Properties

Label 675.2.r.a.46.22
Level $675$
Weight $2$
Character 675.46
Analytic conductor $5.390$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(46,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.r (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 46.22
Character \(\chi\) \(=\) 675.46
Dual form 675.2.r.a.631.22

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.11303 + 1.23614i) q^{2} +(-0.0801613 + 0.762684i) q^{4} +(-2.09847 - 0.772289i) q^{5} +(0.694163 - 1.20233i) q^{7} +(1.65942 - 1.20564i) q^{8} +(-1.38100 - 3.45359i) q^{10} +(-3.04269 - 3.37925i) q^{11} +(0.454318 - 0.504572i) q^{13} +(2.25887 - 0.480138i) q^{14} +(4.83758 + 1.02826i) q^{16} +(1.73545 - 1.26088i) q^{17} +(5.56870 - 4.04590i) q^{19} +(0.757229 - 1.53856i) q^{20} +(0.790638 - 7.52241i) q^{22} +(-0.104805 + 0.0222770i) q^{23} +(3.80714 + 3.24125i) q^{25} +1.12939 q^{26} +(0.861350 + 0.625807i) q^{28} +(-1.87597 + 0.835237i) q^{29} +(-5.90734 - 2.63012i) q^{31} +(2.06213 + 3.57172i) q^{32} +(3.49024 + 0.741873i) q^{34} +(-2.38522 + 1.98695i) q^{35} +(-0.886060 - 2.72701i) q^{37} +(11.1994 + 2.38051i) q^{38} +(-4.41335 + 1.24845i) q^{40} +(-3.63522 + 4.03732i) q^{41} +(-0.613014 + 1.06177i) q^{43} +(2.82121 - 2.04973i) q^{44} +(-0.144189 - 0.104759i) q^{46} +(10.8080 - 4.81201i) q^{47} +(2.53627 + 4.39296i) q^{49} +(0.230806 + 8.31377i) q^{50} +(0.348410 + 0.386948i) q^{52} +(1.07586 + 0.781661i) q^{53} +(3.77524 + 9.44110i) q^{55} +(-0.297663 - 2.83208i) q^{56} +(-3.12049 - 1.38933i) q^{58} +(1.15888 - 1.28707i) q^{59} +(-2.52602 - 2.80543i) q^{61} +(-3.32384 - 10.2297i) q^{62} +(0.936638 - 2.88268i) q^{64} +(-1.34305 + 0.707962i) q^{65} +(-12.9879 - 5.78257i) q^{67} +(0.822536 + 1.42467i) q^{68} +(-5.11098 - 0.736948i) q^{70} +(10.9600 + 7.96294i) q^{71} +(-1.83085 + 5.63478i) q^{73} +(2.38477 - 4.13054i) q^{74} +(2.63935 + 4.57148i) q^{76} +(-6.17509 + 1.31256i) q^{77} +(-8.20200 + 3.65176i) q^{79} +(-9.35740 - 5.89378i) q^{80} -9.03682 q^{82} +(1.89564 + 18.0358i) q^{83} +(-4.61555 + 1.30565i) q^{85} +(-1.99480 + 0.424009i) q^{86} +(-9.12328 - 1.93921i) q^{88} +(-2.33361 + 7.18212i) q^{89} +(-0.291288 - 0.896494i) q^{91} +(-0.00858900 - 0.0817189i) q^{92} +(17.9779 + 8.00428i) q^{94} +(-14.8103 + 4.18954i) q^{95} +(9.93178 - 4.42191i) q^{97} +(-2.60738 + 8.02469i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 3 q^{2} + 23 q^{4} + 8 q^{5} - 8 q^{7} + 20 q^{8} - 20 q^{10} + 11 q^{11} - 3 q^{13} - q^{14} + 23 q^{16} + 24 q^{17} - 12 q^{19} - q^{20} - 11 q^{22} - q^{23} - 16 q^{25} + 136 q^{26} + 4 q^{28}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.11303 + 1.23614i 0.787030 + 0.874086i 0.994562 0.104143i \(-0.0332098\pi\)
−0.207532 + 0.978228i \(0.566543\pi\)
\(3\) 0 0
\(4\) −0.0801613 + 0.762684i −0.0400807 + 0.381342i
\(5\) −2.09847 0.772289i −0.938464 0.345378i
\(6\) 0 0
\(7\) 0.694163 1.20233i 0.262369 0.454436i −0.704502 0.709702i \(-0.748830\pi\)
0.966871 + 0.255266i \(0.0821629\pi\)
\(8\) 1.65942 1.20564i 0.586694 0.426258i
\(9\) 0 0
\(10\) −1.38100 3.45359i −0.436709 1.09212i
\(11\) −3.04269 3.37925i −0.917407 1.01888i −0.999752 0.0222795i \(-0.992908\pi\)
0.0823451 0.996604i \(-0.473759\pi\)
\(12\) 0 0
\(13\) 0.454318 0.504572i 0.126005 0.139943i −0.676841 0.736129i \(-0.736651\pi\)
0.802846 + 0.596186i \(0.203318\pi\)
\(14\) 2.25887 0.480138i 0.603709 0.128322i
\(15\) 0 0
\(16\) 4.83758 + 1.02826i 1.20940 + 0.257065i
\(17\) 1.73545 1.26088i 0.420909 0.305808i −0.357095 0.934068i \(-0.616233\pi\)
0.778003 + 0.628260i \(0.216233\pi\)
\(18\) 0 0
\(19\) 5.56870 4.04590i 1.27755 0.928192i 0.278071 0.960560i \(-0.410305\pi\)
0.999476 + 0.0323680i \(0.0103049\pi\)
\(20\) 0.757229 1.53856i 0.169321 0.344033i
\(21\) 0 0
\(22\) 0.790638 7.52241i 0.168565 1.60378i
\(23\) −0.104805 + 0.0222770i −0.0218534 + 0.00464508i −0.218825 0.975764i \(-0.570223\pi\)
0.196972 + 0.980409i \(0.436889\pi\)
\(24\) 0 0
\(25\) 3.80714 + 3.24125i 0.761428 + 0.648250i
\(26\) 1.12939 0.221492
\(27\) 0 0
\(28\) 0.861350 + 0.625807i 0.162780 + 0.118266i
\(29\) −1.87597 + 0.835237i −0.348360 + 0.155100i −0.573455 0.819237i \(-0.694397\pi\)
0.225095 + 0.974337i \(0.427731\pi\)
\(30\) 0 0
\(31\) −5.90734 2.63012i −1.06099 0.472383i −0.199363 0.979926i \(-0.563887\pi\)
−0.861627 + 0.507543i \(0.830554\pi\)
\(32\) 2.06213 + 3.57172i 0.364537 + 0.631397i
\(33\) 0 0
\(34\) 3.49024 + 0.741873i 0.598571 + 0.127230i
\(35\) −2.38522 + 1.98695i −0.403176 + 0.335856i
\(36\) 0 0
\(37\) −0.886060 2.72701i −0.145667 0.448318i 0.851429 0.524470i \(-0.175737\pi\)
−0.997096 + 0.0761520i \(0.975737\pi\)
\(38\) 11.1994 + 2.38051i 1.81679 + 0.386170i
\(39\) 0 0
\(40\) −4.41335 + 1.24845i −0.697811 + 0.197396i
\(41\) −3.63522 + 4.03732i −0.567726 + 0.630524i −0.956822 0.290673i \(-0.906121\pi\)
0.389096 + 0.921197i \(0.372787\pi\)
\(42\) 0 0
\(43\) −0.613014 + 1.06177i −0.0934837 + 0.161919i −0.908975 0.416851i \(-0.863134\pi\)
0.815491 + 0.578770i \(0.196467\pi\)
\(44\) 2.82121 2.04973i 0.425313 0.309008i
\(45\) 0 0
\(46\) −0.144189 0.104759i −0.0212595 0.0154459i
\(47\) 10.8080 4.81201i 1.57650 0.701904i 0.582662 0.812715i \(-0.302011\pi\)
0.993842 + 0.110810i \(0.0353446\pi\)
\(48\) 0 0
\(49\) 2.53627 + 4.39296i 0.362325 + 0.627565i
\(50\) 0.230806 + 8.31377i 0.0326409 + 1.17575i
\(51\) 0 0
\(52\) 0.348410 + 0.386948i 0.0483158 + 0.0536601i
\(53\) 1.07586 + 0.781661i 0.147781 + 0.107369i 0.659219 0.751951i \(-0.270887\pi\)
−0.511438 + 0.859320i \(0.670887\pi\)
\(54\) 0 0
\(55\) 3.77524 + 9.44110i 0.509053 + 1.27304i
\(56\) −0.297663 2.83208i −0.0397769 0.378452i
\(57\) 0 0
\(58\) −3.12049 1.38933i −0.409740 0.182428i
\(59\) 1.15888 1.28707i 0.150873 0.167562i −0.662970 0.748646i \(-0.730705\pi\)
0.813844 + 0.581084i \(0.197371\pi\)
\(60\) 0 0
\(61\) −2.52602 2.80543i −0.323424 0.359199i 0.559404 0.828895i \(-0.311030\pi\)
−0.882828 + 0.469696i \(0.844363\pi\)
\(62\) −3.32384 10.2297i −0.422128 1.29918i
\(63\) 0 0
\(64\) 0.936638 2.88268i 0.117080 0.360334i
\(65\) −1.34305 + 0.707962i −0.166585 + 0.0878119i
\(66\) 0 0
\(67\) −12.9879 5.78257i −1.58672 0.706453i −0.591702 0.806157i \(-0.701544\pi\)
−0.995017 + 0.0997035i \(0.968211\pi\)
\(68\) 0.822536 + 1.42467i 0.0997472 + 0.172767i
\(69\) 0 0
\(70\) −5.11098 0.736948i −0.610878 0.0880821i
\(71\) 10.9600 + 7.96294i 1.30072 + 0.945027i 0.999962 0.00867479i \(-0.00276131\pi\)
