433\) −19.0904 + 13.8700i −0.917425 + 0.666548i −0.942882 0.333128i \(-0.891896\pi\)
0.0254569 + 0.999676i \(0.491896\pi\)
\(434\) 9.99217 11.0974i 0.479639 0.532694i
\(435\) 0 0
\(436\) 6.72557 + 7.46950i 0.322096 + 0.357724i
\(437\) 0.721404 + 0.153339i 0.0345094 + 0.00733521i
\(438\) 0 0
\(439\) 7.92866 1.68529i 0.378414 0.0804344i −0.0147778 0.999891i \(-0.504704\pi\)
0.393192 + 0.919456i \(0.371371\pi\)
\(440\) 17.6473 + 11.1152i 0.841301 + 0.529896i
\(441\) 0 0
\(442\) 1.96001 1.42403i 0.0932280 0.0677341i
\(443\) 0.254259 + 0.440389i 0.0120802 + 0.0209235i 0.872002 0.489502i \(-0.162821\pi\)
−0.859922 + 0.510425i \(0.829488\pi\)
\(444\) 0 0
\(445\) −16.7133 2.40988i −0.792288 0.114239i
\(446\) 24.6295 10.9658i 1.16624 0.519244i
\(447\) 0 0
\(448\) 4.11609 0.874903i 0.194467 0.0413353i
\(449\) −7.22605 −0.341018 −0.170509 0.985356i \(-0.554541\pi\)
−0.170509 + 0.985356i \(0.554541\pi\)
\(450\) 0 0
\(451\) 24.7040 1.16327
\(452\) −5.22317 + 1.11022i −0.245677 + 0.0522203i
\(453\) 0 0
\(454\) −13.9985 + 6.23256i −0.656984 + 0.292508i
\(455\) 1.86459 0.982883i 0.0874132 0.0460783i
\(456\) 0 0
\(457\) −7.94049 13.7533i −0.371441 0.643354i 0.618347 0.785905i \(-0.287803\pi\)
−0.989787 + 0.142551i \(0.954469\pi\)
\(458\) 11.0413 8.02199i 0.515927 0.374843i
\(459\) 0 0
\(460\) −0.0450869 + 0.178118i −0.00210219 + 0.00830478i
\(461\) 32.2855 6.86249i 1.50369 0.319618i 0.618845 0.785513i \(-0.287601\pi\)
0.884840 + 0.465895i \(0.154267\pi\)
\(462\) 0 0
\(463\) −18.0119 3.82855i −0.837084 0.177928i −0.230625 0.973043i \(-0.574077\pi\)
−0.606459 + 0.795115i \(0.707411\pi\)
\(464\) 6.79566 + 7.54734i 0.315480 + 0.350377i
\(465\) 0 0
\(466\) −9.22069 + 10.2406i −0.427140 + 0.474387i
\(467\) 14.9196 10.8397i 0.690398 0.501603i −0.186393 0.982475i \(-0.559680\pi\)
0.876791 + 0.480872i \(0.159680\pi\)
\(468\) 0 0
\(469\) −15.9682 + 11.6016i −0.737344 + 0.535712i
\(470\) 42.3427 11.9779i 1.95312 0.552498i
\(471\) 0 0
\(472\) −3.24531 + 1.44491i −0.149378 + 0.0665072i
\(473\) −3.73043 4.14306i −0.171525 0.190498i
\(474\) 0 0
\(475\) −19.4490 + 28.3942i −0.892381 + 1.30281i
\(476\) 2.28390 0.104682
\(477\) 0 0
\(478\) 1.45226 + 1.05513i 0.0664250 + 0.0482606i
\(479\) −2.41271 + 22.9554i −0.110239 + 1.04886i 0.789894 + 0.613243i \(0.210135\pi\)
−0.900133 + 0.435614i \(0.856531\pi\)
\(480\) 0 0
\(481\) 0.203500 + 1.93617i 0.00927881 + 0.0882820i
\(482\) 20.8726 36.1524i 0.950720 1.64670i
\(483\) 0 0
\(484\) 4.96589 5.51518i 0.225722 0.250690i
\(485\) −24.2565 + 1.60904i −1.10143 + 0.0730627i
\(486\) 0 0
\(487\) −3.52725 10.8558i −0.159835 0.491921i 0.838784 0.544465i \(-0.183267\pi\)
−0.998619 + 0.0525435i \(0.983267\pi\)
\(488\) 5.18127 5.75439i 0.234545 0.260489i
\(489\) 0 0
\(490\) −18.6741 2.69260i −0.843608 0.121639i
\(491\) −38.9241 8.27356i −1.75662 0.373381i −0.786799 0.617209i \(-0.788263\pi\)
−0.969818 + 0.243828i \(0.921597\pi\)
\(492\) 0 0
\(493\) −2.20253 3.81489i −0.0991969 0.171814i
\(494\) 6.28925 4.56941i 0.282967 0.205587i
\(495\) 0 0
\(496\) −25.8728 18.7977i −1.16172 0.844041i
\(497\) −1.96599 + 18.7051i −0.0881866 + 0.839039i
\(498\) 0 0
\(499\) 18.1188 31.3826i 0.811107 1.40488i −0.100983 0.994888i \(-0.532199\pi\)
0.912090 0.409990i \(-0.134468\pi\)
\(500\) −6.88208 5.11381i −0.307776 0.228697i
\(501\) 0 0
\(502\) −37.7312 + 8.02001i −1.68403 + 0.357951i
