Properties

Label 675.2.l.h.151.11
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $96$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [96,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(96\)
Relative dimension: \(16\) over \(\Q(\zeta_{9})\)
Twist minimal: no (minimal twist has level 135)
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.11
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.h.76.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.948617 + 0.795984i) q^{2} +(-1.62630 - 0.595931i) q^{3} +(-0.0810128 - 0.459446i) q^{4} +(-1.06839 - 1.85982i) q^{6} +(0.395202 - 2.24130i) q^{7} +(1.52719 - 2.64518i) q^{8} +(2.28973 + 1.93833i) q^{9} +(-4.87230 + 1.77337i) q^{11} +(-0.142047 + 0.795478i) q^{12} +(-1.18441 + 0.993836i) q^{13} +(2.15894 - 1.81156i) q^{14} +(2.67745 - 0.974511i) q^{16} +(-2.66533 - 4.61649i) q^{17} +(0.629199 + 3.66133i) q^{18} +(-2.28767 + 3.96236i) q^{19} +(-1.97838 + 3.40953i) q^{21} +(-6.03353 - 2.19602i) q^{22} +(-0.892775 - 5.06318i) q^{23} +(-4.06003 + 3.39176i) q^{24} -1.91463 q^{26} +(-2.56869 - 4.51684i) q^{27} -1.06177 q^{28} +(-4.94693 - 4.15097i) q^{29} +(-0.228069 - 1.29344i) q^{31} +(-2.42480 - 0.882557i) q^{32} +(8.98066 + 0.0195113i) q^{33} +(1.14627 - 6.50084i) q^{34} +(0.705061 - 1.20904i) q^{36} +(1.84032 + 3.18754i) q^{37} +(-5.32410 + 1.93781i) q^{38} +(2.51847 - 0.910455i) q^{39} +(3.26644 - 2.74087i) q^{41} +(-4.59066 + 1.65958i) q^{42} +(-7.92956 + 2.88612i) q^{43} +(1.20949 + 2.09490i) q^{44} +(3.18331 - 5.51365i) q^{46} +(1.17913 - 6.68721i) q^{47} +(-4.93508 - 0.0107219i) q^{48} +(1.71059 + 0.622605i) q^{49} +(1.58353 + 9.09617i) q^{51} +(0.552567 + 0.463658i) q^{52} +6.64507 q^{53} +(1.15863 - 6.32939i) q^{54} +(-5.32509 - 4.46828i) q^{56} +(6.08174 - 5.08071i) q^{57} +(-1.38864 - 7.87536i) q^{58} +(-2.83430 - 1.03160i) q^{59} +(0.999796 - 5.67013i) q^{61} +(0.813210 - 1.40852i) q^{62} +(5.24929 - 4.36595i) q^{63} +(-4.44699 - 7.70241i) q^{64} +(8.50367 + 7.16697i) q^{66} +(-2.65278 + 2.22595i) q^{67} +(-1.90510 + 1.59857i) q^{68} +(-1.56538 + 8.76630i) q^{69} +(-0.0130487 - 0.0226011i) q^{71} +(8.62409 - 3.09654i) q^{72} +(2.89081 - 5.00704i) q^{73} +(-0.791465 + 4.48862i) q^{74} +(2.00582 + 0.730059i) q^{76} +(2.04912 + 11.6211i) q^{77} +(3.11377 + 1.14099i) q^{78} +(12.6845 + 10.6435i) q^{79} +(1.48575 + 8.87652i) q^{81} +5.28029 q^{82} +(-8.29793 - 6.96279i) q^{83} +(1.72677 + 0.632744i) q^{84} +(-9.81943 - 3.57398i) q^{86} +(5.57153 + 9.69877i) q^{87} +(-2.75006 + 15.5964i) q^{88} +(-2.32308 + 4.02369i) q^{89} +(1.75941 + 3.04738i) q^{91} +(-2.25393 + 0.820364i) q^{92} +(-0.399893 + 2.23944i) q^{93} +(6.44146 - 5.40503i) q^{94} +(3.41753 + 2.88032i) q^{96} +(-6.81695 + 2.48117i) q^{97} +(1.12712 + 1.95222i) q^{98} +(-14.5937 - 5.38358i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 96 q + 12 q^{4} - 6 q^{6} + 18 q^{9} - 6 q^{11} + 18 q^{14} - 24 q^{16} + 6 q^{19} + 24 q^{21} + 30 q^{24} + 48 q^{26} + 30 q^{29} - 30 q^{31} + 24 q^{34} + 54 q^{36} + 6 q^{39} - 12 q^{41} - 78 q^{44}+ \cdots - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.948617 + 0.795984i 0.670774 + 0.562846i 0.913294 0.407300i \(-0.133530\pi\)
−0.242521 + 0.970146i \(0.577974\pi\)
\(3\) −1.62630 0.595931i −0.938947 0.344061i
\(4\) −0.0810128 0.459446i −0.0405064 0.229723i
\(5\) 0 0
\(6\) −1.06839 1.85982i −0.436168 0.759270i
\(7\) 0.395202 2.24130i 0.149372 0.847133i −0.814379 0.580333i \(-0.802923\pi\)
0.963752 0.266800i \(-0.0859664\pi\)
\(8\) 1.52719 2.64518i 0.539945 0.935211i
\(9\) 2.28973 + 1.93833i 0.763244 + 0.646110i
\(10\) 0 0
\(11\) −4.87230 + 1.77337i −1.46905 + 0.534692i −0.947844 0.318736i \(-0.896742\pi\)
−0.521211 + 0.853428i \(0.674520\pi\)
\(12\) −0.142047 + 0.795478i −0.0410054 + 0.229635i
\(13\) −1.18441 + 0.993836i −0.328496 + 0.275641i −0.792087 0.610409i \(-0.791005\pi\)
0.463591 + 0.886049i \(0.346561\pi\)
\(14\) 2.15894 1.81156i 0.577000 0.484161i
\(15\) 0 0
\(16\) 2.67745 0.974511i 0.669361 0.243628i
\(17\) −2.66533 4.61649i −0.646438 1.11966i −0.983967 0.178348i \(-0.942925\pi\)
0.337530 0.941315i \(-0.390409\pi\)
\(18\) 0.629199 + 3.66133i 0.148304 + 0.862983i
\(19\) −2.28767 + 3.96236i −0.524827 + 0.909027i 0.474755 + 0.880118i \(0.342537\pi\)
−0.999582 + 0.0289093i \(0.990797\pi\)
\(20\) 0 0
\(21\) −1.97838 + 3.40953i −0.431718 + 0.744020i
\(22\) −6.03353 2.19602i −1.28635 0.468194i
\(23\) −0.892775 5.06318i −0.186156 1.05575i −0.924461 0.381278i \(-0.875484\pi\)
0.738304 0.674468i \(-0.235627\pi\)
\(24\) −4.06003 + 3.39176i −0.828749 + 0.692340i
\(25\) 0 0
\(26\) −1.91463 −0.375490
\(27\) −2.56869 4.51684i −0.494345 0.869266i
\(28\) −1.06177 −0.200657
\(29\) −4.94693 4.15097i −0.918622 0.770816i 0.0551173 0.998480i \(-0.482447\pi\)
−0.973740 + 0.227664i \(0.926891\pi\)
\(30\) 0 0
\(31\) −0.228069 1.29344i −0.0409624 0.232309i 0.957453 0.288591i \(-0.0931867\pi\)
−0.998415 + 0.0562816i \(0.982076\pi\)
\(32\) −2.42480 0.882557i −0.428649 0.156015i
\(33\) 8.98066 + 0.0195113i 1.56333 + 0.00339649i
\(34\) 1.14627 6.50084i 0.196584 1.11489i
\(35\) 0 0
\(36\) 0.705061 1.20904i 0.117510 0.201506i
\(37\) 1.84032 + 3.18754i 0.302548 + 0.524028i 0.976712 0.214553i \(-0.0688296\pi\)
−0.674165 + 0.738581i \(0.735496\pi\)
\(38\) −5.32410 + 1.93781i −0.863683 + 0.314355i
\(39\) 2.51847 0.910455i 0.403277 0.145790i
\(40\) 0 0
\(41\) 3.26644 2.74087i 0.510132 0.428052i −0.351044 0.936359i \(-0.614173\pi\)
0.861176 + 0.508307i \(0.169729\pi\)
\(42\) −4.59066 + 1.65958i −0.708354 + 0.256078i
\(43\) −7.92956 + 2.88612i −1.20925 + 0.440130i −0.866442 0.499277i \(-0.833599\pi\)
−0.342804 + 0.939407i \(0.611377\pi\)
\(44\) 1.20949 + 2.09490i 0.182337 + 0.315817i
\(45\) 0 0
\(46\) 3.18331 5.51365i 0.469353 0.812944i
\(47\) 1.17913 6.68721i 0.171995 0.975429i −0.769561 0.638573i \(-0.779525\pi\)
0.941556 0.336857i \(-0.109364\pi\)
\(48\) −4.93508 0.0107219i −0.712318 0.00154758i
\(49\) 1.71059 + 0.622605i 0.244371 + 0.0889436i
\(50\) 0 0
\(51\) 1.58353 + 9.09617i 0.221739 + 1.27372i
\(52\) 0.552567 + 0.463658i 0.0766272 + 0.0642979i
\(53\) 6.64507 0.912771 0.456385 0.889782i \(-0.349144\pi\)
0.456385 + 0.889782i \(0.349144\pi\)
\(54\) 1.15863 6.32939i 0.157669 0.861321i
\(55\) 0 0
\(56\) −5.32509 4.46828i −0.711596 0.597100i
\(57\) 6.08174 5.08071i 0.805546 0.672956i
\(58\) −1.38864 7.87536i −0.182337 1.03409i
\(59\) −2.83430 1.03160i −0.368995 0.134303i 0.150866 0.988554i \(-0.451794\pi\)
−0.519861 + 0.854251i \(0.674016\pi\)
\(60\) 0 0
\(61\) 0.999796 5.67013i 0.128011 0.725985i −0.851463 0.524414i \(-0.824284\pi\)
0.979474 0.201571i \(-0.0646046\pi\)
\(62\) 0.813210 1.40852i 0.103278 0.178882i
\(63\) 5.24929 4.36595i 0.661349 0.550058i
\(64\) −4.44699 7.70241i −0.555874 0.962801i
\(65\) 0 0
\(66\) 8.50367 + 7.16697i 1.04673 + 0.882193i
\(67\) −2.65278 + 2.22595i −0.324089 + 0.271943i −0.790286 0.612738i \(-0.790068\pi\)
0.466197 + 0.884681i \(0.345624\pi\)
\(68\) −1.90510 + 1.59857i −0.231028 + 0.193855i
