Properties

Label 675.2.r.a.181.7
Level $675$
Weight $2$
Character 675.181
Analytic conductor $5.390$
Analytic rank $0$
Dimension $224$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(46,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.46");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.r (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(224\)
Relative dimension: \(28\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 225)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 181.7
Character \(\chi\) \(=\) 675.181
Dual form 675.2.r.a.496.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.62705 - 0.345839i) q^{2} +(0.700584 + 0.311920i) q^{4} +(0.380412 - 2.20347i) q^{5} +(0.694163 - 1.20233i) q^{7} +(1.65942 + 1.20564i) q^{8} +(-1.38100 + 3.45359i) q^{10} +(4.44787 + 0.945423i) q^{11} +(-0.664131 + 0.141165i) q^{13} +(-1.54525 + 1.71617i) q^{14} +(-3.30929 - 3.67534i) q^{16} +(1.73545 + 1.26088i) q^{17} +(5.56870 + 4.04590i) q^{19} +(0.953818 - 1.42506i) q^{20} +(-6.90992 - 3.07649i) q^{22} +(0.0716950 - 0.0796254i) q^{23} +(-4.71057 - 1.67645i) q^{25} +1.12939 q^{26} +(0.861350 - 0.625807i) q^{28} +(0.214650 + 2.04226i) q^{29} +(0.675922 - 6.43096i) q^{31} +(2.06213 + 3.57172i) q^{32} +(-2.38760 - 2.65170i) q^{34} +(-2.38522 - 1.98695i) q^{35} +(-0.886060 + 2.72701i) q^{37} +(-7.66130 - 8.50874i) q^{38} +(3.28786 - 3.19785i) q^{40} +(5.31403 - 1.12953i) q^{41} +(-0.613014 + 1.06177i) q^{43} +(2.82121 + 2.04973i) q^{44} +(-0.144189 + 0.104759i) q^{46} +(-1.23665 - 11.7660i) q^{47} +(2.53627 + 4.39296i) q^{49} +(7.08454 + 4.35677i) q^{50} +(-0.509312 - 0.108258i) q^{52} +(1.07586 - 0.781661i) q^{53} +(3.77524 - 9.44110i) q^{55} +(2.60148 - 1.15825i) q^{56} +(0.357048 - 3.39709i) q^{58} +(-1.69407 + 0.360086i) q^{59} +(3.69259 + 0.784884i) q^{61} +(-3.32384 + 10.2297i) q^{62} +(0.936638 + 2.88268i) q^{64} +(0.0584104 + 1.51709i) q^{65} +(1.48608 - 14.1391i) q^{67} +(0.822536 + 1.42467i) q^{68} +(3.19370 + 4.05776i) q^{70} +(10.9600 - 7.96294i) q^{71} +(-1.83085 - 5.63478i) q^{73} +(2.38477 - 4.13054i) q^{74} +(2.63935 + 4.57148i) q^{76} +(4.22425 - 4.69151i) q^{77} +(0.938478 + 8.92902i) q^{79} +(-9.35740 + 5.89378i) q^{80} -9.03682 q^{82} +(-16.5673 + 7.37623i) q^{83} +(3.43850 - 3.34436i) q^{85} +(1.36460 - 1.51555i) q^{86} +(6.24105 + 6.93138i) q^{88} +(-2.33361 - 7.18212i) q^{89} +(-0.291288 + 0.896494i) q^{91} +(0.0750652 - 0.0334212i) q^{92} +(-2.05704 + 19.5715i) q^{94} +(11.0334 - 10.7314i) q^{95} +(-1.13640 - 10.8121i) q^{97} +(-2.60738 - 8.02469i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 224 q + 3 q^{2} + 23 q^{4} + 8 q^{5} - 8 q^{7} + 20 q^{8} - 20 q^{10} + 11 q^{11} - 3 q^{13} - q^{14} + 23 q^{16} + 24 q^{17} - 12 q^{19} - q^{20} - 11 q^{22} - q^{23} - 16 q^{25} + 136 q^{26} + 4 q^{28}+ \cdots - 146 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.62705 0.345839i −1.15050 0.244545i −0.407091 0.913388i \(-0.633457\pi\)
−0.743404 + 0.668842i \(0.766790\pi\)
\(3\) 0 0
\(4\) 0.700584 + 0.311920i 0.350292 + 0.155960i
\(5\) 0.380412 2.20347i 0.170126 0.985422i
\(6\) 0 0
\(7\) 0.694163 1.20233i 0.262369 0.454436i −0.704502 0.709702i \(-0.748830\pi\)
0.966871 + 0.255266i \(0.0821629\pi\)
\(8\) 1.65942 + 1.20564i 0.586694 + 0.426258i
\(9\) 0 0
\(10\) −1.38100 + 3.45359i −0.436709 + 1.09212i
\(11\) 4.44787 + 0.945423i 1.34108 + 0.285056i 0.821912 0.569615i \(-0.192908\pi\)
0.519170 + 0.854671i \(0.326241\pi\)
\(12\) 0 0
\(13\) −0.664131 + 0.141165i −0.184197 + 0.0391522i −0.299086 0.954226i \(-0.596682\pi\)
0.114890 + 0.993378i \(0.463349\pi\)
\(14\) −1.54525 + 1.71617i −0.412985 + 0.458666i
\(15\) 0 0
\(16\) −3.30929 3.67534i −0.827323 0.918835i
\(17\) 1.73545 + 1.26088i 0.420909 + 0.305808i 0.778003 0.628260i \(-0.216233\pi\)
−0.357095 + 0.934068i \(0.616233\pi\)
\(18\) 0 0
\(19\) 5.56870 + 4.04590i 1.27755 + 0.928192i 0.999476 0.0323680i \(-0.0103049\pi\)
0.278071 + 0.960560i \(0.410305\pi\)
\(20\) 0.953818 1.42506i 0.213280 0.318653i
\(21\) 0 0
\(22\) −6.90992 3.07649i −1.47320 0.655911i
\(23\) 0.0716950 0.0796254i 0.0149494 0.0166030i −0.735624 0.677390i \(-0.763111\pi\)
0.750573 + 0.660787i \(0.229777\pi\)
\(24\) 0 0
\(25\) −4.71057 1.67645i −0.942115 0.335291i
\(26\) 1.12939 0.221492
\(27\) 0 0
\(28\) 0.861350 0.625807i 0.162780 0.118266i
\(29\) 0.214650 + 2.04226i 0.0398595 + 0.379238i 0.996208 + 0.0870081i \(0.0277306\pi\)
−0.956348 + 0.292230i \(0.905603\pi\)
\(30\) 0 0
\(31\) 0.675922 6.43096i 0.121399 1.15504i −0.748959 0.662616i \(-0.769446\pi\)
0.870358 0.492419i \(-0.163887\pi\)
\(32\) 2.06213 + 3.57172i 0.364537 + 0.631397i
\(33\) 0 0
\(34\) −2.38760 2.65170i −0.409470 0.454762i
\(35\) −2.38522 1.98695i −0.403176 0.335856i
\(36\) 0 0
\(37\) −0.886060 + 2.72701i −0.145667 + 0.448318i −0.997096 0.0761520i \(-0.975737\pi\)
0.851429 + 0.524470i \(0.175737\pi\)
\(38\) −7.66130 8.50874i −1.24283 1.38030i
\(39\) 0 0
\(40\) 3.28786 3.19785i 0.519856 0.505624i
\(41\) 5.31403 1.12953i 0.829913 0.176403i 0.226681 0.973969i \(-0.427213\pi\)
0.603232 + 0.797566i \(0.293879\pi\)
\(42\) 0 0
\(43\) −0.613014 + 1.06177i −0.0934837 + 0.161919i −0.908975 0.416851i \(-0.863134\pi\)
0.815491 + 0.578770i \(0.196467\pi\)
\(44\) 2.82121 + 2.04973i 0.425313 + 0.309008i
\(45\) 0 0
\(46\) −0.144189 + 0.104759i −0.0212595 + 0.0154459i
\(47\) −1.23665 11.7660i −0.180385 1.71624i −0.592885 0.805287i \(-0.702011\pi\)
0.412501 0.910957i \(-0.364655\pi\)
\(48\) 0 0
\(49\) 2.53627 + 4.39296i 0.362325 + 0.627565i
\(50\) 7.08454 + 4.35677i 1.00190 + 0.616141i
\(51\) 0 0
\(52\) −0.509312 0.108258i −0.0706289 0.0150126i
\(53\) 1.07586 0.781661i 0.147781 0.107369i −0.511438 0.859320i \(-0.670887\pi\)
0.659219 + 0.751951i \(0.270887\pi\)
\(54\) 0 0
\(55\) 3.77524 9.44110i 0.509053 1.27304i
\(56\) 2.60148 1.15825i 0.347638 0.154778i
\(57\) 0 0
\(58\) 0.357048 3.39709i 0.0468827 0.446059i
\(59\) −1.69407 + 0.360086i −0.220549 + 0.0468792i −0.316861 0.948472i \(-0.602629\pi\)
0.0963115 + 0.995351i \(0.469295\pi\)
\(60\) 0 0
\(61\) 3.69259 + 0.784884i 0.472788 + 0.100494i 0.438142 0.898906i \(-0.355637\pi\)
0.0346452 + 0.999400i \(0.488970\pi\)
\(62\) −3.32384 + 10.2297i −0.422128 + 1.29918i
\(63\) 0 0
\(64\) 0.936638 + 2.88268i 0.117080 + 0.360334i
\(65\) 0.0584104 + 1.51709i 0.00724492 + 0.188172i
\(66\) 0 0
\(67\) 1.48608 14.1391i 0.181553 1.72737i −0.402301 0.915508i \(-0.631789\pi\)