\(503\) −26.1554 19.0030i −1.16621 0.847302i −0.175661 0.984451i \(-0.556206\pi\)
−0.990550 + 0.137149i \(0.956206\pi\)
\(504\) 0 0
\(505\) −20.9829 + 17.4792i −0.933725 + 0.777816i
\(506\) −0.740374 0.329636i −0.0329136 0.0146541i
\(507\) 0 0
\(508\) −1.77860 16.9223i −0.0789128 0.750805i
\(509\) −0.264168 0.0561506i −0.0117090 0.00248883i 0.202053 0.979374i \(-0.435239\pi\)
−0.213762 + 0.976886i \(0.568572\pi\)
\(510\) 0 0
\(511\) −8.04575 + 1.71018i −0.355923 + 0.0756538i
\(512\) 0.0335504 + 0.103257i 0.00148273 + 0.00456337i
\(513\) 0 0
\(514\) −10.7166 + 32.9823i −0.472689 + 1.45479i
\(515\) −1.05607 1.57783i −0.0465360 0.0695274i
\(516\) 0 0
\(517\) 5.62336 + 53.5027i 0.247315 + 2.35304i
\(518\) −3.31084 + 5.73454i −0.145470 + 0.251961i
\(519\) 0 0
\(520\) −1.73214 2.58792i −0.0759595 0.113488i
\(521\) −22.4017 16.2758i −0.981435 0.713054i −0.0234061 0.999726i \(-0.507451\pi\)
−0.958029 + 0.286672i \(0.907451\pi\)
\(522\) 0 0
\(523\) 11.9194 36.6841i 0.521198 1.60408i −0.250515 0.968113i \(-0.580600\pi\)
0.771713 0.635971i \(-0.219400\pi\)
\(524\) −4.45627 7.71848i −0.194673 0.337183i
\(525\) 0 0
\(526\) −7.54477 + 13.0679i −0.328968 + 0.569789i
\(527\) 9.28170 + 10.3084i 0.404317 + 0.449040i
\(528\) 0 0
\(529\) 2.40295 22.8626i 0.104476 0.994025i
\(530\) 1.21377 4.79506i 0.0527229 0.208284i
\(531\) 0 0
\(532\) 7.32855 0.317733
\(533\) −3.36976 1.50032i −0.145961 0.0649859i
\(534\) 0 0
\(535\) −7.25691 42.0344i −0.313744 1.81731i
\(536\) 19.5127 + 21.6711i 0.842820 + 0.936047i
\(537\) 0 0
\(538\) 16.5100 18.3362i 0.711798 0.790531i
\(539\) 7.12781 21.9371i 0.307016 0.944900i
\(540\) 0 0
\(541\) −9.26487 28.5143i −0.398328 1.22593i −0.926339 0.376690i \(-0.877062\pi\)
0.528011 0.849237i \(-0.322938\pi\)
\(542\) −11.9221 5.30808i −0.512099 0.228001i
\(543\) 0 0
\(544\) −0.924776 8.79865i −0.0396494 0.377239i
\(545\) −25.9257 + 13.6662i −1.11053 + 0.585397i
\(546\) 0 0
\(547\) −0.600529 + 5.71365i −0.0256768 + 0.244298i 0.974154 + 0.225886i \(0.0725277\pi\)
−0.999830 + 0.0184119i \(0.994139\pi\)
\(548\) 3.92511 12.0802i 0.167672 0.516042i
\(549\) 0 0
\(550\) 27.3921 26.0762i 1.16800 1.11189i
\(551\) −7.06745 12.2412i −0.301083 0.521492i
\(552\) 0 0
\(553\) 11.3870 5.06984i 0.484227 0.215592i
\(554\) −33.8065 + 15.0516i −1.43630 + 0.639483i
\(555\) 0 0
\(556\) −11.7910 5.24969i −0.500049 0.222636i
\(557\) 13.8510 0.586887 0.293444 0.955976i \(-0.405199\pi\)
0.293444 + 0.955976i \(0.405199\pi\)
\(558\) 0 0
\(559\) 0.257236 + 0.791691i 0.0108799 + 0.0334850i
\(560\) 0.590686 15.3419i 0.0249610 0.648313i
\(561\) 0 0
\(562\) 16.5254 + 3.51258i 0.697081 + 0.148169i
\(563\) −29.1494 6.19591i −1.22850 0.261126i −0.452447 0.891791i \(-0.649449\pi\)
−0.776055 + 0.630665i \(0.782782\pi\)
\(564\) 0 0
\(565\) 0.599018 15.5583i 0.0252009 0.654543i
\(566\) 0.392094 + 1.20674i 0.0164809 + 0.0507231i
\(567\) 0 0
\(568\) 27.7878 1.16595
\(569\) −14.9654 6.66301i −0.627381 0.279328i 0.0683159 0.997664i \(-0.478237\pi\)
−0.695696 + 0.718336i \(0.744904\pi\)
\(570\) 0 0
\(571\) −4.71944 + 2.10123i −0.197502 + 0.0879337i −0.503104 0.864226i \(-0.667809\pi\)
0.305602 + 0.952159i \(0.401142\pi\)
\(572\) −2.16300 + 0.963031i −0.0904397 + 0.0402663i
\(573\) 0 0
\(574\) −6.27303 10.8652i −0.261831 0.453505i
\(575\) −0.471213 0.254888i −0.0196509 0.0106295i
\(576\) 0 0
\(577\) 4.99821 15.3829i 0.208078 0.640399i −0.791495 0.611176i \(-0.790697\pi\)
