Properties

Label 675.2.l.g.151.6
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [66,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.6
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.g.76.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.194784 - 0.163444i) q^{2} +(1.72511 + 0.154950i) q^{3} +(-0.336069 - 1.90594i) q^{4} +(-0.310698 - 0.312139i) q^{6} +(0.449901 - 2.55151i) q^{7} +(-0.500326 + 0.866590i) q^{8} +(2.95198 + 0.534610i) q^{9} +(2.07133 - 0.753901i) q^{11} +(-0.284429 - 3.34003i) q^{12} +(-1.11074 + 0.932020i) q^{13} +(-0.504662 + 0.423462i) q^{14} +(-3.39816 + 1.23683i) q^{16} +(-1.17819 - 2.04069i) q^{17} +(-0.487621 - 0.586616i) q^{18} +(2.22207 - 3.84874i) q^{19} +(1.17148 - 4.33192i) q^{21} +(-0.526682 - 0.191697i) q^{22} +(1.22504 + 6.94755i) q^{23} +(-0.997394 + 1.41743i) q^{24} +0.368687 q^{26} +(5.00964 + 1.37967i) q^{27} -5.01424 q^{28} +(-4.88786 - 4.10140i) q^{29} +(-1.13861 - 6.45736i) q^{31} +(2.74467 + 0.998979i) q^{32} +(3.69007 - 0.979608i) q^{33} +(-0.104044 + 0.590063i) q^{34} +(0.0268659 - 5.80597i) q^{36} +(-2.27172 - 3.93474i) q^{37} +(-1.06188 + 0.386492i) q^{38} +(-2.06056 + 1.43572i) q^{39} +(5.08374 - 4.26577i) q^{41} +(-0.936211 + 0.652319i) q^{42} +(-5.79479 + 2.10913i) q^{43} +(-2.13300 - 3.69447i) q^{44} +(0.896913 - 1.55350i) q^{46} +(-1.65920 + 9.40977i) q^{47} +(-6.05384 + 1.60712i) q^{48} +(0.270040 + 0.0982866i) q^{49} +(-1.71630 - 3.70297i) q^{51} +(2.14966 + 1.80378i) q^{52} +13.3683 q^{53} +(-0.750303 - 1.08753i) q^{54} +(1.98602 + 1.66647i) q^{56} +(4.42967 - 6.29518i) q^{57} +(0.281731 + 1.59778i) q^{58} +(3.10061 + 1.12853i) q^{59} +(-1.57865 + 8.95295i) q^{61} +(-0.833631 + 1.44389i) q^{62} +(2.69216 - 7.29150i) q^{63} +(3.24491 + 5.62035i) q^{64} +(-0.878880 - 0.412306i) q^{66} +(-4.09170 + 3.43334i) q^{67} +(-3.49349 + 2.93138i) q^{68} +(1.03680 + 12.1751i) q^{69} +(-1.67410 - 2.89963i) q^{71} +(-1.94024 + 2.29068i) q^{72} +(-2.55076 + 4.41805i) q^{73} +(-0.200612 + 1.13773i) q^{74} +(-8.08225 - 2.94170i) q^{76} +(-0.991698 - 5.62420i) q^{77} +(0.636024 + 0.0571280i) q^{78} +(3.14132 + 2.63588i) q^{79} +(8.42838 + 3.15632i) q^{81} -1.68745 q^{82} +(2.65602 + 2.22867i) q^{83} +(-8.65009 - 0.776955i) q^{84} +(1.47346 + 0.536295i) q^{86} +(-7.79656 - 7.83272i) q^{87} +(-0.383015 + 2.17219i) q^{88} +(7.60791 - 13.1773i) q^{89} +(1.87834 + 3.25338i) q^{91} +(12.8299 - 4.66971i) q^{92} +(-0.963650 - 11.3161i) q^{93} +(1.86115 - 1.56169i) q^{94} +(4.58006 + 2.14863i) q^{96} +(-3.94072 + 1.43431i) q^{97} +(-0.0365353 - 0.0632810i) q^{98} +(6.51756 - 1.11815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q + 6 q^{2} - 6 q^{6} + 6 q^{7} + 12 q^{8} - 6 q^{9} + 15 q^{11} + 18 q^{12} + 15 q^{14} + 18 q^{16} + 30 q^{17} - 12 q^{18} + 12 q^{19} + 12 q^{21} - 45 q^{22} + 36 q^{23} - 39 q^{24} + 6 q^{26} + 51 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.194784 0.163444i −0.137733 0.115572i 0.571318 0.820729i \(-0.306432\pi\)
−0.709052 + 0.705157i \(0.750877\pi\)
\(3\) 1.72511 + 0.154950i 0.995990 + 0.0894603i
\(4\) −0.336069 1.90594i −0.168035 0.952971i
\(5\) 0 0
\(6\) −0.310698 0.312139i −0.126842 0.127430i
\(7\) 0.449901 2.55151i 0.170046 0.964381i −0.773661 0.633600i \(-0.781577\pi\)
0.943707 0.330781i \(-0.107312\pi\)
\(8\) −0.500326 + 0.866590i −0.176892 + 0.306386i
\(9\) 2.95198 + 0.534610i 0.983994 + 0.178203i
\(10\) 0 0
\(11\) 2.07133 0.753901i 0.624528 0.227310i −0.0103197 0.999947i \(-0.503285\pi\)
0.634848 + 0.772637i \(0.281063\pi\)
\(12\) −0.284429 3.34003i −0.0821077 0.964183i
\(13\) −1.11074 + 0.932020i −0.308063 + 0.258496i −0.783691 0.621151i \(-0.786665\pi\)
0.475628 + 0.879647i \(0.342221\pi\)
\(14\) −0.504662 + 0.423462i −0.134877 + 0.113175i
\(15\) 0 0
\(16\) −3.39816 + 1.23683i −0.849541 + 0.309208i
\(17\) −1.17819 2.04069i −0.285754 0.494940i 0.687038 0.726622i \(-0.258911\pi\)
−0.972792 + 0.231681i \(0.925577\pi\)
\(18\) −0.487621 0.586616i −0.114933 0.138267i
\(19\) 2.22207 3.84874i 0.509778 0.882962i −0.490157 0.871634i \(-0.663061\pi\)
0.999936 0.0113281i \(-0.00360593\pi\)
\(20\) 0 0
\(21\) 1.17148 4.33192i 0.255638 0.945302i
\(22\) −0.526682 0.191697i −0.112289 0.0408699i
\(23\) 1.22504 + 6.94755i 0.255439 + 1.44866i 0.794944 + 0.606682i \(0.207500\pi\)
−0.539506 + 0.841982i \(0.681389\pi\)
\(24\) −0.997394 + 1.41743i −0.203592 + 0.289333i
\(25\) 0 0
\(26\) 0.368687 0.0723055
\(27\) 5.00964 + 1.37967i 0.964106 + 0.265517i
\(28\) −5.01424 −0.947602
\(29\) −4.88786 4.10140i −0.907652 0.761611i 0.0640188 0.997949i \(-0.479608\pi\)
−0.971671 + 0.236338i \(0.924053\pi\)
\(30\) 0 0
\(31\) −1.13861 6.45736i −0.204500 1.15978i −0.898225 0.439536i \(-0.855143\pi\)
0.693725 0.720240i \(-0.255968\pi\)
\(32\) 2.74467 + 0.998979i 0.485194 + 0.176596i
\(33\) 3.69007 0.979608i 0.642359 0.170528i
\(34\) −0.104044 + 0.590063i −0.0178434 + 0.101195i
\(35\) 0 0
\(36\) 0.0268659 5.80597i 0.00447766 0.967662i
\(37\) −2.27172 3.93474i −0.373469 0.646868i 0.616627 0.787255i \(-0.288499\pi\)
−0.990097 + 0.140387i \(0.955165\pi\)
\(38\) −1.06188 + 0.386492i −0.172259 + 0.0626972i
\(39\) −2.06056 + 1.43572i −0.329953 + 0.229900i
\(40\) 0 0
\(41\) 5.08374 4.26577i 0.793947 0.666201i −0.152772 0.988262i \(-0.548820\pi\)
0.946719 + 0.322061i \(0.104375\pi\)
\(42\) −0.936211 + 0.652319i −0.144460 + 0.100655i
\(43\) −5.79479 + 2.10913i −0.883697 + 0.321640i −0.743701 0.668512i \(-0.766931\pi\)
−0.139996 + 0.990152i \(0.544709\pi\)
\(44\) −2.13300 3.69447i −0.321562 0.556962i
\(45\) 0 0
\(46\) 0.896913 1.55350i 0.132243 0.229051i
\(47\) −1.65920 + 9.40977i −0.242019 + 1.37256i 0.585297 + 0.810819i \(0.300978\pi\)
−0.827316 + 0.561737i \(0.810133\pi\)
\(48\) −6.05384 + 1.60712i −0.873797 + 0.231968i
\(49\) 0.270040 + 0.0982866i 0.0385772 + 0.0140409i
\(50\) 0 0
\(51\) −1.71630 3.70297i −0.240331 0.518519i
\(52\) 2.14966 + 1.80378i 0.298104 + 0.250139i
\(53\) 13.3683 1.83627 0.918137 0.396263i \(-0.129693\pi\)
0.918137 + 0.396263i \(0.129693\pi\)
\(54\) −0.750303 1.08753i −0.102103 0.147994i
\(55\) 0 0
\(56\) 1.98602 + 1.66647i 0.265393 + 0.222691i
\(57\) 4.42967 6.29518i 0.586724 0.833817i
\(58\) 0.281731 + 1.59778i 0.0369931 + 0.209798i
\(59\) 3.10061 + 1.12853i 0.403665 + 0.146922i 0.535870 0.844300i \(-0.319984\pi\)
−0.132205 + 0.991222i \(0.542206\pi\)
\(60\) 0 0
\(61\) −1.57865 + 8.95295i −0.202125 + 1.14631i 0.699775 + 0.714363i \(0.253284\pi\)
−0.901900 + 0.431945i \(0.857828\pi\)
\(62\) −0.833631 + 1.44389i −0.105871 + 0.183374i
\(63\) 2.69216 7.29150i 0.339181 0.918642i
\(64\) 3.24491 + 5.62035i 0.405614 + 0.702543i
\(65\) 0 0
\(66\) −0.878880 0.412306i −0.108183 0.0507514i
\(67\) −4.09170 + 3.43334i −0.499881 + 0.419450i −0.857552 0.514398i \(-0.828015\pi\)
0.357671 + 0.933848i \(0.383571\pi\)
\(68\) −3.49349 + 2.93138i −0.423647 + 0.355482i
\(69\) 1.03680 + 12.1751i 0.124816 + 1.46571i
\(70\) 0 0
\(71\) −1.67410 2.89963i −0.198680 0.344123i 0.749421 0.662094i \(-0.230332\pi\)