0.300755 + 0.953701i \(0.402761\pi\)
\(72\) 0 0
\(73\) −1.83085 + 5.63478i −0.214285 + 0.659501i 0.784919 + 0.619599i \(0.212705\pi\)
−0.999204 + 0.0399023i \(0.987295\pi\)
\(74\) 2.38477 4.13054i 0.277224 0.480166i
\(75\) 0 0
\(76\) 2.63935 + 4.57148i 0.302754 + 0.524385i
\(77\) −6.17509 + 1.31256i −0.703717 + 0.149580i
\(78\) 0 0
\(79\) −8.20200 + 3.65176i −0.922797 + 0.410856i −0.812446 0.583037i \(-0.801864\pi\)
−0.110351 + 0.993893i \(0.535198\pi\)
\(80\) −9.35740 5.89378i −1.04619 0.658945i
\(81\) 0 0
\(82\) −9.03682 −0.997950
\(83\) 1.89564 + 18.0358i 0.208074 + 1.97969i 0.200386 + 0.979717i \(0.435781\pi\)
0.00768794 + 0.999970i \(0.497553\pi\)
\(84\) 0 0
\(85\) −4.61555 + 1.30565i −0.500627 + 0.141617i
\(86\) −1.99480 + 0.424009i −0.215105 + 0.0457220i
\(87\) 0 0
\(88\) −9.12328 1.93921i −0.972545 0.206721i
\(89\) −2.33361 + 7.18212i −0.247363 + 0.761304i 0.747876 + 0.663838i \(0.231074\pi\)
−0.995239 + 0.0974656i \(0.968926\pi\)
\(90\) 0 0
\(91\) −0.291288 0.896494i −0.0305353 0.0939781i
\(92\) −0.00858900 0.0817189i −0.000895466 0.00851979i
\(93\) 0 0
\(94\) 17.9779 + 8.00428i 1.85428 + 0.825579i
\(95\) −14.8103 + 4.18954i −1.51951 + 0.429838i
\(96\) 0 0
\(97\) 9.93178 4.42191i 1.00842 0.448977i 0.165035 0.986288i \(-0.447226\pi\)
0.843384 + 0.537311i \(0.180560\pi\)
\(98\) −2.60738 + 8.02469i −0.263385 + 0.810616i
\(99\) 0 0
\(100\) −2.77723 + 2.64382i −0.277723 + 0.264382i
\(101\) 6.10657 10.5769i 0.607626 1.05244i −0.384004 0.923331i \(-0.625455\pi\)
0.991630 0.129108i \(-0.0412115\pi\)
\(102\) 0 0
\(103\) 0.0887548 0.844445i 0.00874527 0.0832057i −0.989279 0.146040i \(-0.953347\pi\)
0.998024 + 0.0628341i \(0.0200139\pi\)
\(104\) 0.145574 1.38504i 0.0142747 0.135814i
\(105\) 0 0
\(106\) 0.231222 + 2.19993i 0.0224583 + 0.213677i
\(107\) −19.0764 −1.84419 −0.922095 0.386964i \(-0.873524\pi\)
−0.922095 + 0.386964i \(0.873524\pi\)
\(108\) 0 0
\(109\) 4.05014 + 12.4651i 0.387933 + 1.19394i 0.934330 + 0.356409i \(0.115999\pi\)
−0.546397 + 0.837526i \(0.684001\pi\)
\(110\) −7.46861 + 15.1749i −0.712104 + 1.44687i
\(111\) 0 0
\(112\) 4.59438 5.10257i 0.434128 0.482148i
\(113\) 4.65919 5.17455i 0.438299 0.486781i −0.483008 0.875616i \(-0.660456\pi\)
0.921307 + 0.388835i \(0.127122\pi\)
\(114\) 0 0
\(115\) 0.237134 + 0.0341922i 0.0221129 + 0.00318844i
\(116\) −0.486642 1.49773i −0.0451835 0.139061i
\(117\) 0 0
\(118\) 2.88087 0.265205
\(119\) −0.311301 2.96183i −0.0285369 0.271511i
\(120\) 0 0
\(121\) −1.01156 + 9.62433i −0.0919598 + 0.874939i
\(122\) 0.656382 6.24506i 0.0594260 0.565401i
\(123\) 0 0
\(124\) 2.47949 4.29460i 0.222665 0.385666i
\(125\) −5.48598 9.74187i −0.490681 0.871339i
\(126\) 0 0
\(127\) 6.85641 21.1019i 0.608408 1.87249i 0.137000 0.990571i \(-0.456254\pi\)
0.471407 0.881916i \(-0.343746\pi\)
\(128\) 12.1413 5.40566i 1.07315 0.477798i
\(129\) 0 0
\(130\) −2.36999 0.872217i −0.207862 0.0764985i
\(131\) 10.6170 + 4.72699i 0.927610 + 0.412999i 0.814223 0.580552i \(-0.197163\pi\)
0.113387 + 0.993551i \(0.463830\pi\)
\(132\) 0 0
\(133\) −0.998901 9.50390i −0.0866157 0.824093i
\(134\) −7.30778 22.4910i −0.631296 1.94293i
\(135\) 0 0
\(136\) 1.35968 4.18466i 0.116591 0.358832i
\(137\) −16.2011 3.44364i −1.38415 0.294210i −0.545149 0.838339i \(-0.683527\pi\)
−0.839002 + 0.544129i \(0.816860\pi\)
\(138\) 0 0
\(139\) 16.4624 3.49920i 1.39633 0.296798i 0.552544 0.833484i \(-0.313657\pi\)
0.843782 + 0.536686i \(0.180324\pi\)
\(140\) −1.32421 1.97845i −0.111916 0.167209i
\(141\) 0 0
\(142\) 2.35551 + 22.4112i 0.197670 + 1.88070i
\(143\) −3.08743 −0.258184
\(144\) 0 0
\(145\) 4.58172 0.303925i 0.380491 0.0252396i
\(146\) −9.00319 + 4.00848i −0.745109 + 0.331744i
\(147\) 0 0
\(148\) 2.15088 0.457183i 0.176801 0.0375802i
\(149\) 7.97992 + 13.8216i 0.653740 + 1.13231i 0.982208 + 0.187796i \(0.0601345\pi\)
−0.328468 + 0.944515i \(0.606532\pi\)
\(150\) 0 0
\(151\) −4.20769 + 7.28793i −0.342417 + 0.593084i −0.984881 0.173232i \(-0.944579\pi\)
0.642464 + 0.766316i \(0.277912\pi\)
\(152\) 4.36292 13.4277i 0.353880 1.08913i
\(153\) 0 0
\(154\) −8.49556 6.17239i −0.684592 0.497385i
\(155\) 10.3652 + 10.0814i 0.832549 + 0.809757i
\(156\) 0 0
\(157\) 0.0425739 + 0.0737402i 0.00339777 + 0.00588511i 0.867719 0.497055i \(-0.165585\pi\)
−0.864322 + 0.502940i \(0.832252\pi\)
\(158\) −13.6432 6.07433i −1.08539 0.483248i
\(159\) 0 0
\(160\) −1.56892 9.08771i −0.124034 0.718446i
\(161\) −0.0459676 + 0.141474i −0.00362275 + 0.0111497i
\(162\) 0 0
\(163\) 3.81218 + 11.7327i 0.298593 + 0.918974i 0.981991 + 0.188928i \(0.0605013\pi\)
−0.683398 + 0.730046i \(0.739499\pi\)
\(164\) −2.78780 3.09616i −0.217690 0.241770i
\(165\) 0 0
\(166\) −20.1850 + 22.4177i −1.56666 + 1.73995i
\(167\) 6.11816 + 2.72398i 0.473437 + 0.210788i 0.629563 0.776949i \(-0.283234\pi\)
−0.156126 + 0.987737i \(0.549901\pi\)
\(168\) 0 0
\(169\) 1.31068 + 12.4703i 0.100822 + 0.959255i
\(170\) −6.75121 4.25227i −0.517794 0.326134i
\(171\) 0 0
\(172\) −0.760656 0.552649i −0.0579995 0.0421391i
\(173\) −7.69463 8.54575i −0.585012 0.649721i 0.375873 0.926671i \(-0.377343\pi\)
−0.960884 + 0.276950i \(0.910676\pi\)
\(174\) 0 0
\(175\) 6.53981 2.32747i 0.494363 0.175940i
\(176\) −11.2445 19.4761i −0.847588 1.46807i
\(177\) 0 0
\(178\) −11.4755 + 5.10923i −0.860127 + 0.382953i
\(179\) 3.97320 + 2.88670i 0.296971 + 0.215762i 0.726286 0.687393i \(-0.241245\pi\)
−0.429315 + 0.903155i \(0.641245\pi\)
\(180\) 0 0
\(181\) −1.69167 + 1.22907i −0.125741 + 0.0913562i −0.648878 0.760892i \(-0.724762\pi\)
0.523137 + 0.852248i \(0.324762\pi\)
\(182\) 0.783983 1.35790i 0.0581127 0.100654i
\(183\) 0 0
\(184\) −0.147058 + 0.163324i −0.0108412 + 0.0120404i
\(185\) −0.246673 + 6.40685i −0.0181358 + 0.471041i
\(186\) 0 0
\(187\) −9.54128 2.02806i −0.697727 0.148307i
\(188\) 2.80367 + 8.62880i 0.204478 + 0.629320i
\(189\) 0 0
\(190\) −21.6632 13.6446i −1.57161 0.989886i
\(191\) 10.0452 + 2.13518i 0.726846 + 0.154496i 0.556452 0.830880i \(-0.312162\pi\)
0.170394 + 0.985376i \(0.445496\pi\)
\(192\) 0 0
\(193\) 0.879316 + 1.52302i 0.0632945 + 0.109629i 0.895936 0.444183i \(-0.146506\pi\)
−0.832642 + 0.553812i \(0.813173\pi\)
\(194\) 16.5205 + 7.35539i 1.18610 + 0.528086i
\(195\) 0 0
\(196\) −3.55375 + 1.58223i −0.253839 + 0.113017i
\(197\) −1.28192 0.931373i −0.0913333 0.0663576i 0.541181 0.840906i \(-0.317977\pi\)
−0.632515 + 0.774548i \(0.717977\pi\)
\(198\) 0 0