0.583854 0.811858i \(-0.301544\pi\)
\(68\) 0.822536 + 1.42467i 0.0997472 + 0.172767i
\(69\) 0 0
\(70\) 3.19370 + 4.05776i 0.381721 + 0.484995i
\(71\) 10.9600 7.96294i 1.30072 0.945027i 0.300755 0.953701i \(-0.402761\pi\)
0.999962 + 0.00867479i \(0.00276131\pi\)
\(72\) 0 0
\(73\) −1.83085 5.63478i −0.214285 0.659501i −0.999204 0.0399023i \(-0.987295\pi\)
0.784919 0.619599i \(-0.212705\pi\)
\(74\) 2.38477 4.13054i 0.277224 0.480166i
\(75\) 0 0
\(76\) 2.63935 + 4.57148i 0.302754 + 0.524385i
\(77\) 4.22425 4.69151i 0.481398 0.534647i
\(78\) 0 0
\(79\) 0.938478 + 8.92902i 0.105587 + 1.00459i 0.911148 + 0.412080i \(0.135198\pi\)
−0.805561 + 0.592513i \(0.798136\pi\)
\(80\) −9.35740 + 5.89378i −1.04619 + 0.658945i
\(81\) 0 0
\(82\) −9.03682 −0.997950
\(83\) −16.5673 + 7.37623i −1.81850 + 0.809647i −0.869844 + 0.493327i \(0.835781\pi\)
−0.948653 + 0.316320i \(0.897553\pi\)
\(84\) 0 0
\(85\) 3.43850 3.34436i 0.372958 0.362747i
\(86\) 1.36460 1.51555i 0.147149 0.163426i
\(87\) 0 0
\(88\) 6.24105 + 6.93138i 0.665298 + 0.738888i
\(89\) −2.33361 7.18212i −0.247363 0.761304i −0.995239 0.0974656i \(-0.968926\pi\)
0.747876 0.663838i \(-0.231074\pi\)
\(90\) 0 0
\(91\) −0.291288 + 0.896494i −0.0305353 + 0.0939781i
\(92\) 0.0750652 0.0334212i 0.00782608 0.00348440i
\(93\) 0 0
\(94\) −2.05704 + 19.5715i −0.212168 + 2.01864i
\(95\) 11.0334 10.7314i 1.13200 1.10101i
\(96\) 0 0
\(97\) −1.13640 10.8121i −0.115384 1.09781i −0.887017 0.461737i \(-0.847226\pi\)
0.771633 0.636068i \(-0.219440\pi\)
\(98\) −2.60738 8.02469i −0.263385 0.810616i
\(99\) 0 0
\(100\) −2.77723 2.64382i −0.277723 0.264382i
\(101\) 6.10657 10.5769i 0.607626 1.05244i −0.384004 0.923331i \(-0.625455\pi\)
0.991630 0.129108i \(-0.0412115\pi\)
\(102\) 0 0
\(103\) −0.775688 0.345359i −0.0764309 0.0340292i 0.368165 0.929760i \(-0.379986\pi\)
−0.444596 + 0.895731i \(0.646653\pi\)
\(104\) −1.27227 0.566450i −0.124756 0.0555450i
\(105\) 0 0
\(106\) −2.02081 + 0.899723i −0.196278 + 0.0873888i
\(107\) −19.0764 −1.84419 −0.922095 0.386964i \(-0.873524\pi\)
−0.922095 + 0.386964i \(0.873524\pi\)
\(108\) 0 0
\(109\) 4.05014 12.4651i 0.387933 1.19394i −0.546397 0.837526i \(-0.684001\pi\)
0.934330 0.356409i \(-0.115999\pi\)
\(110\) −9.40759 + 14.0555i −0.896978 + 1.34014i
\(111\) 0 0
\(112\) −6.71614 + 1.42756i −0.634616 + 0.134892i
\(113\) −6.81089 + 1.44770i −0.640714 + 0.136188i −0.516802 0.856105i \(-0.672878\pi\)
−0.123913 + 0.992293i \(0.539544\pi\)
\(114\) 0 0
\(115\) −0.148179 0.188268i −0.0138177 0.0175561i
\(116\) −0.486642 + 1.49773i −0.0451835 + 0.139061i
\(117\) 0 0
\(118\) 2.88087 0.265205
\(119\) 2.72067 1.21132i 0.249404 0.111042i
\(120\) 0 0
\(121\) 8.84069 + 3.93613i 0.803699 + 0.357830i
\(122\) −5.73657 2.55409i −0.519365 0.231236i
\(123\) 0 0
\(124\) 2.47949 4.29460i 0.222665 0.385666i
\(125\) −5.48598 + 9.74187i −0.490681 + 0.871339i
\(126\) 0 0
\(127\) 6.85641 + 21.1019i 0.608408 + 1.87249i 0.471407 + 0.881916i \(0.343746\pi\)
0.137000 + 0.990571i \(0.456254\pi\)
\(128\) −1.38922 13.2175i −0.122791 1.16828i
\(129\) 0 0
\(130\) 0.429635 2.48858i 0.0376814 0.218263i
\(131\) −1.21480 + 11.5581i −0.106138 + 1.00983i 0.803747 + 0.594972i \(0.202837\pi\)
−0.909885 + 0.414862i \(0.863830\pi\)
\(132\) 0 0
\(133\) 8.73007 3.88688i 0.756993 0.337035i
\(134\) −7.30778 + 22.4910i −0.631296 + 1.94293i
\(135\) 0 0
\(136\) 1.35968 + 4.18466i 0.116591 + 0.358832i
\(137\) 11.0828 + 12.3087i 0.946869 + 1.05160i 0.998598 + 0.0529430i \(0.0168602\pi\)
−0.0517289 + 0.998661i \(0.516473\pi\)
\(138\) 0 0
\(139\) −11.2616 + 12.5073i −0.955198 + 1.06085i 0.0428925 + 0.999080i \(0.486343\pi\)
−0.998090 + 0.0617748i \(0.980324\pi\)
\(140\) −1.05128 2.13602i −0.0888494 0.180527i
\(141\) 0 0
\(142\) −20.5864 + 9.16565i −1.72757 + 0.769164i
\(143\) −3.08743 −0.258184
\(144\) 0 0
\(145\) 4.58172 + 0.303925i 0.380491 + 0.0252396i
\(146\) 1.03015 + 9.80123i 0.0852559 + 0.811155i
\(147\) 0 0
\(148\) −1.47137 + 1.63412i −0.120946 + 0.134324i
\(149\) 7.97992 + 13.8216i 0.653740 + 1.13231i 0.982208 + 0.187796i \(0.0601345\pi\)
−0.328468 + 0.944515i \(0.606532\pi\)
\(150\) 0 0
\(151\) −4.20769 + 7.28793i −0.342417 + 0.593084i −0.984881 0.173232i \(-0.944579\pi\)
0.642464 + 0.766316i \(0.277912\pi\)
\(152\) 4.36292 + 13.4277i 0.353880 + 1.08913i
\(153\) 0 0
\(154\) −8.49556 + 6.17239i −0.684592 + 0.497385i
\(155\) −13.9133 3.93579i −1.11754 0.316130i
\(156\) 0 0
\(157\) 0.0425739 + 0.0737402i 0.00339777 + 0.00588511i 0.867719 0.497055i \(-0.165585\pi\)
−0.864322 + 0.502940i \(0.832252\pi\)
\(158\) 1.56106 14.8525i 0.124191 1.18160i
\(159\) 0 0
\(160\) 8.65465 3.18513i 0.684210 0.251806i
\(161\) −0.0459676 0.141474i −0.00362275 0.0111497i
\(162\) 0 0
\(163\) 3.81218 11.7327i 0.298593 0.918974i −0.683398 0.730046i \(-0.739499\pi\)
0.981991 0.188928i \(-0.0605013\pi\)
\(164\) 4.07525 + 0.866222i 0.318224 + 0.0676406i
\(165\) 0 0
\(166\) 29.5067 6.27185i 2.29017 0.486790i
\(167\) −0.700044 + 6.66047i −0.0541710 + 0.515403i 0.933468 + 0.358660i \(0.116766\pi\)
−0.987639 + 0.156743i \(0.949901\pi\)
\(168\) 0 0
\(169\) −11.4549 + 5.10007i −0.881150 + 0.392313i
\(170\) −6.75121 + 4.25227i −0.517794 + 0.326134i
\(171\) 0 0
\(172\) −0.760656 + 0.552649i −0.0579995 + 0.0421391i
\(173\) 11.2482 + 2.39087i 0.855181 + 0.181774i 0.614585 0.788851i \(-0.289324\pi\)
0.240596 + 0.970625i \(0.422657\pi\)
\(174\) 0 0
\(175\) −5.28555 + 4.49991i −0.399550 + 0.340161i
\(176\) −11.2445 19.4761i −0.847588 1.46807i
\(177\) 0 0
\(178\) 1.31304 + 12.4927i 0.0984162 + 0.936368i
\(179\) 3.97320 2.88670i 0.296971 0.215762i −0.429315 0.903155i \(-0.641245\pi\)
0.726286 + 0.687393i \(0.241245\pi\)
\(180\) 0 0
\(181\) −1.69167 1.22907i −0.125741 0.0913562i 0.523137 0.852248i \(-0.324762\pi\)
−0.648878 + 0.760892i \(0.724762\pi\)
\(182\) 0.783983 1.35790i 0.0581127 0.100654i
\(183\) 0 0
\(184\) 0.214972 0.0456937i 0.0158479 0.00336858i
\(185\) 5.67183 + 2.98980i 0.417001 + 0.219814i
\(186\) 0 0
\(187\) 6.52699 + 7.24896i 0.477301 + 0.530096i
\(188\) 2.80367 8.62880i 0.204478 0.629320i
\(189\) 0 0
\(190\) −21.6632 + 13.6446i −1.57161 + 0.989886i
\(191\) −6.87172 7.63182i −0.497220 0.552219i 0.441337 0.897341i \(-0.354504\pi\)
−0.938558 + 0.345122i \(0.887838\pi\)
\(192\) 0 0
\(193\) 0.879316 + 1.52302i 0.0632945 + 0.109629i 0.895936 0.444183i \(-0.146506\pi\)
−0.832642 + 0.553812i \(0.813173\pi\)
\(194\) −1.89028 + 17.9848i −0.135714 + 1.29124i
\(195\) 0 0