0.999573 0.0292230i \(-0.00930328\pi\)
\(578\) 2.15574 20.5105i 0.0896668 0.853122i
\(579\) 0 0
\(580\) 3.11508 1.64206i 0.129347 0.0681826i
\(581\) −2.63177 25.0396i −0.109184 1.03882i
\(582\) 0 0
\(583\) 5.52430 + 2.45958i 0.228793 + 0.101865i
\(584\) 3.75536 + 11.5578i 0.155398 + 0.478266i
\(585\) 0 0
\(586\) 3.38744 10.4255i 0.139934 0.430672i
\(587\) 18.8057 20.8858i 0.776193 0.862050i −0.217281 0.976109i \(-0.569719\pi\)
0.993474 + 0.114059i \(0.0363854\pi\)
\(588\) 0 0
\(589\) 29.7830 + 33.0774i 1.22719 + 1.36293i
\(590\) 1.09592 + 6.34790i 0.0451182 + 0.261339i
\(591\) 0 0
\(592\) 12.9549 + 5.76791i 0.532444 + 0.237060i
\(593\) −3.80524 −0.156262 −0.0781312 0.996943i \(-0.524895\pi\)
−0.0781312 + 0.996943i \(0.524895\pi\)
\(594\) 0 0
\(595\) −1.63414 + 6.45573i −0.0669931 + 0.264659i
\(596\) 1.27936 12.1723i 0.0524047 0.498597i
\(597\) 0 0
\(598\) 0.0809718 + 0.0899283i 0.00331118 + 0.00367744i
\(599\) −17.5681 + 30.4289i −0.717813 + 1.24329i 0.244051 + 0.969762i \(0.421524\pi\)
−0.961864 + 0.273527i \(0.911810\pi\)
\(600\) 0 0
\(601\) −10.6092 18.3758i −0.432760 0.749563i 0.564350 0.825536i \(-0.309127\pi\)
−0.997110 + 0.0759732i \(0.975794\pi\)
\(602\) −0.874923 + 2.69274i −0.0356592 + 0.109748i
\(603\) 0 0
\(604\) −5.22110 3.79335i −0.212443 0.154349i
\(605\) 12.0363 + 17.9829i 0.489343 + 0.731107i
\(606\) 0 0
\(607\) −7.55362 + 13.0833i −0.306592 + 0.531033i −0.977615 0.210404i \(-0.932522\pi\)
0.671023 + 0.741437i \(0.265855\pi\)
\(608\) −2.96741 28.2330i −0.120344 1.14500i
\(609\) 0 0
\(610\) −7.81012 11.6688i −0.316222 0.472454i
\(611\) 2.48225 7.63958i 0.100421 0.309064i
\(612\) 0 0
\(613\) −0.267857 0.824379i −0.0108186 0.0332963i 0.945501 0.325618i \(-0.105572\pi\)
−0.956320 + 0.292321i \(0.905572\pi\)
\(614\) −32.8776 + 6.98834i −1.32683 + 0.282026i
\(615\) 0 0
\(616\) 12.6661 + 2.69226i 0.510331 + 0.108474i
\(617\) 2.07726 + 19.7638i 0.0836272 + 0.795660i 0.953299 + 0.302029i \(0.0976640\pi\)
−0.869671 + 0.493631i \(0.835669\pi\)
\(618\) 0 0
\(619\) 16.3619 + 7.28480i 0.657641 + 0.292801i 0.708296 0.705915i \(-0.249464\pi\)
−0.0506549 + 0.998716i \(0.516131\pi\)
\(620\) −8.51980 + 7.09720i −0.342163 + 0.285030i
\(621\) 0 0
\(622\) 24.0548 + 17.4768i 0.964510 + 0.700757i
\(623\) −10.2552 + 2.17980i −0.410864 + 0.0873319i
\(624\) 0 0
\(625\) 19.3790 15.7941i 0.775160 0.631765i
\(626\) −15.2615 + 26.4337i −0.609973 + 1.05650i
\(627\) 0 0
\(628\) 0.00682556 0.0649409i 0.000272370 0.00259142i
\(629\) −4.97615 3.61538i −0.198412 0.144155i
\(630\) 0 0
\(631\) −27.5034 + 19.9824i −1.09489 + 0.795487i −0.980219 0.197916i \(-0.936583\pi\)
−0.114675 + 0.993403i \(0.536583\pi\)
\(632\) −9.20786 15.9485i −0.366269 0.634396i
\(633\) 0 0
\(634\) 5.16248 + 1.09732i 0.205028 + 0.0435801i
\(635\) 49.1056 + 7.08050i 1.94870 + 0.280981i
\(636\) 0 0
\(637\) −2.30455 + 2.55946i −0.0913097 + 0.101410i
\(638\) 4.79979 + 14.7722i 0.190025 + 0.584838i
\(639\) 0 0
\(640\) −29.6529 + 1.96701i −1.17213 + 0.0777527i
\(641\) 8.52288 9.46562i 0.336634 0.373870i −0.550932 0.834550i \(-0.685728\pi\)
0.887566 + 0.460680i \(0.152394\pi\)
\(642\) 0 0
\(643\) 9.31365 16.1317i 0.367295 0.636173i −0.621847 0.783139i \(-0.713617\pi\)
0.989142 + 0.146966i \(0.0469507\pi\)
\(644\) 0.0119243 + 0.113453i 0.000469885 + 0.00447066i
\(645\) 0 0
\(646\) −2.56733 + 24.4265i −0.101010 + 0.961047i
