Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [675,2,Mod(46,675)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(675, base_ring=CyclotomicField(30))
chi = DirichletCharacter(H, H._module([20, 18]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("675.46");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 675 = 3^{3} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 675.r (of order \(15\), degree \(8\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.38990213644\) |
Analytic rank: | \(0\) |
Dimension: | \(224\) |
Relative dimension: | \(28\) over \(\Q(\zeta_{15})\) |
Twist minimal: | no (minimal twist has level 225) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{15}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
46.1 | −1.77417 | − | 1.97042i | 0 | −0.525803 | + | 5.00268i | 1.61775 | + | 1.54366i | 0 | 1.02644 | − | 1.77785i | 6.50010 | − | 4.72260i | 0 | 0.171493 | − | 5.92636i | ||||||
46.2 | −1.69452 | − | 1.88195i | 0 | −0.461298 | + | 4.38896i | 2.12223 | − | 0.704374i | 0 | −1.03406 | + | 1.79105i | 4.94396 | − | 3.59200i | 0 | −4.92175 | − | 2.80036i | ||||||
46.3 | −1.64688 | − | 1.82905i | 0 | −0.424138 | + | 4.03540i | −0.681844 | − | 2.12957i | 0 | 2.55879 | − | 4.43196i | 4.09710 | − | 2.97672i | 0 | −2.77218 | + | 4.75428i | ||||||
46.4 | −1.55906 | − | 1.73151i | 0 | −0.358407 | + | 3.41002i | −2.08227 | + | 0.814962i | 0 | −0.0399999 | + | 0.0692819i | 2.69327 | − | 1.95678i | 0 | 4.65750 | + | 2.33489i | ||||||
46.5 | −1.53828 | − | 1.70844i | 0 | −0.343384 | + | 3.26708i | −0.322490 | + | 2.21269i | 0 | −1.62043 | + | 2.80667i | 2.39008 | − | 1.73649i | 0 | 4.27633 | − | 2.85279i | ||||||
46.6 | −1.15183 | − | 1.27924i | 0 | −0.100677 | + | 0.957875i | 0.0644453 | − | 2.23514i | 0 | −2.11497 | + | 3.66323i | −1.44394 | + | 1.04909i | 0 | −2.93350 | + | 2.49206i | ||||||
46.7 | −0.956880 | − | 1.06272i | 0 | −0.00470356 | + | 0.0447514i | 2.07212 | − | 0.840433i | 0 | 1.92019 | − | 3.32586i | −2.26178 | + | 1.64328i | 0 | −2.87591 | − | 1.39789i | ||||||
46.8 | −0.955162 | − | 1.06081i | 0 | −0.00393676 | + | 0.0374558i | −0.397449 | + | 2.20046i | 0 | 1.20474 | − | 2.08666i | −2.26620 | + | 1.64649i | 0 | 2.71391 | − | 1.68018i | ||||||
46.9 | −0.797750 | − | 0.885991i | 0 | 0.0604816 | − | 0.575444i | −1.30610 | − | 1.81497i | 0 | 0.157578 | − | 0.272934i | −2.48714 | + | 1.80701i | 0 | −0.566103 | + | 2.60508i | ||||||
46.10 | −0.721003 | − | 0.800755i | 0 | 0.0876938 | − | 0.834351i | −2.23594 | + | 0.0235208i | 0 | 0.316483 | − | 0.548165i | −2.47480 | + | 1.79805i | 0 | 1.63096 | + | 1.77348i | ||||||
46.11 | −0.513717 | − | 0.570540i | 0 | 0.147446 | − | 1.40285i | 1.29212 | + | 1.82494i | 0 | −1.54115 | + | 2.66935i | −2.11835 | + | 1.53907i | 0 | 0.377417 | − | 1.67471i | ||||||