\(196\) 0.406622 + 3.86875i 0.0290444 + 0.276339i
\(197\) −1.28192 + 0.931373i −0.0913333 + 0.0663576i −0.632515 0.774548i \(-0.717977\pi\)
0.541181 + 0.840906i \(0.317977\pi\)
\(198\) 0 0
\(199\) −4.83781 −0.342943 −0.171471 0.985189i \(-0.554852\pi\)
−0.171471 + 0.985189i \(0.554852\pi\)
\(200\) −5.79563 8.46120i −0.409813 0.598297i
\(201\) 0 0
\(202\) −13.5936 + 15.0972i −0.956441 + 1.06224i
\(203\) 2.60446 + 1.15958i 0.182798 + 0.0813867i
\(204\) 0 0
\(205\) −0.467370 12.1390i −0.0326425 0.847825i
\(206\) 1.14264 + 0.830178i 0.0796117 + 0.0578413i
\(207\) 0 0
\(208\) 2.71663 + 1.97375i 0.188365 + 0.136855i
\(209\) 20.9437 + 23.2604i 1.44871 + 1.60895i
\(210\) 0 0
\(211\) −2.87300 + 3.19079i −0.197785 + 0.219663i −0.833877 0.551951i \(-0.813884\pi\)
0.636091 + 0.771614i \(0.280550\pi\)
\(212\) 0.997550 0.212036i 0.0685120 0.0145627i
\(213\) 0 0
\(214\) 31.0383 + 6.59739i 2.12173 + 0.450988i
\(215\) 2.10638 + 1.75467i 0.143654 + 0.119667i
\(216\) 0 0
\(217\) −7.26291 5.27682i −0.493039 0.358214i
\(218\) −10.9007 + 18.8805i −0.738287 + 1.27875i
\(219\) 0 0
\(220\) 5.58974 5.43671i 0.376860 0.366543i
\(221\) −1.33056 0.592403i −0.0895031 0.0398494i
\(222\) 0 0
\(223\) −15.8538 3.36984i −1.06165 0.225661i −0.356193 0.934412i \(-0.615926\pi\)
−0.705459 + 0.708751i \(0.749259\pi\)
\(224\) 5.72583 0.382573
\(225\) 0 0
\(226\) 11.5823 0.770443
\(227\) 9.01077 + 1.91530i 0.598066 + 0.127123i 0.496990 0.867756i \(-0.334438\pi\)
0.101075 + 0.994879i \(0.467772\pi\)
\(228\) 0 0
\(229\) −7.49545 3.33719i −0.495314 0.220528i 0.143849 0.989600i \(-0.454052\pi\)
−0.639162 + 0.769072i \(0.720719\pi\)
\(230\) 0.175983 + 0.357567i 0.0116040 + 0.0235773i
\(231\) 0 0
\(232\) −2.10604 + 3.64776i −0.138268 + 0.239487i
\(233\) 6.70215 + 4.86940i 0.439073 + 0.319005i 0.785266 0.619158i \(-0.212526\pi\)
−0.346194 + 0.938163i \(0.612526\pi\)
\(234\) 0 0
\(235\) −26.3964 1.75099i −1.72191 0.114222i
\(236\) −1.29916 0.276145i −0.0845680 0.0179755i
\(237\) 0 0
\(238\) −4.84559 + 1.02996i −0.314093 + 0.0667625i
\(239\) −0.722110 + 0.801984i −0.0467094 + 0.0518760i −0.766047 0.642785i \(-0.777779\pi\)
0.719337 + 0.694661i \(0.244446\pi\)
\(240\) 0 0
\(241\) −16.7927 18.6502i −1.08172 1.20137i −0.978401 0.206718i \(-0.933722\pi\)
−0.103315 0.994649i \(-0.532945\pi\)
\(242\) −13.0229 9.46173i −0.837147 0.608223i
\(243\) 0 0
\(244\) 2.34215 + 1.70167i 0.149941 + 0.108938i
\(245\) 10.6446 3.91748i 0.680058 0.250278i
\(246\) 0 0
\(247\) −4.26949 1.90090i −0.271661 0.120951i
\(248\) 8.87507 9.85676i 0.563567 0.625905i
\(249\) 0 0
\(250\) 12.2951 13.9532i 0.777608 0.882478i
\(251\) 23.1900 1.46374 0.731869 0.681445i \(-0.238648\pi\)
0.731869 + 0.681445i \(0.238648\pi\)
\(252\) 0 0
\(253\) 0.394169 0.286381i 0.0247812 0.0180046i
\(254\) −3.85784 36.7049i −0.242062 2.30307i
\(255\) 0 0
\(256\) −1.67716 + 15.9571i −0.104823 + 0.997321i
\(257\) 10.4244 + 18.0555i 0.650253 + 1.12627i 0.983061 + 0.183277i \(0.0586705\pi\)
−0.332808 + 0.942995i \(0.607996\pi\)
\(258\) 0 0
\(259\) 2.66369 + 2.95833i 0.165514 + 0.183821i
\(260\) −0.432291 + 1.08107i −0.0268096 + 0.0670452i
\(261\) 0 0
\(262\) 5.97377 18.3854i 0.369061 1.13585i
\(263\) 6.07004 + 6.74146i 0.374295 + 0.415696i 0.900634 0.434578i \(-0.143103\pi\)
−0.526339 + 0.850275i \(0.676436\pi\)
\(264\) 0 0
\(265\) −1.31310 2.66799i −0.0806629 0.163893i
\(266\) −15.5485 + 3.30493i −0.953338 + 0.202638i
\(267\) 0 0
\(268\) 5.45140 9.44209i 0.332997 0.576768i
\(269\) −12.0005 8.71886i −0.731683 0.531599i 0.158413 0.987373i \(-0.449362\pi\)
−0.890095 + 0.455774i \(0.849362\pi\)
\(270\) 0 0
\(271\) 6.34725 4.61155i 0.385568 0.280132i −0.378069 0.925777i \(-0.623412\pi\)
0.763637 + 0.645646i \(0.223412\pi\)
\(272\) −1.10895 10.5510i −0.0672402 0.639748i
\(273\) 0 0
\(274\) −13.7754 23.8597i −0.832203 1.44142i
\(275\) −19.3670 11.9101i −1.16788 0.718208i
\(276\) 0 0
\(277\) 21.7610 + 4.62545i 1.30749 + 0.277916i 0.808400 0.588633i \(-0.200334\pi\)
0.499092 + 0.866549i \(0.333667\pi\)
\(278\) 22.6487 16.4552i 1.35838 0.986919i
\(279\) 0 0
\(280\) −1.56255 6.17291i −0.0933799 0.368902i
\(281\) −9.27859 + 4.13109i −0.553514 + 0.246440i −0.664380 0.747395i \(-0.731304\pi\)
0.110866 + 0.993835i \(0.464638\pi\)
\(282\) 0 0
\(283\) −0.0797346 + 0.758624i −0.00473973 + 0.0450955i −0.996636 0.0819538i \(-0.973884\pi\)
0.991896 + 0.127049i \(0.0405507\pi\)
\(284\) 10.1622 2.16005i 0.603018 0.128175i
\(285\) 0 0
\(286\) 5.02339 + 1.06775i 0.297039 + 0.0631376i
\(287\) 2.33074 7.17328i 0.137579 0.423425i
\(288\) 0 0
\(289\) −3.83131 11.7916i −0.225371 0.693622i
\(290\) −7.34956 2.07904i −0.431581 0.122085i
\(291\) 0 0
\(292\) 0.474936 4.51872i 0.0277935 0.264438i
\(293\) −3.29507 5.70722i −0.192500 0.333419i 0.753578 0.657358i \(-0.228326\pi\)
−0.946078 + 0.323939i \(0.894993\pi\)
\(294\) 0 0
\(295\) 0.148994 + 3.86982i 0.00867476 + 0.225310i
\(296\) −4.75815 + 3.45699i −0.276562 + 0.200934i
\(297\) 0 0
\(298\) −8.20364 25.2482i −0.475224 1.46259i
\(299\) −0.0363745 + 0.0630025i −0.00210359 + 0.00364353i
\(300\) 0 0
\(301\) 0.851063 + 1.47408i 0.0490545 + 0.0849648i
\(302\) 9.36656 10.4026i 0.538985 0.598604i
\(303\) 0 0
\(304\) −3.55840 33.8559i −0.204088 1.94177i
\(305\) 3.13418 7.83794i 0.179462 0.448799i
\(306\) 0 0
\(307\) 20.2069 1.15327 0.576634 0.817002i \(-0.304366\pi\)
0.576634 + 0.817002i \(0.304366\pi\)
\(308\) 4.42282 1.96917i 0.252014 0.112204i
\(309\) 0 0
\(310\) 21.2765 + 11.2155i 1.20842 + 0.636997i
\(311\) −11.9608 + 13.2838i −0.678234 + 0.753255i −0.979754 0.200205i \(-0.935839\pi\)
0.301520 + 0.953460i \(0.402506\pi\)
\(312\) 0 0
\(313\) 12.2784 + 13.6366i 0.694019 + 0.770786i 0.982412 0.186726i \(-0.0597877\pi\)
−0.288393 + 0.957512i \(0.593121\pi\)
\(314\) −0.0437675 0.134702i −0.00246994 0.00760170i
\(315\) 0 0
\(316\) −2.12766 + 6.54826i −0.119690 + 0.368369i
\(317\) −2.89860 + 1.29054i −0.162802 + 0.0724841i −0.486520 0.873670i \(-0.661734\pi\)
0.323718 + 0.946154i \(0.395067\pi\)
\(318\) 0 0
\(319\) −0.976064 + 9.28663i −0.0546491 + 0.519952i
\(320\) 6.70820 0.967250i 0.375000 0.0540709i
\(321\) 0 0
\(322\) 0.0258642 + 0.246082i 0.00144136 + 0.0137136i
\(323\) 4.56282 + 14.0429i 0.253882 + 0.781369i
\(324\) 0 0
\(325\) 3.36509 + 0.448416i 0.186662 + 0.0248736i
\(326\) −10.2602 + 17.7712i −0.568261 + 0.984256i
\(327\) 0 0
\(328\) 10.1800 + 4.53244i 0.562098 + 0.250262i
\(329\) −15.0050 6.68065i −0.827251 0.368316i