\(647\) 2.58476 + 1.87794i 0.101617 + 0.0738294i 0.637434 0.770505i \(-0.279996\pi\)
−0.535816 + 0.844335i \(0.679996\pi\)
\(648\) 0 0
\(649\) −7.87544 −0.309138
\(650\) −5.32009 + 1.89338i −0.208671 + 0.0742643i
\(651\) 0 0
\(652\) 6.33041 + 7.03063i 0.247918 + 0.275341i
\(653\) 4.61992 2.05692i 0.180792 0.0804936i −0.314345 0.949309i \(-0.601785\pi\)
0.495136 + 0.868815i \(0.335118\pi\)
\(654\) 0 0
\(655\) 25.0057 7.07361i 0.977055 0.276389i
\(656\) −21.7371 + 15.7929i −0.848691 + 0.616610i
\(657\) 0 0
\(658\) 22.1034 16.0590i 0.861679 0.626046i
\(659\) −0.955484 + 1.06117i −0.0372204 + 0.0413374i −0.761468 0.648203i \(-0.775521\pi\)
0.724247 + 0.689540i \(0.242187\pi\)
\(660\) 0 0
\(661\) −3.11002 3.45402i −0.120966 0.134346i 0.679620 0.733564i \(-0.262145\pi\)
−0.800586 + 0.599219i \(0.795478\pi\)
\(662\) 24.0122 + 5.10395i 0.933261 + 0.198371i
\(663\) 0 0
\(664\) −36.3852 + 7.73391i −1.41202 + 0.300134i
\(665\) −5.24360 + 20.7151i −0.203338 + 0.803296i
\(666\) 0 0
\(667\) 0.178005 0.129328i 0.00689238 0.00500761i
\(668\) −2.56797 4.44786i −0.0993579 0.172093i
\(669\) 0 0
\(670\) 46.7784 24.6583i 1.80721 0.952635i
\(671\) 15.6821 6.98212i 0.605401 0.269542i
\(672\) 0 0
\(673\) −18.4133 + 3.91386i −0.709780 + 0.150868i −0.548634 0.836062i \(-0.684852\pi\)
−0.161145 + 0.986931i \(0.551519\pi\)
\(674\) −20.2908 −0.781572
\(675\) 0 0
\(676\) −9.61597 −0.369845
\(677\) −9.69731 + 2.06123i −0.372698 + 0.0792194i −0.390453 0.920623i \(-0.627682\pi\)
0.0177547 + 0.999842i \(0.494348\pi\)
\(678\) 0 0
\(679\) −13.7885 + 6.13906i −0.529156 + 0.235595i
\(680\) 9.73802 + 1.40412i 0.373436 + 0.0538454i
\(681\) 0 0
\(682\) −24.4554 42.3580i −0.936445 1.62197i
\(683\) −21.4995 + 15.6203i −0.822655 + 0.597694i −0.917472 0.397801i \(-0.869774\pi\)
0.0948166 + 0.995495i \(0.469774\pi\)
\(684\) 0 0
\(685\) 31.3379 + 19.7383i 1.19736 + 0.754161i
\(686\) −27.2703 + 5.79649i −1.04119 + 0.221311i
\(687\) 0 0
\(688\) 5.93101 + 1.26068i 0.226118 + 0.0480628i
\(689\) −0.604171 0.671000i −0.0230171 0.0255631i
\(690\) 0 0
\(691\) −22.2009 + 24.6566i −0.844563 + 0.937982i −0.998746 0.0500602i \(-0.984059\pi\)
0.154183 + 0.988042i \(0.450725\pi\)
\(692\) 7.13452 5.18353i 0.271214 0.197048i
\(693\) 0 0
\(694\) 29.2539 21.2542i 1.11046 0.806799i
\(695\) 23.2754 29.5726i 0.882886 1.12175i
\(696\) 0 0
\(697\) 10.6465 4.74011i 0.403263 0.179544i
\(698\) −12.3447 13.7102i −0.467253 0.518938i
\(699\) 0 0
\(700\) −5.10659 1.50390i −0.193011 0.0568419i
\(701\) −26.1441 −0.987451 −0.493725 0.869618i \(-0.664365\pi\)
−0.493725 + 0.869618i \(0.664365\pi\)
\(702\) 0 0
\(703\) −15.9674 11.6010i −0.602223 0.437540i
\(704\) 1.44069 13.7073i 0.0542981 0.516612i
\(705\) 0 0
\(706\) 0.881738 + 8.38918i 0.0331846 + 0.315731i
\(707\) −8.47791 + 14.6842i −0.318845 + 0.552255i
\(708\) 0 0
\(709\) 26.7119 29.6666i 1.00319 1.11415i 0.00973033 0.999953i \(-0.496903\pi\)
0.993458 0.114201i \(-0.0364306\pi\)
\(710\) 12.3649 48.8483i 0.464048 1.83324i
\(711\) 0 0
\(712\) 4.78661 + 14.7317i 0.179386 + 0.552093i
\(713\) −0.463608 + 0.514888i −0.0173622 + 0.0192827i
\(714\) 0 0
\(715\) −1.17449 6.80306i −0.0439236 0.254420i
\(716\) 3.68398 + 0.783055i 0.137677 + 0.0292641i
\(717\) 0 0
\(718\) −25.4766 44.1267i −0.950777 1.64679i
\(719\) −32.4317 + 23.5630i −1.20950 + 0.878751i −0.995185 0.0980142i \(-0.968751\pi\)
−0.214312 + 0.976765i \(0.568751\pi\)
\(720\) 0 0