−0.948101 + 0.317971i \(0.896999\pi\)
\(72\) −1.94024 + 2.29068i −0.228660 + 0.269959i
\(73\) −2.55076 + 4.41805i −0.298544 + 0.517094i −0.975803 0.218651i \(-0.929834\pi\)
0.677259 + 0.735745i \(0.263168\pi\)
\(74\) −0.200612 + 1.13773i −0.0233206 + 0.132258i
\(75\) 0 0
\(76\) −8.08225 2.94170i −0.927098 0.337436i
\(77\) −0.991698 5.62420i −0.113014 0.640937i
\(78\) 0.636024 + 0.0571280i 0.0720156 + 0.00646847i
\(79\) 3.14132 + 2.63588i 0.353426 + 0.296560i 0.802164 0.597104i \(-0.203682\pi\)
−0.448738 + 0.893663i \(0.648126\pi\)
\(80\) 0 0
\(81\) 8.42838 + 3.15632i 0.936487 + 0.350702i
\(82\) −1.68745 −0.186347
\(83\) 2.65602 + 2.22867i 0.291536 + 0.244628i 0.776811 0.629734i \(-0.216836\pi\)
−0.485275 + 0.874362i \(0.661280\pi\)
\(84\) −8.65009 0.776955i −0.943802 0.0847727i
\(85\) 0 0
\(86\) 1.47346 + 0.536295i 0.158887 + 0.0578302i
\(87\) −7.79656 7.83272i −0.835879 0.839756i
\(88\) −0.383015 + 2.17219i −0.0408296 + 0.231556i
\(89\) 7.60791 13.1773i 0.806437 1.39679i −0.108880 0.994055i \(-0.534726\pi\)
0.915317 0.402734i \(-0.131940\pi\)
\(90\) 0 0
\(91\) 1.87834 + 3.25338i 0.196903 + 0.341047i
\(92\) 12.8299 4.66971i 1.33761 0.486851i
\(93\) −0.963650 11.3161i −0.0999259 1.17342i
\(94\) 1.86115 1.56169i 0.191963 0.161076i
\(95\) 0 0
\(96\) 4.58006 + 2.14863i 0.467450 + 0.219294i
\(97\) −3.94072 + 1.43431i −0.400120 + 0.145632i −0.534239 0.845334i \(-0.679402\pi\)
0.134119 + 0.990965i \(0.457179\pi\)
\(98\) −0.0365353 0.0632810i −0.00369063 0.00639235i
\(99\) 6.51756 1.11815i 0.655039 0.112378i
\(100\) 0 0
\(101\) −2.48305 + 14.0821i −0.247073 + 1.40122i 0.568557 + 0.822644i \(0.307502\pi\)
−0.815629 + 0.578575i \(0.803609\pi\)
\(102\) −0.270917 + 1.00180i −0.0268248 + 0.0991929i
\(103\) −8.11392 2.95323i −0.799489 0.290990i −0.0902141 0.995922i \(-0.528755\pi\)
−0.709275 + 0.704932i \(0.750977\pi\)
\(104\) −0.251948 1.42887i −0.0247055 0.140112i
\(105\) 0 0
\(106\) −2.60393 2.18496i −0.252916 0.212222i
\(107\) −5.67259 −0.548390 −0.274195 0.961674i \(-0.588411\pi\)
−0.274195 + 0.961674i \(0.588411\pi\)
\(108\) 0.945981 10.0118i 0.0910271 0.963382i
\(109\) 18.9591 1.81595 0.907975 0.419025i \(-0.137628\pi\)
0.907975 + 0.419025i \(0.137628\pi\)
\(110\) 0 0
\(111\) −3.30928 7.13985i −0.314103 0.677685i
\(112\) 1.62695 + 9.22691i 0.153733 + 0.871861i
\(113\) 10.7438 + 3.91044i 1.01070 + 0.367863i 0.793700 0.608309i \(-0.208152\pi\)
0.216996 + 0.976172i \(0.430374\pi\)
\(114\) −1.89174 + 0.502201i −0.177177 + 0.0470355i
\(115\) 0 0
\(116\) −6.17437 + 10.6943i −0.573276 + 0.992943i
\(117\) −3.77714 + 2.15749i −0.349197 + 0.199460i
\(118\) −0.419500 0.726595i −0.0386181 0.0668884i
\(119\) −5.73692 + 2.08807i −0.525903 + 0.191413i
\(120\) 0 0
\(121\) −4.70446 + 3.94751i −0.427679 + 0.358865i
\(122\) 1.77080 1.48588i 0.160321 0.134525i
\(123\) 9.43098 6.57118i 0.850362 0.592503i
\(124\) −11.9247 + 4.34024i −1.07087 + 0.389765i
\(125\) 0 0
\(126\) −1.71614 + 0.980254i −0.152886 + 0.0873279i
\(127\) −1.65219 + 2.86168i −0.146608 + 0.253933i −0.929972 0.367631i \(-0.880169\pi\)
0.783363 + 0.621564i \(0.213502\pi\)
\(128\) 1.30094 7.37801i 0.114988 0.652130i
\(129\) −10.3234 + 2.74057i −0.908928 + 0.241294i
\(130\) 0 0
\(131\) 2.70616 + 15.3474i 0.236439 + 1.34091i 0.839563 + 0.543263i \(0.182811\pi\)
−0.603124 + 0.797647i \(0.706078\pi\)
\(132\) −3.10720 6.70385i −0.270447 0.583496i
\(133\) −8.82040 7.40120i −0.764826 0.641765i
\(134\) 1.35816 0.117327
\(135\) 0 0
\(136\) 2.35792 0.202190
\(137\) 9.21811 + 7.73491i 0.787556 + 0.660838i 0.945139 0.326668i \(-0.105926\pi\)
−0.157583 + 0.987506i \(0.550370\pi\)
\(138\) 1.78799 2.54098i 0.152203 0.216302i
\(139\) −3.09573 17.5568i −0.262577 1.48915i −0.775848 0.630920i \(-0.782677\pi\)
0.513271 0.858227i \(-0.328434\pi\)
\(140\) 0 0
\(141\) −4.32033 + 15.9758i −0.363838 + 1.34540i
\(142\) −0.147837 + 0.838425i −0.0124062 + 0.0703591i
\(143\) −1.59805 + 2.76790i −0.133636 + 0.231464i
\(144\) −10.6925 + 1.83441i −0.891045 + 0.152867i
\(145\) 0 0
\(146\) 1.21895 0.443662i 0.100881 0.0367177i
\(147\) 0.450619 + 0.211398i 0.0371664 + 0.0174358i
\(148\) −6.73594 + 5.65212i −0.553691 + 0.464602i
\(149\) −16.4176 + 13.7760i −1.34498 + 1.12857i −0.364664 + 0.931139i \(0.618816\pi\)
−0.980316 + 0.197433i \(0.936739\pi\)
\(150\) 0 0
\(151\) −7.24523 + 2.63705i −0.589608 + 0.214600i −0.619557 0.784952i \(-0.712688\pi\)
0.0299488 + 0.999551i \(0.490466\pi\)
\(152\) 2.22352 + 3.85125i 0.180351 + 0.312378i
\(153\) −2.38703 6.65396i −0.192980 0.537940i
\(154\) −0.726071 + 1.25759i −0.0585085 + 0.101340i
\(155\) 0 0
\(156\) 3.42890 + 3.44480i 0.274532 + 0.275805i
\(157\) −0.728013 0.264975i −0.0581018 0.0211473i 0.312806 0.949817i \(-0.398731\pi\)
−0.370908 + 0.928670i \(0.620953\pi\)
\(158\) −0.181063 1.02686i −0.0144046 0.0816924i
\(159\) 23.0617 + 2.07141i 1.82891 + 0.164274i
\(160\) 0 0
\(161\) 18.2779 1.44050
\(162\) −1.12584 1.99237i −0.0884542 0.156535i
\(163\) 16.3075 1.27731 0.638653 0.769495i \(-0.279492\pi\)
0.638653 + 0.769495i \(0.279492\pi\)
\(164\) −9.83880 8.25573i −0.768281 0.644664i
\(165\) 0 0
\(166\) −0.153090 0.868219i −0.0118821 0.0673869i
\(167\) 6.51098 + 2.36980i 0.503835 + 0.183381i 0.581418 0.813605i \(-0.302498\pi\)
−0.0775833 + 0.996986i \(0.524720\pi\)
\(168\) 3.16787 + 3.18257i 0.244407 + 0.245540i
\(169\) −1.89235 + 10.7320i −0.145565 + 0.825542i
\(170\) 0 0
\(171\) 8.61709 10.1735i 0.658965 0.777985i
\(172\) 5.96733 + 10.3357i 0.455005 + 0.788092i
\(173\) −7.00660 + 2.55019i −0.532702 + 0.193888i −0.594344 0.804211i \(-0.702588\pi\)
0.0616426 + 0.998098i \(0.480366\pi\)
\(174\) 0.238441 + 2.79999i 0.0180762 + 0.212267i
\(175\) 0 0
\(176\) −6.10626 + 5.12376i −0.460277 + 0.386218i
\(177\) 5.17401 + 2.42727i 0.388903 + 0.182445i
\(178\) −3.63564 + 1.32327i −0.272503 + 0.0991830i
\(179\) 7.25608 + 12.5679i 0.542345 + 0.939369i 0.998769 + 0.0496065i \(0.0157967\pi\)
−0.456424 + 0.889762i \(0.650870\pi\)
\(180\) 0 0
\(181\) −4.13864 + 7.16833i −0.307622 + 0.532818i −0.977842 0.209345i \(-0.932867\pi\)
0.670219 + 0.742163i \(0.266200\pi\)
\(182\) 0.165873 0.940710i 0.0122953 0.0697301i
\(183\) −4.11059 + 15.2002i −0.303864 + 1.12363i
\(184\) −6.63360 2.41443i −0.489035 0.177994i
\(185\) 0 0
\(186\) −1.66183 + 2.36169i −0.121851 + 0.173168i
\(187\) −3.97890 3.33870i −0.290966 0.244150i
\(188\) 18.4921 1.34867
\(189\) 5.77408 12.1615i 0.420003 0.884616i
\(190\) 0 0
\(191\) −18.3309 15.3815i −1.32638 1.11297i −0.984909 0.173074i \(-0.944630\pi\)
−0.341472 0.939892i \(-0.610925\pi\)
\(192\) 4.72694 + 10.1985i 0.341137 + 0.736013i
\(193\) −4.17280 23.6651i −0.300364 1.70345i −0.644560 0.764553i \(-0.722960\pi\)
0.344196 0.938898i \(-0.388152\pi\)
\(194\) 1.00202 + 0.364705i 0.0719408 + 0.0261843i
\(195\) 0 0
\(196\) 0.0965765 0.547712i 0.00689832 0.0391223i
\(197\) −11.7231 + 20.3050i −0.835235 + 1.44667i 0.0586045 + 0.998281i \(0.481335\pi\)
−0.893839 + 0.448388i \(0.851998\pi\)
\(198\) −1.45227 0.847455i −0.103209 0.0602260i