\(330\) 0 0
\(331\) −13.4822 + 6.00268i −0.741051 + 0.329937i −0.742305 0.670062i \(-0.766268\pi\)
0.00125393 + 0.999999i \(0.499601\pi\)
\(332\) −13.9076 −0.763278
\(333\) 0 0
\(334\) 3.44246 10.5948i 0.188363 0.579721i
\(335\) −30.5898 8.65322i −1.67130 0.472776i
\(336\) 0 0
\(337\) 11.9319 2.53619i 0.649970 0.138155i 0.128884 0.991660i \(-0.458861\pi\)
0.521086 + 0.853504i \(0.325527\pi\)
\(338\) 20.4015 4.33648i 1.10970 0.235873i
\(339\) 0 0
\(340\) 3.45213 1.27047i 0.187218 0.0689010i
\(341\) 9.08639 27.9650i 0.492056 1.51439i
\(342\) 0 0
\(343\) 16.7606 0.904989
\(344\) −2.29736 + 1.02285i −0.123865 + 0.0551485i
\(345\) 0 0
\(346\) −17.4744 7.78011i −0.939430 0.418261i
\(347\) −19.8592 8.84187i −1.06610 0.474656i −0.202730 0.979235i \(-0.564981\pi\)
−0.863366 + 0.504578i \(0.831648\pi\)
\(348\) 0 0
\(349\) 5.54554 9.60516i 0.296846 0.514152i −0.678567 0.734539i \(-0.737399\pi\)
0.975413 + 0.220387i \(0.0707319\pi\)
\(350\) 10.1561 5.49361i 0.542866 0.293646i
\(351\) 0 0
\(352\) 5.79531 + 17.8361i 0.308891 + 0.950669i
\(353\) 0.530083 + 5.04340i 0.0282135 + 0.268433i 0.999530 + 0.0306445i \(0.00975596\pi\)
−0.971317 + 0.237789i \(0.923577\pi\)
\(354\) 0 0
\(355\) −13.3768 27.1793i −0.709965 1.44253i
\(356\) 0.605357 5.75959i 0.0320838 0.305257i
\(357\) 0 0
\(358\) −7.46292 + 3.32271i −0.394427 + 0.175610i
\(359\) 9.46581 29.1328i 0.499586 1.53757i −0.310099 0.950704i \(-0.600362\pi\)
0.809685 0.586864i \(-0.199638\pi\)
\(360\) 0 0
\(361\) 8.76981 + 26.9907i 0.461569 + 1.42056i
\(362\) 2.32737 + 2.58480i 0.122324 + 0.135854i
\(363\) 0 0
\(364\) −0.483707 + 0.537211i −0.0253531 + 0.0281575i
\(365\) −13.1126 + 1.89069i −0.686342 + 0.0989632i
\(366\) 0 0
\(367\) −14.5972 + 6.49910i −0.761968 + 0.339250i −0.750662 0.660686i \(-0.770265\pi\)
−0.0113057 + 0.999936i \(0.503599\pi\)
\(368\) −0.529910 −0.0276235
\(369\) 0 0
\(370\) −8.19434 6.82608i −0.426003 0.354871i
\(371\) −0.192986 1.83614i −0.0100193 0.0953276i
\(372\) 0 0
\(373\) 7.53730 8.37102i 0.390267 0.433435i −0.515710 0.856763i \(-0.672472\pi\)
0.905976 + 0.423328i \(0.139138\pi\)
\(374\) −8.11274 14.0517i −0.419500 0.726595i
\(375\) 0 0
\(376\) 12.1334 21.0157i 0.625733 1.08380i
\(377\) −0.430852 1.32603i −0.0221900 0.0682938i
\(378\) 0 0
\(379\) −17.8996 + 13.0048i −0.919440 + 0.668012i −0.943385 0.331701i \(-0.892377\pi\)
0.0239446 + 0.999713i \(0.492377\pi\)
\(380\) 11.0772 4.07668i 0.568247 0.209129i
\(381\) 0 0
\(382\) 8.54123 + 14.7938i 0.437007 + 0.756919i
\(383\) 0.661282 6.29168i 0.0337899 0.321490i −0.964550 0.263899i \(-0.914991\pi\)
0.998340 0.0575909i \(-0.0183419\pi\)
\(384\) 0 0
\(385\) −8.73065 11.0927i −0.444955 0.565338i
\(386\) −0.903967 2.78213i −0.0460107 0.141606i
\(387\) 0 0
\(388\) 2.57638 7.92927i 0.130796 0.402548i
\(389\) 32.3577 + 6.87784i 1.64060 + 0.348720i 0.933551 0.358444i \(-0.116693\pi\)
0.707049 + 0.707165i \(0.250026\pi\)
\(390\) 0 0
\(391\) 0.224821 0.0477872i 0.0113697 0.00241670i
\(392\) −1.08758 + 10.3476i −0.0549309 + 0.522633i
\(393\) 0 0
\(394\) 2.40786 1.07205i 0.121306 0.0540089i
\(395\) 20.0319 + 1.32880i 1.00791 + 0.0668591i
\(396\) 0 0
\(397\) 22.9141 16.6480i 1.15002 0.835541i 0.161540 0.986866i \(-0.448354\pi\)
0.988484 + 0.151325i \(0.0483539\pi\)
\(398\) 7.87134 + 1.67310i 0.394554 + 0.0838651i
\(399\) 0 0
\(400\) 9.42712 + 22.8608i 0.471356 + 1.14304i
\(401\) 4.98614 + 8.63625i 0.248996 + 0.431274i 0.963248 0.268615i \(-0.0865660\pi\)
−0.714251 + 0.699889i \(0.753233\pi\)
\(402\) 0 0
\(403\) 0.458929 + 4.36642i 0.0228609 + 0.217507i
\(404\) 7.57731 5.50524i 0.376985 0.273896i
\(405\) 0 0
\(406\) −3.83655 2.78742i −0.190405 0.138337i
\(407\) −6.51926 + 11.2917i −0.323148 + 0.559708i
\(408\) 0 0
\(409\) 9.44969 2.00859i 0.467257 0.0993186i 0.0317346 0.999496i \(-0.489897\pi\)
0.435523 + 0.900178i \(0.356564\pi\)
\(410\) −3.43772 + 19.9124i −0.169777 + 0.983402i
\(411\) 0 0
\(412\) −0.435711 0.483906i −0.0214659 0.0238403i
\(413\) −0.743021 + 2.28678i −0.0365617 + 0.112525i
\(414\) 0 0
\(415\) 9.95092 + 39.3116i 0.488471 + 1.92973i
\(416\) −1.87373 2.08099i −0.0918672 0.102029i
\(417\) 0 0
\(418\) −26.0321 45.0889i −1.27327 2.20537i
\(419\) −1.32174 + 12.5755i −0.0645710 + 0.614352i 0.913609 + 0.406594i \(0.133283\pi\)
−0.978180 + 0.207758i \(0.933383\pi\)
\(420\) 0 0
\(421\) 2.39672 + 22.8033i 0.116809 + 1.11136i 0.883202 + 0.468992i \(0.155383\pi\)
−0.766393 + 0.642372i \(0.777951\pi\)
\(422\) 5.77800 4.19797i 0.281269 0.204354i
\(423\) 0 0
\(424\) 2.72771 0.132470
\(425\) −6.06116 8.84887i −0.294010 0.429233i
\(426\) 0 0
\(427\) 3.50695 3.89486i 0.169713 0.188485i
\(428\) −13.3647 5.95033i −0.646005 0.287620i
\(429\) 0 0
\(430\) −2.82035 3.58340i −0.136009 0.172807i
\(431\) −10.6124 7.71039i −0.511183 0.371397i 0.302089 0.953280i \(-0.402316\pi\)
−0.813272 + 0.581883i \(0.802316\pi\)
\(432\) 0 0
\(433\) −19.0904 13.8700i −0.917425 0.666548i 0.0254569 0.999676i \(-0.491896\pi\)
−0.942882 + 0.333128i \(0.891896\pi\)
\(434\) 9.99217 + 11.0974i 0.479639 + 0.532694i
\(435\) 0 0
\(436\) 6.72557 7.46950i 0.322096 0.357724i
\(437\) 0.721404 0.153339i 0.0345094 0.00733521i
\(438\) 0 0
\(439\) 7.92866 + 1.68529i 0.378414 + 0.0804344i 0.393192 0.919456i \(-0.371371\pi\)
−0.0147778 + 0.999891i \(0.504704\pi\)
\(440\) 17.6473 11.1152i 0.841301 0.529896i
\(441\) 0 0
\(442\) 1.96001 + 1.42403i 0.0932280 + 0.0677341i
\(443\) 0.254259 0.440389i 0.0120802 0.0209235i −0.859922 0.510425i \(-0.829488\pi\)
0.872002 + 0.489502i \(0.162821\pi\)
\(444\) 0 0
\(445\) −16.7133 + 2.40988i −0.792288 + 0.114239i
\(446\) 24.6295 + 10.9658i 1.16624 + 0.519244i
\(447\) 0 0
\(448\) 4.11609 + 0.874903i 0.194467 + 0.0413353i
\(449\) −7.22605 −0.341018 −0.170509 0.985356i \(-0.554541\pi\)
−0.170509 + 0.985356i \(0.554541\pi\)
\(450\) 0 0
\(451\) 24.7040 1.16327
\(452\) −5.22317 1.11022i −0.245677 0.0522203i
\(453\) 0 0
\(454\) −13.9985 6.23256i −0.656984 0.292508i
\(455\) 1.86459 + 0.982883i 0.0874132 + 0.0460783i
\(456\) 0 0
\(457\) −7.94049 + 13.7533i −0.371441 + 0.643354i −0.989787 0.142551i \(-0.954469\pi\)
0.618347 + 0.785905i \(0.287803\pi\)
\(458\) 11.0413 + 8.02199i 0.515927 + 0.374843i
\(459\) 0 0
\(460\) −0.0450869 0.178118i −0.00210219 0.00830478i
\(461\) 32.2855 + 6.86249i 1.50369 + 0.319618i 0.884840 0.465895i \(-0.154267\pi\)
0.618845 + 0.785513i \(0.287601\pi\)
\(462\) 0 0
\(463\) −18.0119 + 3.82855i −0.837084 + 0.177928i −0.606459 0.795115i \(-0.707411\pi\)