\(721\) −0.953688 0.692895i −0.0355172 0.0258048i
\(722\) −4.93444 + 46.9481i −0.183641 + 1.74723i
\(723\) 0 0
\(724\) −0.801787 + 1.38874i −0.0297982 + 0.0516120i
\(725\) 2.41263 + 9.98006i 0.0896029 + 0.370650i
\(726\) 0 0
\(727\) 34.5304 7.33967i 1.28066 0.272213i 0.483162 0.875531i \(-0.339488\pi\)
0.797501 + 0.603318i \(0.206155\pi\)
\(728\) −1.56422 1.13647i −0.0579738 0.0421204i
\(729\) 0 0
\(730\) 21.9886 1.45860i 0.813835 0.0539852i
\(731\) −2.40262 1.06972i −0.0888641 0.0395649i
\(732\) 0 0
\(733\) −0.702668 6.68544i −0.0259536 0.246932i −0.999805 0.0197463i \(-0.993714\pi\)
0.973851 0.227186i \(-0.0729525\pi\)
\(734\) 25.9980 + 5.52604i 0.959603 + 0.203970i
\(735\) 0 0
\(736\) 0.432244 0.0918764i 0.0159327 0.00338661i
\(737\) 19.9773 + 61.4839i 0.735874 + 2.26479i
\(738\) 0 0
\(739\) −3.30815 + 10.1814i −0.121692 + 0.374530i −0.993284 0.115702i \(-0.963088\pi\)
0.871592 + 0.490233i \(0.163088\pi\)
\(740\) 3.04102 3.86376i 0.111790 0.142035i
\(741\) 0 0
\(742\) −0.321012 3.05423i −0.0117847 0.112124i
\(743\) 10.6028 18.3647i 0.388981 0.673735i −0.603332 0.797490i \(-0.706161\pi\)
0.992313 + 0.123756i \(0.0394939\pi\)
\(744\) 0 0
\(745\) 33.4912 + 12.3256i 1.22702 + 0.451575i
\(746\) −15.1586 11.0133i −0.554995 0.403227i
\(747\) 0 0
\(748\) 2.31161 7.11441i 0.0845209 0.260129i
\(749\) −13.2422 22.9361i −0.483858 0.838067i
\(750\) 0 0
\(751\) −24.6961 + 42.7750i −0.901175 + 1.56088i −0.0752042 + 0.997168i \(0.523961\pi\)
−0.825971 + 0.563713i \(0.809372\pi\)
\(752\) −39.1515 43.4822i −1.42771 1.58563i
\(753\) 0 0
\(754\) 0.242424 2.30651i 0.00882857 0.0839982i
\(755\) 14.4581 12.0439i 0.526184 0.438324i
\(756\) 0 0
\(757\) −31.2549 −1.13598 −0.567989 0.823036i \(-0.692279\pi\)
−0.567989 + 0.823036i \(0.692279\pi\)
\(758\) 33.6210 + 14.9690i 1.22117 + 0.543700i
\(759\) 0 0
\(760\) 31.2473 + 4.50552i 1.13346 + 0.163432i
\(761\) 19.3977 + 21.5434i 0.703168 + 0.780947i 0.983877 0.178846i \(-0.0572363\pi\)
−0.280709 + 0.959793i \(0.590570\pi\)
\(762\) 0 0
\(763\) −12.1756 + 13.5224i −0.440786 + 0.489543i
\(764\) −2.43370 + 7.49016i −0.0880482 + 0.270985i
\(765\) 0 0
\(766\) −3.25185 10.0082i −0.117494 0.361610i
\(767\) 1.07425 + 0.478289i 0.0387891 + 0.0172700i
\(768\) 0 0
\(769\) −3.56272 33.8970i −0.128475 1.22236i −0.848797 0.528719i \(-0.822673\pi\)
0.720322 0.693640i \(-0.243994\pi\)
\(770\) 10.3689 21.0678i 0.373668 0.759230i
\(771\) 0 0
\(772\) 0.140974 1.34128i 0.00507377 0.0482737i
\(773\) 9.44334 29.0636i 0.339653 1.04535i −0.624731 0.780840i \(-0.714791\pi\)
0.964384 0.264506i \(-0.0852088\pi\)
\(774\) 0 0
\(775\) −13.9652 29.1604i −0.501645 1.04747i
\(776\) 11.1498 + 19.3120i 0.400253 + 0.693259i
\(777\) 0 0
\(778\) −50.2688 + 22.3811i −1.80223 + 0.802402i
\(779\) 34.1622 15.2100i 1.22399 0.544955i
\(780\) 0 0
\(781\) 56.2771 + 25.0562i 2.01375 + 0.896581i
\(782\) −0.382321 −0.0136718
\(783\) 0 0
\(784\) 7.75234 + 23.8592i 0.276869 + 0.852116i
\(785\) 0.178680 + 0.0657588i 0.00637736 + 0.00234703i
\(786\) 0 0
\(787\) 22.4498 + 4.77185i 0.800249 + 0.170098i 0.589845 0.807517i \(-0.299189\pi\)
0.210404 + 0.977615i \(0.432522\pi\)
\(788\) −1.18861 0.252647i −0.0423425 0.00900017i
\(789\) 0 0
\(790\) −32.1332 + 9.08982i −1.14325 + 0.323401i
\(791\) −2.98726 9.19384i −0.106215 0.326895i
\(792\) 0 0
\(793\) −2.56316 −0.0910205
\(794\) −43.0398 19.1626i −1.52743 0.680054i
\(795\) 0 0