\(199\) 3.92254 + 6.79404i 0.278061 + 0.481617i 0.970903 0.239473i \(-0.0769748\pi\)
−0.692841 + 0.721090i \(0.743641\pi\)
\(200\) 0 0
\(201\) −7.59061 + 5.28887i −0.535401 + 0.373048i
\(202\) 2.78528 2.33713i 0.195972 0.164440i
\(203\) −12.6638 + 10.6262i −0.888826 + 0.745814i
\(204\) −6.48085 + 4.51563i −0.453750 + 0.316157i
\(205\) 0 0
\(206\) 1.09778 + 1.90141i 0.0764860 + 0.132478i
\(207\) −0.0979318 + 21.1640i −0.00680673 + 1.47100i
\(208\) 2.62172 4.54095i 0.181784 0.314858i
\(209\) 1.70107 9.64722i 0.117665 0.667312i
\(210\) 0 0
\(211\) 4.73989 + 1.72518i 0.326307 + 0.118766i 0.499979 0.866037i \(-0.333341\pi\)
−0.173672 + 0.984804i \(0.555563\pi\)
\(212\) −4.49267 25.4792i −0.308558 1.74992i
\(213\) −2.43871 5.26158i −0.167098 0.360517i
\(214\) 1.10493 + 0.927148i 0.0755316 + 0.0633785i
\(215\) 0 0
\(216\) −3.70206 + 3.65102i −0.251893 + 0.248421i
\(217\) −16.9883 −1.15324
\(218\) −3.69293 3.09874i −0.250117 0.209873i
\(219\) −5.08492 + 7.22637i −0.343607 + 0.488313i
\(220\) 0 0
\(221\) 3.21063 + 1.16857i 0.215970 + 0.0786067i
\(222\) −0.522367 + 1.93161i −0.0350590 + 0.129641i
\(223\) −3.27908 + 18.5966i −0.219583 + 1.24532i 0.653191 + 0.757193i \(0.273430\pi\)
−0.872774 + 0.488125i \(0.837681\pi\)
\(224\) 3.78374 6.55363i 0.252812 0.437883i
\(225\) 0 0
\(226\) −1.45360 2.51771i −0.0966919 0.167475i
\(227\) −3.51591 + 1.27969i −0.233359 + 0.0849358i −0.456053 0.889953i \(-0.650737\pi\)
0.222694 + 0.974888i \(0.428515\pi\)
\(228\) −13.4869 6.32709i −0.893194 0.419022i
\(229\) 6.44759 5.41017i 0.426069 0.357514i −0.404397 0.914583i \(-0.632519\pi\)
0.830466 + 0.557069i \(0.188074\pi\)
\(230\) 0 0
\(231\) −0.839315 9.85600i −0.0552229 0.648477i
\(232\) 5.99975 2.18373i 0.393903 0.143369i
\(233\) −5.62166 9.73700i −0.368287 0.637892i 0.621011 0.783802i \(-0.286722\pi\)
−0.989298 + 0.145910i \(0.953389\pi\)
\(234\) 1.08836 + 0.197104i 0.0711481 + 0.0128851i
\(235\) 0 0
\(236\) 1.10889 6.28885i 0.0721828 0.409369i
\(237\) 5.01068 + 5.03392i 0.325479 + 0.326988i
\(238\) 1.45874 + 0.530939i 0.0945563 + 0.0344157i
\(239\) 3.13312 + 17.7688i 0.202665 + 1.14937i 0.901073 + 0.433668i \(0.142781\pi\)
−0.698408 + 0.715700i \(0.746108\pi\)
\(240\) 0 0
\(241\) 11.6762 + 9.79751i 0.752131 + 0.631113i 0.936066 0.351826i \(-0.114439\pi\)
−0.183934 + 0.982939i \(0.558883\pi\)
\(242\) 1.56155 0.100380
\(243\) 14.0508 + 6.75096i 0.901358 + 0.433074i
\(244\) 17.5943 1.12636
\(245\) 0 0
\(246\) −2.91102 0.261470i −0.185600 0.0166707i
\(247\) 1.11896 + 6.34596i 0.0711980 + 0.403784i
\(248\) 6.16556 + 2.24408i 0.391513 + 0.142499i
\(249\) 4.23659 + 4.25624i 0.268483 + 0.269728i
\(250\) 0 0
\(251\) 10.1160 17.5214i 0.638515 1.10594i −0.347244 0.937775i \(-0.612882\pi\)
0.985759 0.168165i \(-0.0537843\pi\)
\(252\) −14.8019 2.68066i −0.932434 0.168866i
\(253\) 7.77522 + 13.4671i 0.488824 + 0.846668i
\(254\) 0.789545 0.287371i 0.0495405 0.0180312i
\(255\) 0 0
\(256\) 8.48369 7.11866i 0.530230 0.444916i
\(257\) −22.3026 + 18.7141i −1.39120 + 1.16735i −0.426347 + 0.904560i \(0.640200\pi\)
−0.964852 + 0.262795i \(0.915356\pi\)
\(258\) 2.45877 + 1.15348i 0.153077 + 0.0718124i
\(259\) −11.0616 + 4.02609i −0.687334 + 0.250169i
\(260\) 0 0
\(261\) −12.2362 14.7203i −0.757402 0.911167i
\(262\) 1.98132 3.43174i 0.122406 0.212014i
\(263\) −0.202359 + 1.14764i −0.0124780 + 0.0707663i −0.990411 0.138153i \(-0.955883\pi\)
0.977933 + 0.208919i \(0.0669946\pi\)
\(264\) −0.997322 + 3.68791i −0.0613809 + 0.226975i
\(265\) 0 0
\(266\) 0.508399 + 2.88328i 0.0311720 + 0.176785i
\(267\) 15.1663 21.5534i 0.928160 1.31904i
\(268\) 7.91885 + 6.64471i 0.483721 + 0.405890i
\(269\) 3.89377 0.237407 0.118704 0.992930i \(-0.462126\pi\)
0.118704 + 0.992930i \(0.462126\pi\)
\(270\) 0 0
\(271\) −1.01175 −0.0614596 −0.0307298 0.999528i \(-0.509783\pi\)
−0.0307298 + 0.999528i \(0.509783\pi\)
\(272\) 6.52769 + 5.47738i 0.395799 + 0.332115i
\(273\) 2.73622 + 5.90347i 0.165604 + 0.357294i
\(274\) −0.531323 3.01328i −0.0320984 0.182039i
\(275\) 0 0
\(276\) 22.8566 6.06776i 1.37580 0.365236i
\(277\) 5.38133 30.5191i 0.323333 1.83371i −0.197807 0.980241i \(-0.563382\pi\)
0.521140 0.853471i \(-0.325507\pi\)
\(278\) −2.26654 + 3.92577i −0.135938 + 0.235452i
\(279\) 0.0910221 19.6707i 0.00544935 1.17765i
\(280\) 0 0
\(281\) −2.69096 + 0.979428i −0.160529 + 0.0584278i −0.421035 0.907045i \(-0.638333\pi\)
0.260506 + 0.965472i \(0.416111\pi\)
\(282\) 3.45267 2.40570i 0.205603 0.143257i
\(283\) 18.8737 15.8369i 1.12192 0.941405i 0.123223 0.992379i \(-0.460677\pi\)
0.998700 + 0.0509739i \(0.0162325\pi\)
\(284\) −4.96392 + 4.16523i −0.294555 + 0.247161i
\(285\) 0 0
\(286\) 0.763671 0.277954i 0.0451568 0.0164357i
\(287\) −8.59698 14.8904i −0.507464 0.878953i
\(288\) 7.56816 + 4.41630i 0.445958 + 0.260233i
\(289\) 5.72372 9.91377i 0.336689 0.583163i
\(290\) 0 0
\(291\) −7.02041 + 1.86371i −0.411544 + 0.109253i
\(292\) 9.27779 + 3.37684i 0.542942 + 0.197615i
\(293\) −1.00740 5.71323i −0.0588527 0.333771i 0.941138 0.338022i \(-0.109758\pi\)
−0.999991 + 0.00425146i \(0.998647\pi\)
\(294\) −0.0532219 0.114828i −0.00310397 0.00669688i
\(295\) 0 0
\(296\) 4.54641 0.264255
\(297\) 11.4167 0.919033i 0.662466 0.0533277i
\(298\) 5.44948 0.315680
\(299\) −7.83595 6.57515i −0.453165 0.380250i
\(300\) 0 0
\(301\) 2.77440 + 15.7344i 0.159914 + 0.906915i
\(302\) 1.84227 + 0.670530i 0.106011 + 0.0385847i
\(303\) −6.46554 + 23.9083i −0.371435 + 1.37350i
\(304\) −2.79073 + 15.8270i −0.160059 + 0.907740i
\(305\) 0 0
\(306\) −0.622589 + 1.68623i −0.0355911 + 0.0963955i
\(307\) −15.4802 26.8124i −0.883500 1.53027i −0.847424 0.530917i \(-0.821848\pi\)
−0.0360759 0.999349i \(-0.511486\pi\)
\(308\) −10.3861 + 3.78024i −0.591804 + 0.215399i
\(309\) −13.5398 6.35188i −0.770251 0.361346i
\(310\) 0 0
\(311\) 7.44776 6.24942i 0.422324 0.354372i −0.406722 0.913552i \(-0.633328\pi\)
0.829046 + 0.559180i \(0.188884\pi\)
\(312\) −0.213234 2.50399i −0.0120720 0.141760i
\(313\) −11.4133 + 4.15409i −0.645116 + 0.234803i −0.643797 0.765196i \(-0.722642\pi\)
−0.00131881 + 0.999999i \(0.500420\pi\)
\(314\) 0.0984972 + 0.170602i 0.00555852 + 0.00962763i
\(315\) 0 0
\(316\) 3.96814 6.87301i 0.223225 0.386637i
\(317\) 0.918600 5.20964i 0.0515937 0.292603i −0.948083 0.318023i \(-0.896981\pi\)
0.999677 + 0.0254200i \(0.00809232\pi\)
\(318\) −4.15350 4.17276i −0.232917 0.233997i
\(319\) −13.2164 4.81037i −0.739976 0.269329i
\(320\) 0 0
\(321\) −9.78581 0.878966i −0.546191 0.0490591i
\(322\) −3.56025 2.98741i −0.198405 0.166482i
\(323\) −10.4721 −0.582685
\(324\) 3.18324 17.1248i 0.176847 0.951376i
\(325\) 0 0
\(326\) −3.17646 2.66536i −0.175928 0.147621i
\(327\) 32.7064 + 2.93770i 1.80867 + 0.162455i
\(328\) 1.15314 + 6.53980i 0.0636717 + 0.361100i
\(329\) 23.2627 + 8.46692i 1.28251 + 0.466797i
\(330\) 0 0
\(331\) 4.36397 24.7493i 0.239866 1.36035i −0.592255 0.805750i \(-0.701762\pi\)
0.832121 0.554595i \(-0.187127\pi\)
\(332\) 3.35510 5.81121i 0.184135 0.318932i