−0.230625 + 0.973043i \(0.574077\pi\)
\(464\) 6.79566 7.54734i 0.315480 0.350377i
\(465\) 0 0
\(466\) −9.22069 10.2406i −0.427140 0.474387i
\(467\) 14.9196 + 10.8397i 0.690398 + 0.501603i 0.876791 0.480872i \(-0.159680\pi\)
−0.186393 + 0.982475i \(0.559680\pi\)
\(468\) 0 0
\(469\) −15.9682 11.6016i −0.737344 0.535712i
\(470\) 42.3427 + 11.9779i 1.95312 + 0.552498i
\(471\) 0 0
\(472\) −3.24531 1.44491i −0.149378 0.0665072i
\(473\) −3.73043 + 4.14306i −0.171525 + 0.190498i
\(474\) 0 0
\(475\) −19.4490 28.3942i −0.892381 1.30281i
\(476\) 2.28390 0.104682
\(477\) 0 0
\(478\) 1.45226 1.05513i 0.0664250 0.0482606i
\(479\) −2.41271 22.9554i −0.110239 1.04886i −0.900133 0.435614i \(-0.856531\pi\)
0.789894 0.613243i \(-0.210135\pi\)
\(480\) 0 0
\(481\) 0.203500 1.93617i 0.00927881 0.0882820i
\(482\) 20.8726 + 36.1524i 0.950720 + 1.64670i
\(483\) 0 0
\(484\) 4.96589 + 5.51518i 0.225722 + 0.250690i
\(485\) −24.2565 1.60904i −1.10143 0.0730627i
\(486\) 0 0
\(487\) −3.52725 + 10.8558i −0.159835 + 0.491921i −0.998619 0.0525435i \(-0.983267\pi\)
0.838784 + 0.544465i \(0.183267\pi\)
\(488\) 5.18127 + 5.75439i 0.234545 + 0.260489i
\(489\) 0 0
\(490\) −18.6741 + 2.69260i −0.843608 + 0.121639i
\(491\) −38.9241 + 8.27356i −1.75662 + 0.373381i −0.969818 0.243828i \(-0.921597\pi\)
−0.786799 + 0.617209i \(0.788263\pi\)
\(492\) 0 0
\(493\) −2.20253 + 3.81489i −0.0991969 + 0.171814i
\(494\) 6.28925 + 4.56941i 0.282967 + 0.205587i
\(495\) 0 0
\(496\) −25.8728 + 18.7977i −1.16172 + 0.844041i
\(497\) −1.96599 18.7051i −0.0881866 0.839039i
\(498\) 0 0
\(499\) 18.1188 + 31.3826i 0.811107 + 1.40488i 0.912090 + 0.409990i \(0.134468\pi\)
−0.100983 + 0.994888i \(0.532199\pi\)
\(500\) −6.88208 + 5.11381i −0.307776 + 0.228697i
\(501\) 0 0
\(502\) −37.7312 8.02001i −1.68403 0.357951i
\(503\) −26.1554 + 19.0030i −1.16621 + 0.847302i −0.990550 0.137149i \(-0.956206\pi\)
−0.175661 + 0.984451i \(0.556206\pi\)
\(504\) 0 0
\(505\) −20.9829 17.4792i −0.933725 0.777816i
\(506\) −0.740374 + 0.329636i −0.0329136 + 0.0146541i
\(507\) 0 0
\(508\) −1.77860 + 16.9223i −0.0789128 + 0.750805i
\(509\) −0.264168 + 0.0561506i −0.0117090 + 0.00248883i −0.213762 0.976886i \(-0.568572\pi\)
0.202053 + 0.979374i \(0.435239\pi\)
\(510\) 0 0
\(511\) −8.04575 1.71018i −0.355923 0.0756538i
\(512\) 0.0335504 0.103257i 0.00148273 0.00456337i
\(513\) 0 0
\(514\) −10.7166 32.9823i −0.472689 1.45479i
\(515\) −1.05607 + 1.57783i −0.0465360 + 0.0695274i
\(516\) 0 0
\(517\) 5.62336 53.5027i 0.247315 2.35304i
\(518\) −3.31084 5.73454i −0.145470 0.251961i
\(519\) 0 0
\(520\) −1.73214 + 2.58792i −0.0759595 + 0.113488i
\(521\) −22.4017 + 16.2758i −0.981435 + 0.713054i −0.958029 0.286672i \(-0.907451\pi\)
−0.0234061 + 0.999726i \(0.507451\pi\)
\(522\) 0 0
\(523\) 11.9194 + 36.6841i 0.521198 + 1.60408i 0.771713 + 0.635971i \(0.219400\pi\)
−0.250515 + 0.968113i \(0.580600\pi\)
\(524\) −4.45627 + 7.71848i −0.194673 + 0.337183i
\(525\) 0 0
\(526\) −7.54477 13.0679i −0.328968 0.569789i
\(527\) 9.28170 10.3084i 0.404317 0.449040i
\(528\) 0 0
\(529\) 2.40295 + 22.8626i 0.104476 + 0.994025i
\(530\) 1.21377 + 4.79506i 0.0527229 + 0.208284i
\(531\) 0 0
\(532\) 7.32855 0.317733
\(533\) −3.36976 + 1.50032i −0.145961 + 0.0649859i
\(534\) 0 0
\(535\) −7.25691 + 42.0344i −0.313744 + 1.81731i
\(536\) 19.5127 21.6711i 0.842820 0.936047i
\(537\) 0 0
\(538\) 16.5100 + 18.3362i 0.711798 + 0.790531i
\(539\) 7.12781 + 21.9371i 0.307016 + 0.944900i
\(540\) 0 0
\(541\) −9.26487 + 28.5143i −0.398328 + 1.22593i 0.528011 + 0.849237i \(0.322938\pi\)
−0.926339 + 0.376690i \(0.877062\pi\)
\(542\) −11.9221 + 5.30808i −0.512099 + 0.228001i
\(543\) 0 0
\(544\) −0.924776 + 8.79865i −0.0396494 + 0.377239i
\(545\) −25.9257 13.6662i −1.11053 0.585397i
\(546\) 0 0
\(547\) −0.600529 5.71365i −0.0256768 0.244298i −0.999830 0.0184119i \(-0.994139\pi\)
0.974154 0.225886i \(-0.0725277\pi\)
\(548\) 3.92511 + 12.0802i 0.167672 + 0.516042i
\(549\) 0 0
\(550\) 27.3921 + 26.0762i 1.16800 + 1.11189i
\(551\) −7.06745 + 12.2412i −0.301083 + 0.521492i
\(552\) 0 0
\(553\) 11.3870 + 5.06984i 0.484227 + 0.215592i
\(554\) −33.8065 15.0516i −1.43630 0.639483i
\(555\) 0 0
\(556\) −11.7910 + 5.24969i −0.500049 + 0.222636i
\(557\) 13.8510 0.586887 0.293444 0.955976i \(-0.405199\pi\)
0.293444 + 0.955976i \(0.405199\pi\)
\(558\) 0 0
\(559\) 0.257236 0.791691i 0.0108799 0.0334850i
\(560\) 0.590686 + 15.3419i 0.0249610 + 0.648313i
\(561\) 0 0
\(562\) 16.5254 3.51258i 0.697081 0.148169i
\(563\) −29.1494 + 6.19591i −1.22850 + 0.261126i −0.776055 0.630665i \(-0.782782\pi\)
−0.452447 + 0.891791i \(0.649449\pi\)
\(564\) 0 0
\(565\) 0.599018 + 15.5583i 0.0252009 + 0.654543i
\(566\) 0.392094 1.20674i 0.0164809 0.0507231i
\(567\) 0 0
\(568\) 27.7878 1.16595
\(569\) −14.9654 + 6.66301i −0.627381 + 0.279328i −0.695696 0.718336i \(-0.744904\pi\)
0.0683159 + 0.997664i \(0.478237\pi\)
\(570\) 0 0
\(571\) −4.71944 2.10123i −0.197502 0.0879337i 0.305602 0.952159i \(-0.401142\pi\)
−0.503104 + 0.864226i \(0.667809\pi\)
\(572\) −2.16300 0.963031i −0.0904397 0.0402663i
\(573\) 0 0
\(574\) −6.27303 + 10.8652i −0.261831 + 0.453505i
\(575\) −0.471213 + 0.254888i −0.0196509 + 0.0106295i
\(576\) 0 0
\(577\) 4.99821 + 15.3829i 0.208078 + 0.640399i 0.999573 + 0.0292230i \(0.00930328\pi\)
−0.791495 + 0.611176i \(0.790697\pi\)
\(578\) 2.15574 + 20.5105i 0.0896668 + 0.853122i
\(579\) 0 0
\(580\) 3.11508 + 1.64206i 0.129347 + 0.0681826i
\(581\) −2.63177 + 25.0396i −0.109184 + 1.03882i
\(582\) 0 0
\(583\) 5.52430 2.45958i 0.228793 0.101865i
\(584\) 3.75536 11.5578i 0.155398 0.478266i
\(585\) 0 0
\(586\) 3.38744 + 10.4255i 0.139934 + 0.430672i
\(587\) 18.8057 + 20.8858i 0.776193 + 0.862050i 0.993474 0.114059i \(-0.0363854\pi\)
−0.217281 + 0.976109i \(0.569719\pi\)
\(588\) 0 0
\(589\) 29.7830 33.0774i 1.22719 1.36293i
\(590\) 1.09592 6.34790i 0.0451182 0.261339i
\(591\) 0 0
\(592\) 12.9549 5.76791i 0.532444 0.237060i
\(593\) −3.80524 −0.156262 −0.0781312 0.996943i \(-0.524895\pi\)
−0.0781312 + 0.996943i \(0.524895\pi\)
\(594\) 0 0
\(595\) −1.63414 6.45573i −0.0669931 0.264659i
\(596\) 1.27936 + 12.1723i 0.0524047 + 0.498597i
\(597\) 0 0
\(598\) 0.0809718 0.0899283i 0.00331118 0.00367744i
\(599\) −17.5681 30.4289i −0.717813 1.24329i −0.961864 0.273527i \(-0.911810\pi\)
0.244051 0.969762i \(-0.421524\pi\)
\(600\) 0 0