\(796\) −3.38929 + 1.50901i −0.120130 + 0.0534854i
\(797\) −39.7228 + 17.6857i −1.40705 + 0.626461i −0.962991 0.269535i \(-0.913130\pi\)
−0.444063 + 0.895996i \(0.646463\pi\)
\(798\) 0 0
\(799\) 12.6893 + 21.9786i 0.448916 + 0.777545i
\(800\) −3.72601 + 20.2819i −0.131734 + 0.717075i
\(801\) 0 0
\(802\) −5.12593 + 15.7760i −0.181003 + 0.557070i
\(803\) −2.81613 + 26.7937i −0.0993790 + 0.945528i
\(804\) 0 0
\(805\) −0.329220 0.0474700i −0.0116035 0.00167310i
\(806\) 0.763381 + 7.26308i 0.0268889 + 0.255831i
\(807\) 0 0
\(808\) 22.8853 + 10.1892i 0.805102 + 0.358455i
\(809\) 8.36599 + 25.7479i 0.294133 + 0.905247i 0.983511 + 0.180846i \(0.0578836\pi\)
−0.689379 + 0.724401i \(0.742116\pi\)
\(810\) 0 0
\(811\) −11.3390 + 34.8979i −0.398167 + 1.22543i 0.528300 + 0.849058i \(0.322829\pi\)
−0.926468 + 0.376375i \(0.877171\pi\)
\(812\) 1.46295 1.62477i 0.0513395 0.0570182i
\(813\) 0 0
\(814\) 14.5122 + 16.1175i 0.508654 + 0.564918i
\(815\) −24.4024 + 12.8633i −0.854779 + 0.450581i
\(816\) 0 0
\(817\) −7.70951 3.43249i −0.269721 0.120088i
\(818\) −16.0697 −0.561865
\(819\) 0 0
\(820\) 3.45897 + 8.65018i 0.120793 + 0.302078i
\(821\) 0.158330 1.50641i 0.00552576 0.0525741i −0.991412 0.130779i \(-0.958252\pi\)
0.996937 + 0.0782049i \(0.0249188\pi\)
\(822\) 0 0
\(823\) −24.3576 27.0519i −0.849053 0.942969i 0.149900 0.988701i \(-0.452105\pi\)
−0.998954 + 0.0457319i \(0.985438\pi\)
\(824\) −0.870816 + 1.50830i −0.0303363 + 0.0525440i
\(825\) 0 0
\(826\) 1.99979 + 3.46374i 0.0695816 + 0.120519i
\(827\) 0.131104 0.403496i 0.00455892 0.0140309i −0.948751 0.316024i \(-0.897652\pi\)
0.953310 + 0.301993i \(0.0976520\pi\)
\(828\) 0 0
\(829\) −15.0808 10.9568i −0.523778 0.380547i 0.294247 0.955729i \(-0.404931\pi\)
−0.818025 + 0.575182i \(0.804931\pi\)
\(830\) −2.59512 + 67.4032i −0.0900780 + 2.33960i
\(831\) 0 0
\(832\) −1.02898 + 1.78225i −0.0356736 + 0.0617885i
\(833\) −1.13741 10.8217i −0.0394088 0.374950i
\(834\) 0 0
\(835\) 14.4098 4.07625i 0.498673 0.141064i
\(836\) 7.41748 22.8286i 0.256539 0.789545i
\(837\) 0 0
\(838\) 6.49962 + 20.0038i 0.224526 + 0.691019i
\(839\) −28.4120 + 6.03916i −0.980892 + 0.208495i −0.670334 0.742059i \(-0.733849\pi\)
−0.310558 + 0.950554i \(0.600516\pi\)
\(840\) 0 0
\(841\) 24.2415 + 5.15270i 0.835915 + 0.177679i
\(842\) 3.98670 + 37.9309i 0.137391 + 1.30718i
\(843\) 0 0
\(844\) −3.00805 1.33927i −0.103541 0.0460996i
\(845\) 6.88026 27.1808i 0.236688 0.935047i
\(846\) 0 0
\(847\) 10.8694 + 7.89708i 0.373477 + 0.271347i
\(848\) −6.43322 + 1.36742i −0.220918 + 0.0469575i
\(849\) 0 0
\(850\) 6.80151 16.4937i 0.233290 0.565730i
\(851\) 0.153613 0.266066i 0.00526580 0.00912063i
\(852\) 0 0
\(853\) −1.83844 + 17.4915i −0.0629468 + 0.598899i 0.916896 + 0.399127i \(0.130687\pi\)
−0.979842 + 0.199772i \(0.935980\pi\)
\(854\) −7.05296 5.12428i −0.241347 0.175349i
\(855\) 0 0
\(856\) −31.6559 + 22.9993i −1.08198 + 0.786101i
\(857\) 4.22020 + 7.30960i 0.144159 + 0.249691i 0.929059 0.369932i \(-0.120619\pi\)
−0.784900 + 0.619623i \(0.787286\pi\)
\(858\) 0 0
\(859\) 33.0228 + 7.01920i 1.12672 + 0.239492i 0.733326 0.679877i \(-0.237967\pi\)
0.393396 + 0.919369i \(0.371300\pi\)
\(860\) 0.928383 1.88632i 0.0316576 0.0643229i
\(861\) 0 0
\(862\) 14.6004 16.2154i 0.497291 0.552298i
\(863\) −12.9265 39.7837i −0.440023 1.35425i −0.887851 0.460132i \(-0.847802\pi\)
0.447828 0.894120i \(-0.352198\pi\)