\(199\) −4.83781 −0.342943 −0.171471 0.985189i \(-0.554852\pi\)
−0.171471 + 0.985189i \(0.554852\pi\)
\(200\) 10.2254 + 0.788557i 0.723047 + 0.0557594i
\(201\) 0 0
\(202\) 19.8713 4.22379i 1.39814 0.297184i
\(203\) −0.298004 + 2.83532i −0.0209158 + 0.199001i
\(204\) 0 0
\(205\) 10.7464 5.66475i 0.750560 0.395643i
\(206\) 1.14264 0.830178i 0.0796117 0.0578413i
\(207\) 0 0
\(208\) 2.71663 1.97375i 0.188365 0.136855i
\(209\) −30.6160 6.50762i −2.11775 0.450142i
\(210\) 0 0
\(211\) 4.19980 0.892696i 0.289126 0.0614557i −0.0610653 0.998134i \(-0.519450\pi\)
0.350192 + 0.936678i \(0.386116\pi\)
\(212\) −0.682403 + 0.757885i −0.0468676 + 0.0520518i
\(213\) 0 0
\(214\) −21.2326 23.5812i −1.45143 1.61198i
\(215\) 2.10638 1.75467i 0.143654 0.119667i
\(216\) 0 0
\(217\) −7.26291 + 5.27682i −0.493039 + 0.358214i
\(218\) −10.9007 + 18.8805i −0.738287 + 1.27875i
\(219\) 0 0
\(220\) −7.50320 + 2.12250i −0.505866 + 0.143099i
\(221\) 0.152243 1.44850i 0.0102410 0.0974367i
\(222\) 0 0
\(223\) 10.8453 + 12.0449i 0.726254 + 0.806587i 0.987321 0.158734i \(-0.0507411\pi\)
−0.261067 + 0.965321i \(0.584074\pi\)
\(224\) 5.72583 0.382573
\(225\) 0 0
\(226\) 11.5823 0.770443
\(227\) −6.16408 6.84590i −0.409124 0.454379i 0.503004 0.864284i \(-0.332228\pi\)
−0.912128 + 0.409906i \(0.865562\pi\)
\(228\) 0 0
\(229\) 0.857635 8.15985i 0.0566741 0.539218i −0.928943 0.370223i \(-0.879281\pi\)
0.985617 0.168995i \(-0.0540521\pi\)
\(230\) 0.221671 + 0.331189i 0.0146166 + 0.0218380i
\(231\) 0 0
\(232\) −2.10604 + 3.64776i −0.138268 + 0.239487i
\(233\) 6.70215 4.86940i 0.439073 0.319005i −0.346194 0.938163i \(-0.612526\pi\)
0.785266 + 0.619158i \(0.212526\pi\)
\(234\) 0 0
\(235\) −26.3964 + 1.75099i −1.72191 + 0.114222i
\(236\) 0.888727 + 0.987032i 0.0578512 + 0.0642503i
\(237\) 0 0
\(238\) 3.31477 3.68142i 0.214864 0.238631i
\(239\) 1.05559 0.224373i 0.0682807 0.0145135i −0.173645 0.984808i \(-0.555554\pi\)
0.241925 + 0.970295i \(0.422221\pi\)
\(240\) 0 0
\(241\) 24.5479 + 5.21783i 1.58127 + 0.336110i 0.913049 0.407851i \(-0.133722\pi\)
0.668223 + 0.743961i \(0.267055\pi\)
\(242\) −13.0229 + 9.46173i −0.837147 + 0.608223i
\(243\) 0 0
\(244\) 2.34215 1.70167i 0.149941 0.108938i
\(245\) −1.92966 11.1772i −0.123281 0.714086i
\(246\) 0 0
\(247\) 0.488517 4.64793i 0.0310836 0.295741i
\(248\) −12.9737 + 2.75765i −0.823833 + 0.175111i
\(249\) 0 0
\(250\) 5.93630 17.6244i 0.375444 1.11467i
\(251\) 23.1900 1.46374 0.731869 0.681445i \(-0.238648\pi\)
0.731869 + 0.681445i \(0.238648\pi\)
\(252\) 0 0
\(253\) 0.394169 + 0.286381i 0.0247812 + 0.0180046i
\(254\) 33.7163 15.0115i 2.11555 0.941903i
\(255\) 0 0
\(256\) 14.6579 + 6.52610i 0.916116 + 0.407881i
\(257\) 10.4244 + 18.0555i 0.650253 + 1.12627i 0.983061 + 0.183277i \(0.0586705\pi\)
−0.332808 + 0.942995i \(0.607996\pi\)
\(258\) 0 0
\(259\) −3.89383 0.827659i −0.241951 0.0514282i
\(260\) −0.432291 1.08107i −0.0268096 0.0670452i
\(261\) 0 0
\(262\) 5.97377 + 18.3854i 0.369061 + 1.13585i
\(263\) −8.87330 1.88608i −0.547151 0.116301i −0.0739614 0.997261i \(-0.523564\pi\)
−0.473190 + 0.880961i \(0.656897\pi\)
\(264\) 0 0
\(265\) −1.65400 2.47117i −0.101604 0.151803i
\(266\) 10.6364 11.8129i 0.652159 0.724296i
\(267\) 0 0
\(268\) 5.45140 9.44209i 0.332997 0.576768i
\(269\) −12.0005 + 8.71886i −0.731683 + 0.531599i −0.890095 0.455774i \(-0.849362\pi\)
0.158413 + 0.987373i \(0.449362\pi\)
\(270\) 0 0
\(271\) 6.34725 + 4.61155i 0.385568 + 0.280132i 0.763637 0.645646i \(-0.223412\pi\)
−0.378069 + 0.925777i \(0.623412\pi\)
\(272\) 9.69190 4.31511i 0.587658 0.261642i
\(273\) 0 0
\(274\) −13.7754 23.8597i −0.832203 1.44142i
\(275\) −0.630957 22.7274i −0.0380481 1.37051i
\(276\) 0 0
\(277\) −14.8863 16.5329i −0.894429 0.993364i 0.105571 0.994412i \(-0.466333\pi\)
−0.999999 + 0.00104812i \(0.999666\pi\)
\(278\) 22.6487 + 16.4552i 1.35838 + 0.986919i
\(279\) 0 0
\(280\) −1.56255 + 6.17291i −0.0933799 + 0.368902i
\(281\) 1.06166 + 10.1010i 0.0633334 + 0.602577i 0.979453 + 0.201672i \(0.0646376\pi\)
−0.916120 + 0.400905i \(0.868696\pi\)
\(282\) 0 0
\(283\) 0.696855 + 0.310260i 0.0414237 + 0.0184430i 0.427344 0.904089i \(-0.359449\pi\)
−0.385920 + 0.922532i \(0.626116\pi\)
\(284\) −6.95177 + 7.72073i −0.412512 + 0.458141i
\(285\) 0 0
\(286\) −3.43640 3.81650i −0.203198 0.225675i
\(287\) 2.33074 + 7.17328i 0.137579 + 0.423425i
\(288\) 0 0
\(289\) −3.83131 + 11.7916i −0.225371 + 0.693622i
\(290\) 5.47528 + 5.32538i 0.321519 + 0.312717i
\(291\) 0 0
\(292\) −4.15079 1.84805i −0.242907 0.108149i
\(293\) −3.29507 5.70722i −0.192500 0.333419i 0.753578 0.657358i \(-0.228326\pi\)
−0.946078 + 0.323939i \(0.894993\pi\)
\(294\) 0 0
\(295\) −3.42586 + 1.80588i −0.199461 + 0.105142i
\(296\) −4.75815 3.45699i −0.276562 0.200934i
\(297\) 0 0
\(298\) −8.20364 + 25.2482i −0.475224 + 1.46259i
\(299\) −0.0363745 + 0.0630025i −0.00210359 + 0.00364353i
\(300\) 0 0
\(301\) 0.851063 + 1.47408i 0.0490545 + 0.0849648i
\(302\) −13.6922 + 2.91037i −0.787899 + 0.167473i
\(303\) 0 0
\(304\) 31.0993 13.8463i 1.78367 0.794139i
\(305\) 3.13418 + 7.83794i 0.179462 + 0.448799i
\(306\) 0 0
\(307\) 20.2069 1.15327 0.576634 0.817002i \(-0.304366\pi\)
0.576634 + 0.817002i \(0.304366\pi\)
\(308\) −0.506062 4.81486i −0.0288356 0.274352i
\(309\) 0 0
\(310\) −0.925333 + 24.0337i −0.0525554 + 1.36502i
\(311\) 17.4845 3.71644i 0.991455 0.210740i 0.316494 0.948594i \(-0.397494\pi\)
0.674960 + 0.737854i \(0.264161\pi\)
\(312\) 0 0
\(313\) −17.9489 3.81515i −1.01453 0.215645i −0.329496 0.944157i \(-0.606879\pi\)
−0.685033 + 0.728512i \(0.740212\pi\)
\(314\) −0.0437675 + 0.134702i −0.00246994 + 0.00760170i
\(315\) 0 0
\(316\) −2.12766 6.54826i −0.119690 0.368369i
\(317\) 0.331660 + 3.15554i 0.0186279 + 0.177233i 0.999880 0.0154964i \(-0.00493285\pi\)
−0.981252 + 0.192729i \(0.938266\pi\)
\(318\) 0 0
\(319\) 8.53049 + 3.79802i 0.477616 + 0.212648i
\(320\) −4.19176 + 5.32585i −0.234327 + 0.297724i
\(321\) 0 0
\(322\) −0.226045 + 0.100642i −0.0125970 + 0.00560855i
\(323\) 4.56282 14.0429i 0.253882 0.781369i
\(324\) 0 0
\(325\) 3.36509 0.448416i 0.186662 0.0248736i
\(326\) −10.2602 + 17.7712i −0.568261 + 0.984256i
\(327\) 0 0
\(328\) −1.16481 + 11.0824i −0.0643157 + 0.611923i
\(329\) 1.71688 16.3350i 0.0946546 0.900579i
\(330\) 0 0
\(331\) 1.54265 + 14.6773i 0.0847916 + 0.806738i 0.951443 + 0.307824i \(0.0996009\pi\)
−0.866652 + 0.498914i \(0.833732\pi\)