\(601\) −10.6092 + 18.3758i −0.432760 + 0.749563i −0.997110 0.0759732i \(-0.975794\pi\)
0.564350 + 0.825536i \(0.309127\pi\)
\(602\) −0.874923 2.69274i −0.0356592 0.109748i
\(603\) 0 0
\(604\) −5.22110 + 3.79335i −0.212443 + 0.154349i
\(605\) 12.0363 17.9829i 0.489343 0.731107i
\(606\) 0 0
\(607\) −7.55362 13.0833i −0.306592 0.531033i 0.671023 0.741437i \(-0.265855\pi\)
−0.977615 + 0.210404i \(0.932522\pi\)
\(608\) −2.96741 + 28.2330i −0.120344 + 1.14500i
\(609\) 0 0
\(610\) −7.81012 + 11.6688i −0.316222 + 0.472454i
\(611\) 2.48225 + 7.63958i 0.100421 + 0.309064i
\(612\) 0 0
\(613\) −0.267857 + 0.824379i −0.0108186 + 0.0332963i −0.956320 0.292321i \(-0.905572\pi\)
0.945501 + 0.325618i \(0.105572\pi\)
\(614\) −32.8776 6.98834i −1.32683 0.282026i
\(615\) 0 0
\(616\) 12.6661 2.69226i 0.510331 0.108474i
\(617\) 2.07726 19.7638i 0.0836272 0.795660i −0.869671 0.493631i \(-0.835669\pi\)
0.953299 0.302029i \(-0.0976640\pi\)
\(618\) 0 0
\(619\) 16.3619 7.28480i 0.657641 0.292801i −0.0506549 0.998716i \(-0.516131\pi\)
0.708296 + 0.705915i \(0.249464\pi\)
\(620\) −8.51980 7.09720i −0.342163 0.285030i
\(621\) 0 0
\(622\) 24.0548 17.4768i 0.964510 0.700757i
\(623\) −10.2552 2.17980i −0.410864 0.0873319i
\(624\) 0 0
\(625\) 19.3790 + 15.7941i 0.775160 + 0.631765i
\(626\) −15.2615 26.4337i −0.609973 1.05650i
\(627\) 0 0
\(628\) 0.00682556 + 0.0649409i 0.000272370 + 0.00259142i
\(629\) −4.97615 + 3.61538i −0.198412 + 0.144155i
\(630\) 0 0
\(631\) −27.5034 19.9824i −1.09489 0.795487i −0.114675 0.993403i \(-0.536583\pi\)
−0.980219 + 0.197916i \(0.936583\pi\)
\(632\) −9.20786 + 15.9485i −0.366269 + 0.634396i
\(633\) 0 0
\(634\) 5.16248 1.09732i 0.205028 0.0435801i
\(635\) 49.1056 7.08050i 1.94870 0.280981i
\(636\) 0 0
\(637\) −2.30455 2.55946i −0.0913097 0.101410i
\(638\) 4.79979 14.7722i 0.190025 0.584838i
\(639\) 0 0
\(640\) −29.6529 1.96701i −1.17213 0.0777527i
\(641\) 8.52288 + 9.46562i 0.336634 + 0.373870i 0.887566 0.460680i \(-0.152394\pi\)
−0.550932 + 0.834550i \(0.685728\pi\)
\(642\) 0 0
\(643\) 9.31365 + 16.1317i 0.367295 + 0.636173i 0.989142 0.146966i \(-0.0469507\pi\)
−0.621847 + 0.783139i \(0.713617\pi\)
\(644\) 0.0119243 0.113453i 0.000469885 0.00447066i
\(645\) 0 0
\(646\) −2.56733 24.4265i −0.101010 0.961047i
\(647\) 2.58476 1.87794i 0.101617 0.0738294i −0.535816 0.844335i \(-0.679996\pi\)
0.637434 + 0.770505i \(0.279996\pi\)
\(648\) 0 0
\(649\) −7.87544 −0.309138
\(650\) −5.32009 1.89338i −0.208671 0.0742643i
\(651\) 0 0
\(652\) 6.33041 7.03063i 0.247918 0.275341i
\(653\) 4.61992 + 2.05692i 0.180792 + 0.0804936i 0.495136 0.868815i \(-0.335118\pi\)
−0.314345 + 0.949309i \(0.601785\pi\)
\(654\) 0 0
\(655\) 25.0057 + 7.07361i 0.977055 + 0.276389i
\(656\) −21.7371 15.7929i −0.848691 0.616610i
\(657\) 0 0
\(658\) 22.1034 + 16.0590i 0.861679 + 0.626046i
\(659\) −0.955484 1.06117i −0.0372204 0.0413374i 0.724247 0.689540i \(-0.242187\pi\)
−0.761468 + 0.648203i \(0.775521\pi\)
\(660\) 0 0
\(661\) −3.11002 + 3.45402i −0.120966 + 0.134346i −0.800586 0.599219i \(-0.795478\pi\)
0.679620 + 0.733564i \(0.262145\pi\)
\(662\) 24.0122 5.10395i 0.933261 0.198371i
\(663\) 0 0
\(664\) −36.3852 7.73391i −1.41202 0.300134i
\(665\) −5.24360 20.7151i −0.203338 0.803296i
\(666\) 0 0
\(667\) 0.178005 + 0.129328i 0.00689238 + 0.00500761i
\(668\) −2.56797 + 4.44786i −0.0993579 + 0.172093i
\(669\) 0 0
\(670\) 46.7784 + 24.6583i 1.80721 + 0.952635i
\(671\) 15.6821 + 6.98212i 0.605401 + 0.269542i
\(672\) 0 0
\(673\) −18.4133 3.91386i −0.709780 0.150868i −0.161145 0.986931i \(-0.551519\pi\)
−0.548634 + 0.836062i \(0.684852\pi\)
\(674\) −20.2908 −0.781572
\(675\) 0 0
\(676\) −9.61597 −0.369845
\(677\) −9.69731 2.06123i −0.372698 0.0792194i 0.0177547 0.999842i \(-0.494348\pi\)
−0.390453 + 0.920623i \(0.627682\pi\)
\(678\) 0 0
\(679\) −13.7885 6.13906i −0.529156 0.235595i
\(680\) 9.73802 1.40412i 0.373436 0.0538454i
\(681\) 0 0
\(682\) −24.4554 + 42.3580i −0.936445 + 1.62197i
\(683\) −21.4995 15.6203i −0.822655 0.597694i 0.0948166 0.995495i \(-0.469774\pi\)
−0.917472 + 0.397801i \(0.869774\pi\)
\(684\) 0 0
\(685\) 31.3379 19.7383i 1.19736 0.754161i
\(686\) −27.2703 5.79649i −1.04119 0.221311i
\(687\) 0 0
\(688\) 5.93101 1.26068i 0.226118 0.0480628i
\(689\) −0.604171 + 0.671000i −0.0230171 + 0.0255631i
\(690\) 0 0
\(691\) −22.2009 24.6566i −0.844563 0.937982i 0.154183 0.988042i \(-0.450725\pi\)
−0.998746 + 0.0500602i \(0.984059\pi\)
\(692\) 7.13452 + 5.18353i 0.271214 + 0.197048i
\(693\) 0 0
\(694\) 29.2539 + 21.2542i 1.11046 + 0.806799i
\(695\) 23.2754 + 29.5726i 0.882886 + 1.12175i
\(696\) 0 0
\(697\) 10.6465 + 4.74011i 0.403263 + 0.179544i
\(698\) −12.3447 + 13.7102i −0.467253 + 0.518938i
\(699\) 0 0
\(700\) −5.10659 + 1.50390i −0.193011 + 0.0568419i
\(701\) −26.1441 −0.987451 −0.493725 0.869618i \(-0.664365\pi\)
−0.493725 + 0.869618i \(0.664365\pi\)
\(702\) 0 0
\(703\) −15.9674 + 11.6010i −0.602223 + 0.437540i
\(704\) 1.44069 + 13.7073i 0.0542981 + 0.516612i
\(705\) 0 0
\(706\) 0.881738 8.38918i 0.0331846 0.315731i
\(707\) −8.47791 14.6842i −0.318845 0.552255i
\(708\) 0 0
\(709\) 26.7119 + 29.6666i 1.00319 + 1.11415i 0.993458 + 0.114201i \(0.0364306\pi\)
0.00973033 + 0.999953i \(0.496903\pi\)
\(710\) 12.3649 + 48.8483i 0.464048 + 1.83324i
\(711\) 0 0
\(712\) 4.78661 14.7317i 0.179386 0.552093i
\(713\) −0.463608 0.514888i −0.0173622 0.0192827i
\(714\) 0 0
\(715\) −1.17449 + 6.80306i −0.0439236 + 0.254420i
\(716\) 3.68398 0.783055i 0.137677 0.0292641i
\(717\) 0 0
\(718\) −25.4766 + 44.1267i −0.950777 + 1.64679i
\(719\) −32.4317 23.5630i −1.20950 0.878751i −0.214312 0.976765i \(-0.568751\pi\)
−0.995185 + 0.0980142i \(0.968751\pi\)
\(720\) 0 0
\(721\) −0.953688 + 0.692895i −0.0355172 + 0.0258048i
\(722\) −4.93444 46.9481i −0.183641 1.74723i
\(723\) 0 0
\(724\) −0.801787 1.38874i −0.0297982 0.0516120i
\(725\) 2.41263 9.98006i 0.0896029 0.370650i
\(726\) 0 0
\(727\) 34.5304 + 7.33967i 1.28066 + 0.272213i 0.797501 0.603318i \(-0.206155\pi\)
0.483162 + 0.875531i \(0.339488\pi\)
\(728\) −1.56422 + 1.13647i −0.0579738 + 0.0421204i
\(729\) 0 0
\(730\) 21.9886 + 1.45860i 0.813835 + 0.0539852i
\(731\) −2.40262 + 1.06972i −0.0888641 + 0.0395649i
\(732\) 0 0
\(733\) −0.702668 + 6.68544i −0.0259536 + 0.246932i 0.973851 + 0.227186i \(0.0729525\pi\)
−0.999805 + 0.0197463i \(0.993714\pi\)
\(734\) 25.9980 5.52604i 0.959603 0.203970i
\(735\) 0 0
\(736\) 0.432244 + 0.0918764i 0.0159327 + 0.00338661i