\(333\) −4.60254 12.8298i −0.252217 0.703067i
\(334\) −0.880908 1.52578i −0.0482012 0.0834868i
\(335\) 0 0
\(336\) 1.37696 + 16.1695i 0.0751193 + 0.882118i
\(337\) −3.87282 + 3.24968i −0.210966 + 0.177021i −0.742147 0.670237i \(-0.766193\pi\)
0.531182 + 0.847258i \(0.321748\pi\)
\(338\) 2.12268 1.78114i 0.115459 0.0968814i
\(339\) 17.9284 + 8.41068i 0.973734 + 0.456806i
\(340\) 0 0
\(341\) −7.22663 12.5169i −0.391344 0.677828i
\(342\) −3.34126 + 0.573226i −0.180675 + 0.0309965i
\(343\) 9.44033 16.3511i 0.509730 0.882878i
\(344\) 1.07153 6.07696i 0.0577732 0.327648i
\(345\) 0 0
\(346\) 1.78159 + 0.648445i 0.0957788 + 0.0348606i
\(347\) −4.69131 26.6058i −0.251843 1.42827i −0.804048 0.594564i \(-0.797325\pi\)
0.552206 0.833708i \(-0.313786\pi\)
\(348\) −12.3085 + 17.4921i −0.659807 + 0.937677i
\(349\) −17.9519 15.0634i −0.960941 0.806326i 0.0201645 0.999797i \(-0.493581\pi\)
−0.981106 + 0.193471i \(0.938025\pi\)
\(350\) 0 0
\(351\) −6.85028 + 3.13664i −0.365641 + 0.167421i
\(352\) 6.43824 0.343160
\(353\) −13.6706 11.4710i −0.727611 0.610538i 0.201868 0.979413i \(-0.435299\pi\)
−0.929479 + 0.368875i \(0.879743\pi\)
\(354\) −0.611095 1.31845i −0.0324794 0.0700750i
\(355\) 0 0
\(356\) −27.6719 10.0718i −1.46661 0.533802i
\(357\) −10.2203 + 2.71320i −0.540918 + 0.143598i
\(358\) 0.640771 3.63399i 0.0338658 0.192062i
\(359\) 12.7067 22.0086i 0.670633 1.16157i −0.307092 0.951680i \(-0.599356\pi\)
0.977725 0.209891i \(-0.0673108\pi\)
\(360\) 0 0
\(361\) −0.375211 0.649885i −0.0197480 0.0342045i
\(362\) 1.97776 0.719845i 0.103949 0.0378342i
\(363\) −8.72737 + 6.08092i −0.458068 + 0.319166i
\(364\) 5.56950 4.67337i 0.291921 0.244951i
\(365\) 0 0
\(366\) 3.28505 2.28891i 0.171712 0.119643i
\(367\) 33.4606 12.1787i 1.74663 0.635721i 0.747051 0.664766i \(-0.231469\pi\)
0.999578 + 0.0290451i \(0.00924665\pi\)
\(368\) −12.7558 22.0938i −0.664944 1.15172i
\(369\) 17.2876 9.87465i 0.899958 0.514054i
\(370\) 0 0
\(371\) 6.01439 34.1093i 0.312252 1.77087i
\(372\) −21.2439 + 5.63964i −1.10144 + 0.292402i
\(373\) −5.43137 1.97686i −0.281226 0.102358i 0.197557 0.980291i \(-0.436699\pi\)
−0.478782 + 0.877934i \(0.658922\pi\)
\(374\) 0.229340 + 1.30065i 0.0118589 + 0.0672551i
\(375\) 0 0
\(376\) −7.32428 6.14580i −0.377721 0.316945i
\(377\) 9.25171 0.476487
\(378\) −3.11241 + 1.42513i −0.160085 + 0.0733006i
\(379\) −27.7158 −1.42366 −0.711832 0.702350i \(-0.752134\pi\)
−0.711832 + 0.702350i \(0.752134\pi\)
\(380\) 0 0
\(381\) −3.29362 + 4.68070i −0.168737 + 0.239799i
\(382\) 1.05658 + 5.99215i 0.0540592 + 0.306585i
\(383\) −5.17297 1.88281i −0.264326 0.0962069i 0.206457 0.978456i \(-0.433807\pi\)
−0.470784 + 0.882249i \(0.656029\pi\)
\(384\) 3.38748 12.5263i 0.172867 0.639228i
\(385\) 0 0
\(386\) −3.05511 + 5.29161i −0.155501 + 0.269336i
\(387\) −18.2337 + 3.12816i −0.926870 + 0.159014i
\(388\) 4.05806 + 7.02876i 0.206017 + 0.356831i
\(389\) −33.7465 + 12.2827i −1.71101 + 0.622758i −0.997002 0.0773745i \(-0.975346\pi\)
−0.714013 + 0.700133i \(0.753124\pi\)
\(390\) 0 0
\(391\) 12.7345 10.6855i 0.644010 0.540388i
\(392\) −0.220282 + 0.184839i −0.0111259 + 0.00933577i
\(393\) 2.29034 + 26.8952i 0.115532 + 1.35669i
\(394\) 5.60219 2.03903i 0.282234 0.102725i
\(395\) 0 0
\(396\) −4.32148 12.0463i −0.217163 0.605350i
\(397\) −4.23035 + 7.32719i −0.212315 + 0.367741i −0.952439 0.304730i \(-0.901434\pi\)
0.740123 + 0.672471i \(0.234767\pi\)
\(398\) 0.346392 1.96449i 0.0173631 0.0984708i
\(399\) −14.0693 14.1346i −0.704347 0.707614i
\(400\) 0 0
\(401\) 4.71483 + 26.7391i 0.235447 + 1.33529i 0.841669 + 0.539993i \(0.181573\pi\)
−0.606222 + 0.795296i \(0.707316\pi\)
\(402\) 2.34297 + 0.210446i 0.116857 + 0.0104961i
\(403\) 7.28308 + 6.11123i 0.362796 + 0.304422i
\(404\) 27.6741 1.37684
\(405\) 0 0
\(406\) 4.20350 0.208616
\(407\) −7.67189 6.43748i −0.380281 0.319094i
\(408\) 4.06767 + 0.365360i 0.201380 + 0.0180880i
\(409\) −0.359891 2.04104i −0.0177954 0.100923i 0.974616 0.223882i \(-0.0718729\pi\)
−0.992412 + 0.122959i \(0.960762\pi\)
\(410\) 0 0
\(411\) 14.7037 + 14.7719i 0.725280 + 0.728643i
\(412\) −2.90184 + 16.4572i −0.142964 + 0.810786i
\(413\) 4.27442 7.40352i 0.210331 0.364303i
\(414\) 3.47819 4.10640i 0.170944 0.201819i
\(415\) 0 0
\(416\) −3.97968 + 1.44849i −0.195120 + 0.0710178i
\(417\) −2.62005 30.7670i −0.128304 1.50667i
\(418\) −1.90812 + 1.60110i −0.0933291 + 0.0783124i
\(419\) −19.8184 + 16.6296i −0.968190 + 0.812408i −0.982266 0.187493i \(-0.939964\pi\)
0.0140758 + 0.999901i \(0.495519\pi\)
\(420\) 0 0
\(421\) 9.37834 3.41344i 0.457073 0.166361i −0.103215 0.994659i \(-0.532913\pi\)
0.560287 + 0.828298i \(0.310691\pi\)
\(422\) −0.641287 1.11074i −0.0312174 0.0540700i
\(423\) −9.92847 + 26.8904i −0.482739 + 1.30746i
\(424\) −6.68850 + 11.5848i −0.324822 + 0.562608i
\(425\) 0 0
\(426\) −0.384948 + 1.42347i −0.0186508 + 0.0689671i
\(427\) 22.1333 + 8.05588i 1.07111 + 0.389851i
\(428\) 1.90638 + 10.8116i 0.0921484 + 0.522600i
\(429\) −3.18569 + 4.52731i −0.153807 + 0.218581i
\(430\) 0 0
\(431\) 2.41940 0.116538 0.0582692 0.998301i \(-0.481442\pi\)
0.0582692 + 0.998301i \(0.481442\pi\)
\(432\) −18.7300 + 1.50774i −0.901148 + 0.0725413i
\(433\) 19.8081 0.951915 0.475957 0.879468i \(-0.342102\pi\)
0.475957 + 0.879468i \(0.342102\pi\)
\(434\) 3.30906 + 2.77663i 0.158840 + 0.133282i
\(435\) 0 0
\(436\) −6.37156 36.1349i −0.305142 1.73055i
\(437\) 29.4615 + 10.7231i 1.40933 + 0.512955i
\(438\) 2.17157 0.576488i 0.103761 0.0275457i
\(439\) 0.697642 3.95652i 0.0332966 0.188835i −0.963623 0.267266i \(-0.913880\pi\)
0.996920 + 0.0784310i \(0.0249910\pi\)
\(440\) 0 0
\(441\) 0.744609 + 0.434506i 0.0354576 + 0.0206908i
\(442\) −0.434385 0.752376i −0.0206616 0.0357869i
\(443\) 4.71098 1.71466i 0.223826 0.0814658i −0.227673 0.973738i \(-0.573112\pi\)
0.451499 + 0.892272i \(0.350890\pi\)
\(444\) −12.4960 + 8.70678i −0.593034 + 0.413205i
\(445\) 0 0
\(446\) 3.67820 3.08638i 0.174168 0.146144i
\(447\) −30.4566 + 21.2211i −1.44055 + 1.00373i
\(448\) 15.8003 5.75083i 0.746493 0.271701i
\(449\) 9.48026 + 16.4203i 0.447401 + 0.774922i 0.998216 0.0597059i \(-0.0190163\pi\)
−0.550815 + 0.834627i \(0.685683\pi\)
\(450\) 0 0
\(451\) 7.31412 12.6684i 0.344409 0.596533i
\(452\) 3.84240 21.7913i 0.180731 1.02498i
\(453\) −12.9074 + 3.42654i −0.606442 + 0.160993i
\(454\) 0.894001 + 0.325390i 0.0419575 + 0.0152713i
\(455\) 0 0
\(456\) 3.23906 + 6.98835i 0.151683 + 0.327260i
\(457\) 8.71986 + 7.31683i 0.407898 + 0.342267i 0.823537 0.567263i \(-0.191998\pi\)
−0.415639 + 0.909530i \(0.636442\pi\)
\(458\) −2.14015 −0.100002
\(459\) −3.08685 11.8486i −0.144082 0.553048i
\(460\) 0 0
\(461\) −3.34271 2.80487i −0.155686 0.130636i 0.561617 0.827397i \(-0.310179\pi\)
−0.717303 + 0.696761i \(0.754624\pi\)
\(462\) −1.44741 + 2.05698i −0.0673398 + 0.0956992i
\(463\) −1.25780 7.13335i −0.0584550 0.331515i 0.941530 0.336928i \(-0.109388\pi\)
−0.999985 + 0.00541334i \(0.998277\pi\)