\(864\) 0 0
\(865\) 9.54714 + 23.8755i 0.324613 + 0.811790i
\(866\) 26.2641 29.1693i 0.892492 0.991213i
\(867\) 0 0
\(868\) −3.44234 + 5.96231i −0.116841 + 0.202374i
\(869\) −4.26748 40.6024i −0.144764 1.37734i
\(870\) 0 0
\(871\) 1.00900 9.60000i 0.0341887 0.325283i
\(872\) 21.7493 + 15.8018i 0.736523 + 0.535115i
\(873\) 0 0
\(874\) −1.22679 −0.0414967
\(875\) 7.90474 13.3584i 0.267229 0.451596i
\(876\) 0 0
\(877\) −19.1882 21.3106i −0.647938 0.719608i 0.326266 0.945278i \(-0.394210\pi\)
−0.974204 + 0.225670i \(0.927543\pi\)
\(878\) −12.3175 + 5.48408i −0.415694 + 0.185079i
\(879\) 0 0
\(880\) −47.1926 17.3681i −1.59086 0.585477i
\(881\) 11.7352 8.52611i 0.395368 0.287252i −0.372283 0.928119i \(-0.621425\pi\)
0.767652 + 0.640867i \(0.221425\pi\)
\(882\) 0 0
\(883\) −42.8896 + 31.1611i −1.44335 + 1.04865i −0.456019 + 0.889970i \(0.650725\pi\)
−0.987329 + 0.158684i \(0.949275\pi\)
\(884\) −0.747387 + 0.830057i −0.0251373 + 0.0279178i
\(885\) 0 0
\(886\) −0.565995 0.628601i −0.0190150 0.0211183i
\(887\) −8.79953 1.87040i −0.295459 0.0628018i 0.0577971 0.998328i \(-0.481592\pi\)
−0.353256 + 0.935527i \(0.614926\pi\)
\(888\) 0 0
\(889\) 30.1308 6.40449i 1.01055 0.214800i
\(890\) 28.0268 1.85914i 0.939461 0.0623185i
\(891\) 0 0
\(892\) −10.0558 + 7.30599i −0.336694 + 0.244623i
\(893\) 40.7174 + 70.5246i 1.36256 + 2.36001i
\(894\) 0 0
\(895\) −4.84931 + 9.85297i −0.162094 + 0.329349i
\(896\) −16.8561 + 7.50483i −0.563123 + 0.250719i
\(897\) 0 0
\(898\) 11.7571 2.49905i 0.392340 0.0833944i
\(899\) 13.2788 0.442872
\(900\) 0 0
\(901\) 2.85269 0.0950369
\(902\) −40.1946 + 8.54362i −1.33833 + 0.284471i
\(903\) 0 0
\(904\) −13.0475 + 5.80914i −0.433955 + 0.193209i
\(905\) −3.35176 3.26000i −0.111416 0.108366i
\(906\) 0 0
\(907\) 13.0147 + 22.5421i 0.432145 + 0.748498i 0.997058 0.0766530i \(-0.0244234\pi\)
−0.564912 + 0.825151i \(0.691090\pi\)
\(908\) 5.71538 4.15247i 0.189672 0.137804i
\(909\) 0 0
\(910\) −2.69385 + 2.24404i −0.0893003 + 0.0743893i
\(911\) 3.92226 0.833703i 0.129950 0.0276218i −0.142477 0.989798i \(-0.545507\pi\)
0.272428 + 0.962176i \(0.412173\pi\)
\(912\) 0 0
\(913\) −80.6628 17.1454i −2.66955 0.567430i
\(914\) 17.6760 + 19.6312i 0.584670 + 0.649342i
\(915\) 0 0
\(916\) −4.21026 + 4.67597i −0.139111 + 0.154498i
\(917\) 13.0533 9.48377i 0.431058 0.313182i
\(918\) 0 0
\(919\) 0.331871 0.241118i 0.0109474 0.00795375i −0.582298 0.812975i \(-0.697846\pi\)
0.593245 + 0.805022i \(0.297846\pi\)
\(920\) −0.0189068 + 0.491067i −0.000623339 + 0.0161900i
\(921\) 0 0
\(922\) −50.1567 + 22.3312i −1.65182 + 0.735439i
\(923\) −6.15481 6.83561i −0.202588 0.224997i
\(924\) 0 0
\(925\) 8.74557 + 11.3604i 0.287552 + 0.373526i
\(926\) 30.6303 1.00657
\(927\) 0 0
\(928\) −6.85175 4.97808i −0.224920 0.163414i
\(929\) −0.704207 + 6.70008i −0.0231043 + 0.219822i 0.976878 + 0.213799i \(0.0685839\pi\)
−0.999982 + 0.00602306i \(0.998083\pi\)
\(930\) 0 0
\(931\) −3.64970 34.7246i −0.119614 1.13805i
\(932\) 3.17656 5.50196i 0.104052 0.180223i
\(933\) 0 0
\(934\) −20.5261 + 22.7966i −0.671635 + 0.745926i
\(935\) 18.4558 + 11.6244i 0.603570 + 0.380160i
\(936\) 0 0
\(937\) −13.0786 40.2519i −0.427260 1.31497i −0.900814 0.434206i \(-0.857029\pi\)
0.473554 0.880765i \(-0.342971\pi\)
\(938\) 21.9688 24.3988i 0.717305 0.796648i
\(939\) 0 0
\(940\) −17.9468 + 9.46030i −0.585359 + 0.308561i