\(69\) −1.56538 + 8.76630i −0.188450 + 1.05534i
\(70\) 0 0
\(71\) −0.0130487 0.0226011i −0.00154860 0.00268225i 0.865250 0.501341i \(-0.167160\pi\)
−0.866799 + 0.498658i \(0.833826\pi\)
\(72\) 8.62409 3.09654i 1.01636 0.364931i
\(73\) 2.89081 5.00704i 0.338344 0.586029i −0.645777 0.763526i \(-0.723467\pi\)
0.984121 + 0.177497i \(0.0567999\pi\)
\(74\) −0.791465 + 4.48862i −0.0920059 + 0.521792i
\(75\) 0 0
\(76\) 2.00582 + 0.730059i 0.230083 + 0.0837435i
\(77\) 2.04912 + 11.6211i 0.233519 + 1.32435i
\(78\) 3.11377 + 1.14099i 0.352565 + 0.129191i
\(79\) 12.6845 + 10.6435i 1.42712 + 1.19749i 0.947393 + 0.320073i \(0.103708\pi\)
0.479724 + 0.877420i \(0.340737\pi\)
\(80\) 0 0
\(81\) 1.48575 + 8.87652i 0.165083 + 0.986280i
\(82\) 5.28029 0.583110
\(83\) −8.29793 6.96279i −0.910816 0.764265i 0.0614583 0.998110i \(-0.480425\pi\)
−0.972274 + 0.233844i \(0.924869\pi\)
\(84\) 1.72677 + 0.632744i 0.188406 + 0.0690381i
\(85\) 0 0
\(86\) −9.81943 3.57398i −1.05886 0.385392i
\(87\) 5.57153 + 9.69877i 0.597331 + 1.03982i
\(88\) −2.75006 + 15.5964i −0.293158 + 1.66258i
\(89\) −2.32308 + 4.02369i −0.246246 + 0.426510i −0.962481 0.271349i \(-0.912530\pi\)
0.716235 + 0.697859i \(0.245864\pi\)
\(90\) 0 0
\(91\) 1.75941 + 3.04738i 0.184436 + 0.319453i
\(92\) −2.25393 + 0.820364i −0.234989 + 0.0855289i
\(93\) −0.399893 + 2.23944i −0.0414670 + 0.232220i
\(94\) 6.44146 5.40503i 0.664386 0.557486i
\(95\) 0 0
\(96\) 3.41753 + 2.88032i 0.348800 + 0.293972i
\(97\) −6.81695 + 2.48117i −0.692157 + 0.251924i −0.664058 0.747681i \(-0.731167\pi\)
−0.0280982 + 0.999605i \(0.508945\pi\)
\(98\) 1.12712 + 1.95222i 0.113856 + 0.197204i
\(99\) −14.5937 5.38358i −1.46672 0.541070i
\(100\) 0 0
\(101\) 0.0757615 0.429665i 0.00753855 0.0427532i −0.980806 0.194984i \(-0.937535\pi\)
0.988345 + 0.152231i \(0.0486457\pi\)
\(102\) −5.73824 + 9.88925i −0.568171 + 0.979182i
\(103\) 2.13109 + 0.775652i 0.209982 + 0.0764273i 0.444870 0.895595i \(-0.353250\pi\)
−0.234888 + 0.972023i \(0.575472\pi\)
\(104\) 0.820053 + 4.65075i 0.0804128 + 0.456044i
\(105\) 0 0
\(106\) 6.30363 + 5.28937i 0.612263 + 0.513749i
\(107\) −4.36720 −0.422193 −0.211097 0.977465i \(-0.567703\pi\)
−0.211097 + 0.977465i \(0.567703\pi\)
\(108\) −1.86715 + 1.54610i −0.179666 + 0.148773i
\(109\) 7.95224 0.761686 0.380843 0.924640i \(-0.375634\pi\)
0.380843 + 0.924640i \(0.375634\pi\)
\(110\) 0 0
\(111\) −1.09338 6.28061i −0.103779 0.596129i
\(112\) −1.12604 6.38610i −0.106401 0.603429i
\(113\) 14.7879 + 5.38234i 1.39112 + 0.506328i 0.925531 0.378671i \(-0.123619\pi\)
0.465593 + 0.884999i \(0.345841\pi\)
\(114\) 9.81341 + 0.0213206i 0.919110 + 0.00199686i
\(115\) 0 0
\(116\) −1.50638 + 2.60913i −0.139864 + 0.242252i
\(117\) −4.63836 0.0201547i −0.428817 0.00186330i
\(118\) −1.86753 3.23466i −0.171920 0.297774i
\(119\) −11.4003 + 4.14937i −1.04506 + 0.380372i
\(120\) 0 0
\(121\) 12.1680 10.2102i 1.10618 0.928196i
\(122\) 5.46176 4.58296i 0.494484 0.414922i
\(123\) −6.94559 + 2.51091i −0.626263 + 0.226401i
\(124\) −0.575791 + 0.209571i −0.0517075 + 0.0188200i
\(125\) 0 0
\(126\) 8.45480 + 0.0367379i 0.753213 + 0.00327287i
\(127\) 1.67688 2.90443i 0.148799 0.257727i −0.781985 0.623297i \(-0.785793\pi\)
0.930784 + 0.365570i \(0.119126\pi\)
\(128\) 1.01634 5.76393i 0.0898323 0.509464i
\(129\) 14.6158 + 0.0317543i 1.28685 + 0.00279581i
\(130\) 0 0
\(131\) −0.958255 5.43454i −0.0837231 0.474818i −0.997625 0.0688819i \(-0.978057\pi\)
0.913902 0.405936i \(-0.133054\pi\)
\(132\) −0.718583 4.12771i −0.0625447 0.359271i
\(133\) 7.97675 + 6.69329i 0.691672 + 0.580382i
\(134\) −4.28829 −0.370452
\(135\) 0 0
\(136\) −16.2819 −1.39616
\(137\) 4.55076 + 3.81854i 0.388798 + 0.326240i 0.816145 0.577848i \(-0.196107\pi\)
−0.427347 + 0.904088i \(0.640552\pi\)
\(138\) −8.46279 + 7.06985i −0.720400 + 0.601825i
\(139\) −2.76633 15.6886i −0.234637 1.33069i −0.843377 0.537323i \(-0.819436\pi\)
0.608740 0.793370i \(-0.291675\pi\)
\(140\) 0 0
\(141\) −5.90275 + 10.1728i −0.497101 + 0.856700i
\(142\) 0.00561184 0.0318263i 0.000470935 0.00267081i
\(143\) 4.00835 6.94267i 0.335195 0.580575i
\(144\) 8.01956 + 2.95841i 0.668296 + 0.246534i
\(145\) 0 0
\(146\) 6.72780 2.44872i 0.556796 0.202657i
\(147\) −2.41092 2.03194i −0.198849 0.167592i
\(148\) 1.31541 1.10376i 0.108126 0.0907286i
\(149\) 15.5994 13.0894i 1.27795 1.07233i 0.284430 0.958697i \(-0.408196\pi\)
0.993523 0.113632i \(-0.0362486\pi\)
\(150\) 0 0
\(151\) −1.80439 + 0.656743i −0.146839 + 0.0534450i −0.414394 0.910098i \(-0.636006\pi\)
0.267555 + 0.963543i \(0.413784\pi\)
\(152\) 6.98743 + 12.1026i 0.566755 + 0.981649i
\(153\) 2.84539 15.7368i 0.230036 1.27225i
\(154\) −7.30642 + 12.6551i −0.588768 + 1.01978i
\(155\) 0 0
\(156\) −0.622333 1.08334i −0.0498265 0.0867367i
\(157\) 11.9904 + 4.36413i 0.956935 + 0.348296i 0.772832 0.634611i \(-0.218840\pi\)
0.184103 + 0.982907i \(0.441062\pi\)
\(158\) 3.56063 + 20.1933i 0.283268 + 1.60649i
\(159\) −10.8069 3.96000i −0.857044 0.314049i
\(160\) 0 0
\(161\) −11.7009 −0.922163
\(162\) −5.65616 + 9.60305i −0.444390 + 0.754487i
\(163\) 24.6659 1.93198 0.965990 0.258578i \(-0.0832539\pi\)
0.965990 + 0.258578i \(0.0832539\pi\)
\(164\) −1.52391 1.27871i −0.118997 0.0998503i
\(165\) 0 0
\(166\) −2.32929 13.2100i −0.180788 1.02530i
\(167\) 5.03625 + 1.83304i 0.389716 + 0.141845i 0.529444 0.848345i \(-0.322401\pi\)
−0.139728 + 0.990190i \(0.544623\pi\)
\(168\) 5.99743 + 10.4402i 0.462712 + 0.805477i
\(169\) −1.84231 + 10.4483i −0.141717 + 0.803714i
\(170\) 0 0
\(171\) −12.9185 + 4.63848i −0.987903 + 0.354714i
\(172\) 1.96841 + 3.40939i 0.150090 + 0.259964i
\(173\) −13.4581 + 4.89834i −1.02320 + 0.372414i −0.798487 0.602012i \(-0.794366\pi\)
−0.224711 + 0.974426i \(0.572144\pi\)
\(174\) −2.43482 + 13.6353i −0.184583 + 1.03369i
\(175\) 0 0
\(176\) −11.3172 + 9.49622i −0.853063 + 0.715805i
\(177\) 3.99468 + 3.36675i 0.300258 + 0.253060i
\(178\) −5.40651 + 1.96781i −0.405235 + 0.147493i
\(179\) 2.84521 + 4.92805i 0.212661 + 0.368340i 0.952547 0.304393i \(-0.0984536\pi\)
−0.739885 + 0.672733i \(0.765120\pi\)
\(180\) 0 0
\(181\) 5.07635 8.79249i 0.377322 0.653541i −0.613350 0.789811i \(-0.710178\pi\)
0.990672 + 0.136271i \(0.0435117\pi\)
\(182\) −0.756665 + 4.29126i −0.0560878 + 0.318090i
\(183\) −5.00498 + 8.62554i −0.369979 + 0.637619i
\(184\) −14.7564 5.37091i −1.08786 0.395948i
\(185\) 0 0
\(186\) −2.16191 + 1.80607i −0.158519 + 0.132427i
\(187\) 21.1731 + 17.7663i 1.54833 + 1.29920i
\(188\) −3.16794 −0.231046
\(189\) −11.1388 + 3.97215i −0.810225 + 0.288931i
\(190\) 0 0
\(191\) −4.87022 4.08660i −0.352397 0.295696i 0.449355 0.893353i \(-0.351654\pi\)
−0.801752 + 0.597657i \(0.796098\pi\)
\(192\) 2.64205 + 15.1766i 0.190674 + 1.09527i
\(193\) −3.38673 19.2071i −0.243782 1.38256i −0.823304 0.567601i \(-0.807872\pi\)
0.579521 0.814957i \(-0.303240\pi\)
\(194\) −8.44165 3.07251i −0.606075 0.220593i
\(195\) 0 0
\(196\) 0.147474 0.836365i 0.0105338 0.0597404i
\(197\) 4.52311 7.83426i 0.322259 0.558168i −0.658695 0.752410i \(-0.728891\pi\)