\(332\) −13.9076 −0.763278
\(333\) 0 0
\(334\) 3.44246 + 10.5948i 0.188363 + 0.579721i
\(335\) 22.7888 + 22.1649i 1.24509 + 1.21100i
\(336\) 0 0
\(337\) −8.16234 + 9.06519i −0.444631 + 0.493813i −0.923244 0.384213i \(-0.874473\pi\)
0.478614 + 0.878026i \(0.341139\pi\)
\(338\) −13.9563 + 15.5000i −0.759121 + 0.843089i
\(339\) 0 0
\(340\) −0.625806 3.62487i −0.0339391 0.196586i
\(341\) 9.08639 + 27.9650i 0.492056 + 1.51439i
\(342\) 0 0
\(343\) 16.7606 0.904989
\(344\) 0.262866 + 2.50100i 0.0141728 + 0.134845i
\(345\) 0 0
\(346\) 1.99943 19.0233i 0.107490 1.02270i
\(347\) 2.27230 21.6195i 0.121983 1.16059i −0.746677 0.665187i \(-0.768352\pi\)
0.868661 0.495408i \(-0.164981\pi\)
\(348\) 0 0
\(349\) 5.54554 9.60516i 0.296846 0.514152i −0.678567 0.734539i \(-0.737399\pi\)
0.975413 + 0.220387i \(0.0707319\pi\)
\(350\) 10.1561 + 5.49361i 0.542866 + 0.293646i
\(351\) 0 0
\(352\) 5.79531 17.8361i 0.308891 0.950669i
\(353\) −4.63276 + 2.06264i −0.246577 + 0.109783i −0.526304 0.850296i \(-0.676423\pi\)
0.279727 + 0.960080i \(0.409756\pi\)
\(354\) 0 0
\(355\) −16.8496 25.1743i −0.894284 1.33611i
\(356\) −5.29063 2.35554i −0.280403 0.124843i
\(357\) 0 0
\(358\) 0.853912 + 8.12443i 0.0451306 + 0.429389i
\(359\) 9.46581 + 29.1328i 0.499586 + 1.53757i 0.809685 + 0.586864i \(0.199638\pi\)
−0.310099 + 0.950704i \(0.600362\pi\)
\(360\) 0 0
\(361\) 8.76981 26.9907i 0.461569 1.42056i
\(362\) −3.40219 0.723158i −0.178815 0.0380083i
\(363\) 0 0
\(364\) 0.707091 0.150297i 0.0370617 0.00787770i
\(365\) 8.19366 10.4105i 0.428876 0.544908i
\(366\) 0 0
\(367\) 1.67022 + 15.8911i 0.0871849 + 0.829509i 0.947502 + 0.319750i \(0.103599\pi\)
−0.860317 + 0.509759i \(0.829735\pi\)
\(368\) −0.529910 −0.0276235
\(369\) 0 0
\(370\) −8.19434 + 6.82608i −0.426003 + 0.354871i
\(371\) 1.68664 0.750939i 0.0875658 0.0389868i
\(372\) 0 0
\(373\) −11.0182 + 2.34198i −0.570499 + 0.121263i −0.484124 0.874999i \(-0.660862\pi\)
−0.0863750 + 0.996263i \(0.527528\pi\)
\(374\) −8.11274 14.0517i −0.419500 0.726595i
\(375\) 0 0
\(376\) 12.1334 21.0157i 0.625733 1.08380i
\(377\) −0.430852 + 1.32603i −0.0221900 + 0.0682938i
\(378\) 0 0
\(379\) −17.8996 13.0048i −0.919440 0.668012i 0.0239446 0.999713i \(-0.492377\pi\)
−0.943385 + 0.331701i \(0.892377\pi\)
\(380\) −2.00808 11.6314i −0.103012 0.596681i
\(381\) 0 0
\(382\) 8.54123 + 14.7938i 0.437007 + 0.756919i
\(383\) −5.77940 2.57315i −0.295313 0.131482i 0.253732 0.967275i \(-0.418342\pi\)
−0.549045 + 0.835793i \(0.685009\pi\)
\(384\) 0 0
\(385\) 13.9719 + 2.01460i 0.712074 + 0.102673i
\(386\) −0.903967 + 2.78213i −0.0460107 + 0.141606i
\(387\) 0 0
\(388\) 2.57638 + 7.92927i 0.130796 + 0.402548i
\(389\) −22.1352 24.5837i −1.12230 1.24644i −0.965947 0.258740i \(-0.916693\pi\)
−0.156354 0.987701i \(-0.549974\pi\)
\(390\) 0 0
\(391\) −0.153796 + 0.170807i −0.00777777 + 0.00863809i
\(392\) 9.50508 + 4.23193i 0.480079 + 0.213745i
\(393\) 0 0
\(394\) −0.275508 2.62129i −0.0138799 0.132059i
\(395\) 20.0319 1.32880i 1.00791 0.0668591i
\(396\) 0 0
\(397\) 22.9141 + 16.6480i 1.15002 + 0.835541i 0.988484 0.151325i \(-0.0483539\pi\)
0.161540 + 0.986866i \(0.448354\pi\)
\(398\) −5.38462 5.98022i −0.269907 0.299762i
\(399\) 0 0
\(400\) 15.0845 + 19.5945i 0.754225 + 0.979727i
\(401\) 4.98614 + 8.63625i 0.248996 + 0.431274i 0.963248 0.268615i \(-0.0865660\pi\)
−0.714251 + 0.699889i \(0.753233\pi\)
\(402\) 0 0
\(403\) −4.01089 + 1.78577i −0.199797 + 0.0889553i
\(404\) 7.57731 + 5.50524i 0.376985 + 0.273896i
\(405\) 0 0
\(406\) −3.83655 + 2.78742i −0.190405 + 0.138337i
\(407\) −6.51926 + 11.2917i −0.323148 + 0.559708i
\(408\) 0 0
\(409\) −6.46434 + 7.17938i −0.319641 + 0.354997i −0.881456 0.472265i \(-0.843436\pi\)
0.561815 + 0.827263i \(0.310103\pi\)
\(410\) 18.9635 + 6.97904i 0.936539 + 0.344670i
\(411\) 0 0
\(412\) 0.636930 + 0.135384i 0.0313793 + 0.00666988i
\(413\) −0.743021 2.28678i −0.0365617 0.112525i
\(414\) 0 0
\(415\) 9.95092 39.3116i 0.488471 1.92973i
\(416\) 2.73905 + 0.582204i 0.134293 + 0.0285449i
\(417\) 0 0
\(418\) −26.0321 45.0889i −1.27327 2.20537i
\(419\) 11.5515 + 5.14308i 0.564330 + 0.251256i 0.669014 0.743250i \(-0.266717\pi\)
−0.104684 + 0.994506i \(0.533383\pi\)
\(420\) 0 0
\(421\) −20.9466 + 9.32602i −1.02087 + 0.454522i −0.847760 0.530380i \(-0.822049\pi\)
−0.173114 + 0.984902i \(0.555383\pi\)
\(422\) 5.77800 + 4.19797i 0.281269 + 0.204354i
\(423\) 0 0
\(424\) 2.72771 0.132470
\(425\) 10.6939 + 0.824687i 0.518732 + 0.0400032i
\(426\) 0 0
\(427\) −5.12652 + 1.08968i −0.248090 + 0.0527331i
\(428\) 1.52919 14.5493i 0.0739163 0.703267i
\(429\) 0 0
\(430\) 4.51349 + 0.650797i 0.217660 + 0.0313842i
\(431\) −10.6124 + 7.71039i −0.511183 + 0.371397i −0.813272 0.581883i \(-0.802316\pi\)
0.302089 + 0.953280i \(0.402316\pi\)
\(432\) 0 0
\(433\) −19.0904 + 13.8700i −0.917425 + 0.666548i −0.942882 0.333128i \(-0.891896\pi\)
0.0254569 + 0.999676i \(0.491896\pi\)
\(434\) −14.6067 3.10476i −0.701146 0.149033i
\(435\) 0 0
\(436\) −9.83156 + 2.08976i −0.470846 + 0.100081i
\(437\) −0.493498 + 0.548085i −0.0236072 + 0.0262184i
\(438\) 0 0
\(439\) −5.42383 6.02378i −0.258865 0.287499i 0.599677 0.800242i \(-0.295296\pi\)
−0.858542 + 0.512743i \(0.828629\pi\)
\(440\) 17.6473 + 11.1152i 0.841301 + 0.529896i
\(441\) 0 0
\(442\) 1.96001 1.42403i 0.0932280 0.0677341i
\(443\) 0.254259 0.440389i 0.0120802 0.0209235i −0.859922 0.510425i \(-0.829488\pi\)
0.872002 + 0.489502i \(0.162821\pi\)
\(444\) 0 0
\(445\) 10.4437 13.2692i 0.495078 0.629022i
\(446\) −2.81813 + 26.8127i −0.133442 + 1.26962i
\(447\) 0 0
\(448\) −2.81574 3.12719i −0.133031 0.147746i
\(449\) −7.22605 −0.341018 −0.170509 0.985356i \(-0.554541\pi\)
−0.170509 + 0.985356i \(0.554541\pi\)
\(450\) 0 0
\(451\) 24.7040 1.16327
\(452\) 3.57306 + 3.96829i 0.168063 + 0.186652i
\(453\) 0 0
\(454\) 1.60172 15.2394i 0.0751726 0.715219i
\(455\) −0.0810927 + 2.10622i −0.00380168 + 0.0987412i
\(456\) 0 0
\(457\) −7.94049 + 13.7533i −0.371441 + 0.643354i −0.989787 0.142551i \(-0.954469\pi\)
0.618347 + 0.785905i \(0.287803\pi\)
\(458\) 11.0413 8.02199i 0.515927 0.374843i
\(459\) 0 0
\(460\) −0.0450869 + 0.178118i −0.00210219 + 0.00830478i
\(461\) −22.0858 24.5288i −1.02864 1.14242i −0.989697 0.143179i \(-0.954267\pi\)
−0.0389435 0.999241i \(-0.512399\pi\)
\(462\) 0 0
\(463\) 12.3216 13.6845i 0.572632 0.635972i −0.385360 0.922766i \(-0.625923\pi\)
0.957992 + 0.286794i \(0.0925895\pi\)