\(464\) 21.6825 + 7.89178i 1.00658 + 0.366367i
\(465\) 0 0
\(466\) −0.496438 + 2.81544i −0.0229970 + 0.130423i
\(467\) 1.79131 3.10264i 0.0828919 0.143573i −0.821599 0.570066i \(-0.806918\pi\)
0.904491 + 0.426493i \(0.140251\pi\)
\(468\) 5.38144 + 6.47395i 0.248757 + 0.299259i
\(469\) 6.91936 + 11.9847i 0.319507 + 0.553402i
\(470\) 0 0
\(471\) −1.21484 0.569916i −0.0559770 0.0262603i
\(472\) −2.52929 + 2.12232i −0.116420 + 0.0976879i
\(473\) −10.4128 + 8.73740i −0.478782 + 0.401746i
\(474\) −0.153241 1.79949i −0.00703858 0.0826534i
\(475\) 0 0
\(476\) 5.90774 + 10.2325i 0.270781 + 0.469006i
\(477\) 39.4629 + 7.14681i 1.80688 + 0.327230i
\(478\) 2.29391 3.97317i 0.104921 0.181729i
\(479\) 0.329444 1.86837i 0.0150527 0.0853680i −0.976356 0.216169i \(-0.930644\pi\)
0.991409 + 0.130801i \(0.0417549\pi\)
\(480\) 0 0
\(481\) 6.19055 + 2.25318i 0.282265 + 0.102736i
\(482\) −0.673006 3.81680i −0.0306546 0.173851i
\(483\) 31.5313 + 2.83216i 1.43473 + 0.128868i
\(484\) 9.10476 + 7.63980i 0.413853 + 0.347264i
\(485\) 0 0
\(486\) −1.63347 3.61149i −0.0740959 0.163821i
\(487\) −13.6444 −0.618286 −0.309143 0.951016i \(-0.600042\pi\)
−0.309143 + 0.951016i \(0.600042\pi\)
\(488\) −6.96870 5.84743i −0.315458 0.264701i
\(489\) 28.1322 + 2.52685i 1.27218 + 0.114268i
\(490\) 0 0
\(491\) −37.0378 13.4806i −1.67149 0.608373i −0.679386 0.733781i \(-0.737754\pi\)
−0.992105 + 0.125408i \(0.959976\pi\)
\(492\) −15.6937 15.7665i −0.707529 0.710810i
\(493\) −2.61085 + 14.8068i −0.117587 + 0.666867i
\(494\) 0.819249 1.41898i 0.0368598 0.0638430i
\(495\) 0 0
\(496\) 11.8558 + 20.5349i 0.532343 + 0.922044i
\(497\) −8.15164 + 2.96695i −0.365651 + 0.133086i
\(498\) −0.129567 1.52149i −0.00580603 0.0681797i
\(499\) −20.0062 + 16.7872i −0.895599 + 0.751497i −0.969325 0.245781i \(-0.920955\pi\)
0.0737260 + 0.997279i \(0.476511\pi\)
\(500\) 0 0
\(501\) 10.8649 + 5.09703i 0.485409 + 0.227719i
\(502\) −4.83419 + 1.75950i −0.215761 + 0.0785304i
\(503\) 3.26454 + 5.65434i 0.145558 + 0.252115i 0.929581 0.368618i \(-0.120169\pi\)
−0.784023 + 0.620732i \(0.786835\pi\)
\(504\) 4.97178 + 5.98113i 0.221461 + 0.266421i
\(505\) 0 0
\(506\) 0.686615 3.89399i 0.0305238 0.173109i
\(507\) −4.92743 + 18.2207i −0.218835 + 0.809209i
\(508\) 6.00945 + 2.18726i 0.266626 + 0.0970441i
\(509\) −0.633039 3.59014i −0.0280590 0.159130i 0.967559 0.252646i \(-0.0813007\pi\)
−0.995618 + 0.0935154i \(0.970190\pi\)
\(510\) 0 0
\(511\) 10.1251 + 8.49600i 0.447910 + 0.375841i
\(512\) −17.7996 −0.786640
\(513\) 16.4418 16.2151i 0.725922 0.715914i
\(514\) 7.40290 0.326528
\(515\) 0 0
\(516\) 8.69277 + 18.7549i 0.382678 + 0.825637i
\(517\) 3.65730 + 20.7416i 0.160848 + 0.912214i
\(518\) 2.81267 + 1.02373i 0.123581 + 0.0449800i
\(519\) −12.4823 + 3.31368i −0.547911 + 0.145454i
\(520\) 0 0
\(521\) 5.35490 9.27496i 0.234603 0.406344i −0.724555 0.689217i \(-0.757954\pi\)
0.959157 + 0.282874i \(0.0912878\pi\)
\(522\) −0.0225221 + 4.86722i −0.000985764 + 0.213033i
\(523\) −1.48990 2.58057i −0.0651486 0.112841i 0.831611 0.555358i \(-0.187419\pi\)
−0.896760 + 0.442517i \(0.854085\pi\)
\(524\) 28.3418 10.3156i 1.23812 0.450639i
\(525\) 0 0
\(526\) 0.226990 0.190467i 0.00989724 0.00830477i
\(527\) −11.8360 + 9.93156i −0.515583 + 0.432626i
\(528\) −11.3279 + 7.89287i −0.492982 + 0.343493i
\(529\) −25.1548 + 9.15560i −1.09369 + 0.398069i
\(530\) 0 0
\(531\) 8.54962 + 4.98901i 0.371022 + 0.216505i
\(532\) −11.1420 + 19.2985i −0.483067 + 0.836696i
\(533\) −1.67093 + 9.47630i −0.0723759 + 0.410464i
\(534\) −6.47691 + 1.71943i −0.280283 + 0.0744071i
\(535\) 0 0
\(536\) −0.928118 5.26362i −0.0400886 0.227354i
\(537\) 10.5701 + 22.8053i 0.456134 + 0.984121i
\(538\) −0.758445 0.636411i −0.0326989 0.0274376i
\(539\) 0.633440 0.0272842
\(540\) 0 0
\(541\) 9.02469 0.388002 0.194001 0.981001i \(-0.437854\pi\)
0.194001 + 0.981001i \(0.437854\pi\)
\(542\) 0.197074 + 0.165364i 0.00846504 + 0.00710301i
\(543\) −8.25032 + 11.7248i −0.354055 + 0.503161i
\(544\) −1.19515 6.77802i −0.0512415 0.290605i
\(545\) 0 0
\(546\) 0.431911 1.59712i 0.0184841 0.0683505i
\(547\) 1.85977 10.5473i 0.0795180 0.450969i −0.918887 0.394520i \(-0.870911\pi\)
0.998405 0.0564494i \(-0.0179780\pi\)
\(548\) 11.6444 20.1687i 0.497423 0.861562i
\(549\) −9.44647 + 25.5850i −0.403166 + 1.09194i
\(550\) 0 0
\(551\) −26.6464 + 9.69849i −1.13517 + 0.413170i
\(552\) −11.0695 5.19303i −0.471151 0.221030i
\(553\) 8.13876 6.82923i 0.346095 0.290409i
\(554\) −6.03634 + 5.06509i −0.256460 + 0.215195i
\(555\) 0 0
\(556\) −32.4218 + 11.8006i −1.37499 + 0.500456i
\(557\) 5.12647 + 8.87931i 0.217216 + 0.376228i 0.953956 0.299948i \(-0.0969692\pi\)
−0.736740 + 0.676176i \(0.763636\pi\)
\(558\) −3.23278 + 3.81667i −0.136855 + 0.161573i
\(559\) 4.47074 7.74355i 0.189092 0.327517i
\(560\) 0 0
\(561\) −6.34670 6.37613i −0.267958 0.269201i
\(562\) 0.684238 + 0.249042i 0.0288628 + 0.0105052i
\(563\) −7.26542 41.2043i −0.306201 1.73655i −0.617797 0.786338i \(-0.711975\pi\)
0.311596 0.950215i \(-0.399136\pi\)
\(564\) 31.9008 + 2.86535i 1.34327 + 0.120653i
\(565\) 0 0
\(566\) −6.26473 −0.263326
\(567\) 11.8453 20.0851i 0.497457 0.843495i
\(568\) 3.35039 0.140579
\(569\) −6.82704 5.72857i −0.286205 0.240154i 0.488370 0.872637i \(-0.337592\pi\)
−0.774575 + 0.632482i \(0.782036\pi\)
\(570\) 0 0
\(571\) 3.12283 + 17.7104i 0.130686 + 0.741159i 0.977767 + 0.209695i \(0.0672470\pi\)
−0.847081 + 0.531464i \(0.821642\pi\)
\(572\) 5.81252 + 2.11558i 0.243034 + 0.0884570i
\(573\) −29.2395 29.3751i −1.22150 1.22716i
\(574\) −0.759183 + 4.30554i −0.0316877 + 0.179710i
\(575\) 0 0
\(576\) 6.57422 + 18.3259i 0.273926 + 0.763580i
\(577\) 3.64403 + 6.31165i 0.151703 + 0.262757i 0.931854 0.362834i \(-0.118191\pi\)
−0.780151 + 0.625592i \(0.784858\pi\)
\(578\) −2.73523 + 0.995544i −0.113771 + 0.0414092i
\(579\) −3.53161 41.4714i −0.146769 1.72349i
\(580\) 0 0
\(581\) 6.88142 5.77419i 0.285489 0.239554i
\(582\) 1.67208 + 0.784418i 0.0693099 + 0.0325152i
\(583\) 27.6901 10.0784i 1.14680 0.417403i
\(584\) −2.55243 4.42094i −0.105620 0.182940i
\(585\) 0 0
\(586\) −0.737566 + 1.27750i −0.0304686 + 0.0527731i
\(587\) −5.23392 + 29.6830i −0.216027 + 1.22515i 0.663089 + 0.748541i \(0.269245\pi\)
−0.879116 + 0.476608i \(0.841866\pi\)
\(588\) 0.251473 0.929897i 0.0103706 0.0383483i
\(589\) −27.3828 9.96652i −1.12829 0.410663i
\(590\) 0 0
\(591\) −23.3698 + 33.2117i −0.961305 + 1.36615i
\(592\) 12.5863 + 10.5612i 0.517294 + 0.434061i
\(593\) 3.49473 0.143511 0.0717557 0.997422i \(-0.477140\pi\)
0.0717557 + 0.997422i \(0.477140\pi\)
\(594\) −2.37401 1.68698i −0.0974069 0.0692176i
\(595\) 0 0
\(596\) 31.7737 + 26.6613i 1.30150 + 1.09209i
\(597\) 5.71406 + 12.3282i 0.233861 + 0.504561i
\(598\) 0.451657 + 2.56147i 0.0184696 + 0.104746i
\(599\) 24.8902 + 9.05928i 1.01698 + 0.370152i 0.796111 0.605150i \(-0.206887\pi\)
0.220873 + 0.975302i \(0.429109\pi\)
\(600\) 0 0
\(601\) −2.02684 + 11.4948i −0.0826764 + 0.468881i 0.915157 + 0.403096i \(0.132066\pi\)