0.980954 + 0.194242i \(0.0622246\pi\)
\(198\) −9.55854 16.7233i −0.679296 1.18847i
\(199\) −5.04715 8.74191i −0.357783 0.619698i 0.629807 0.776751i \(-0.283134\pi\)
−0.987590 + 0.157054i \(0.949800\pi\)
\(200\) 0 0
\(201\) 5.64074 2.03919i 0.397867 0.143834i
\(202\) 0.413875 0.347282i 0.0291201 0.0244347i
\(203\) −11.2586 + 9.44710i −0.790200 + 0.663057i
\(204\) 4.05091 1.46445i 0.283621 0.102532i
\(205\) 0 0
\(206\) 1.40418 + 2.43211i 0.0978338 + 0.169453i
\(207\) 7.76990 13.3238i 0.540045 0.926069i
\(208\) −2.20268 + 3.81516i −0.152729 + 0.264534i
\(209\) 4.11947 23.3627i 0.284950 1.61603i
\(210\) 0 0
\(211\) 3.35281 + 1.22032i 0.230817 + 0.0840106i 0.454839 0.890573i \(-0.349697\pi\)
−0.224022 + 0.974584i \(0.571919\pi\)
\(212\) −0.538336 3.05305i −0.0369730 0.209685i
\(213\) 0.00775253 + 0.0445323i 0.000531195 + 0.00305131i
\(214\) −4.14280 3.47622i −0.283196 0.237630i
\(215\) 0 0
\(216\) −15.8707 0.103443i −1.07987 0.00703843i
\(217\) −2.98913 −0.202915
\(218\) 7.54363 + 6.32986i 0.510919 + 0.428712i
\(219\) −7.68519 + 6.42024i −0.519317 + 0.433840i
\(220\) 0 0
\(221\) 7.74487 + 2.81890i 0.520977 + 0.189620i
\(222\) 3.96207 6.82821i 0.265917 0.458279i
\(223\) 3.22320 18.2797i 0.215842 1.22410i −0.663598 0.748089i \(-0.730971\pi\)
0.879440 0.476010i \(-0.157917\pi\)
\(224\) −2.93637 + 5.08593i −0.196194 + 0.339818i
\(225\) 0 0
\(226\) 9.74376 + 16.8767i 0.648145 + 1.12262i
\(227\) −23.1217 + 8.41561i −1.53464 + 0.558564i −0.964753 0.263158i \(-0.915236\pi\)
−0.569888 + 0.821722i \(0.693014\pi\)
\(228\) −2.82701 2.38263i −0.187223 0.157793i
\(229\) 1.56307 1.31157i 0.103291 0.0866713i −0.589680 0.807637i \(-0.700746\pi\)
0.692971 + 0.720966i \(0.256302\pi\)
\(230\) 0 0
\(231\) 3.59291 20.1207i 0.236396 1.32384i
\(232\) −18.5350 + 6.74618i −1.21688 + 0.442908i
\(233\) −4.33906 7.51547i −0.284261 0.492355i 0.688169 0.725551i \(-0.258415\pi\)
−0.972430 + 0.233196i \(0.925082\pi\)
\(234\) −4.38399 3.71118i −0.286590 0.242608i
\(235\) 0 0
\(236\) −0.244351 + 1.38578i −0.0159059 + 0.0902068i
\(237\) −14.2860 24.8687i −0.927977 1.61540i
\(238\) −14.1173 5.13829i −0.915092 0.333066i
\(239\) −0.654990 3.71463i −0.0423678 0.240280i 0.956268 0.292491i \(-0.0944842\pi\)
−0.998636 + 0.0522114i \(0.983373\pi\)
\(240\) 0 0
\(241\) 0.433776 + 0.363981i 0.0279420 + 0.0234461i 0.656652 0.754194i \(-0.271972\pi\)
−0.628710 + 0.777640i \(0.716417\pi\)
\(242\) 19.6699 1.26443
\(243\) 2.87351 15.3213i 0.184336 0.982863i
\(244\) −2.68612 −0.171961
\(245\) 0 0
\(246\) −8.58736 3.14669i −0.547510 0.200626i
\(247\) −1.22840 6.96662i −0.0781614 0.443275i
\(248\) −3.76969 1.37205i −0.239375 0.0871256i
\(249\) 9.34561 + 16.2686i 0.592254 + 1.03098i
\(250\) 0 0
\(251\) 0.425928 0.737730i 0.0268844 0.0465651i −0.852270 0.523102i \(-0.824775\pi\)
0.879155 + 0.476537i \(0.158108\pi\)
\(252\) −2.43118 2.05807i −0.153150 0.129646i
\(253\) 13.3288 + 23.0861i 0.837973 + 1.45141i
\(254\) 3.90260 1.42043i 0.244871 0.0891257i
\(255\) 0 0
\(256\) −8.07425 + 6.77510i −0.504641 + 0.423444i
\(257\) −14.0912 + 11.8239i −0.878982 + 0.737553i −0.965970 0.258656i \(-0.916720\pi\)
0.0869875 + 0.996209i \(0.472276\pi\)
\(258\) 13.8395 + 11.6641i 0.861612 + 0.726174i
\(259\) 7.87153 2.86500i 0.489113 0.178023i
\(260\) 0 0
\(261\) −3.28120 19.0934i −0.203101 1.18185i
\(262\) 3.41679 5.91805i 0.211090 0.365618i
\(263\) −1.21209 + 6.87408i −0.0747404 + 0.423874i 0.924362 + 0.381516i \(0.124598\pi\)
−0.999103 + 0.0423576i \(0.986513\pi\)
\(264\) 13.7668 23.7256i 0.847289 1.46021i
\(265\) 0 0
\(266\) 2.23913 + 12.6987i 0.137290 + 0.778610i
\(267\) 6.17587 5.15935i 0.377957 0.315747i
\(268\) 1.23761 + 1.03848i 0.0755992 + 0.0634352i
\(269\) 9.05450 0.552062 0.276031 0.961149i \(-0.410981\pi\)
0.276031 + 0.961149i \(0.410981\pi\)
\(270\) 0 0
\(271\) −2.68123 −0.162873 −0.0814364 0.996679i \(-0.525951\pi\)
−0.0814364 + 0.996679i \(0.525951\pi\)
\(272\) −11.6351 9.76300i −0.705481 0.591969i
\(273\) −1.04530 6.00446i −0.0632646 0.363406i
\(274\) 1.27743 + 7.24467i 0.0771724 + 0.437667i
\(275\) 0 0
\(276\) 4.15446 + 0.00902597i 0.250069 + 0.000543299i
\(277\) 1.68116 9.53431i 0.101011 0.572861i −0.891728 0.452572i \(-0.850507\pi\)
0.992739 0.120289i \(-0.0383822\pi\)
\(278\) 9.86372 17.0845i 0.591587 1.02466i
\(279\) 1.98490 3.40371i 0.118833 0.203775i
\(280\) 0 0
\(281\) −12.4600 + 4.53506i −0.743300 + 0.270539i −0.685784 0.727806i \(-0.740540\pi\)
−0.0575163 + 0.998345i \(0.518318\pi\)
\(282\) −13.6968 + 4.95155i −0.815633 + 0.294861i
\(283\) −14.9981 + 12.5849i −0.891543 + 0.748094i −0.968519 0.248939i \(-0.919918\pi\)
0.0769758 + 0.997033i \(0.475474\pi\)
\(284\) −0.00932686 + 0.00782616i −0.000553447 + 0.000464397i
\(285\) 0 0
\(286\) 9.32865 3.39535i 0.551615 0.200771i
\(287\) −4.85221 8.40428i −0.286417 0.496089i
\(288\) −3.84147 6.72089i −0.226361 0.396032i
\(289\) −5.70798 + 9.88651i −0.335763 + 0.581559i
\(290\) 0 0
\(291\) 12.5650 + 0.0272988i 0.736576 + 0.00160028i
\(292\) −2.53466 0.922540i −0.148330 0.0539875i
\(293\) 5.25257 + 29.7888i 0.306858 + 1.74028i 0.614625 + 0.788819i \(0.289307\pi\)
−0.307767 + 0.951462i \(0.599582\pi\)
\(294\) −0.669644 3.84659i −0.0390544 0.224338i
\(295\) 0 0
\(296\) 11.2421 0.653436
\(297\) 20.5255 + 17.4522i 1.19101 + 1.01268i
\(298\) 25.2169 1.46077
\(299\) 6.08938 + 5.10960i 0.352158 + 0.295496i
\(300\) 0 0
\(301\) 3.33490 + 18.9131i 0.192220 + 1.09014i
\(302\) −2.23443 0.813265i −0.128577 0.0467982i
\(303\) −0.379262 + 0.653617i −0.0217880 + 0.0375493i
\(304\) −2.26375 + 12.8384i −0.129835 + 0.736330i
\(305\) 0 0
\(306\) 15.2254 12.6633i 0.870381 0.723915i
\(307\) −9.13533 15.8229i −0.521381 0.903058i −0.999691 0.0248672i \(-0.992084\pi\)
0.478310 0.878191i \(-0.341250\pi\)
\(308\) 5.17329 1.88292i 0.294775 0.107289i
\(309\) −3.00356 2.53143i −0.170867 0.144008i
\(310\) 0 0
\(311\) 25.8479 21.6890i 1.46570 1.22987i 0.545681 0.837993i \(-0.316271\pi\)
0.920018 0.391875i \(-0.128174\pi\)
\(312\) 1.43787 8.05223i 0.0814034 0.455868i
\(313\) −2.62017 + 0.953665i −0.148101 + 0.0539043i −0.415007 0.909818i \(-0.636221\pi\)
0.266906 + 0.963723i \(0.413999\pi\)
\(314\) 7.90048 + 13.6840i 0.445850 + 0.772235i
\(315\) 0 0
\(316\) 3.86253 6.69010i 0.217284 0.376348i
\(317\) −0.479083 + 2.71702i −0.0269080 + 0.152603i −0.995301 0.0968248i \(-0.969131\pi\)
0.968393 + 0.249428i \(0.0802425\pi\)
\(318\) −7.09952 12.3587i −0.398121 0.693039i
\(319\) 31.4642 + 11.4520i 1.76166 + 0.641190i
\(320\) 0 0
\(321\) 7.10240 + 2.60255i 0.396417 + 0.145260i
\(322\) −11.0997 9.31377i −0.618563 0.519036i
\(323\) 24.3896 1.35707
\(324\) 3.95792 1.40173i 0.219884 0.0778741i
\(325\) 0 0
\(326\) 23.3985 + 19.6337i 1.29592 + 1.08741i
\(327\) −12.9328 4.73899i −0.715183 0.262067i
\(328\) −2.26160 12.8261i −0.124876 0.708206i
\(329\) −14.5221 5.28560i −0.800627 0.291404i
\(330\) 0 0
\(331\) −4.85007 + 27.5061i −0.266584 + 1.51187i 0.497902 + 0.867233i \(0.334104\pi\)
−0.764486 + 0.644640i \(0.777007\pi\)