\(464\) −9.93402 + 2.11154i −0.461175 + 0.0980258i
\(465\) 0 0
\(466\) 13.4790 + 2.86504i 0.624401 + 0.132721i
\(467\) 14.9196 10.8397i 0.690398 0.501603i −0.186393 0.982475i \(-0.559680\pi\)
0.876791 + 0.480872i \(0.159680\pi\)
\(468\) 0 0
\(469\) −15.9682 + 11.6016i −0.737344 + 0.535712i
\(470\) −31.5445 30.6809i −1.45504 1.41520i
\(471\) 0 0
\(472\) 0.371331 3.53298i 0.0170919 0.162618i
\(473\) 5.45321 1.15911i 0.250739 0.0532962i
\(474\) 0 0
\(475\) 34.3146 + 2.64625i 1.57446 + 0.121418i
\(476\) 2.28390 0.104682
\(477\) 0 0
\(478\) 1.45226 + 1.05513i 0.0664250 + 0.0482606i
\(479\) 21.0863 9.38822i 0.963457 0.428959i 0.136137 0.990690i \(-0.456531\pi\)
0.827320 + 0.561731i \(0.189865\pi\)
\(480\) 0 0
\(481\) −1.77853 0.791851i −0.0810938 0.0361053i
\(482\) 20.8726 + 36.1524i 0.950720 + 1.64670i
\(483\) 0 0
\(484\) −7.25923 1.54300i −0.329965 0.0701363i
\(485\) −24.2565 + 1.60904i −1.10143 + 0.0730627i
\(486\) 0 0
\(487\) −3.52725 10.8558i −0.159835 0.491921i 0.838784 0.544465i \(-0.183267\pi\)
−0.998619 + 0.0525435i \(0.983267\pi\)
\(488\) −7.57408 1.60992i −0.342863 0.0728777i
\(489\) 0 0
\(490\) 11.6689 14.8259i 0.527146 0.669766i
\(491\) 26.6271 29.5724i 1.20167 1.33459i 0.273748 0.961801i \(-0.411737\pi\)
0.927918 0.372784i \(-0.121597\pi\)
\(492\) 0 0
\(493\) −2.20253 + 3.81489i −0.0991969 + 0.171814i
\(494\) 6.28925 4.56941i 0.282967 0.205587i
\(495\) 0 0
\(496\) −25.8728 18.7977i −1.16172 0.844041i
\(497\) 17.1821 7.64996i 0.770723 0.343148i
\(498\) 0 0
\(499\) 18.1188 + 31.3826i 0.811107 + 1.40488i 0.912090 + 0.409990i \(0.134468\pi\)
−0.100983 + 0.994888i \(0.532199\pi\)
\(500\) 7.86973 3.40315i 0.351945 0.152193i
\(501\) 0 0
\(502\) 25.8111 + 28.6662i 1.15201 + 1.27943i
\(503\) −26.1554 19.0030i −1.16621 0.847302i −0.175661 0.984451i \(-0.556206\pi\)
−0.990550 + 0.137149i \(0.956206\pi\)
\(504\) 0 0
\(505\) −20.9829 + 17.4792i −0.933725 + 0.777816i
\(506\) 0.0847140 + 0.806000i 0.00376600 + 0.0358311i
\(507\) 0 0
\(508\) 15.5444 + 6.92082i 0.689672 + 0.307062i
\(509\) 0.180712 0.200701i 0.00800991 0.00889590i −0.739127 0.673567i \(-0.764761\pi\)
0.747136 + 0.664671i \(0.231428\pi\)
\(510\) 0 0
\(511\) 5.50393 + 6.11274i 0.243480 + 0.270411i
\(512\) 0.0335504 + 0.103257i 0.00148273 + 0.00456337i
\(513\) 0 0
\(514\) −10.7166 + 32.9823i −0.472689 + 1.45479i
\(515\) −0.838405 + 1.70350i −0.0369445 + 0.0750651i
\(516\) 0 0
\(517\) −49.1463 21.8814i −2.16145 0.962341i
\(518\) −3.31084 5.73454i −0.145470 0.251961i
\(519\) 0 0
\(520\) −1.37513 + 2.79404i −0.0603036 + 0.122527i
\(521\) −22.4017 16.2758i −0.981435 0.713054i −0.0234061 0.999726i \(-0.507451\pi\)
−0.958029 + 0.286672i \(0.907451\pi\)
\(522\) 0 0
\(523\) 11.9194 36.6841i 0.521198 1.60408i −0.250515 0.968113i \(-0.580600\pi\)
0.771713 0.635971i \(-0.219400\pi\)
\(524\) −4.45627 + 7.71848i −0.194673 + 0.337183i
\(525\) 0 0
\(526\) −7.54477 13.0679i −0.328968 0.569789i
\(527\) −13.5682 + 2.88400i −0.591038 + 0.125629i
\(528\) 0 0
\(529\) −21.0011 + 9.35027i −0.913089 + 0.406534i
\(530\) 1.21377 4.79506i 0.0527229 0.208284i
\(531\) 0 0
\(532\) 7.32855 0.317733
\(533\) 0.385571 + 3.66846i 0.0167009 + 0.158899i
\(534\) 0 0
\(535\) 40.0313 + 14.7325i 1.73070 + 0.636943i
\(536\) −28.5240 + 6.06297i −1.23205 + 0.261880i
\(537\) 0 0
\(538\) −24.1347 5.12998i −1.04052 0.221169i
\(539\) 7.12781 21.9371i 0.307016 0.944900i
\(540\) 0 0
\(541\) −9.26487 28.5143i −0.398328 1.22593i −0.926339 0.376690i \(-0.877062\pi\)
0.528011 0.849237i \(-0.322938\pi\)
\(542\) 1.36414 + 12.9789i 0.0585948 + 0.557492i
\(543\) 0 0
\(544\) 8.08224 + 3.59845i 0.346523 + 0.154282i
\(545\) 1.12753 29.2854i 0.0482981 1.25445i
\(546\) 0 0
\(547\) 5.24843 2.33675i 0.224407 0.0999123i −0.291454 0.956585i \(-0.594139\pi\)
0.515860 + 0.856673i \(0.327472\pi\)
\(548\) 3.92511 12.0802i 0.167672 0.516042i
\(549\) 0 0
\(550\) 27.3921 26.0762i 1.16800 1.11189i
\(551\) −7.06745 + 12.2412i −0.301083 + 0.521492i
\(552\) 0 0
\(553\) −1.30291 + 12.3964i −0.0554055 + 0.527148i
\(554\) 3.86816 36.8031i 0.164343 1.56361i
\(555\) 0 0
\(556\) 1.34913 + 12.8361i 0.0572160 + 0.544373i
\(557\) 13.8510 0.586887 0.293444 0.955976i \(-0.405199\pi\)
0.293444 + 0.955976i \(0.405199\pi\)
\(558\) 0 0
\(559\) 0.257236 + 0.791691i 0.0108799 + 0.0334850i
\(560\) −13.5818 + 7.15940i −0.573936 + 0.302540i
\(561\) 0 0
\(562\) −11.3047 + 12.5551i −0.476859 + 0.529606i
\(563\) 19.9405 22.1462i 0.840393 0.933351i −0.158144 0.987416i \(-0.550551\pi\)
0.998537 + 0.0540647i \(0.0172177\pi\)
\(564\) 0 0
\(565\) −13.7734 + 7.26039i −0.579452 + 0.305447i
\(566\) 0.392094 + 1.20674i 0.0164809 + 0.0507231i
\(567\) 0 0
\(568\) 27.7878 1.16595
\(569\) 1.71235 + 16.2919i 0.0717853 + 0.682991i 0.969945 + 0.243323i \(0.0782374\pi\)
−0.898160 + 0.439669i \(0.855096\pi\)
\(570\) 0 0
\(571\) 0.540001 5.13777i 0.0225983 0.215009i −0.977395 0.211420i \(-0.932191\pi\)
0.999994 0.00358843i \(-0.00114223\pi\)
\(572\) 0.247492 2.35473i 0.0103482 0.0984562i
\(573\) 0 0
\(574\) −6.27303 + 10.8652i −0.261831 + 0.453505i
\(575\) −0.471213 0.254888i −0.0196509 0.0106295i
\(576\) 0 0
\(577\) 4.99821 15.3829i 0.208078 0.640399i −0.791495 0.611176i \(-0.790697\pi\)
0.999573 0.0292230i \(-0.00930328\pi\)
\(578\) −18.8404 + 8.38830i −0.783659 + 0.348907i
\(579\) 0 0
\(580\) −0.135478 + 3.51876i −0.00562540 + 0.146109i
\(581\) 23.0008 + 10.2406i 0.954234 + 0.424852i
\(582\) 0 0
\(583\) −0.632094 6.01397i −0.0261787 0.249073i
\(584\) 3.75536 + 11.5578i 0.155398 + 0.478266i
\(585\) 0 0
\(586\) 3.38744 10.4255i 0.139934 0.430672i
\(587\) −27.4905 5.84328i −1.13465 0.241178i −0.397959 0.917403i \(-0.630281\pi\)
−0.736695 + 0.676225i \(0.763615\pi\)
\(588\) 0 0
\(589\) −43.5374 + 9.25416i −1.79393 + 0.381311i
\(590\) −6.04541 2.22486i −0.248885 0.0915961i
\(591\) 0 0
\(592\) −1.48231 14.1033i −0.0609226 0.579640i
\(593\) −3.80524 −0.156262 −0.0781312 0.996943i \(-0.524895\pi\)
−0.0781312 + 0.996943i \(0.524895\pi\)
\(594\) 0 0
\(595\) −1.63414 + 6.45573i −0.0669931 + 0.264659i
\(596\) −11.1812 + 4.97820i −0.458000 + 0.203915i
\(597\) 0 0
\(598\) −0.118366 + 0.0251595i −0.00484035 + 0.00102885i
\(599\) −17.5681 30.4289i −0.717813 1.24329i −0.961864 0.273527i \(-0.911810\pi\)
0.244051 0.969762i \(-0.421524\pi\)
\(600\) 0 0
\(601\) −10.6092 + 18.3758i −0.432760 + 0.749563i −0.997110 0.0759732i \(-0.975794\pi\)