\(737\) 19.9773 61.4839i 0.735874 2.26479i
\(738\) 0 0
\(739\) −3.30815 10.1814i −0.121692 0.374530i 0.871592 0.490233i \(-0.163088\pi\)
−0.993284 + 0.115702i \(0.963088\pi\)
\(740\) 3.04102 + 3.86376i 0.111790 + 0.142035i
\(741\) 0 0
\(742\) −0.321012 + 3.05423i −0.0117847 + 0.112124i
\(743\) 10.6028 + 18.3647i 0.388981 + 0.673735i 0.992313 0.123756i \(-0.0394939\pi\)
−0.603332 + 0.797490i \(0.706161\pi\)
\(744\) 0 0
\(745\) 33.4912 12.3256i 1.22702 0.451575i
\(746\) −15.1586 + 11.0133i −0.554995 + 0.403227i
\(747\) 0 0
\(748\) 2.31161 + 7.11441i 0.0845209 + 0.260129i
\(749\) −13.2422 + 22.9361i −0.483858 + 0.838067i
\(750\) 0 0
\(751\) −24.6961 42.7750i −0.901175 1.56088i −0.825971 0.563713i \(-0.809372\pi\)
−0.0752042 0.997168i \(-0.523961\pi\)
\(752\) −39.1515 + 43.4822i −1.42771 + 1.58563i
\(753\) 0 0
\(754\) 0.242424 + 2.30651i 0.00882857 + 0.0839982i
\(755\) 14.4581 + 12.0439i 0.526184 + 0.438324i
\(756\) 0 0
\(757\) −31.2549 −1.13598 −0.567989 0.823036i \(-0.692279\pi\)
−0.567989 + 0.823036i \(0.692279\pi\)
\(758\) 33.6210 14.9690i 1.22117 0.543700i
\(759\) 0 0
\(760\) 31.2473 4.50552i 1.13346 0.163432i
\(761\) 19.3977 21.5434i 0.703168 0.780947i −0.280709 0.959793i \(-0.590570\pi\)
0.983877 + 0.178846i \(0.0572363\pi\)
\(762\) 0 0
\(763\) −12.1756 13.5224i −0.440786 0.489543i
\(764\) −2.43370 7.49016i −0.0880482 0.270985i
\(765\) 0 0
\(766\) −3.25185 + 10.0082i −0.117494 + 0.361610i
\(767\) 1.07425 0.478289i 0.0387891 0.0172700i
\(768\) 0 0
\(769\) −3.56272 + 33.8970i −0.128475 + 1.22236i 0.720322 + 0.693640i \(0.243994\pi\)
−0.848797 + 0.528719i \(0.822673\pi\)
\(770\) 10.3689 + 21.0678i 0.373668 + 0.759230i
\(771\) 0 0
\(772\) 0.140974 + 1.34128i 0.00507377 + 0.0482737i
\(773\) 9.44334 + 29.0636i 0.339653 + 1.04535i 0.964384 + 0.264506i \(0.0852088\pi\)
−0.624731 + 0.780840i \(0.714791\pi\)
\(774\) 0 0
\(775\) −13.9652 + 29.1604i −0.501645 + 1.04747i
\(776\) 11.1498 19.3120i 0.400253 0.693259i
\(777\) 0 0
\(778\) −50.2688 22.3811i −1.80223 0.802402i
\(779\) 34.1622 + 15.2100i 1.22399 + 0.544955i
\(780\) 0 0
\(781\) 56.2771 25.0562i 2.01375 0.896581i
\(782\) −0.382321 −0.0136718
\(783\) 0 0
\(784\) 7.75234 23.8592i 0.276869 0.852116i
\(785\) 0.178680 0.0657588i 0.00637736 0.00234703i
\(786\) 0 0
\(787\) 22.4498 4.77185i 0.800249 0.170098i 0.210404 0.977615i \(-0.432522\pi\)
0.589845 + 0.807517i \(0.299189\pi\)
\(788\) −1.18861 + 0.252647i −0.0423425 + 0.00900017i
\(789\) 0 0
\(790\) −32.1332 9.08982i −1.14325 0.323401i
\(791\) −2.98726 + 9.19384i −0.106215 + 0.326895i
\(792\) 0 0
\(793\) −2.56316 −0.0910205
\(794\) −43.0398 + 19.1626i −1.52743 + 0.680054i
\(795\) 0 0
\(796\) −3.38929 1.50901i −0.120130 0.0534854i
\(797\) −39.7228 17.6857i −1.40705 0.626461i −0.444063 0.895996i \(-0.646463\pi\)
−0.962991 + 0.269535i \(0.913130\pi\)
\(798\) 0 0
\(799\) 12.6893 21.9786i 0.448916 0.777545i
\(800\) −3.72601 20.2819i −0.131734 0.717075i
\(801\) 0 0
\(802\) −5.12593 15.7760i −0.181003 0.557070i
\(803\) −2.81613 26.7937i −0.0993790 0.945528i
\(804\) 0 0
\(805\) −0.329220 + 0.0474700i −0.0116035 + 0.00167310i
\(806\) 0.763381 7.26308i 0.0268889 0.255831i
\(807\) 0 0
\(808\) 22.8853 10.1892i 0.805102 0.358455i
\(809\) 8.36599 25.7479i 0.294133 0.905247i −0.689379 0.724401i \(-0.742116\pi\)
0.983511 0.180846i \(-0.0578836\pi\)
\(810\) 0 0
\(811\) −11.3390 34.8979i −0.398167 1.22543i −0.926468 0.376375i \(-0.877171\pi\)
0.528300 0.849058i \(-0.322829\pi\)
\(812\) 1.46295 + 1.62477i 0.0513395 + 0.0570182i
\(813\) 0 0
\(814\) 14.5122 16.1175i 0.508654 0.564918i
\(815\) −24.4024 12.8633i −0.854779 0.450581i
\(816\) 0 0
\(817\) −7.70951 + 3.43249i −0.269721 + 0.120088i
\(818\) −16.0697 −0.561865
\(819\) 0 0
\(820\) 3.45897 8.65018i 0.120793 0.302078i
\(821\) 0.158330 + 1.50641i 0.00552576 + 0.0525741i 0.996937 0.0782049i \(-0.0249188\pi\)
−0.991412 + 0.130779i \(0.958252\pi\)
\(822\) 0 0
\(823\) −24.3576 + 27.0519i −0.849053 + 0.942969i −0.998954 0.0457319i \(-0.985438\pi\)
0.149900 + 0.988701i \(0.452105\pi\)
\(824\) −0.870816 1.50830i −0.0303363 0.0525440i
\(825\) 0 0
\(826\) 1.99979 3.46374i 0.0695816 0.120519i
\(827\) 0.131104 + 0.403496i 0.00455892 + 0.0140309i 0.953310 0.301993i \(-0.0976520\pi\)
−0.948751 + 0.316024i \(0.897652\pi\)
\(828\) 0 0
\(829\) −15.0808 + 10.9568i −0.523778 + 0.380547i −0.818025 0.575182i \(-0.804931\pi\)
0.294247 + 0.955729i \(0.404931\pi\)
\(830\) −2.59512 67.4032i −0.0900780 2.33960i
\(831\) 0 0
\(832\) −1.02898 1.78225i −0.0356736 0.0617885i
\(833\) −1.13741 + 10.8217i −0.0394088 + 0.374950i
\(834\) 0 0
\(835\) 14.4098 + 4.07625i 0.498673 + 0.141064i
\(836\) 7.41748 + 22.8286i 0.256539 + 0.789545i
\(837\) 0 0
\(838\) 6.49962 20.0038i 0.224526 0.691019i
\(839\) −28.4120 6.03916i −0.980892 0.208495i −0.310558 0.950554i \(-0.600516\pi\)
−0.670334 + 0.742059i \(0.733849\pi\)
\(840\) 0 0
\(841\) 24.2415 5.15270i 0.835915 0.177679i
\(842\) 3.98670 37.9309i 0.137391 1.30718i
\(843\) 0 0
\(844\) −3.00805 + 1.33927i −0.103541 + 0.0460996i
\(845\) 6.88026 + 27.1808i 0.236688 + 0.935047i
\(846\) 0 0
\(847\) 10.8694 7.89708i 0.373477 0.271347i
\(848\) −6.43322 1.36742i −0.220918 0.0469575i
\(849\) 0 0
\(850\) 6.80151 + 16.4937i 0.233290 + 0.565730i
\(851\) 0.153613 + 0.266066i 0.00526580 + 0.00912063i
\(852\) 0 0
\(853\) −1.83844 17.4915i −0.0629468 0.598899i −0.979842 0.199772i \(-0.935980\pi\)
0.916896 0.399127i \(-0.130687\pi\)
\(854\) −7.05296 + 5.12428i −0.241347 + 0.175349i
\(855\) 0 0
\(856\) −31.6559 22.9993i −1.08198 0.786101i
\(857\) 4.22020 7.30960i 0.144159 0.249691i −0.784900 0.619623i \(-0.787286\pi\)
0.929059 + 0.369932i \(0.120619\pi\)
\(858\) 0 0
\(859\) 33.0228 7.01920i 1.12672 0.239492i 0.393396 0.919369i \(-0.371300\pi\)
0.733326 + 0.679877i \(0.237967\pi\)
\(860\) 0.928383 + 1.88632i 0.0316576 + 0.0643229i
\(861\) 0 0
\(862\) 14.6004 + 16.2154i 0.497291 + 0.552298i
\(863\) −12.9265 + 39.7837i −0.440023 + 1.35425i 0.447828 + 0.894120i \(0.352198\pi\)
−0.887851 + 0.460132i \(0.847802\pi\)
\(864\) 0 0
\(865\) 9.54714 23.8755i 0.324613 0.811790i
\(866\) 26.2641 + 29.1693i 0.892492 + 0.991213i
\(867\) 0 0
\(868\) −3.44234 5.96231i −0.116841 0.202374i
\(869\) −4.26748 + 40.6024i −0.144764 + 1.37734i
\(870\) 0 0
\(871\) 1.00900 + 9.60000i 0.0341887 + 0.325283i
\(872\) 21.7493 15.8018i 0.736523 0.535115i
\(873\) 0 0
\(874\) −1.22679 −0.0414967
\(875\) 7.90474 + 13.3584i 0.267229 + 0.451596i