46.12 | −0.510289 | − | 0.566733i | 0 | 0.148265 | − | 1.41065i | 0.965605 | + | 2.01683i | 0 | −0.476660 | + | 0.825599i | −2.10906 | + | 1.53232i | 0 | 0.650268 | − | 1.57641i | ||||||
46.13 | −0.349998 | − | 0.388712i | 0 | 0.180458 | − | 1.71695i | 0.130882 | − | 2.23223i | 0 | −1.68864 | + | 2.92481i | −1.57689 | + | 1.14568i | 0 | −0.913505 | + | 0.730402i | ||||||
46.14 | 0.110043 | + | 0.122216i | 0 | 0.206230 | − | 1.96215i | 2.06082 | + | 0.867759i | 0 | 2.06663 | − | 3.57951i | 0.528597 | − | 0.384048i | 0 | 0.120726 | + | 0.347356i | ||||||
46.15 | 0.136671 | + | 0.151788i | 0 | 0.204696 | − | 1.94755i | 1.79725 | − | 1.33037i | 0 | 0.530047 | − | 0.918069i | 0.654078 | − | 0.475215i | 0 | 0.447567 | + | 0.0909796i | ||||||
46.16 | 0.220390 | + | 0.244767i | 0 | 0.197717 | − | 1.88116i | −2.09765 | + | 0.774498i | 0 | −1.22023 | + | 2.11349i | 1.03695 | − | 0.753387i | 0 | −0.651873 | − | 0.342746i | ||||||
46.17 | 0.251657 | + | 0.279494i | 0 | 0.194272 | − | 1.84837i | 0.102616 | − | 2.23371i | 0 | 1.17975 | − | 2.04339i | 1.17403 | − | 0.852985i | 0 | 0.650132 | − | 0.533449i | ||||||
46.18 | 0.293899 | + | 0.326408i | 0 | 0.188891 | − | 1.79718i | −2.06853 | + | 0.849220i | 0 | −0.888066 | + | 1.53818i | 1.35281 | − | 0.982874i | 0 | −0.885131 | − | 0.425600i | ||||||
46.19 | 0.727367 | + | 0.807823i | 0 | 0.0855417 | − | 0.813875i | −0.934297 | + | 2.03152i | 0 | 1.73969 | − | 3.01324i | 2.47854 | − | 1.80077i | 0 | −2.32069 | + | 0.722917i | ||||||
46.20 | 0.942959 | + | 1.04726i | 0 | 0.00147092 | − | 0.0139948i | 2.16654 | − | 0.553283i | 0 | −2.48652 | + | 4.30678i | 2.29622 | − | 1.66830i | 0 | 2.62239 | + | 1.74721i | ||||||
See next 80 embeddings (of 224 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
25.d | even | 5 | 1 | inner |
225.q | even | 15 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 675.2.r.a | 224 | |
3.b | odd | 2 | 1 | 225.2.q.a | ✓ | 224 | |
9.c | even | 3 | 1 | inner | 675.2.r.a | 224 | |
9.d | odd | 6 | 1 | 225.2.q.a | ✓ | 224 | |
25.d | even | 5 | 1 | inner | 675.2.r.a | 224 | |
75.j | odd | 10 | 1 | 225.2.q.a | ✓ | 224 | |
225.q | even | 15 | 1 | inner | 675.2.r.a | 224 | |
225.t | odd | 30 | 1 | 225.2.q.a | ✓ | 224 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
225.2.q.a | ✓ | 224 | 3.b | odd | 2 | 1 | |
225.2.q.a | ✓ | 224 | 9.d | odd | 6 | 1 | |
225.2.q.a | ✓ | 224 | 75.j | odd | 10 | 1 | |
225.2.q.a | ✓ | 224 | 225.t | odd | 30 | 1 | |
675.2.r.a | 224 | 1.a | even | 1 | 1 | trivial | |
675.2.r.a | 224 | 9.c | even | 3 | 1 | inner | |
675.2.r.a | 224 | 25.d | even | 5 | 1 | inner | |
675.2.r.a | 224 | 225.q | even | 15 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(675, [\chi])\).