0.564350 + 0.825536i \(0.309127\pi\)
\(602\) −0.874923 + 2.69274i −0.0356592 + 0.109748i
\(603\) 0 0
\(604\) −5.22110 3.79335i −0.212443 0.154349i
\(605\) 9.55549 19.4151i 0.388486 0.789337i
\(606\) 0 0
\(607\) −7.55362 13.0833i −0.306592 0.531033i 0.671023 0.741437i \(-0.265855\pi\)
−0.977615 + 0.210404i \(0.932522\pi\)
\(608\) 25.9342 + 11.5467i 1.05177 + 0.468279i
\(609\) 0 0
\(610\) −6.20039 + 12.5981i −0.251046 + 0.510084i
\(611\) 2.48225 7.63958i 0.100421 0.309064i
\(612\) 0 0
\(613\) −0.267857 0.824379i −0.0108186 0.0332963i 0.945501 0.325618i \(-0.105572\pi\)
−0.956320 + 0.292321i \(0.905572\pi\)
\(614\) 22.4909 + 24.9786i 0.907657 + 1.00806i
\(615\) 0 0
\(616\) −8.66461 + 9.62302i −0.349107 + 0.387723i
\(617\) −18.1546 8.08293i −0.730875 0.325407i 0.00733880 0.999973i \(-0.497664\pi\)
−0.738214 + 0.674566i \(0.764331\pi\)
\(618\) 0 0
\(619\) −1.87214 17.8122i −0.0752477 0.715934i −0.965489 0.260445i \(-0.916131\pi\)
0.890241 0.455490i \(-0.150536\pi\)
\(620\) −8.51980 + 7.09720i −0.342163 + 0.285030i
\(621\) 0 0
\(622\) 24.0548 + 17.4768i 0.964510 + 0.700757i
\(623\) 7.01535 + 7.79133i 0.281064 + 0.312153i
\(624\) 0 0
\(625\) 3.98862 + 24.6798i 0.159545 + 0.987191i
\(626\) −15.2615 26.4337i −0.609973 1.05650i
\(627\) 0 0
\(628\) −0.0596532 + 0.0265593i −0.00238042 + 0.00105983i
\(629\) −4.97615 3.61538i −0.198412 0.144155i
\(630\) 0 0
\(631\) −27.5034 + 19.9824i −1.09489 + 0.795487i −0.980219 0.197916i \(-0.936583\pi\)
−0.114675 + 0.993403i \(0.536583\pi\)
\(632\) −9.20786 + 15.9485i −0.366269 + 0.634396i
\(633\) 0 0
\(634\) −3.53155 + 3.92218i −0.140256 + 0.155770i
\(635\) −30.6847 + 38.9864i −1.21768 + 1.54713i
\(636\) 0 0
\(637\) 3.36884 + 0.716068i 0.133478 + 0.0283717i
\(638\) 4.79979 + 14.7722i 0.190025 + 0.584838i
\(639\) 0 0
\(640\) −29.6529 + 1.96701i −1.17213 + 0.0777527i
\(641\) −12.4589 2.64822i −0.492097 0.104599i −0.0448223 0.998995i \(-0.514272\pi\)
−0.447275 + 0.894396i \(0.647606\pi\)
\(642\) 0 0
\(643\) 9.31365 + 16.1317i 0.367295 + 0.636173i 0.989142 0.146966i \(-0.0469507\pi\)
−0.621847 + 0.783139i \(0.713617\pi\)
\(644\) −0.104215 0.0463995i −0.00410664 0.00182840i
\(645\) 0 0
\(646\) 22.4376 9.98987i 0.882796 0.393046i
\(647\) 2.58476 + 1.87794i 0.101617 + 0.0738294i 0.637434 0.770505i \(-0.279996\pi\)
−0.535816 + 0.844335i \(0.679996\pi\)
\(648\) 0 0
\(649\) −7.87544 −0.309138
\(650\) 4.29975 + 3.66064i 0.168650 + 0.143582i
\(651\) 0 0
\(652\) −9.25391 + 1.96698i −0.362411 + 0.0770329i
\(653\) −0.528615 + 5.02943i −0.0206863 + 0.196817i −0.999984 0.00560700i \(-0.998215\pi\)
0.979298 + 0.202424i \(0.0648819\pi\)
\(654\) 0 0
\(655\) −18.6288 18.1188i −0.727888 0.707960i
\(656\) −21.7371 + 15.7929i −0.848691 + 0.616610i
\(657\) 0 0
\(658\) 22.1034 16.0590i 0.861679 0.626046i
\(659\) 1.39674 + 0.296887i 0.0544094 + 0.0115651i 0.235036 0.971987i \(-0.424479\pi\)
−0.180627 + 0.983552i \(0.557813\pi\)
\(660\) 0 0
\(661\) 4.54628 0.966342i 0.176830 0.0375863i −0.118646 0.992937i \(-0.537855\pi\)
0.295475 + 0.955350i \(0.404522\pi\)
\(662\) −16.4263 + 18.2432i −0.638425 + 0.709042i
\(663\) 0 0
\(664\) 24.8904 + 27.6436i 0.965934 + 1.07278i
\(665\) −5.24360 + 20.7151i −0.203338 + 0.803296i
\(666\) 0 0
\(667\) 0.178005 0.129328i 0.00689238 0.00500761i
\(668\) −2.56797 + 4.44786i −0.0993579 + 0.172093i
\(669\) 0 0
\(670\) −2.03444 + 52.8404i −0.0785971 + 2.04140i
\(671\) −1.79436 + 17.0722i −0.0692703 + 0.659063i
\(672\) 0 0
\(673\) 12.5961 + 13.9894i 0.485546 + 0.539253i 0.935280 0.353909i \(-0.115148\pi\)
−0.449734 + 0.893163i \(0.648481\pi\)
\(674\) −20.2908 −0.781572
\(675\) 0 0
\(676\) −9.61597 −0.369845
\(677\) 6.63373 + 7.36751i 0.254955 + 0.283156i 0.857012 0.515297i \(-0.172318\pi\)
−0.602056 + 0.798453i \(0.705652\pi\)
\(678\) 0 0
\(679\) 1.57769 15.0108i 0.0605464 0.576060i
\(680\) −6.08501 + 7.73131i −0.233350 + 0.296482i
\(681\) 0 0
\(682\) −24.4554 + 42.3580i −0.936445 + 1.62197i
\(683\) −21.4995 + 15.6203i −0.822655 + 0.597694i −0.917472 0.397801i \(-0.869774\pi\)
0.0948166 + 0.995495i \(0.469774\pi\)
\(684\) 0 0
\(685\) 31.3379 + 19.7383i 1.19736 + 0.754161i
\(686\) 18.6551 + 20.7186i 0.712254 + 0.791038i
\(687\) 0 0
\(688\) −4.05728 + 4.50607i −0.154682 + 0.171792i
\(689\) 0.883189 0.187728i 0.0336468 0.00715185i
\(690\) 0 0
\(691\) 32.4537 + 6.89825i 1.23460 + 0.262422i 0.778578 0.627548i \(-0.215941\pi\)
0.456020 + 0.889970i \(0.349275\pi\)
\(692\) 7.13452 5.18353i 0.271214 0.197048i
\(693\) 0 0
\(694\) 29.2539 21.2542i 1.11046 0.806799i
\(695\) −37.2483 5.37080i −1.41291 0.203726i
\(696\) 0 0
\(697\) −1.21817 + 11.5902i −0.0461416 + 0.439008i
\(698\) 18.0457 3.83573i 0.683040 0.145185i
\(699\) 0 0
\(700\) 1.25088 + 5.17438i 0.0472789 + 0.195573i
\(701\) −26.1441 −0.987451 −0.493725 0.869618i \(-0.664365\pi\)
−0.493725 + 0.869618i \(0.664365\pi\)
\(702\) 0 0
\(703\) −15.9674 11.6010i −0.602223 0.437540i
\(704\) −12.5912 + 5.60596i −0.474548 + 0.211283i
\(705\) 0 0
\(706\) −7.70611 3.43098i −0.290023 0.129127i
\(707\) −8.47791 14.6842i −0.318845 0.552255i
\(708\) 0 0
\(709\) −39.0480 8.29991i −1.46648 0.311710i −0.595629 0.803259i \(-0.703097\pi\)
−0.870850 + 0.491550i \(0.836431\pi\)
\(710\) 12.3649 48.8483i 0.464048 1.83324i
\(711\) 0 0
\(712\) 4.78661 + 14.7317i 0.179386 + 0.552093i
\(713\) 0.677710 + 0.144052i 0.0253804 + 0.00539478i
\(714\) 0 0
\(715\) 6.47887 + 2.38439i 0.242296 + 0.0891710i
\(716\) −2.52014 + 2.79890i −0.0941819 + 0.104600i
\(717\) 0 0
\(718\) −25.4766 + 44.1267i −0.950777 + 1.64679i
\(719\) −32.4317 + 23.5630i −1.20950 + 0.878751i −0.995185 0.0980142i \(-0.968751\pi\)
−0.214312 + 0.976765i \(0.568751\pi\)
\(720\) 0 0
\(721\) −0.953688 0.692895i −0.0355172 0.0258048i
\(722\) 43.1254 19.2007i 1.60496 0.714575i
\(723\) 0 0
\(724\) −0.801787 1.38874i −0.0297982 0.0516120i
\(725\) −9.84930 2.90063i −0.365794 0.107727i
\(726\) 0 0
\(727\) −23.6216 26.2344i −0.876075 0.972980i 0.123738 0.992315i \(-0.460512\pi\)
−0.999813 + 0.0193348i \(0.993845\pi\)
\(728\) −1.56422 1.13647i −0.0579738 0.0421204i
\(729\) 0 0
\(730\) 21.9886 1.45860i 0.813835 0.0539852i
\(731\) 0.274909 + 2.61559i 0.0101679 + 0.0967410i
\(732\) 0 0
\(733\) 6.14109 + 2.73419i 0.226826 + 0.100990i 0.517003 0.855983i \(-0.327047\pi\)
−0.290177 + 0.956973i \(0.593714\pi\)
\(734\) −17.7847 + 19.7519i −0.656445 + 0.729055i
\(735\) 0 0
\(736\) −0.295689 0.328396i −0.0108993 0.0121049i