\(332\) −2.52679 + 4.37653i −0.138676 + 0.240193i
\(333\) −1.96465 + 10.8658i −0.107662 + 0.595440i
\(334\) 3.31840 + 5.74763i 0.181575 + 0.314496i
\(335\) 0 0
\(336\) −1.97439 + 11.0568i −0.107712 + 0.603197i
\(337\) 10.9318 9.17286i 0.595492 0.499677i −0.294501 0.955651i \(-0.595153\pi\)
0.889993 + 0.455974i \(0.150709\pi\)
\(338\) −10.0643 + 8.44497i −0.547427 + 0.459346i
\(339\) −20.8421 17.5659i −1.13199 0.954047i
\(340\) 0 0
\(341\) 3.40498 + 5.89759i 0.184390 + 0.319372i
\(342\) −15.9469 5.88279i −0.862309 0.318105i
\(343\) 10.0371 17.3847i 0.541950 0.938685i
\(344\) −4.47567 + 25.3828i −0.241312 + 1.36855i
\(345\) 0 0
\(346\) −16.6656 6.06577i −0.895946 0.326098i
\(347\) −3.06781 17.3984i −0.164688 0.933994i −0.949385 0.314114i \(-0.898292\pi\)
0.784697 0.619880i \(-0.212819\pi\)
\(348\) 4.00470 3.34554i 0.214674 0.179340i
\(349\) −18.7439 15.7280i −1.00334 0.841899i −0.0158927 0.999874i \(-0.505059\pi\)
−0.987443 + 0.157975i \(0.949503\pi\)
\(350\) 0 0
\(351\) 7.53138 + 2.79692i 0.401995 + 0.149289i
\(352\) 13.3795 0.713129
\(353\) −24.4328 20.5015i −1.30043 1.09119i −0.990071 0.140567i \(-0.955108\pi\)
−0.310355 0.950621i \(-0.600448\pi\)
\(354\) 1.10954 + 6.37346i 0.0589714 + 0.338745i
\(355\) 0 0
\(356\) 2.03687 + 0.741359i 0.107954 + 0.0392920i
\(357\) 21.0131 + 0.0456530i 1.11213 + 0.00241621i
\(358\) −1.22364 + 6.93958i −0.0646711 + 0.366768i
\(359\) 4.13080 7.15476i 0.218015 0.377614i −0.736186 0.676780i \(-0.763375\pi\)
0.954201 + 0.299166i \(0.0967083\pi\)
\(360\) 0 0
\(361\) −0.966856 1.67464i −0.0508871 0.0881391i
\(362\) 11.8142 4.30002i 0.620941 0.226004i
\(363\) −25.8734 + 9.35354i −1.35800 + 0.490934i
\(364\) 1.25757 1.05523i 0.0659148 0.0553091i
\(365\) 0 0
\(366\) −11.6136 + 4.19846i −0.607053 + 0.219457i
\(367\) −20.3480 + 7.40606i −1.06216 + 0.386593i −0.813238 0.581931i \(-0.802297\pi\)
−0.248918 + 0.968525i \(0.580075\pi\)
\(368\) −7.32448 12.6864i −0.381815 0.661323i
\(369\) 12.7920 + 0.0555839i 0.665924 + 0.00289358i
\(370\) 0 0
\(371\) 2.62615 14.8936i 0.136343 0.773238i
\(372\) 1.06130 + 0.00230578i 0.0550259 + 0.000119549i
\(373\) −28.7136 10.4509i −1.48673 0.541126i −0.534145 0.845393i \(-0.679366\pi\)
−0.952587 + 0.304267i \(0.901589\pi\)
\(374\) 5.94343 + 33.7068i 0.307327 + 1.74294i
\(375\) 0 0
\(376\) −15.8881 13.3317i −0.819365 0.687529i
\(377\) 9.98457 0.514232
\(378\) −13.7282 5.09822i −0.706102 0.262224i
\(379\) 6.49045 0.333392 0.166696 0.986008i \(-0.446690\pi\)
0.166696 + 0.986008i \(0.446690\pi\)
\(380\) 0 0
\(381\) −4.45795 + 3.72419i −0.228388 + 0.190796i
\(382\) −1.36711 7.75324i −0.0699472 0.396690i
\(383\) −7.08040 2.57705i −0.361791 0.131681i 0.154727 0.987957i \(-0.450550\pi\)
−0.516519 + 0.856276i \(0.672772\pi\)
\(384\) −5.08778 + 8.76824i −0.259635 + 0.447452i
\(385\) 0 0
\(386\) 12.0758 20.9160i 0.614645 1.06460i
\(387\) −23.7508 8.76165i −1.20732 0.445380i
\(388\) 1.69222 + 2.93102i 0.0859096 + 0.148800i
\(389\) 7.42372 2.70201i 0.376398 0.136997i −0.146892 0.989153i \(-0.546927\pi\)
0.523289 + 0.852155i \(0.324705\pi\)
\(390\) 0 0
\(391\) −20.9946 + 17.6165i −1.06174 + 0.890906i
\(392\) 4.25931 3.57399i 0.215128 0.180514i
\(393\) −1.68019 + 9.40926i −0.0847545 + 0.474635i
\(394\) 10.5267 3.83139i 0.530325 0.193023i
\(395\) 0 0
\(396\) −1.29119 + 7.14114i −0.0648850 + 0.358856i
\(397\) 0.808746 1.40079i 0.0405898 0.0703036i −0.845017 0.534740i \(-0.820410\pi\)
0.885607 + 0.464436i \(0.153743\pi\)
\(398\) 2.17062 12.3102i 0.108803 0.617054i
\(399\) −8.98389 15.6389i −0.449757 0.782925i
\(400\) 0 0
\(401\) 2.06958 + 11.7372i 0.103350 + 0.586127i 0.991867 + 0.127282i \(0.0406254\pi\)
−0.888517 + 0.458844i \(0.848264\pi\)
\(402\) 6.97407 + 2.55553i 0.347835 + 0.127458i
\(403\) 1.55560 + 1.30530i 0.0774898 + 0.0650216i
\(404\) −0.203545 −0.0101268
\(405\) 0 0
\(406\) −18.1999 −0.903244
\(407\) −14.6193 12.2671i −0.724652 0.608055i
\(408\) 26.4793 + 9.70289i 1.31092 + 0.480365i
\(409\) 1.98160 + 11.2382i 0.0979836 + 0.555693i 0.993792 + 0.111253i \(0.0354863\pi\)
−0.895809 + 0.444440i \(0.853403\pi\)
\(410\) 0 0
\(411\) −5.12534 8.92205i −0.252814 0.440092i
\(412\) 0.183725 1.04196i 0.00905149 0.0513336i
\(413\) −3.43226 + 5.94484i −0.168890 + 0.292527i
\(414\) 17.9762 6.45449i 0.883482 0.317221i
\(415\) 0 0
\(416\) 3.74908 1.36455i 0.183814 0.0669027i
\(417\) −4.85045 + 27.1630i −0.237528 + 1.33018i
\(418\) 22.5041 18.8832i 1.10071 0.923609i
\(419\) 24.7402 20.7595i 1.20864 1.01417i 0.209296 0.977852i \(-0.432883\pi\)
0.999340 0.0363142i \(-0.0115617\pi\)
\(420\) 0 0
\(421\) −12.6800 + 4.61514i −0.617986 + 0.224928i −0.631994 0.774974i \(-0.717763\pi\)
0.0140082 + 0.999902i \(0.495541\pi\)
\(422\) 2.20918 + 3.82641i 0.107541 + 0.186267i
\(423\) 15.6619 13.0264i 0.761509 0.633363i
\(424\) 10.1483 17.5774i 0.492846 0.853634i
\(425\) 0 0
\(426\) −0.0280929 + 0.0484150i −0.00136110 + 0.00234572i
\(427\) −12.3134 4.48169i −0.595885 0.216884i
\(428\) 0.353799 + 2.00649i 0.0171015 + 0.0969875i
\(429\) −10.6562 + 8.90219i −0.514484 + 0.429802i
\(430\) 0 0
\(431\) 23.0480 1.11018 0.555092 0.831789i \(-0.312683\pi\)
0.555092 + 0.831789i \(0.312683\pi\)
\(432\) −11.2792 9.59037i −0.542673 0.461417i
\(433\) −28.7044 −1.37944 −0.689722 0.724074i \(-0.742267\pi\)
−0.689722 + 0.724074i \(0.742267\pi\)
\(434\) −2.83554 2.37930i −0.136110 0.114210i
\(435\) 0 0
\(436\) −0.644233 3.65363i −0.0308532 0.174977i
\(437\) 22.1045 + 8.04538i 1.05740 + 0.384863i
\(438\) −12.4007 0.0269418i −0.592529 0.00128733i
\(439\) 0.464755 2.63576i 0.0221816 0.125798i −0.971706 0.236193i \(-0.924100\pi\)
0.993888 + 0.110395i \(0.0352115\pi\)
\(440\) 0 0
\(441\) 2.70999 + 4.74130i 0.129047 + 0.225776i
\(442\) 5.10312 + 8.83886i 0.242731 + 0.420422i
\(443\) −2.62285 + 0.954638i −0.124615 + 0.0453562i −0.403575 0.914947i \(-0.632233\pi\)
0.278960 + 0.960303i \(0.410010\pi\)
\(444\) −2.79703 + 1.01116i −0.132741 + 0.0479874i
\(445\) 0 0
\(446\) 17.6079 14.7748i 0.833760 0.699608i
\(447\) −33.1698 + 11.9913i −1.56888 + 0.567167i
\(448\) −19.0209 + 6.92304i −0.898653 + 0.327083i
\(449\) −12.0160 20.8123i −0.567069 0.982192i −0.996854 0.0792608i \(-0.974744\pi\)
0.429785 0.902931i \(-0.358589\pi\)
\(450\) 0 0
\(451\) −11.0545 + 19.1470i −0.520536 + 0.901595i
\(452\) 1.27489 7.23026i 0.0599658 0.340083i
\(453\) 3.32585 + 0.00722574i 0.156262 + 0.000339495i
\(454\) −28.6323 10.4213i −1.34378 0.489097i
\(455\) 0 0
\(456\) −4.15138 23.8465i −0.194406 1.11671i
\(457\) 23.5193 + 19.7351i 1.10019 + 0.923167i 0.997438 0.0715399i \(-0.0227913\pi\)
0.102750 + 0.994707i \(0.467236\pi\)
\(458\) 2.52675 0.118067
\(459\) −14.0055 + 23.8972i −0.653722 + 1.11543i
\(460\) 0 0
\(461\) −8.31123 6.97395i −0.387093 0.324809i 0.428387 0.903595i \(-0.359082\pi\)
−0.815479 + 0.578786i \(0.803527\pi\)
\(462\) 19.4240 16.2269i 0.903687 0.754944i
\(463\) 5.65658 + 32.0801i 0.262884 + 1.49089i 0.774995 + 0.631968i \(0.217753\pi\)
−0.512111 + 0.858919i \(0.671136\pi\)
\(464\) −17.2903 6.29316i −0.802682 0.292153i