−0.997834 + 0.0657845i \(0.979045\pi\)
\(602\) 2.03127 3.51827i 0.0827886 0.143394i
\(603\) −13.9141 + 7.94770i −0.566627 + 0.323656i
\(604\) 7.46096 + 12.9228i 0.303582 + 0.525820i
\(605\) 0 0
\(606\) 5.16705 3.60022i 0.209897 0.146249i
\(607\) 4.18061 3.50795i 0.169686 0.142383i −0.553990 0.832523i \(-0.686895\pi\)
0.723676 + 0.690140i \(0.242451\pi\)
\(608\) 9.94367 8.34373i 0.403269 0.338383i
\(609\) −23.4930 + 16.3691i −0.951983 + 0.663308i
\(610\) 0 0
\(611\) −6.92716 11.9982i −0.280243 0.485395i
\(612\) −11.8799 + 6.78574i −0.480215 + 0.274297i
\(613\) −3.48113 + 6.02950i −0.140602 + 0.243529i −0.927723 0.373269i \(-0.878237\pi\)
0.787122 + 0.616798i \(0.211570\pi\)
\(614\) −1.36702 + 7.75278i −0.0551686 + 0.312877i
\(615\) 0 0
\(616\) 5.37005 + 1.95454i 0.216365 + 0.0787505i
\(617\) −3.30719 18.7560i −0.133143 0.755089i −0.976135 0.217164i \(-0.930319\pi\)
0.842993 0.537925i \(-0.180792\pi\)
\(618\) 1.59916 + 3.45024i 0.0643278 + 0.138789i
\(619\) 10.9809 + 9.21409i 0.441360 + 0.370345i 0.836218 0.548397i \(-0.184762\pi\)
−0.394858 + 0.918742i \(0.629206\pi\)
\(620\) 0 0
\(621\) −3.44829 + 36.4949i −0.138375 + 1.46449i
\(622\) −2.47214 −0.0991236
\(623\) −30.1992 25.3401i −1.20991 1.01523i
\(624\) 5.22636 7.42739i 0.209222 0.297333i
\(625\) 0 0
\(626\) 2.90209 + 1.05627i 0.115991 + 0.0422172i
\(627\) 4.42935 16.3789i 0.176891 0.654110i
\(628\) −0.260365 + 1.47660i −0.0103897 + 0.0589228i
\(629\) −5.35306 + 9.27178i −0.213441 + 0.369690i
\(630\) 0 0
\(631\) −5.23437 9.06620i −0.208377 0.360920i 0.742826 0.669484i \(-0.233485\pi\)
−0.951203 + 0.308564i \(0.900151\pi\)
\(632\) −3.85591 + 1.40344i −0.153380 + 0.0558257i
\(633\) 7.90949 + 3.71056i 0.314374 + 0.147481i
\(634\) −1.03041 + 0.864618i −0.0409229 + 0.0343384i
\(635\) 0 0
\(636\) −3.80233 44.6504i −0.150772 1.77050i
\(637\) −0.391549 + 0.142512i −0.0155137 + 0.00564654i
\(638\) 1.78812 + 3.09712i 0.0707925 + 0.122616i
\(639\) −3.39175 9.45466i −0.134176 0.374021i
\(640\) 0 0
\(641\) −1.94620 + 11.0374i −0.0768701 + 0.435952i 0.921947 + 0.387317i \(0.126598\pi\)
−0.998817 + 0.0486349i \(0.984513\pi\)
\(642\) 1.76246 + 1.77064i 0.0695588 + 0.0698815i
\(643\) −3.76197 1.36924i −0.148357 0.0539977i 0.266774 0.963759i \(-0.414042\pi\)
−0.415132 + 0.909761i \(0.636264\pi\)
\(644\) −6.14264 34.8367i −0.242054 1.37276i
\(645\) 0 0
\(646\) 2.03981 + 1.71160i 0.0802551 + 0.0673421i
\(647\) −23.5060 −0.924118 −0.462059 0.886849i \(-0.652889\pi\)
−0.462059 + 0.886849i \(0.652889\pi\)
\(648\) −6.95217 + 5.72477i −0.273107 + 0.224890i
\(649\) 7.27317 0.285497
\(650\) 0 0
\(651\) −29.3066 2.63233i −1.14862 0.103169i
\(652\) −5.48046 31.0812i −0.214631 1.21724i
\(653\) −10.0562 3.66017i −0.393531 0.143233i 0.137673 0.990478i \(-0.456038\pi\)
−0.531203 + 0.847244i \(0.678260\pi\)
\(654\) −5.89055 5.91787i −0.230339 0.231407i
\(655\) 0 0
\(656\) −11.9994 + 20.7835i −0.468497 + 0.811460i
\(657\) −9.89175 + 11.6783i −0.385914 + 0.455616i
\(658\) −3.14734 5.45136i −0.122696 0.212516i
\(659\) −5.16703 + 1.88064i −0.201279 + 0.0732595i −0.440692 0.897658i \(-0.645267\pi\)
0.239414 + 0.970918i \(0.423045\pi\)
\(660\) 0 0
\(661\) −29.3397 + 24.6189i −1.14118 + 0.957565i −0.999477 0.0323440i \(-0.989703\pi\)
−0.141705 + 0.989909i \(0.545258\pi\)
\(662\) −4.89515 + 4.10752i −0.190255 + 0.159643i
\(663\) 5.35760 + 2.51340i 0.208072 + 0.0976123i
\(664\) −3.26022 + 1.18662i −0.126521 + 0.0460499i
\(665\) 0 0
\(666\) −1.20044 + 3.25130i −0.0465161 + 0.125985i
\(667\) 22.5068 38.9830i 0.871469 1.50943i
\(668\) 2.32857 13.2060i 0.0900950 0.510954i
\(669\) −8.53829 + 31.5730i −0.330109 + 1.22068i
\(670\) 0 0
\(671\) 3.47975 + 19.7346i 0.134334 + 0.761847i
\(672\) 7.54283 10.7194i 0.290971 0.413510i
\(673\) −16.1006 13.5100i −0.620631 0.520771i 0.277371 0.960763i \(-0.410537\pi\)
−0.898002 + 0.439992i \(0.854981\pi\)
\(674\) 1.28550 0.0495158
\(675\) 0 0
\(676\) 21.0906 0.811178
\(677\) −2.14171 1.79711i −0.0823126 0.0690685i 0.600703 0.799472i \(-0.294887\pi\)
−0.683016 + 0.730404i \(0.739332\pi\)
\(678\) −2.11749 4.56854i −0.0813218 0.175454i
\(679\) 1.88672 + 10.7001i 0.0724055 + 0.410632i
\(680\) 0 0
\(681\) −6.26360 + 1.66280i −0.240022 + 0.0637188i
\(682\) −0.638170 + 3.61924i −0.0244368 + 0.138588i
\(683\) −1.12135 + 1.94224i −0.0429073 + 0.0743176i −0.886681 0.462381i \(-0.846995\pi\)
0.843774 + 0.536698i \(0.180329\pi\)
\(684\) −22.2860 13.0047i −0.852126 0.497247i
\(685\) 0 0
\(686\) −4.51132 + 1.64199i −0.172243 + 0.0626913i
\(687\) 11.9611 8.33406i 0.456343 0.317964i
\(688\) 17.0830 14.3344i 0.651284 0.546492i
\(689\) −14.8487 + 12.4595i −0.565689 + 0.474669i
\(690\) 0 0
\(691\) 27.0475 9.84448i 1.02893 0.374502i 0.228260 0.973600i \(-0.426697\pi\)
0.800675 + 0.599099i \(0.204474\pi\)
\(692\) 7.21522 + 12.4971i 0.274282 + 0.475070i
\(693\) 0.0792780 17.1327i 0.00301152 0.650817i
\(694\) −3.43474 + 5.94915i −0.130381 + 0.225827i
\(695\) 0 0
\(696\) 10.6886 2.83751i 0.405150 0.107555i
\(697\) −14.6947 5.34845i −0.556603 0.202587i
\(698\) 1.03473 + 5.86823i 0.0391650 + 0.222116i
\(699\) −8.18921 17.6684i −0.309744 0.668281i
\(700\) 0 0
\(701\) −19.7581 −0.746255 −0.373127 0.927780i \(-0.621715\pi\)
−0.373127 + 0.927780i \(0.621715\pi\)
\(702\) 1.84699 + 0.508666i 0.0697102 + 0.0191983i
\(703\) −20.1917 −0.761546
\(704\) 10.9584 + 9.19523i 0.413012 + 0.346558i
\(705\) 0 0
\(706\) 0.787958 + 4.46873i 0.0296552 + 0.168183i
\(707\) 34.8135 + 12.6711i 1.30930 + 0.476544i
\(708\) 2.88741 10.6771i 0.108516 0.401270i
\(709\) −0.688034 + 3.90203i −0.0258397 + 0.146544i −0.994998 0.0998949i \(-0.968149\pi\)
0.969158 + 0.246439i \(0.0792605\pi\)
\(710\) 0 0
\(711\) 7.86395 + 9.46045i 0.294921 + 0.354795i
\(712\) 7.61287 + 13.1859i 0.285304 + 0.494162i
\(713\) 43.4680 15.8211i 1.62789 0.592503i
\(714\) 2.43422 + 1.14196i 0.0910984 + 0.0427367i
\(715\) 0 0
\(716\) 21.5152 18.0534i 0.804059 0.674686i
\(717\) 2.65169 + 31.1385i 0.0990291 + 1.16289i
\(718\) −6.07223 + 2.21011i −0.226614 + 0.0824806i
\(719\) −13.6807 23.6957i −0.510204 0.883699i −0.999930 0.0118228i \(-0.996237\pi\)
0.489726 0.871876i \(-0.337097\pi\)
\(720\) 0 0
\(721\) −11.1857 + 19.3741i −0.416576 + 0.721530i
\(722\) −0.0331342 + 0.187913i −0.00123313 + 0.00699341i
\(723\) 18.6246 + 18.7110i 0.692656 + 0.695868i
\(724\) 15.0533 + 5.47895i 0.559451 + 0.203624i
\(725\) 0 0
\(726\) 2.69384 + 0.241962i 0.0999779 + 0.00898006i
\(727\) −9.42789 7.91094i −0.349661 0.293401i 0.450993 0.892528i \(-0.351070\pi\)
−0.800654 + 0.599127i \(0.795514\pi\)
\(728\) −3.75913 −0.139323
\(729\) 23.1930 + 13.8233i 0.859001 + 0.511973i
\(730\) 0 0
\(731\) 11.1315 + 9.34041i 0.411712 + 0.345468i
\(732\) 30.3521 + 2.72624i 1.12185 + 0.100765i
\(733\) 0.405710 + 2.30089i 0.0149852 + 0.0849854i 0.991383 0.130994i \(-0.0418168\pi\)
−0.976398 + 0.215979i \(0.930706\pi\)
\(734\) −8.50813 3.09671i −0.314041 0.114302i
\(735\) 0 0
\(736\) −3.57812 + 20.2925i −0.131891 + 0.747993i