\(737\) 19.9773 + 61.4839i 0.735874 + 2.26479i
\(738\) 0 0
\(739\) −3.30815 + 10.1814i −0.121692 + 0.374530i −0.993284 0.115702i \(-0.963088\pi\)
0.871592 + 0.490233i \(0.163088\pi\)
\(740\) −4.86663 0.701715i −0.178901 0.0257956i
\(741\) 0 0
\(742\) 2.80554 + 1.24911i 0.102995 + 0.0458562i
\(743\) 10.6028 + 18.3647i 0.388981 + 0.673735i 0.992313 0.123756i \(-0.0394939\pi\)
−0.603332 + 0.797490i \(0.706161\pi\)
\(744\) 0 0
\(745\) −6.07132 35.1670i −0.222436 1.28842i
\(746\) −15.1586 11.0133i −0.554995 0.403227i
\(747\) 0 0
\(748\) 2.31161 7.11441i 0.0845209 0.260129i
\(749\) −13.2422 + 22.9361i −0.483858 + 0.838067i
\(750\) 0 0
\(751\) −24.6961 42.7750i −0.901175 1.56088i −0.825971 0.563713i \(-0.809372\pi\)
−0.0752042 0.997168i \(-0.523961\pi\)
\(752\) 57.2324 12.1651i 2.08705 0.443616i
\(753\) 0 0
\(754\) −2.11871 + 0.943311i −0.0771589 + 0.0343533i
\(755\) 14.4581 12.0439i 0.526184 0.438324i
\(756\) 0 0
\(757\) −31.2549 −1.13598 −0.567989 0.823036i \(-0.692279\pi\)
−0.567989 + 0.823036i \(0.692279\pi\)
\(758\) −3.84694 36.6012i −0.139727 1.32942i
\(759\) 0 0
\(760\) −19.5255 + 24.8082i −0.708265 + 0.899887i
\(761\) −28.3560 + 6.02725i −1.02790 + 0.218488i −0.690850 0.722998i \(-0.742764\pi\)
−0.337053 + 0.941486i \(0.609430\pi\)
\(762\) 0 0
\(763\) 17.7985 + 3.78319i 0.644349 + 0.136961i
\(764\) −2.43370 + 7.49016i −0.0880482 + 0.270985i
\(765\) 0 0
\(766\) −3.25185 10.0082i −0.117494 0.361610i
\(767\) −0.122917 1.16948i −0.00443827 0.0422273i
\(768\) 0 0
\(769\) 31.1371 + 13.8631i 1.12283 + 0.499917i 0.882282 0.470720i \(-0.156006\pi\)
0.240549 + 0.970637i \(0.422673\pi\)
\(770\) 13.0608 + 19.5136i 0.470679 + 0.703221i
\(771\) 0 0
\(772\) −1.23207 + 0.548553i −0.0443432 + 0.0197428i
\(773\) 9.44334 29.0636i 0.339653 1.04535i −0.624731 0.780840i \(-0.714791\pi\)
0.964384 0.264506i \(-0.0852088\pi\)
\(774\) 0 0
\(775\) −13.9652 29.1604i −0.501645 1.04747i
\(776\) 11.1498 19.3120i 0.400253 0.693259i
\(777\) 0 0
\(778\) 5.75179 54.7247i 0.206212 1.96197i
\(779\) −3.90887 + 37.1904i −0.140050 + 1.33248i
\(780\) 0 0
\(781\) −6.43927 61.2655i −0.230415 2.19225i
\(782\) −0.382321 −0.0136718
\(783\) 0 0
\(784\) 7.75234 + 23.8592i 0.276869 + 0.852116i
\(785\) −0.0323913 0.187621i −0.00115609 0.00669648i
\(786\) 0 0
\(787\) −15.3574 + 17.0562i −0.547434 + 0.607987i −0.951841 0.306592i \(-0.900811\pi\)
0.404407 + 0.914579i \(0.367478\pi\)
\(788\) 0.813104 0.903043i 0.0289656 0.0321696i
\(789\) 0 0
\(790\) 23.9386 + 23.2833i 0.851698 + 0.828381i
\(791\) −2.98726 9.19384i −0.106215 0.326895i
\(792\) 0 0
\(793\) −2.56316 −0.0910205
\(794\) 4.92464 + 46.8548i 0.174769 + 1.66282i
\(795\) 0 0
\(796\) 0.387805 3.68972i 0.0137454 0.130779i
\(797\) 4.54511 43.2438i 0.160996 1.53177i −0.553923 0.832568i \(-0.686870\pi\)
0.714919 0.699207i \(-0.246463\pi\)
\(798\) 0 0
\(799\) 12.6893 21.9786i 0.448916 0.777545i
\(800\) −3.72601 + 20.2819i −0.131734 + 0.717075i
\(801\) 0 0
\(802\) −5.12593 + 15.7760i −0.181003 + 0.557070i
\(803\) 24.6121 10.9580i 0.868541 0.386699i
\(804\) 0 0
\(805\) 0.205720 0.261378i 0.00725068 0.00921236i
\(806\) −6.67170 2.97043i −0.235001 0.104629i
\(807\) 0 0
\(808\) −2.61855 24.9138i −0.0921203 0.876466i
\(809\) 8.36599 + 25.7479i 0.294133 + 0.905247i 0.983511 + 0.180846i \(0.0578836\pi\)
−0.689379 + 0.724401i \(0.742116\pi\)
\(810\) 0 0
\(811\) −11.3390 + 34.8979i −0.398167 + 1.22543i 0.528300 + 0.849058i \(0.322829\pi\)
−0.926468 + 0.376375i \(0.877171\pi\)
\(812\) −2.13857 0.454566i −0.0750490 0.0159522i
\(813\) 0 0
\(814\) −21.2143 + 4.50923i −0.743560 + 0.158049i
\(815\) 1.06128 27.5648i 0.0371752 0.965551i
\(816\) 0 0
\(817\) 0.882127 + 8.39287i 0.0308617 + 0.293630i
\(818\) −16.0697 −0.561865
\(819\) 0 0
\(820\) 3.45897 + 8.65018i 0.120793 + 0.302078i
\(821\) −1.38376 + 0.616087i −0.0482934 + 0.0215016i −0.430741 0.902475i \(-0.641748\pi\)
0.382448 + 0.923977i \(0.375081\pi\)
\(822\) 0 0
\(823\) 35.6064 7.56838i 1.24116 0.263817i 0.459872 0.887985i \(-0.347895\pi\)
0.781290 + 0.624168i \(0.214562\pi\)
\(824\) −0.870816 1.50830i −0.0303363 0.0525440i
\(825\) 0 0
\(826\) 1.99979 3.46374i 0.0695816 0.120519i
\(827\) 0.131104 0.403496i 0.00455892 0.0140309i −0.948751 0.316024i \(-0.897652\pi\)
0.953310 + 0.301993i \(0.0976520\pi\)
\(828\) 0 0
\(829\) −15.0808 10.9568i −0.523778 0.380547i 0.294247 0.955729i \(-0.404931\pi\)
−0.818025 + 0.575182i \(0.804931\pi\)
\(830\) 59.6704 31.4541i 2.07119 1.09179i
\(831\) 0 0
\(832\) −1.02898 1.78225i −0.0356736 0.0617885i
\(833\) 9.94057 + 4.42583i 0.344420 + 0.153346i
\(834\) 0 0
\(835\) −10.7351 10.4412i −0.371502 0.361332i
\(836\) 7.41748 22.8286i 0.256539 0.789545i
\(837\) 0 0
\(838\) 6.49962 + 20.0038i 0.224526 + 0.691019i
\(839\) 19.4361 + 21.5860i 0.671008 + 0.745230i 0.978483 0.206326i \(-0.0661508\pi\)
−0.307475 + 0.951556i \(0.599484\pi\)
\(840\) 0 0
\(841\) −16.5831 + 18.4174i −0.571832 + 0.635084i
\(842\) −34.8424 15.5129i −1.20075 0.534608i
\(843\) 0 0
\(844\) 0.344183 + 3.27468i 0.0118473 + 0.112719i
\(845\) 6.88026 27.1808i 0.236688 0.935047i
\(846\) 0 0
\(847\) 10.8694 + 7.89708i 0.373477 + 0.271347i
\(848\) 4.40083 + 4.88762i 0.151125 + 0.167842i
\(849\) 0 0
\(850\) 10.8832 + 14.1371i 0.373291 + 0.484900i
\(851\) 0.153613 + 0.266066i 0.00526580 + 0.00912063i
\(852\) 0 0
\(853\) 16.0673 7.15364i 0.550135 0.244936i −0.112794 0.993618i \(-0.535980\pi\)
0.662929 + 0.748682i \(0.269313\pi\)
\(854\) −7.05296 5.12428i −0.241347 0.175349i
\(855\) 0 0
\(856\) −31.6559 + 22.9993i −1.08198 + 0.786101i
\(857\) 4.22020 7.30960i 0.144159 0.249691i −0.784900 0.619623i \(-0.787286\pi\)
0.929059 + 0.369932i \(0.120619\pi\)
\(858\) 0 0
\(859\) −22.5902 + 25.0889i −0.770767 + 0.856024i −0.992895 0.118994i \(-0.962033\pi\)
0.222128 + 0.975018i \(0.428700\pi\)
\(860\) 1.16941 + 1.74716i 0.0398765 + 0.0595777i
\(861\) 0 0
\(862\) −21.3431 4.53662i −0.726949 0.154518i
\(863\) −12.9265 39.7837i −0.440023 1.35425i −0.887851 0.460132i \(-0.847802\pi\)
0.447828 0.894120i \(-0.352198\pi\)
\(864\) 0 0
\(865\) 9.54714 + 23.8755i 0.324613 + 0.811790i
\(866\) −38.3934 8.16077i −1.30466 0.277314i
\(867\) 0 0
\(868\) −3.44234 5.96231i −0.116841 0.202374i
\(869\) 37.2964 + 16.6054i 1.26519 + 0.563301i
\(870\) 0 0
\(871\) −8.81834 + 3.92618i −0.298798 + 0.133033i
\(872\) 21.7493 + 15.8018i 0.736523 + 0.535115i
\(873\) 0 0
\(874\) −1.22679 −0.0414967