\(465\) 0 0
\(466\) 1.86609 10.5831i 0.0864450 0.490254i
\(467\) 6.85522 11.8736i 0.317222 0.549445i −0.662685 0.748898i \(-0.730583\pi\)
0.979907 + 0.199453i \(0.0639167\pi\)
\(468\) 0.366507 + 2.13271i 0.0169418 + 0.0985846i
\(469\) 3.94064 + 6.82538i 0.181962 + 0.315167i
\(470\) 0 0
\(471\) −16.8993 14.2428i −0.778676 0.656275i
\(472\) −7.05730 + 5.92178i −0.324839 + 0.272572i
\(473\) 33.5170 28.1241i 1.54111 1.29315i
\(474\) 6.24316 34.9624i 0.286758 1.60587i
\(475\) 0 0
\(476\) 2.82998 + 4.90167i 0.129712 + 0.224668i
\(477\) 15.2154 + 12.8803i 0.696667 + 0.589750i
\(478\) 2.33545 4.04513i 0.106821 0.185020i
\(479\) −2.05131 + 11.6335i −0.0937266 + 0.531550i 0.901403 + 0.432980i \(0.142538\pi\)
−0.995130 + 0.0985701i \(0.968573\pi\)
\(480\) 0 0
\(481\) −5.34758 1.94636i −0.243829 0.0887465i
\(482\) 0.121764 + 0.690558i 0.00554620 + 0.0314541i
\(483\) 19.0293 + 6.97295i 0.865863 + 0.317280i
\(484\) −5.67678 4.76339i −0.258036 0.216518i
\(485\) 0 0
\(486\) 14.9214 12.2468i 0.676848 0.555526i
\(487\) −31.6087 −1.43233 −0.716163 0.697933i \(-0.754103\pi\)
−0.716163 + 0.697933i \(0.754103\pi\)
\(488\) −13.4716 11.3040i −0.609831 0.511709i
\(489\) −40.1142 14.6992i −1.81403 0.664719i
\(490\) 0 0
\(491\) −15.3997 5.60502i −0.694977 0.252951i −0.0297121 0.999558i \(-0.509459\pi\)
−0.665265 + 0.746608i \(0.731681\pi\)
\(492\) 1.71631 + 2.98771i 0.0773773 + 0.134696i
\(493\) −5.97769 + 33.9012i −0.269222 + 1.52683i
\(494\) 4.38004 7.58644i 0.197067 0.341330i
\(495\) 0 0
\(496\) −1.87111 3.24087i −0.0840155 0.145519i
\(497\) −0.0558127 + 0.0203142i −0.00250354 + 0.000911215i
\(498\) −4.08414 + 22.8716i −0.183015 + 1.02490i
\(499\) −30.4626 + 25.5612i −1.36369 + 1.14427i −0.388871 + 0.921292i \(0.627135\pi\)
−0.974823 + 0.222982i \(0.928421\pi\)
\(500\) 0 0
\(501\) −7.09810 5.98234i −0.317120 0.267271i
\(502\) 0.991264 0.360791i 0.0442423 0.0161029i
\(503\) −2.96457 5.13479i −0.132184 0.228949i 0.792334 0.610087i \(-0.208866\pi\)
−0.924518 + 0.381138i \(0.875532\pi\)
\(504\) −3.53203 20.5530i −0.157329 0.915502i
\(505\) 0 0
\(506\) −5.73228 + 32.5094i −0.254831 + 1.44522i
\(507\) 9.22262 15.8942i 0.409591 0.705886i
\(508\) −1.47028 0.535138i −0.0652331 0.0237429i
\(509\) 7.53016 + 42.7057i 0.333768 + 1.89290i 0.439067 + 0.898454i \(0.355309\pi\)
−0.105298 + 0.994441i \(0.533580\pi\)
\(510\) 0 0
\(511\) −10.0798 8.45798i −0.445905 0.374159i
\(512\) −24.7579 −1.09416
\(513\) 23.7736 + 0.154954i 1.04963 + 0.00684137i
\(514\) −22.7787 −1.00473
\(515\) 0 0
\(516\) −1.16948 6.71775i −0.0514834 0.295732i
\(517\) 6.11381 + 34.6731i 0.268885 + 1.52492i
\(518\) 9.74757 + 3.54783i 0.428284 + 0.155883i
\(519\) 24.8060 + 0.0538934i 1.08886 + 0.00236566i
\(520\) 0 0
\(521\) −16.3247 + 28.2751i −0.715196 + 1.23876i 0.247688 + 0.968840i \(0.420329\pi\)
−0.962884 + 0.269916i \(0.913004\pi\)
\(522\) 12.0854 20.7241i 0.528966 0.907070i
\(523\) −8.80738 15.2548i −0.385120 0.667047i 0.606666 0.794957i \(-0.292507\pi\)
−0.991786 + 0.127910i \(0.959173\pi\)
\(524\) −2.41925 + 0.880534i −0.105685 + 0.0384663i
\(525\) 0 0
\(526\) −6.62147 + 5.55607i −0.288710 + 0.242256i
\(527\) −5.36328 + 4.50033i −0.233628 + 0.196037i
\(528\) 24.0642 8.69950i 1.04726 0.378597i
\(529\) −3.22579 + 1.17409i −0.140252 + 0.0510475i
\(530\) 0 0
\(531\) −4.49021 7.85591i −0.194859 0.340917i
\(532\) 2.42899 4.20713i 0.105310 0.182402i
\(533\) −1.14482 + 6.49261i −0.0495878 + 0.281226i
\(534\) 9.96530 + 0.0216506i 0.431241 + 0.000936913i
\(535\) 0 0
\(536\) 1.83671 + 10.4165i 0.0793340 + 0.449925i
\(537\) −1.69040 9.71006i −0.0729463 0.419020i
\(538\) 8.58925 + 7.20724i 0.370309 + 0.310726i
\(539\) −9.43865 −0.406551
\(540\) 0 0
\(541\) 40.8023 1.75423 0.877113 0.480284i \(-0.159466\pi\)
0.877113 + 0.480284i \(0.159466\pi\)
\(542\) −2.54346 2.13421i −0.109251 0.0916723i
\(543\) −13.4954 + 11.2741i −0.579143 + 0.483819i
\(544\) 2.38859 + 13.5464i 0.102410 + 0.580797i
\(545\) 0 0
\(546\) 3.78786 6.52798i 0.162106 0.279372i
\(547\) 5.26232 29.8441i 0.225000 1.27604i −0.637684 0.770298i \(-0.720107\pi\)
0.862684 0.505743i \(-0.168781\pi\)
\(548\) 1.38575 2.40018i 0.0591961 0.102531i
\(549\) 13.2798 11.0451i 0.566770 0.471395i
\(550\) 0 0
\(551\) 27.7646 10.1055i 1.18281 0.430508i
\(552\) 20.7978 + 17.5286i 0.885212 + 0.746065i
\(553\) 28.8684 24.2234i 1.22761 1.03008i
\(554\) 9.18393 7.70623i 0.390188 0.327407i
\(555\) 0 0
\(556\) −6.98398 + 2.54196i −0.296187 + 0.107803i
\(557\) −14.2033 24.6008i −0.601812 1.04237i −0.992547 0.121865i \(-0.961112\pi\)
0.390735 0.920503i \(-0.372221\pi\)
\(558\) 4.59221 1.64887i 0.194404 0.0698021i
\(559\) 6.52350 11.2990i 0.275915 0.477898i
\(560\) 0 0
\(561\) −23.8463 41.5111i −1.00679 1.75260i
\(562\) −15.4296 5.61591i −0.650858 0.236893i
\(563\) −1.09651 6.21863i −0.0462124 0.262084i 0.952944 0.303146i \(-0.0980370\pi\)
−0.999157 + 0.0410621i \(0.986926\pi\)
\(564\) 5.15203 + 1.88787i 0.216940 + 0.0794937i
\(565\) 0 0
\(566\) −24.2448 −1.01909
\(567\) 20.4821 + 0.178002i 0.860169 + 0.00747538i
\(568\) −0.0797117 −0.00334463
\(569\) −2.76710 2.32188i −0.116003 0.0973381i 0.582941 0.812515i \(-0.301902\pi\)
−0.698944 + 0.715176i \(0.746346\pi\)
\(570\) 0 0
\(571\) 6.03614 + 34.2327i 0.252605 + 1.43259i 0.802147 + 0.597127i \(0.203691\pi\)
−0.549542 + 0.835466i \(0.685198\pi\)
\(572\) −3.51451 1.27918i −0.146949 0.0534851i
\(573\) 5.48513 + 9.54837i 0.229145 + 0.398889i
\(574\) 2.08678 11.8347i 0.0871006 0.493972i
\(575\) 0 0
\(576\) 4.74740 26.2562i 0.197808 1.09401i
\(577\) 11.3377 + 19.6374i 0.471994 + 0.817517i 0.999487 0.0320424i \(-0.0102012\pi\)
−0.527493 + 0.849559i \(0.676868\pi\)
\(578\) −13.2842 + 4.83505i −0.552550 + 0.201112i
\(579\) −5.93826 + 33.2549i −0.246785 + 1.38203i
\(580\) 0 0
\(581\) −18.8851 + 15.8465i −0.783485 + 0.657422i
\(582\) 11.8977 + 10.0275i 0.493175 + 0.415652i
\(583\) −32.3768 + 11.7842i −1.34091 + 0.488051i
\(584\) −8.82966 15.2934i −0.365374 0.632847i
\(585\) 0 0
\(586\) −18.7288 + 32.4391i −0.773678 + 1.34005i
\(587\) −3.28071 + 18.6058i −0.135410 + 0.767946i 0.839164 + 0.543878i \(0.183045\pi\)
−0.974574 + 0.224067i \(0.928066\pi\)
\(588\) −0.738253 + 1.27230i −0.0304450 + 0.0524688i
\(589\) 5.64683 + 2.05528i 0.232673 + 0.0846862i
\(590\) 0 0
\(591\) −12.0246 + 10.0454i −0.494628 + 0.413214i
\(592\) 8.03366 + 6.74104i 0.330181 + 0.277055i
\(593\) −8.73461 −0.358688 −0.179344 0.983786i \(-0.557397\pi\)
−0.179344 + 0.983786i \(0.557397\pi\)
\(594\) 5.57918 + 32.8934i 0.228917 + 1.34963i
\(595\) 0 0
\(596\) −7.27765 6.10667i −0.298104 0.250139i
\(597\) 2.99862 + 17.2248i 0.122725 + 0.704963i
\(598\) 1.70933 + 9.69410i 0.0698998 + 0.396421i
\(599\) −6.00796 2.18672i −0.245479 0.0893469i 0.216351 0.976316i \(-0.430585\pi\)
−0.461829 + 0.886969i \(0.652807\pi\)
\(600\) 0 0
\(601\) 2.30763 13.0872i 0.0941304 0.533840i −0.900880 0.434068i \(-0.857078\pi\)
0.995010 0.0997716i \(-0.0318112\pi\)
\(602\) −11.8910 + 20.5959i −0.484642 + 0.839425i