\(737\) −5.88684 + 10.1963i −0.216845 + 0.375586i
\(738\) −4.98131 0.902125i −0.183365 0.0332077i
\(739\) −26.0513 45.1221i −0.958311 1.65984i −0.726602 0.687059i \(-0.758901\pi\)
−0.231710 0.972785i \(-0.574432\pi\)
\(740\) 0 0
\(741\) 0.947026 + 11.1208i 0.0347899 + 0.408534i
\(742\) −6.74646 + 5.66095i −0.247670 + 0.207820i
\(743\) −30.9313 + 25.9544i −1.13476 + 0.952175i −0.999255 0.0386016i \(-0.987710\pi\)
−0.135504 + 0.990777i \(0.543265\pi\)
\(744\) 10.2885 + 4.82663i 0.377195 + 0.176953i
\(745\) 0 0
\(746\) 0.734841 + 1.27278i 0.0269045 + 0.0465999i
\(747\) 6.64906 + 7.99892i 0.243276 + 0.292665i
\(748\) −5.02618 + 8.70559i −0.183775 + 0.318308i
\(749\) −2.55210 + 14.4737i −0.0932517 + 0.528857i
\(750\) 0 0
\(751\) −25.8917 9.42382i −0.944803 0.343880i −0.176742 0.984257i \(-0.556556\pi\)
−0.768061 + 0.640377i \(0.778778\pi\)
\(752\) −6.00007 34.0281i −0.218800 1.24088i
\(753\) 20.1661 28.6588i 0.734892 1.04438i
\(754\) −1.80209 1.51213i −0.0656282 0.0550686i
\(755\) 0 0
\(756\) −25.1195 6.91798i −0.913588 0.251604i
\(757\) 13.2447 0.481386 0.240693 0.970601i \(-0.422625\pi\)
0.240693 + 0.970601i \(0.422625\pi\)
\(758\) 5.39860 + 4.52996i 0.196086 + 0.164536i
\(759\) 11.3264 + 24.4369i 0.411121 + 0.887004i
\(760\) 0 0
\(761\) 35.4594 + 12.9062i 1.28540 + 0.467848i 0.892215 0.451611i \(-0.149150\pi\)
0.393187 + 0.919459i \(0.371373\pi\)
\(762\) 1.40658 0.373405i 0.0509549 0.0135270i
\(763\) 8.52970 48.3743i 0.308796 1.75127i
\(764\) −23.1558 + 40.1070i −0.837747 + 1.45102i
\(765\) 0 0
\(766\) 0.699881 + 1.21223i 0.0252877 + 0.0437997i
\(767\) −4.49578 + 1.63633i −0.162333 + 0.0590844i
\(768\) 15.7383 10.9659i 0.567907 0.395698i
\(769\) 39.2960 32.9733i 1.41705 1.18905i 0.464153 0.885755i \(-0.346359\pi\)
0.952898 0.303292i \(-0.0980856\pi\)
\(770\) 0 0
\(771\) −41.3741 + 28.8280i −1.49005 + 1.03822i
\(772\) −43.7020 + 15.9062i −1.57287 + 0.572477i
\(773\) 21.4439 + 37.1420i 0.771285 + 1.33590i 0.936859 + 0.349707i \(0.113719\pi\)
−0.165574 + 0.986197i \(0.552948\pi\)
\(774\) 4.06291 + 2.37086i 0.146038 + 0.0852188i
\(775\) 0 0
\(776\) 0.728691 4.13261i 0.0261585 0.148352i
\(777\) −19.7063 + 5.23144i −0.706959 + 0.187677i
\(778\) 8.58082 + 3.12316i 0.307637 + 0.111971i
\(779\) −5.12139 29.0449i −0.183493 1.04064i
\(780\) 0 0
\(781\) −5.65365 4.74398i −0.202304 0.169753i
\(782\) −4.22695 −0.151155
\(783\) −18.8278 27.2902i −0.672852 0.975271i
\(784\) −1.03921 −0.0371145
\(785\) 0 0
\(786\) 3.94973 5.61312i 0.140882 0.200213i
\(787\) −6.73280 38.1836i −0.239998 1.36110i −0.831827 0.555034i \(-0.812705\pi\)
0.591829 0.806063i \(-0.298406\pi\)
\(788\) 42.6399 + 15.5196i 1.51898 + 0.552864i
\(789\) −0.526917 + 1.94844i −0.0187588 + 0.0693663i
\(790\) 0 0
\(791\) 14.8112 25.6538i 0.526626 0.912143i
\(792\) −2.29193 + 6.20749i −0.0814401 + 0.220574i
\(793\) −6.59086 11.4157i −0.234048 0.405384i
\(794\) 2.02159 0.735798i 0.0717435 0.0261125i
\(795\) 0 0
\(796\) 11.6308 9.75940i 0.412243 0.345913i
\(797\) −33.5513 + 28.1529i −1.18845 + 0.997228i −0.188565 + 0.982061i \(0.560384\pi\)
−0.999885 + 0.0151670i \(0.995172\pi\)
\(798\) 0.430280 + 5.05273i 0.0152317 + 0.178865i
\(799\) 21.1573 7.70063i 0.748491 0.272429i
\(800\) 0 0
\(801\) 29.5031 34.8318i 1.04244 1.23072i
\(802\) 3.45196 5.97898i 0.121893 0.211125i
\(803\) −1.95269 + 11.0743i −0.0689089 + 0.390802i
\(804\) 12.6313 + 12.6898i 0.445470 + 0.447536i
\(805\) 0 0
\(806\) −0.419790 2.38074i −0.0147865 0.0838582i
\(807\) 6.71716 + 0.603338i 0.236455 + 0.0212385i
\(808\) −10.9611 9.19742i −0.385608 0.323564i
\(809\) −20.1808 −0.709518 −0.354759 0.934958i \(-0.615437\pi\)
−0.354759 + 0.934958i \(0.615437\pi\)
\(810\) 0 0
\(811\) −9.77975 −0.343413 −0.171707 0.985148i \(-0.554928\pi\)
−0.171707 + 0.985148i \(0.554928\pi\)
\(812\) 24.5089 + 20.5654i 0.860093 + 0.721703i
\(813\) −1.74538 0.156771i −0.0612132 0.00549820i
\(814\) 0.442200 + 2.50784i 0.0154991 + 0.0878998i
\(815\) 0 0
\(816\) 10.4122 + 10.4605i 0.364501 + 0.366192i
\(817\) −4.75894 + 26.9893i −0.166494 + 0.944236i
\(818\) −0.263494 + 0.456385i −0.00921285 + 0.0159571i
\(819\) 3.80553 + 10.6081i 0.132976 + 0.370677i
\(820\) 0 0
\(821\) −5.74874 + 2.09237i −0.200632 + 0.0730242i −0.440382 0.897811i \(-0.645157\pi\)
0.239749 + 0.970835i \(0.422935\pi\)
\(822\) −0.449681 5.28056i −0.0156844 0.184181i
\(823\) −33.1075 + 27.7805i −1.15405 + 0.968366i −0.999807 0.0196667i \(-0.993739\pi\)
−0.154247 + 0.988032i \(0.549295\pi\)
\(824\) 6.61885 5.55387i 0.230578 0.193478i
\(825\) 0 0
\(826\) −2.04265 + 0.743463i −0.0710728 + 0.0258684i
\(827\) 1.40878 + 2.44008i 0.0489881 + 0.0848499i 0.889480 0.456975i \(-0.151067\pi\)
−0.840492 + 0.541825i \(0.817734\pi\)
\(828\) 40.3702 6.92590i 1.40296 0.240692i
\(829\) −10.5567 + 18.2847i −0.366649 + 0.635054i −0.989039 0.147653i \(-0.952828\pi\)
0.622391 + 0.782707i \(0.286162\pi\)
\(830\) 0 0
\(831\) 14.0123 51.8148i 0.486081 1.79743i
\(832\) −8.84252 3.21841i −0.306559 0.111578i
\(833\) −0.117587 0.666869i −0.00407415 0.0231057i
\(834\) −4.51832 + 6.42116i −0.156457 + 0.222347i
\(835\) 0 0
\(836\) −18.9587 −0.655701
\(837\) 3.20500 33.9200i 0.110781 1.17245i
\(838\) 6.57831 0.227244
\(839\) 21.2831 + 17.8586i 0.734774 + 0.616549i 0.931429 0.363924i \(-0.118563\pi\)
−0.196655 + 0.980473i \(0.563008\pi\)
\(840\) 0 0
\(841\) 2.03387 + 11.5347i 0.0701335 + 0.397747i
\(842\) −2.38466 0.867945i −0.0821808 0.0299114i
\(843\) −4.79395 + 1.27265i −0.165112 + 0.0438325i
\(844\) 1.69516 9.61373i 0.0583498 0.330918i
\(845\) 0 0
\(846\) 6.32898 3.61510i 0.217595 0.124290i
\(847\) 7.95559 + 13.7795i 0.273357 + 0.473469i
\(848\) −45.4276 + 16.5343i −1.55999 + 0.567790i
\(849\) 35.0130 24.3958i 1.20164 0.837263i
\(850\) 0 0
\(851\) 24.5539 20.6031i 0.841696 0.706267i
\(852\) −9.20869 + 6.41630i −0.315485 + 0.219819i
\(853\) −38.5970 + 14.0482i −1.32154 + 0.481000i −0.903950 0.427637i \(-0.859346\pi\)
−0.417586 + 0.908637i \(0.637124\pi\)
\(854\) −2.99455 5.18671i −0.102471 0.177486i
\(855\) 0 0
\(856\) 2.83814 4.91581i 0.0970057 0.168019i
\(857\) 1.64708 9.34103i 0.0562630 0.319084i −0.943667 0.330896i \(-0.892649\pi\)
0.999930 + 0.0118126i \(0.00376015\pi\)
\(858\) 1.36048 0.361169i 0.0464461 0.0123301i
\(859\) 29.4183 + 10.7074i 1.00374 + 0.365332i 0.791026 0.611783i \(-0.209547\pi\)
0.212715 + 0.977114i \(0.431769\pi\)
\(860\) 0 0
\(861\) −12.5234 27.0196i −0.426798 0.920827i
\(862\) −0.471261 0.395435i −0.0160512 0.0134686i
\(863\) −34.9043 −1.18816 −0.594078 0.804407i \(-0.702483\pi\)
−0.594078 + 0.804407i \(0.702483\pi\)
\(864\) 12.3716 + 8.79126i 0.420889 + 0.299085i
\(865\) 0 0
\(866\) −3.85830 3.23750i −0.131110 0.110015i
\(867\) 11.4102 16.2154i 0.387509 0.550705i
\(868\) 5.70924 + 32.3787i 0.193784 + 1.09901i
\(869\) 8.49389 + 3.09152i 0.288136 + 0.104873i
\(870\) 0 0
\(871\) 1.34486 7.62709i 0.0455689 0.258434i
\(872\) −9.48572 + 16.4297i −0.321227 + 0.556381i
\(873\) −12.3997 + 2.12729i −0.419667 + 0.0719980i
\(874\) −3.98601 6.90398i −0.134829 0.233531i