\(941\) 51.2834 + 10.9006i 1.67179 + 0.355350i 0.943871 0.330314i \(-0.107154\pi\)
0.727919 + 0.685663i \(0.240488\pi\)
\(942\) 0 0
\(943\) 0.291050 + 0.504114i 0.00947790 + 0.0164162i
\(944\) 6.92961 5.03466i 0.225540 0.163864i
\(945\) 0 0
\(946\) 7.50241 + 5.45082i 0.243924 + 0.177221i
\(947\) 0.245164 2.33258i 0.00796675 0.0757985i −0.989816 0.142352i \(-0.954534\pi\)
0.997783 + 0.0665533i \(0.0212002\pi\)
\(948\) 0 0
\(949\) 2.01136 3.48378i 0.0652915 0.113088i
\(950\) 21.8246 52.9249i 0.708084 1.71711i
\(951\) 0 0
\(952\) 5.97517 1.27006i 0.193656 0.0411629i
\(953\) 7.72986 + 5.61607i 0.250395 + 0.181922i 0.705902 0.708310i \(-0.250542\pi\)
−0.455507 + 0.890232i \(0.650542\pi\)
\(954\) 0 0
\(955\) −19.4306 12.2384i −0.628759 0.396026i
\(956\) −0.756054 0.336617i −0.0244525 0.0108870i
\(957\) 0 0
\(958\) −4.01328 38.1839i −0.129663 1.23366i
\(959\) 22.4924 + 4.78090i 0.726316 + 0.154383i
\(960\) 0 0
\(961\) −10.5779 + 2.24839i −0.341221 + 0.0725288i
\(962\) −1.00071 3.07987i −0.0322642 0.0992989i
\(963\) 0 0
\(964\) −5.94735 + 18.3041i −0.191551 + 0.589534i
\(965\) 3.69043 + 1.35817i 0.118799 + 0.0437211i
\(966\) 0 0
\(967\) −2.15909 20.5424i −0.0694318 0.660599i −0.972786 0.231705i \(-0.925570\pi\)
0.903354 0.428895i \(-0.141097\pi\)
\(968\) 9.92488 17.1904i 0.318998 0.552520i
\(969\) 0 0
\(970\) 38.9100 11.0068i 1.24932 0.353408i
\(971\) −24.5224 17.8166i −0.786962 0.571761i 0.120098 0.992762i \(-0.461679\pi\)
−0.907060 + 0.421001i \(0.861679\pi\)
\(972\) 0 0
\(973\) 7.22044 22.2222i 0.231477 0.712412i
\(974\) 9.49335 + 16.4430i 0.304186 + 0.526866i
\(975\) 0 0
\(976\) −9.33514 + 16.1689i −0.298810 + 0.517555i
\(977\) 15.7527 + 17.4951i 0.503973 + 0.559719i 0.940422 0.340010i \(-0.110430\pi\)
−0.436448 + 0.899729i \(0.643764\pi\)
\(978\) 0 0
\(979\) −3.58946 + 34.1514i −0.114719 + 1.09148i
\(980\) 8.67937 0.575740i 0.277252 0.0183913i
\(981\) 0 0
\(982\) 66.1926 2.11229
\(983\) −17.6593 7.86243i −0.563245 0.250773i 0.105305 0.994440i \(-0.466418\pi\)
−0.668550 + 0.743667i \(0.733085\pi\)
\(984\) 0 0
\(985\) 1.56459 3.17899i 0.0498521 0.101291i
\(986\) 4.90295 + 5.44528i 0.156142 + 0.173413i
\(987\) 0 0
\(988\) −2.39821 + 2.66348i −0.0762971 + 0.0847365i
\(989\) 0.0405939 0.124935i 0.00129081 0.00397271i
\(990\) 0 0
\(991\) −0.458610 1.41146i −0.0145682 0.0448364i 0.943508 0.331349i \(-0.107504\pi\)
−0.958076 + 0.286513i \(0.907504\pi\)
\(992\) 24.3635 + 10.8473i 0.773540 + 0.344402i
\(993\) 0 0
\(994\) −3.27021 31.1140i −0.103725 0.986876i
\(995\) −1.84036 10.6600i −0.0583433 0.337944i
\(996\) 0 0
\(997\) 1.65392 15.7360i 0.0523803 0.498365i −0.936609 0.350377i \(-0.886053\pi\)
0.988989 0.147988i \(-0.0472798\pi\)
\(998\) −18.6267 + 57.3271i −0.589619 + 1.81466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.r.a.496.7 224
3.2 odd 2 225.2.q.a.121.22 yes 224
9.2 odd 6 225.2.q.a.196.7 yes 224
9.7 even 3 inner 675.2.r.a.46.22 224
25.6 even 5 inner 675.2.r.a.631.22 224
75.56 odd 10 225.2.q.a.31.7 224
225.56 odd 30 225.2.q.a.106.22 yes 224
225.106 even 15 inner 675.2.r.a.181.7 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.q.a.31.7 224 75.56 odd 10
225.2.q.a.106.22 yes 224 225.56 odd 30
225.2.q.a.121.22 yes 224 3.2 odd 2
225.2.q.a.196.7 yes 224 9.2 odd 6
675.2.r.a.46.22 224 9.7 even 3 inner
675.2.r.a.181.7 224 225.106 even 15 inner
675.2.r.a.496.7 224 1.1 even 1 trivial
675.2.r.a.631.22 224 25.6 even 5 inner