\(603\) −10.3888 0.0451415i −0.423064 0.00183830i
\(604\) 0.447916 + 0.775814i 0.0182255 + 0.0315674i
\(605\) 0 0
\(606\) −0.880043 + 0.318146i −0.0357493 + 0.0129238i
\(607\) 3.43839 2.88515i 0.139560 0.117105i −0.570335 0.821412i \(-0.693187\pi\)
0.709895 + 0.704307i \(0.248742\pi\)
\(608\) 9.04416 7.58895i 0.366789 0.307773i
\(609\) 23.9398 8.65451i 0.970088 0.350698i
\(610\) 0 0
\(611\) 5.24941 + 9.09225i 0.212369 + 0.367833i
\(612\) −7.46073 0.0324185i −0.301582 0.00131044i
\(613\) −11.6086 + 20.1066i −0.468866 + 0.812100i −0.999367 0.0355848i \(-0.988671\pi\)
0.530501 + 0.847685i \(0.322004\pi\)
\(614\) 3.92882 22.2814i 0.158554 0.899205i
\(615\) 0 0
\(616\) 33.8694 + 12.3275i 1.36464 + 0.496687i
\(617\) 7.67572 + 43.5312i 0.309013 + 1.75250i 0.603988 + 0.796993i \(0.293577\pi\)
−0.294975 + 0.955505i \(0.595311\pi\)
\(618\) −0.834253 4.79214i −0.0335586 0.192768i
\(619\) 3.65944 + 3.07064i 0.147085 + 0.123419i 0.713361 0.700796i \(-0.247172\pi\)
−0.566276 + 0.824216i \(0.691616\pi\)
\(620\) 0 0
\(621\) −20.5763 + 17.0383i −0.825698 + 0.683722i
\(622\) 41.7838 1.67538
\(623\) 8.10022 + 6.79689i 0.324529 + 0.272312i
\(624\) 5.85581 4.89197i 0.234420 0.195835i
\(625\) 0 0
\(626\) −3.24464 1.18095i −0.129682 0.0472004i
\(627\) −20.6221 + 35.5399i −0.823566 + 1.41933i
\(628\) 1.03371 5.86248i 0.0412496 0.233938i
\(629\) 9.81015 16.9917i 0.391156 0.677502i
\(630\) 0 0
\(631\) −18.1400 31.4193i −0.722140 1.25078i −0.960140 0.279518i \(-0.909825\pi\)
0.238000 0.971265i \(-0.423508\pi\)
\(632\) 47.5258 17.2980i 1.89047 0.688076i
\(633\) −4.72546 3.98266i −0.187820 0.158297i
\(634\) −2.61717 + 2.19607i −0.103941 + 0.0872169i
\(635\) 0 0
\(636\) −0.943911 + 5.28600i −0.0374285 + 0.209604i
\(637\) −2.64481 + 0.962632i −0.104791 + 0.0381409i
\(638\) 20.7318 + 35.9086i 0.820781 + 1.42163i
\(639\) 0.0139302 0.0770431i 0.000551071 0.00304778i
\(640\) 0 0
\(641\) 3.91713 22.2151i 0.154717 0.877445i −0.804327 0.594187i \(-0.797474\pi\)
0.959044 0.283258i \(-0.0914151\pi\)
\(642\) 4.66587 + 8.12222i 0.184147 + 0.320558i
\(643\) 3.62196 + 1.31828i 0.142836 + 0.0519881i 0.412449 0.910981i \(-0.364674\pi\)
−0.269613 + 0.962969i \(0.586896\pi\)
\(644\) 0.947926 + 5.37595i 0.0373535 + 0.211842i
\(645\) 0 0
\(646\) 23.1364 + 19.4137i 0.910288 + 0.763823i
\(647\) 16.5713 0.651486 0.325743 0.945458i \(-0.394386\pi\)
0.325743 + 0.945458i \(0.394386\pi\)
\(648\) 25.7490 + 9.62609i 1.01152 + 0.378148i
\(649\) 15.6390 0.613884
\(650\) 0 0
\(651\) 4.86123 + 1.78131i 0.190527 + 0.0698152i
\(652\) −1.99825 11.3326i −0.0782576 0.443821i
\(653\) −4.85320 1.76642i −0.189920 0.0691254i 0.245309 0.969445i \(-0.421111\pi\)
−0.435230 + 0.900320i \(0.643333\pi\)
\(654\) −8.49608 14.7898i −0.332223 0.578325i
\(655\) 0 0
\(656\) 6.07471 10.5217i 0.237178 0.410804i
\(657\) 16.3245 5.86142i 0.636879 0.228676i
\(658\) −9.56862 16.5733i −0.373024 0.646096i
\(659\) 33.9146 12.3439i 1.32113 0.480850i 0.417307 0.908766i \(-0.362974\pi\)
0.903819 + 0.427915i \(0.140752\pi\)
\(660\) 0 0
\(661\) 29.5546 24.7993i 1.14954 0.964580i 0.149833 0.988711i \(-0.452127\pi\)
0.999709 + 0.0241316i \(0.00768206\pi\)
\(662\) −26.4953 + 22.2322i −1.02977 + 0.864079i
\(663\) −10.9157 9.19981i −0.423929 0.357291i
\(664\) −31.0903 + 11.3160i −1.20654 + 0.439144i
\(665\) 0 0
\(666\) −10.5127 + 8.74362i −0.407358 + 0.338808i
\(667\) −16.6006 + 28.7531i −0.642778 + 1.11332i
\(668\) 0.434185 2.46238i 0.0167991 0.0952725i
\(669\) −16.1354 + 27.8076i −0.623829 + 1.07510i
\(670\) 0 0
\(671\) 5.18394 + 29.3996i 0.200124 + 1.13496i
\(672\) 7.80629 6.52141i 0.301134 0.251569i
\(673\) 7.38532 + 6.19702i 0.284683 + 0.238878i 0.773935 0.633265i \(-0.218286\pi\)
−0.489252 + 0.872143i \(0.662730\pi\)
\(674\) 17.6715 0.680682
\(675\) 0 0
\(676\) 4.94968 0.190372
\(677\) 18.9204 + 15.8761i 0.727169 + 0.610167i 0.929358 0.369179i \(-0.120361\pi\)
−0.202189 + 0.979346i \(0.564806\pi\)
\(678\) −5.78898 33.2532i −0.222324 1.27708i
\(679\) 2.86697 + 16.2594i 0.110024 + 0.623979i
\(680\) 0 0
\(681\) 42.6180 + 0.0925918i 1.63313 + 0.00354813i
\(682\) −1.46437 + 8.30486i −0.0560737 + 0.318010i
\(683\) 10.3912 17.9981i 0.397609 0.688678i −0.595822 0.803117i \(-0.703174\pi\)
0.993430 + 0.114438i \(0.0365069\pi\)
\(684\) 3.17770 + 5.55958i 0.121502 + 0.212576i
\(685\) 0 0
\(686\) 23.3593 8.50208i 0.891861 0.324611i
\(687\) −3.32364 + 1.20154i −0.126805 + 0.0458414i
\(688\) −18.4184 + 15.4549i −0.702195 + 0.589212i
\(689\) −7.87048 + 6.60411i −0.299841 + 0.251597i
\(690\) 0 0
\(691\) −12.2565 + 4.46098i −0.466257 + 0.169704i −0.564456 0.825463i \(-0.690914\pi\)
0.0981988 + 0.995167i \(0.468692\pi\)
\(692\) 3.34080 + 5.78643i 0.126998 + 0.219967i
\(693\) −17.8337 + 30.5812i −0.677446 + 1.16168i
\(694\) 10.9387 18.9463i 0.415226 0.719193i
\(695\) 0 0
\(696\) 34.1638 + 0.0742241i 1.29497 + 0.00281346i
\(697\) −21.3593 7.77416i −0.809042 0.294467i
\(698\) −5.26153 29.8396i −0.199152 1.12945i
\(699\) 2.57793 + 14.8082i 0.0975062 + 0.560098i
\(700\) 0 0
\(701\) 25.6062 0.967135 0.483567 0.875307i \(-0.339341\pi\)
0.483567 + 0.875307i \(0.339341\pi\)
\(702\) 4.91809 + 8.64807i 0.185621 + 0.326400i
\(703\) −16.8402 −0.635141
\(704\) 35.3263 + 29.6423i 1.33141 + 1.11719i
\(705\) 0 0
\(706\) −6.85846 38.8962i −0.258121 1.46388i
\(707\) −0.933067 0.339609i −0.0350916 0.0127723i
\(708\) 1.22322 2.10809i 0.0459714 0.0792268i
\(709\) 2.06567 11.7150i 0.0775777 0.439965i −0.921135 0.389243i \(-0.872737\pi\)
0.998713 0.0507221i \(-0.0161523\pi\)
\(710\) 0 0
\(711\) 8.41337 + 48.9576i 0.315526 + 1.83605i
\(712\) 7.09558 + 12.2899i 0.265918 + 0.460584i
\(713\) −6.34531 + 2.30951i −0.237634 + 0.0864917i
\(714\) 19.8970 + 16.7694i 0.744628 + 0.627579i
\(715\) 0 0
\(716\) 2.03368 1.70646i 0.0760021 0.0637733i
\(717\) −1.14845 + 6.43145i −0.0428897 + 0.240187i
\(718\) 9.61363 3.49908i 0.358777 0.130584i
\(719\) −3.31070 5.73431i −0.123468 0.213854i 0.797665 0.603101i \(-0.206068\pi\)
−0.921133 + 0.389247i \(0.872735\pi\)
\(720\) 0 0
\(721\) 2.58068 4.46987i 0.0961096 0.166467i
\(722\) 0.415814 2.35820i 0.0154750 0.0877630i
\(723\) −0.488544 0.850445i −0.0181692 0.0316284i
\(724\) −4.45093 1.62000i −0.165417 0.0602070i
\(725\) 0 0
\(726\) −31.9892 11.7219i −1.18723 0.435040i
\(727\) −9.08463 7.62291i −0.336930 0.282718i 0.458586 0.888650i \(-0.348356\pi\)
−0.795517 + 0.605932i \(0.792800\pi\)
\(728\) 10.7478 0.398341
\(729\) −13.8037 + 23.2047i −0.511246 + 0.859434i
\(730\) 0 0
\(731\) 34.4587 + 28.9142i 1.27450 + 1.06943i
\(732\) 4.36844 + 1.60074i 0.161462 + 0.0591650i
\(733\) −2.23709 12.6872i −0.0826289 0.468612i −0.997843 0.0656441i \(-0.979090\pi\)
0.915214 0.402968i \(-0.132021\pi\)
\(734\) −25.1976 9.17116i −0.930059 0.338514i
\(735\) 0 0
\(736\) −2.30374 + 13.0651i −0.0849169 + 0.481588i
\(737\) 8.97771 15.5499i 0.330698 0.572786i
\(738\) 12.0905 + 10.2349i 0.445056 + 0.376754i
\(739\) 12.2765 + 21.2636i 0.451600 + 0.782194i 0.998486 0.0550133i \(-0.0175201\pi\)
−0.546886 + 0.837207i \(0.684187\pi\)