\(876\) 0 0
\(877\) −19.1882 + 21.3106i −0.647938 + 0.719608i −0.974204 0.225670i \(-0.927543\pi\)
0.326266 + 0.945278i \(0.394210\pi\)
\(878\) −12.3175 5.48408i −0.415694 0.185079i
\(879\) 0 0
\(880\) −47.1926 + 17.3681i −1.59086 + 0.585477i
\(881\) 11.7352 + 8.52611i 0.395368 + 0.287252i 0.767652 0.640867i \(-0.221425\pi\)
−0.372283 + 0.928119i \(0.621425\pi\)
\(882\) 0 0
\(883\) −42.8896 31.1611i −1.44335 1.04865i −0.987329 0.158684i \(-0.949275\pi\)
−0.456019 0.889970i \(-0.650725\pi\)
\(884\) −0.747387 0.830057i −0.0251373 0.0279178i
\(885\) 0 0
\(886\) −0.565995 + 0.628601i −0.0190150 + 0.0211183i
\(887\) −8.79953 + 1.87040i −0.295459 + 0.0628018i −0.353256 0.935527i \(-0.614926\pi\)
0.0577971 + 0.998328i \(0.481592\pi\)
\(888\) 0 0
\(889\) 30.1308 + 6.40449i 1.01055 + 0.214800i
\(890\) 28.0268 + 1.85914i 0.939461 + 0.0623185i
\(891\) 0 0
\(892\) −10.0558 7.30599i −0.336694 0.244623i
\(893\) 40.7174 70.5246i 1.36256 2.36001i
\(894\) 0 0
\(895\) −4.84931 9.85297i −0.162094 0.329349i
\(896\) −16.8561 7.50483i −0.563123 0.250719i
\(897\) 0 0
\(898\) 11.7571 + 2.49905i 0.392340 + 0.0833944i
\(899\) 13.2788 0.442872
\(900\) 0 0
\(901\) 2.85269 0.0950369
\(902\) −40.1946 8.54362i −1.33833 0.284471i
\(903\) 0 0
\(904\) −13.0475 5.80914i −0.433955 0.193209i
\(905\) −3.35176 + 3.26000i −0.111416 + 0.108366i
\(906\) 0 0
\(907\) 13.0147 22.5421i 0.432145 0.748498i −0.564912 0.825151i \(-0.691090\pi\)
0.997058 + 0.0766530i \(0.0244234\pi\)
\(908\) 5.71538 + 4.15247i 0.189672 + 0.137804i
\(909\) 0 0
\(910\) −2.69385 2.24404i −0.0893003 0.0743893i
\(911\) 3.92226 + 0.833703i 0.129950 + 0.0276218i 0.272428 0.962176i \(-0.412173\pi\)
−0.142477 + 0.989798i \(0.545507\pi\)
\(912\) 0 0
\(913\) −80.6628 + 17.1454i −2.66955 + 0.567430i
\(914\) 17.6760 19.6312i 0.584670 0.649342i
\(915\) 0 0
\(916\) −4.21026 4.67597i −0.139111 0.154498i
\(917\) 13.0533 + 9.48377i 0.431058 + 0.313182i
\(918\) 0 0
\(919\) 0.331871 + 0.241118i 0.0109474 + 0.00795375i 0.593245 0.805022i \(-0.297846\pi\)
−0.582298 + 0.812975i \(0.697846\pi\)
\(920\) −0.0189068 0.491067i −0.000623339 0.0161900i
\(921\) 0 0
\(922\) −50.1567 22.3312i −1.65182 0.735439i
\(923\) −6.15481 + 6.83561i −0.202588 + 0.224997i
\(924\) 0 0
\(925\) 8.74557 11.3604i 0.287552 0.373526i
\(926\) 30.6303 1.00657
\(927\) 0 0
\(928\) −6.85175 + 4.97808i −0.224920 + 0.163414i
\(929\) −0.704207 6.70008i −0.0231043 0.219822i −0.999982 0.00602306i \(-0.998083\pi\)
0.976878 0.213799i \(-0.0685839\pi\)
\(930\) 0 0
\(931\) −3.64970 + 34.7246i −0.119614 + 1.13805i
\(932\) 3.17656 + 5.50196i 0.104052 + 0.180223i
\(933\) 0 0
\(934\) −20.5261 22.7966i −0.671635 0.745926i
\(935\) 18.4558 11.6244i 0.603570 0.380160i
\(936\) 0 0
\(937\) −13.0786 + 40.2519i −0.427260 + 1.31497i 0.473554 + 0.880765i \(0.342971\pi\)
−0.900814 + 0.434206i \(0.857029\pi\)
\(938\) 21.9688 + 24.3988i 0.717305 + 0.796648i
\(939\) 0 0
\(940\) −17.9468 9.46030i −0.585359 0.308561i
\(941\) 51.2834 10.9006i 1.67179 0.355350i 0.727919 0.685663i \(-0.240488\pi\)
0.943871 + 0.330314i \(0.107154\pi\)
\(942\) 0 0
\(943\) 0.291050 0.504114i 0.00947790 0.0164162i
\(944\) 6.92961 + 5.03466i 0.225540 + 0.163864i
\(945\) 0 0
\(946\) 7.50241 5.45082i 0.243924 0.177221i
\(947\) 0.245164 + 2.33258i 0.00796675 + 0.0757985i 0.997783 0.0665533i \(-0.0212002\pi\)
−0.989816 + 0.142352i \(0.954534\pi\)
\(948\) 0 0
\(949\) 2.01136 + 3.48378i 0.0652915 + 0.113088i
\(950\) 21.8246 + 52.9249i 0.708084 + 1.71711i
\(951\) 0 0
\(952\) 5.97517 + 1.27006i 0.193656 + 0.0411629i
\(953\) 7.72986 5.61607i 0.250395 0.181922i −0.455507 0.890232i \(-0.650542\pi\)
0.705902 + 0.708310i \(0.250542\pi\)
\(954\) 0 0
\(955\) −19.4306 + 12.2384i −0.628759 + 0.396026i
\(956\) −0.756054 + 0.336617i −0.0244525 + 0.0108870i
\(957\) 0 0
\(958\) −4.01328 + 38.1839i −0.129663 + 1.23366i
\(959\) 22.4924 4.78090i 0.726316 0.154383i
\(960\) 0 0
\(961\) −10.5779 2.24839i −0.341221 0.0725288i
\(962\) −1.00071 + 3.07987i −0.0322642 + 0.0992989i
\(963\) 0 0
\(964\) −5.94735 18.3041i −0.191551 0.589534i
\(965\) 3.69043 1.35817i 0.118799 0.0437211i
\(966\) 0 0
\(967\) −2.15909 + 20.5424i −0.0694318 + 0.660599i 0.903354 + 0.428895i \(0.141097\pi\)
−0.972786 + 0.231705i \(0.925570\pi\)
\(968\) 9.92488 + 17.1904i 0.318998 + 0.552520i
\(969\) 0 0
\(970\) 38.9100 + 11.0068i 1.24932 + 0.353408i
\(971\) −24.5224 + 17.8166i −0.786962 + 0.571761i −0.907060 0.421001i \(-0.861679\pi\)
0.120098 + 0.992762i \(0.461679\pi\)
\(972\) 0 0
\(973\) 7.22044 + 22.2222i 0.231477 + 0.712412i
\(974\) 9.49335 16.4430i 0.304186 0.526866i
\(975\) 0 0
\(976\) −9.33514 16.1689i −0.298810 0.517555i
\(977\) 15.7527 17.4951i 0.503973 0.559719i −0.436448 0.899729i \(-0.643764\pi\)
0.940422 + 0.340010i \(0.110430\pi\)
\(978\) 0 0
\(979\) −3.58946 34.1514i −0.114719 1.09148i
\(980\) 8.67937 + 0.575740i 0.277252 + 0.0183913i
\(981\) 0 0
\(982\) 66.1926 2.11229
\(983\) −17.6593 + 7.86243i −0.563245 + 0.250773i −0.668550 0.743667i \(-0.733085\pi\)
0.105305 + 0.994440i \(0.466418\pi\)
\(984\) 0 0
\(985\) 1.56459 + 3.17899i 0.0498521 + 0.101291i
\(986\) 4.90295 5.44528i 0.156142 0.173413i
\(987\) 0 0
\(988\) −2.39821 2.66348i −0.0762971 0.0847365i
\(989\) 0.0405939 + 0.124935i 0.00129081 + 0.00397271i
\(990\) 0 0
\(991\) −0.458610 + 1.41146i −0.0145682 + 0.0448364i −0.958076 0.286513i \(-0.907504\pi\)
0.943508 + 0.331349i \(0.107504\pi\)
\(992\) 24.3635 10.8473i 0.773540 0.344402i
\(993\) 0 0
\(994\) −3.27021 + 31.1140i −0.103725 + 0.986876i
\(995\) −1.84036 + 10.6600i −0.0583433 + 0.337944i
\(996\) 0 0
\(997\) 1.65392 + 15.7360i 0.0523803 + 0.498365i 0.988989 + 0.147988i \(0.0472798\pi\)
−0.936609 + 0.350377i \(0.886053\pi\)
\(998\) −18.6267 57.3271i −0.589619 1.81466i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.r.a.181.7 224
3.2 odd 2 225.2.q.a.106.22 yes 224
9.4 even 3 inner 675.2.r.a.631.22 224
9.5 odd 6 225.2.q.a.31.7 224
25.21 even 5 inner 675.2.r.a.46.22 224
75.71 odd 10 225.2.q.a.196.7 yes 224
225.121 even 15 inner 675.2.r.a.496.7 224
225.221 odd 30 225.2.q.a.121.22 yes 224
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
225.2.q.a.31.7 224 9.5 odd 6
225.2.q.a.106.22 yes 224 3.2 odd 2
225.2.q.a.121.22 yes 224 225.221 odd 30
225.2.q.a.196.7 yes 224 75.71 odd 10
675.2.r.a.46.22 224 25.21 even 5 inner
675.2.r.a.181.7 224 1.1 even 1 trivial
675.2.r.a.496.7 224 225.121 even 15 inner
675.2.r.a.631.22 224 9.4 even 3 inner