\(875\) −15.5211 0.166512i −0.524708 0.00562912i
\(876\) 0 0
\(877\) 28.0496 5.96213i 0.947168 0.201327i 0.291666 0.956520i \(-0.405790\pi\)
0.655502 + 0.755193i \(0.272457\pi\)
\(878\) 1.40937 13.4093i 0.0475640 0.452541i
\(879\) 0 0
\(880\) 8.55511 + 49.5540i 0.288393 + 1.67047i
\(881\) 11.7352 8.52611i 0.395368 0.287252i −0.372283 0.928119i \(-0.621425\pi\)
0.767652 + 0.640867i \(0.221425\pi\)
\(882\) 0 0
\(883\) −42.8896 + 31.1611i −1.44335 + 1.04865i −0.456019 + 0.889970i \(0.650725\pi\)
−0.987329 + 0.158684i \(0.949275\pi\)
\(884\) 1.09254 + 0.232227i 0.0367462 + 0.00781065i
\(885\) 0 0
\(886\) 0.827382 0.175865i 0.0277964 0.00590832i
\(887\) 6.01958 6.68542i 0.202118 0.224474i −0.633561 0.773692i \(-0.718408\pi\)
0.835679 + 0.549218i \(0.185074\pi\)
\(888\) 0 0
\(889\) −20.6118 22.8918i −0.691299 0.767765i
\(890\) 28.0268 1.85914i 0.939461 0.0623185i
\(891\) 0 0
\(892\) −10.0558 + 7.30599i −0.336694 + 0.244623i
\(893\) 40.7174 70.5246i 1.36256 2.36001i
\(894\) 0 0
\(895\) −6.10827 9.12611i −0.204177 0.305052i
\(896\) 1.92869 18.3502i 0.0644329 0.613038i
\(897\) 0 0
\(898\) −8.04280 8.93243i −0.268392 0.298079i
\(899\) 13.2788 0.442872
\(900\) 0 0
\(901\) 2.85269 0.0950369
\(902\) 27.4963 + 30.5377i 0.915526 + 1.01679i
\(903\) 0 0
\(904\) 1.49291 14.2041i 0.0496534 0.472420i
\(905\) 4.49912 1.27271i 0.149556 0.0423063i
\(906\) 0 0
\(907\) 13.0147 22.5421i 0.432145 0.748498i −0.564912 0.825151i \(-0.691090\pi\)
0.997058 + 0.0766530i \(0.0244234\pi\)
\(908\) 5.71538 4.15247i 0.189672 0.137804i
\(909\) 0 0
\(910\) −2.69385 + 2.24404i −0.0893003 + 0.0743893i
\(911\) −2.68314 2.97993i −0.0888964 0.0987294i 0.697055 0.717017i \(-0.254493\pi\)
−0.785952 + 0.618288i \(0.787827\pi\)
\(912\) 0 0
\(913\) 55.1797 61.2833i 1.82618 2.02818i
\(914\) −25.8391 + 5.49227i −0.854682 + 0.181668i
\(915\) 0 0
\(916\) 6.15464 + 1.30821i 0.203355 + 0.0432244i
\(917\) 13.0533 9.48377i 0.431058 0.313182i
\(918\) 0 0
\(919\) 0.331871 0.241118i 0.0109474 0.00795375i −0.582298 0.812975i \(-0.697846\pi\)
0.593245 + 0.805022i \(0.297846\pi\)
\(920\) 0.434730 0.229160i 0.0143326 0.00755517i
\(921\) 0 0
\(922\) 5.73896 54.6026i 0.189003 1.79824i
\(923\) 8.99722 1.91242i 0.296147 0.0629480i
\(924\) 0 0
\(925\) 5.46557 13.2541i 0.179707 0.435791i
\(926\) 30.6303 1.00657
\(927\) 0 0
\(928\) −6.85175 4.97808i −0.224920 0.163414i
\(929\) 6.15454 2.74018i 0.201924 0.0899023i −0.303283 0.952900i \(-0.598083\pi\)
0.505207 + 0.862998i \(0.331416\pi\)
\(930\) 0 0
\(931\) 31.8972 + 14.2016i 1.04539 + 0.465437i
\(932\) 3.17656 + 5.50196i 0.104052 + 0.180223i
\(933\) 0 0
\(934\) 30.0055 + 6.37786i 0.981808 + 0.208690i
\(935\) 18.4558 + 11.6244i 0.603570 + 0.380160i
\(936\) 0 0
\(937\) −13.0786 40.2519i −0.427260 1.31497i −0.900814 0.434206i \(-0.857029\pi\)
0.473554 0.880765i \(-0.342971\pi\)
\(938\) −32.1143 6.82611i −1.04857 0.222880i
\(939\) 0 0
\(940\) 0.780521 20.2725i 0.0254578 0.661216i
\(941\) −35.0819 + 38.9624i −1.14364 + 1.27014i −0.185876 + 0.982573i \(0.559512\pi\)
−0.957761 + 0.287564i \(0.907154\pi\)
\(942\) 0 0
\(943\) 0.291050 0.504114i 0.00947790 0.0164162i
\(944\) 6.92961 5.03466i 0.225540 0.163864i
\(945\) 0 0
\(946\) 7.50241 + 5.45082i 0.243924 + 0.177221i
\(947\) −2.14265 + 0.953970i −0.0696268 + 0.0309999i −0.441255 0.897382i \(-0.645466\pi\)
0.371628 + 0.928382i \(0.378800\pi\)
\(948\) 0 0
\(949\) 2.01136 + 3.48378i 0.0652915 + 0.113088i
\(950\) 34.9220 + 45.3631i 1.13302 + 1.47177i
\(951\) 0 0
\(952\) −4.08749 4.53961i −0.132476 0.147130i
\(953\) 7.72986 + 5.61607i 0.250395 + 0.181922i 0.705902 0.708310i \(-0.250542\pi\)
−0.455507 + 0.890232i \(0.650542\pi\)
\(954\) 0 0
\(955\) −19.4306 12.2384i −0.628759 0.396026i
\(956\) 0.0865082 + 0.823070i 0.00279787 + 0.0266200i
\(957\) 0 0
\(958\) 35.0748 + 15.6163i 1.13322 + 0.504540i
\(959\) −15.3866 + 17.0885i −0.496858 + 0.551817i
\(960\) 0 0
\(961\) 7.23609 + 8.03649i 0.233422 + 0.259242i
\(962\) −1.00071 3.07987i −0.0322642 0.0992989i
\(963\) 0 0
\(964\) −5.94735 + 18.3041i −0.191551 + 0.589534i
\(965\) −0.669005 3.87509i −0.0215360 0.124744i
\(966\) 0 0
\(967\) 18.8698 + 8.40138i 0.606812 + 0.270170i 0.687055 0.726605i \(-0.258903\pi\)
−0.0802433 + 0.996775i \(0.525570\pi\)
\(968\) 9.92488 + 17.1904i 0.318998 + 0.552520i
\(969\) 0 0
\(970\) −28.9872 28.1936i −0.930723 0.905243i
\(971\) −24.5224 17.8166i −0.786962 0.571761i 0.120098 0.992762i \(-0.461679\pi\)
−0.907060 + 0.421001i \(0.861679\pi\)
\(972\) 0 0
\(973\) 7.22044 22.2222i 0.231477 0.712412i
\(974\) 9.49335 16.4430i 0.304186 0.526866i
\(975\) 0 0
\(976\) −9.33514 16.1689i −0.298810 0.517555i
\(977\) −23.0276 + 4.89467i −0.736718 + 0.156594i −0.560964 0.827840i \(-0.689570\pi\)
−0.175754 + 0.984434i \(0.556236\pi\)
\(978\) 0 0
\(979\) 31.3707 13.9671i 1.00261 0.446392i
\(980\) 8.67937 0.575740i 0.277252 0.0183913i
\(981\) 0 0
\(982\) 66.1926 2.11229
\(983\) 2.02059 + 19.2246i 0.0644468 + 0.613171i 0.978310 + 0.207148i \(0.0664180\pi\)
−0.913863 + 0.406023i \(0.866915\pi\)
\(984\) 0 0
\(985\) 1.97079 + 2.94447i 0.0627946 + 0.0938187i
\(986\) −7.16723 + 1.52344i −0.228251 + 0.0485163i
\(987\) 0 0
\(988\) 3.50574 + 0.745169i 0.111533 + 0.0237070i
\(989\) 0.0405939 0.124935i 0.00129081 0.00397271i
\(990\) 0 0
\(991\) −0.458610 1.41146i −0.0145682 0.0448364i 0.943508 0.331349i \(-0.107504\pi\)
−0.958076 + 0.286513i \(0.907504\pi\)
\(992\) −2.78768 26.5230i −0.0885090 0.842107i
\(993\) 0 0
\(994\) 28.5806 + 12.7249i 0.906523 + 0.403610i
\(995\) 10.1520 + 3.73618i 0.321839 + 0.118445i
\(996\) 0 0
\(997\) −14.4548 + 6.43568i −0.457787 + 0.203820i −0.622656 0.782495i \(-0.713947\pi\)
0.164869 + 0.986315i \(0.447280\pi\)
\(998\) −18.6267 + 57.3271i −0.589619 + 1.81466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.r.a.46.22 224
3.2 odd 2 225.2.q.a.196.7 yes 224
9.4 even 3 inner 675.2.r.a.496.7 224
9.5 odd 6 225.2.q.a.121.22 yes 224
25.6 even 5 inner 675.2.r.a.181.7 224
75.56 odd 10 225.2.q.a.106.22 yes 224
225.31 even 15 inner 675.2.r.a.631.22 224
225.131 odd 30 225.2.q.a.31.7 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.q.a.31.7 224 225.131 odd 30
225.2.q.a.106.22 yes 224 75.56 odd 10
225.2.q.a.121.22 yes 224 9.5 odd 6
225.2.q.a.196.7 yes 224 3.2 odd 2
675.2.r.a.46.22 224 1.1 even 1 trivial
675.2.r.a.181.7 224 25.6 even 5 inner
675.2.r.a.496.7 224 9.4 even 3 inner
675.2.r.a.631.22 224 225.31 even 15 inner