\(740\) 0 0
\(741\) −2.15387 + 12.0619i −0.0791243 + 0.443104i
\(742\) 14.3463 12.0380i 0.526669 0.441928i
\(743\) −31.5847 + 26.5027i −1.15873 + 0.972291i −0.999887 0.0150131i \(-0.995221\pi\)
−0.158844 + 0.987304i \(0.550777\pi\)
\(744\) 5.31301 + 4.47785i 0.194784 + 0.164166i
\(745\) 0 0
\(746\) −18.9194 32.7694i −0.692690 1.19977i
\(747\) −5.50385 32.0270i −0.201375 1.17181i
\(748\) 6.44737 11.1672i 0.235739 0.408313i
\(749\) −1.72593 + 9.78822i −0.0630640 + 0.357654i
\(750\) 0 0
\(751\) −11.6980 4.25772i −0.426866 0.155366i 0.119648 0.992816i \(-0.461823\pi\)
−0.546514 + 0.837450i \(0.684045\pi\)
\(752\) −3.35968 19.0537i −0.122515 0.694817i
\(753\) −1.13233 + 0.945949i −0.0412642 + 0.0344723i
\(754\) 9.47154 + 7.94756i 0.344933 + 0.289433i
\(755\) 0 0
\(756\) 2.72737 + 4.79586i 0.0991935 + 0.174424i
\(757\) 11.3137 0.411203 0.205602 0.978636i \(-0.434085\pi\)
0.205602 + 0.978636i \(0.434085\pi\)
\(758\) 6.15696 + 5.16630i 0.223631 + 0.187648i
\(759\) −7.91891 45.4881i −0.287438 1.65111i
\(760\) 0 0
\(761\) −21.2994 7.75233i −0.772101 0.281022i −0.0742262 0.997241i \(-0.523649\pi\)
−0.697875 + 0.716220i \(0.745871\pi\)
\(762\) −7.19329 0.0156281i −0.260585 0.000566147i
\(763\) 3.14274 17.8234i 0.113775 0.645250i
\(764\) −1.48302 + 2.56867i −0.0536539 + 0.0929313i
\(765\) 0 0
\(766\) −4.66529 8.08053i −0.168564 0.291961i
\(767\) 4.38222 1.59500i 0.158233 0.0575920i
\(768\) 17.1687 6.20668i 0.619521 0.223964i
\(769\) 11.6191 9.74955i 0.418994 0.351578i −0.408786 0.912630i \(-0.634048\pi\)
0.827780 + 0.561052i \(0.189603\pi\)
\(770\) 0 0
\(771\) 29.9627 10.8319i 1.07908 0.390101i
\(772\) −8.55027 + 3.11204i −0.307731 + 0.112005i
\(773\) 2.42962 + 4.20823i 0.0873874 + 0.151359i 0.906406 0.422407i \(-0.138815\pi\)
−0.819019 + 0.573767i \(0.805482\pi\)
\(774\) −15.5563 27.2167i −0.559160 0.978286i
\(775\) 0 0
\(776\) −3.84768 + 21.8213i −0.138124 + 0.783338i
\(777\) −14.5089 0.0315219i −0.520502 0.00113084i
\(778\) 9.19303 + 3.34599i 0.329586 + 0.119960i
\(779\) 3.38777 + 19.2130i 0.121379 + 0.688377i
\(780\) 0 0
\(781\) 0.103657 + 0.0869789i 0.00370916 + 0.00311235i
\(782\) −33.9383 −1.21363
\(783\) −6.04211 + 33.0071i −0.215928 + 1.17958i
\(784\) 5.18676 0.185241
\(785\) 0 0
\(786\) −9.08349 + 7.58838i −0.323997 + 0.270669i
\(787\) 0.851088 + 4.82676i 0.0303380 + 0.172055i 0.996212 0.0869567i \(-0.0277142\pi\)
−0.965874 + 0.259012i \(0.916603\pi\)
\(788\) −3.96585 1.44345i −0.141278 0.0514209i
\(789\) 6.06770 10.4570i 0.216016 0.372280i
\(790\) 0 0
\(791\) 17.9076 31.0170i 0.636723 1.10284i
\(792\) −36.5279 + 30.3810i −1.29796 + 1.07954i
\(793\) 4.45101 + 7.70938i 0.158060 + 0.273768i
\(794\) 1.88220 0.685063i 0.0667966 0.0243120i
\(795\) 0 0
\(796\) −3.60756 + 3.02710i −0.127866 + 0.107293i
\(797\) 42.7450 35.8673i 1.51411 1.27049i 0.658855 0.752270i \(-0.271041\pi\)
0.855250 0.518215i \(-0.173403\pi\)
\(798\) 3.92607 21.9864i 0.138981 0.778310i
\(799\) −34.0142 + 12.3802i −1.20334 + 0.437978i
\(800\) 0 0
\(801\) −13.1185 + 4.71028i −0.463518 + 0.166430i
\(802\) −7.37937 + 12.7814i −0.260575 + 0.451328i
\(803\) −5.20557 + 29.5223i −0.183701 + 1.04182i
\(804\) −1.39387 2.42641i −0.0491581 0.0855731i
\(805\) 0 0
\(806\) 0.436667 + 2.47646i 0.0153809 + 0.0872296i
\(807\) −14.7254 5.39585i −0.518358 0.189943i
\(808\) −1.02084 0.856584i −0.0359129 0.0301345i
\(809\) −25.0205 −0.879673 −0.439837 0.898078i \(-0.644964\pi\)
−0.439837 + 0.898078i \(0.644964\pi\)
\(810\) 0 0
\(811\) 22.4129 0.787024 0.393512 0.919320i \(-0.371260\pi\)
0.393512 + 0.919320i \(0.371260\pi\)
\(812\) 5.25253 + 4.40739i 0.184328 + 0.154669i
\(813\) 4.36049 + 1.59783i 0.152929 + 0.0560382i
\(814\) −4.10374 23.2735i −0.143836 0.815735i
\(815\) 0 0
\(816\) 13.1041 + 22.8113i 0.458736 + 0.798556i
\(817\) 6.70435 38.0222i 0.234555 1.33023i
\(818\) −7.06565 + 12.2381i −0.247045 + 0.427894i
\(819\) −1.87826 + 10.3880i −0.0656318 + 0.362986i
\(820\) 0 0
\(821\) −37.8576 + 13.7790i −1.32124 + 0.480892i −0.903855 0.427838i \(-0.859275\pi\)
−0.417384 + 0.908730i \(0.637053\pi\)
\(822\) 2.23983 12.5433i 0.0781231 0.437498i
\(823\) −10.6791 + 8.96086i −0.372251 + 0.312356i −0.809651 0.586911i \(-0.800344\pi\)
0.437400 + 0.899267i \(0.355899\pi\)
\(824\) 5.30632 4.45253i 0.184854 0.155111i
\(825\) 0 0
\(826\) −7.98790 + 2.90736i −0.277935 + 0.101160i
\(827\) 17.5386 + 30.3778i 0.609878 + 1.05634i 0.991260 + 0.131922i \(0.0421150\pi\)
−0.381382 + 0.924418i \(0.624552\pi\)
\(828\) −6.75104 2.49045i −0.234615 0.0865491i
\(829\) 16.3803 28.3716i 0.568912 0.985385i −0.427762 0.903892i \(-0.640698\pi\)
0.996674 0.0814933i \(-0.0259689\pi\)
\(830\) 0 0
\(831\) −8.41586 + 14.5038i −0.291943 + 0.503132i
\(832\) 12.9220 + 4.70322i 0.447989 + 0.163055i
\(833\) −1.68505 9.55639i −0.0583835 0.331109i
\(834\) −26.2226 + 21.9064i −0.908014 + 0.758558i
\(835\) 0 0
\(836\) −11.0676 −0.382782
\(837\) −5.25643 + 4.35260i −0.181689 + 0.150448i
\(838\) 39.9932 1.38154
\(839\) 13.1790 + 11.0585i 0.454991 + 0.381783i 0.841284 0.540593i \(-0.181800\pi\)
−0.386293 + 0.922376i \(0.626245\pi\)
\(840\) 0 0
\(841\) 2.20580 + 12.5097i 0.0760621 + 0.431370i
\(842\) −15.7021 5.71508i −0.541128 0.196955i
\(843\) 22.9663 + 0.0498965i 0.791001 + 0.00171853i
\(844\) 0.289053 1.63930i 0.00994960 0.0564270i
\(845\) 0 0
\(846\) 25.2259 + 0.109612i 0.867286 + 0.00376854i
\(847\) −18.0752 31.3072i −0.621073 1.07573i
\(848\) 17.7918 6.47569i 0.610973 0.222376i
\(849\) 31.8912 11.5290i 1.09450 0.395675i
\(850\) 0 0
\(851\) 14.4961 12.1636i 0.496919 0.416964i
\(852\) 0.0198322 0.00716956i 0.000679439 0.000245625i
\(853\) 45.7258 16.6428i 1.56562 0.569840i 0.593606 0.804756i \(-0.297704\pi\)
0.972016 + 0.234916i \(0.0754815\pi\)
\(854\) −8.11330 14.0526i −0.277631 0.480872i
\(855\) 0 0
\(856\) −6.66956 + 11.5520i −0.227961 + 0.394840i
\(857\) −1.67160 + 9.48011i −0.0571008 + 0.323835i −0.999956 0.00936777i \(-0.997018\pi\)
0.942855 + 0.333202i \(0.108129\pi\)
\(858\) −17.1946 0.0373570i −0.587015 0.00127535i
\(859\) 30.1158 + 10.9613i 1.02754 + 0.373993i 0.800143 0.599809i \(-0.204757\pi\)
0.227395 + 0.973803i \(0.426979\pi\)
\(860\) 0 0
\(861\) 2.88280 + 16.5595i 0.0982457 + 0.564346i
\(862\) 21.8638 + 18.3459i 0.744682 + 0.624863i
\(863\) −11.1232 −0.378637 −0.189319 0.981916i \(-0.560628\pi\)
−0.189319 + 0.981916i \(0.560628\pi\)
\(864\) 2.24221 + 13.2195i 0.0762815 + 0.449735i
\(865\) 0 0
\(866\) −27.2295 22.8482i −0.925295 0.776415i
\(867\) 15.1746 12.6769i 0.515356 0.430531i
\(868\) 0.242158 + 1.37334i 0.00821936 + 0.0466143i
\(869\) −80.6777 29.3643i −2.73680 0.996114i
\(870\) 0 0
\(871\) 0.929747 5.27286i 0.0315033 0.178664i
\(872\) 12.1446 21.0351i 0.411268 0.712338i
\(873\) −20.4183 7.53229i −0.691055 0.254930i
\(874\) 14.5647 + 25.2268i 0.492659 + 0.853310i
\(875\) 0 0
\(876\) 3.57235 + 3.01081i 0.120699 + 0.101726i
\(877\) −40.9704 + 34.3783i −1.38347 + 1.16087i −0.415567 + 0.909563i \(0.636417\pi\)
−0.967907 + 0.251309i \(0.919139\pi\)