\(875\) 0 0
\(876\) 15.4819 + 7.26300i 0.523086 + 0.245394i
\(877\) 13.2477 11.1162i 0.447344 0.375366i −0.391105 0.920346i \(-0.627907\pi\)
0.838449 + 0.544980i \(0.183463\pi\)
\(878\) −0.782558 + 0.656644i −0.0264101 + 0.0221607i
\(879\) −0.852602 10.0120i −0.0287576 0.337697i
\(880\) 0 0
\(881\) 10.5256 + 18.2309i 0.354618 + 0.614216i 0.987052 0.160398i \(-0.0512777\pi\)
−0.632435 + 0.774614i \(0.717944\pi\)
\(882\) −0.0740209 0.206337i −0.00249241 0.00694771i
\(883\) −15.6663 + 27.1348i −0.527212 + 0.913158i 0.472285 + 0.881446i \(0.343429\pi\)
−0.999497 + 0.0317123i \(0.989904\pi\)
\(884\) 1.14824 6.51200i 0.0386195 0.219022i
\(885\) 0 0
\(886\) −1.19788 0.435991i −0.0402434 0.0146474i
\(887\) −5.20582 29.5237i −0.174794 0.991309i −0.938381 0.345603i \(-0.887674\pi\)
0.763586 0.645706i \(-0.223437\pi\)
\(888\) 7.84304 + 0.704466i 0.263195 + 0.0236403i
\(889\) 6.55830 + 5.50306i 0.219958 + 0.184567i
\(890\) 0 0
\(891\) 19.8375 + 0.183592i 0.664581 + 0.00615055i
\(892\) 36.5460 1.22365
\(893\) 32.5289 + 27.2950i 1.08854 + 0.913393i
\(894\) 9.40094 + 0.844397i 0.314414 + 0.0282409i
\(895\) 0 0
\(896\) −18.2398 6.63874i −0.609349 0.221785i
\(897\) −12.4990 12.5570i −0.417331 0.419266i
\(898\) 0.837184 4.74791i 0.0279372 0.158440i
\(899\) −20.9189 + 36.2325i −0.697683 + 1.20842i
\(900\) 0 0
\(901\) −15.7504 27.2805i −0.524722 0.908846i
\(902\) −3.49525 + 1.27217i −0.116379 + 0.0423585i
\(903\) 2.34809 + 27.5734i 0.0781395 + 0.917584i
\(904\) −8.76418 + 7.35402i −0.291492 + 0.244591i
\(905\) 0 0
\(906\) 3.07421 + 1.44219i 0.102134 + 0.0479137i
\(907\) −20.6029 + 7.49886i −0.684109 + 0.248995i −0.660611 0.750728i \(-0.729703\pi\)
−0.0234984 + 0.999724i \(0.507480\pi\)
\(908\) 3.62060 + 6.27106i 0.120154 + 0.208112i
\(909\) −14.8583 + 40.2426i −0.492820 + 1.33476i
\(910\) 0 0
\(911\) −4.98714 + 28.2835i −0.165231 + 0.937073i 0.783594 + 0.621273i \(0.213384\pi\)
−0.948826 + 0.315800i \(0.897727\pi\)
\(912\) −7.26669 + 26.8708i −0.240624 + 0.889781i
\(913\) 7.18168 + 2.61392i 0.237679 + 0.0865080i
\(914\) −0.502604 2.85041i −0.0166247 0.0942832i
\(915\) 0 0
\(916\) −12.4783 10.4705i −0.412295 0.345956i
\(917\) 40.3766 1.33335
\(918\) −1.33531 + 2.81246i −0.0440719 + 0.0928250i
\(919\) −1.97798 −0.0652474 −0.0326237 0.999468i \(-0.510386\pi\)
−0.0326237 + 0.999468i \(0.510386\pi\)
\(920\) 0 0
\(921\) −22.5503 48.6529i −0.743059 1.60317i
\(922\) 0.192671 + 1.09269i 0.00634527 + 0.0359858i
\(923\) 4.56201 + 1.66044i 0.150160 + 0.0546539i
\(924\) −18.5029 + 4.91198i −0.608701 + 0.161592i
\(925\) 0 0
\(926\) −0.920900 + 1.59505i −0.0302626 + 0.0524164i
\(927\) −22.3733 13.0557i −0.734837 0.428804i
\(928\) −9.31835 16.1399i −0.305890 0.529817i
\(929\) −3.58721 + 1.30564i −0.117693 + 0.0428366i −0.400195 0.916430i \(-0.631058\pi\)
0.282502 + 0.959267i \(0.408835\pi\)
\(930\) 0 0
\(931\) 0.978329 0.820915i 0.0320634 0.0269044i
\(932\) −16.6689 + 13.9869i −0.546008 + 0.458155i
\(933\) 13.8165 9.62687i 0.452333 0.315170i
\(934\) −0.856025 + 0.311568i −0.0280100 + 0.0101948i
\(935\) 0 0
\(936\) 0.0201412 4.35269i 0.000658334 0.142272i
\(937\) −20.7009 + 35.8550i −0.676269 + 1.17133i 0.299827 + 0.953994i \(0.403071\pi\)
−0.976096 + 0.217339i \(0.930262\pi\)
\(938\) 0.611036 3.46536i 0.0199510 0.113148i
\(939\) −20.3328 + 5.39776i −0.663535 + 0.176149i
\(940\) 0 0
\(941\) 2.51391 + 14.2571i 0.0819512 + 0.464768i 0.997973 + 0.0636397i \(0.0202708\pi\)
−0.916022 + 0.401129i \(0.868618\pi\)
\(942\) 0.143483 + 0.309569i 0.00467494 + 0.0100863i
\(943\) 35.8644 + 30.0938i 1.16791 + 0.979990i
\(944\) −11.9322 −0.388359
\(945\) 0 0
\(946\) 3.45633 0.112375
\(947\) −16.2523 13.6373i −0.528128 0.443152i 0.339326 0.940669i \(-0.389801\pi\)
−0.867454 + 0.497517i \(0.834245\pi\)
\(948\) 7.91043 11.2418i 0.256919 0.365117i
\(949\) −1.28448 7.28466i −0.0416961 0.236470i
\(950\) 0 0
\(951\) 2.39192 8.84485i 0.0775632 0.286814i
\(952\) 1.06083 6.01627i 0.0343817 0.194989i
\(953\) −12.7855 + 22.1452i −0.414165 + 0.717354i −0.995340 0.0964240i \(-0.969260\pi\)
0.581176 + 0.813778i \(0.302593\pi\)
\(954\) −6.51866 7.84204i −0.211049 0.253896i
\(955\) 0 0
\(956\) 32.8134 11.9431i 1.06126 0.386267i
\(957\) −22.0543 10.3463i −0.712915 0.334448i
\(958\) −0.369544 + 0.310084i −0.0119394 + 0.0100184i
\(959\) 23.8830 20.0402i 0.771221 0.647131i
\(960\) 0 0
\(961\) −11.2706 + 4.10216i −0.363567 + 0.132328i
\(962\) −0.837556 1.45069i −0.0270039 0.0467721i
\(963\) −16.7454 3.03262i −0.539612 0.0977248i
\(964\) 14.7495 25.5468i 0.475049 0.822808i
\(965\) 0 0
\(966\) −5.67892 5.70525i −0.182716 0.183564i
\(967\) −52.6404 19.1595i −1.69280 0.616129i −0.697827 0.716266i \(-0.745850\pi\)
−0.994974 + 0.100137i \(0.968072\pi\)
\(968\) −1.06711 6.05189i −0.0342982 0.194515i
\(969\) −18.0655 1.62265i −0.580348 0.0521272i
\(970\) 0 0
\(971\) −13.1661 −0.422521 −0.211261 0.977430i \(-0.567757\pi\)
−0.211261 + 0.977430i \(0.567757\pi\)
\(972\) 8.14490 29.0488i 0.261248 0.931740i
\(973\) −46.1891 −1.48076
\(974\) 2.65771 + 2.23009i 0.0851587 + 0.0714566i
\(975\) 0 0
\(976\) −5.70878 32.3761i −0.182734 1.03633i
\(977\) 53.3156 + 19.4053i 1.70572 + 0.620831i 0.996456 0.0841143i \(-0.0268061\pi\)
0.709262 + 0.704945i \(0.249028\pi\)
\(978\) −5.06672 5.09022i −0.162016 0.162767i
\(979\) 5.82409 33.0301i 0.186139 1.05565i
\(980\) 0 0
\(981\) 55.9668 + 10.1357i 1.78688 + 0.323608i
\(982\) 5.01106 + 8.67940i 0.159909 + 0.276971i
\(983\) 31.5720 11.4913i 1.00699 0.366515i 0.214715 0.976677i \(-0.431118\pi\)
0.792277 + 0.610162i \(0.208896\pi\)
\(984\) 0.975953 + 11.4605i 0.0311122 + 0.365348i
\(985\) 0 0
\(986\) 2.92864 2.45742i 0.0932668 0.0782601i
\(987\) 38.8186 + 18.2109i 1.23561 + 0.579659i
\(988\) 11.7190 4.26536i 0.372831 0.135699i
\(989\) −21.7522 37.6758i −0.691678 1.19802i
\(990\) 0 0
\(991\) 10.8153 18.7327i 0.343559 0.595062i −0.641532 0.767097i \(-0.721701\pi\)
0.985091 + 0.172034i \(0.0550340\pi\)
\(992\) 3.32566 18.8608i 0.105590 0.598830i
\(993\) 11.3632 42.0190i 0.360601 1.33343i
\(994\) 2.07274 + 0.754416i 0.0657434 + 0.0239286i
\(995\) 0 0
\(996\) 6.68836 9.50508i 0.211929 0.301180i
\(997\) 26.3406 + 22.1024i 0.834214 + 0.699989i 0.956254 0.292536i \(-0.0944993\pi\)
−0.122040 + 0.992525i \(0.538944\pi\)
\(998\) 6.64065 0.210206
\(999\) −5.95189 22.8459i −0.188310 0.722812i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.g.151.6 yes 66
5.2 odd 4 675.2.u.e.124.12 132
5.3 odd 4 675.2.u.e.124.11 132
5.4 even 2 675.2.l.f.151.6 yes 66
27.22 even 9 inner 675.2.l.g.76.6 yes 66
135.22 odd 36 675.2.u.e.49.11 132
135.49 even 18 675.2.l.f.76.6 66
135.103 odd 36 675.2.u.e.49.12 132
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.6 66 135.49 even 18
675.2.l.f.151.6 yes 66 5.4 even 2
675.2.l.g.76.6 yes 66 27.22 even 9 inner
675.2.l.g.151.6 yes 66 1.1 even 1 trivial
675.2.u.e.49.11 132 135.22 odd 36
675.2.u.e.49.12 132 135.103 odd 36
675.2.u.e.124.11 132 5.3 odd 4
675.2.u.e.124.12 132 5.2 odd 4