\(878\) 2.53890 2.13039i 0.0856836 0.0718971i
\(879\) 9.20980 51.5758i 0.310639 1.73961i
\(880\) 0 0
\(881\) −12.0656 20.8982i −0.406500 0.704078i 0.587995 0.808864i \(-0.299917\pi\)
−0.994495 + 0.104787i \(0.966584\pi\)
\(882\) −1.20326 + 6.65479i −0.0405158 + 0.224078i
\(883\) 8.87464 15.3713i 0.298655 0.517286i −0.677173 0.735824i \(-0.736795\pi\)
0.975829 + 0.218537i \(0.0701286\pi\)
\(884\) 0.667701 3.78672i 0.0224572 0.127361i
\(885\) 0 0
\(886\) −3.24795 1.18216i −0.109117 0.0397154i
\(887\) 0.364220 + 2.06559i 0.0122293 + 0.0693559i 0.990312 0.138863i \(-0.0443446\pi\)
−0.978082 + 0.208218i \(0.933234\pi\)
\(888\) −18.2831 6.69953i −0.613542 0.224822i
\(889\) −5.84701 4.90623i −0.196103 0.164550i
\(890\) 0 0
\(891\) −22.9804 40.6143i −0.769872 1.36063i
\(892\) −8.65966 −0.289947
\(893\) 23.7996 + 19.9703i 0.796425 + 0.668280i
\(894\) −41.0103 15.0275i −1.37159 0.502595i
\(895\) 0 0
\(896\) −12.5171 4.55584i −0.418166 0.152200i
\(897\) −6.85822 11.9386i −0.228989 0.398619i
\(898\) 5.16769 29.3074i 0.172448 0.978001i
\(899\) −4.24080 + 7.34528i −0.141439 + 0.244979i
\(900\) 0 0
\(901\) −17.7113 30.6769i −0.590049 1.02200i
\(902\) −25.7272 + 9.36392i −0.856621 + 0.311785i
\(903\) 5.84737 32.7459i 0.194588 1.08972i
\(904\) 36.8212 30.8966i 1.22465 1.02761i
\(905\) 0 0
\(906\) 3.14921 + 2.65418i 0.104626 + 0.0881793i
\(907\) 40.1727 14.6217i 1.33391 0.485504i 0.426022 0.904713i \(-0.359915\pi\)
0.907890 + 0.419208i \(0.137692\pi\)
\(908\) 5.73967 + 9.94141i 0.190478 + 0.329917i
\(909\) 1.00631 0.836966i 0.0333770 0.0277604i
\(910\) 0 0
\(911\) 3.61639 20.5096i 0.119816 0.679513i −0.864436 0.502743i \(-0.832324\pi\)
0.984252 0.176770i \(-0.0565647\pi\)
\(912\) 11.3323 19.5300i 0.375251 0.646704i
\(913\) 52.7776 + 19.2095i 1.74668 + 0.635741i
\(914\) 6.60204 + 37.4420i 0.218376 + 1.23847i
\(915\) 0 0
\(916\) −0.729227 0.611894i −0.0240943 0.0202175i
\(917\) −12.5591 −0.414739
\(918\) −32.3077 + 11.5211i −1.06631 + 0.380254i
\(919\) −14.9586 −0.493438 −0.246719 0.969087i \(-0.579352\pi\)
−0.246719 + 0.969087i \(0.579352\pi\)
\(920\) 0 0
\(921\) 5.42750 + 31.1768i 0.178842 + 1.02731i
\(922\) −2.33302 13.2312i −0.0768340 0.435747i
\(923\) 0.0379168 + 0.0138006i 0.00124805 + 0.000454252i
\(924\) −9.53543 0.0207167i −0.313693 0.000681528i
\(925\) 0 0
\(926\) −20.1693 + 34.9343i −0.662804 + 1.14801i
\(927\) 3.37615 + 5.90679i 0.110887 + 0.194004i
\(928\) 8.33188 + 14.4312i 0.273507 + 0.473729i
\(929\) −25.6422 + 9.33300i −0.841294 + 0.306206i −0.726486 0.687182i \(-0.758848\pi\)
−0.114808 + 0.993388i \(0.536625\pi\)
\(930\) 0 0
\(931\) −6.38026 + 5.35367i −0.209105 + 0.175460i
\(932\) −3.10144 + 2.60241i −0.101591 + 0.0852449i
\(933\) −54.9617 + 19.8693i −1.79936 + 0.650491i
\(934\) 15.9542 5.80685i 0.522037 0.190006i
\(935\) 0 0
\(936\) −7.13699 + 12.2385i −0.233280 + 0.400028i
\(937\) 27.1913 47.0967i 0.888300 1.53858i 0.0464165 0.998922i \(-0.485220\pi\)
0.841884 0.539659i \(-0.181447\pi\)
\(938\) −1.69474 + 9.61136i −0.0553353 + 0.313822i
\(939\) 4.82952 + 0.0104926i 0.157605 + 0.000342413i
\(940\) 0 0
\(941\) −8.21935 46.6142i −0.267943 1.51958i −0.760522 0.649313i \(-0.775057\pi\)
0.492579 0.870268i \(-0.336054\pi\)
\(942\) −4.69385 26.9625i −0.152934 0.878487i
\(943\) −16.7937 14.0916i −0.546878 0.458885i
\(944\) −8.59400 −0.279711
\(945\) 0 0
\(946\) 54.1812 1.76158
\(947\) −31.0617 26.0639i −1.00937 0.846962i −0.0211155 0.999777i \(-0.506722\pi\)
−0.988255 + 0.152815i \(0.951166\pi\)
\(948\) −10.2685 + 8.57834i −0.333505 + 0.278612i
\(949\) 1.55227 + 8.80337i 0.0503889 + 0.285769i
\(950\) 0 0
\(951\) 2.39829 4.13319i 0.0777699 0.134028i
\(952\) −6.43465 + 36.4927i −0.208548 + 1.18273i
\(953\) −13.4443 + 23.2862i −0.435504 + 0.754315i −0.997337 0.0729359i \(-0.976763\pi\)
0.561833 + 0.827251i \(0.310096\pi\)
\(954\) 4.18107 + 24.3298i 0.135367 + 0.787705i
\(955\) 0 0
\(956\) −1.65361 + 0.601865i −0.0534816 + 0.0194657i
\(957\) −44.3457 37.3750i −1.43349 1.20816i
\(958\) −11.2060 + 9.40297i −0.362050 + 0.303796i
\(959\) 10.3570 8.69054i 0.334444 0.280632i
\(960\) 0 0
\(961\) 27.5095 10.0126i 0.887403 0.322988i
\(962\) −3.52354 6.10295i −0.113603 0.196767i
\(963\) −9.99972 8.46508i −0.322236 0.272783i
\(964\) 0.132088 0.228784i 0.00425428 0.00736864i
\(965\) 0 0
\(966\) 12.5012 + 21.7617i 0.402218 + 0.700171i
\(967\) 35.8418 + 13.0453i 1.15259 + 0.419510i 0.846446 0.532474i \(-0.178738\pi\)
0.306147 + 0.951984i \(0.400960\pi\)
\(968\) −8.42480 47.7794i −0.270783 1.53569i
\(969\) −39.6649 14.5345i −1.27422 0.466916i
\(970\) 0 0
\(971\) −52.8853 −1.69717 −0.848585 0.529059i \(-0.822545\pi\)
−0.848585 + 0.529059i \(0.822545\pi\)
\(972\) −7.27212 0.0789999i −0.233253 0.00253392i
\(973\) −36.2562 −1.16232
\(974\) −29.9846 25.1600i −0.960767 0.806179i
\(975\) 0 0
\(976\) −2.84870 16.1558i −0.0911846 0.517134i
\(977\) −19.6744 7.16089i −0.629439 0.229097i 0.00754795 0.999972i \(-0.497597\pi\)
−0.636987 + 0.770874i \(0.719820\pi\)
\(978\) −26.3527 45.8742i −0.842668 1.46689i
\(979\) 4.18324 23.7243i 0.133697 0.758233i
\(980\) 0 0
\(981\) 18.2085 + 15.4141i 0.581353 + 0.492133i
\(982\) −10.1469 17.5749i −0.323800 0.560838i
\(983\) 35.0835 12.7694i 1.11899 0.407279i 0.284707 0.958615i \(-0.408104\pi\)
0.834284 + 0.551335i \(0.185881\pi\)
\(984\) −3.96546 + 22.2070i −0.126414 + 0.707933i
\(985\) 0 0
\(986\) −32.6553 + 27.4011i −1.03996 + 0.872628i
\(987\) 20.4674 + 17.2501i 0.651486 + 0.549078i
\(988\) −3.10127 + 1.12877i −0.0986646 + 0.0359110i
\(989\) 21.6923 + 37.5721i 0.689774 + 1.19472i
\(990\) 0 0
\(991\) 17.5105 30.3291i 0.556240 0.963436i −0.441566 0.897229i \(-0.645577\pi\)
0.997806 0.0662071i \(-0.0210898\pi\)
\(992\) −0.588514 + 3.33763i −0.0186853 + 0.105970i
\(993\) 24.2794 41.8430i 0.770485 1.32785i
\(994\) −0.0691147 0.0251557i −0.00219218 0.000797890i
\(995\) 0 0
\(996\) 6.71743 5.61177i 0.212850 0.177816i
\(997\) −36.5143 30.6391i −1.15642 0.970351i −0.156569 0.987667i \(-0.550043\pi\)
−0.999850 + 0.0173159i \(0.994488\pi\)
\(998\) −49.2436 −1.55878
\(999\) 9.67036 16.5002i 0.305957 0.522045i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.h.151.11 96
5.2 odd 4 135.2.p.a.124.6 yes 96
5.3 odd 4 135.2.p.a.124.11 yes 96
5.4 even 2 inner 675.2.l.h.151.6 96
15.2 even 4 405.2.p.a.289.11 96
15.8 even 4 405.2.p.a.289.6 96
27.22 even 9 inner 675.2.l.h.76.11 96
135.22 odd 36 135.2.p.a.49.11 yes 96
135.32 even 36 405.2.p.a.199.6 96
135.49 even 18 inner 675.2.l.h.76.6 96
135.103 odd 36 135.2.p.a.49.6 96
135.113 even 36 405.2.p.a.199.11 96
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.2.p.a.49.6 96 135.103 odd 36
135.2.p.a.49.11 yes 96 135.22 odd 36
135.2.p.a.124.6 yes 96 5.2 odd 4
135.2.p.a.124.11 yes 96 5.3 odd 4
405.2.p.a.199.6 96 135.32 even 36
405.2.p.a.199.11 96 135.113 even 36
405.2.p.a.289.6 96 15.8 even 4
405.2.p.a.289.11 96 15.2 even 4
675.2.l.h.76.6 96 135.49 even 18 inner
675.2.l.h.76.11 96 27.22 even 9 inner
675.2.l.h.151.6 96 5.4 even 2 inner
675.2.l.h.151.11 96 1.1 even 1 trivial