Properties

Label 675.2.l.f.76.9
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.9
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.f.151.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02568 - 0.860644i) q^{2} +(0.817526 + 1.52697i) q^{3} +(-0.0359939 + 0.204131i) q^{4} +(2.15270 + 0.862581i) q^{6} +(0.0601126 + 0.340915i) q^{7} +(1.47769 + 2.55944i) q^{8} +(-1.66330 + 2.49668i) q^{9} +O(q^{10})\) \(q+(1.02568 - 0.860644i) q^{2} +(0.817526 + 1.52697i) q^{3} +(-0.0359939 + 0.204131i) q^{4} +(2.15270 + 0.862581i) q^{6} +(0.0601126 + 0.340915i) q^{7} +(1.47769 + 2.55944i) q^{8} +(-1.66330 + 2.49668i) q^{9} +(-0.377953 - 0.137564i) q^{11} +(-0.341129 + 0.111921i) q^{12} +(-0.575738 - 0.483102i) q^{13} +(0.355063 + 0.297933i) q^{14} +(3.32884 + 1.21160i) q^{16} +(0.670872 - 1.16198i) q^{17} +(0.442749 + 3.99230i) q^{18} +(1.87243 + 3.24314i) q^{19} +(-0.471425 + 0.370498i) q^{21} +(-0.506050 + 0.184187i) q^{22} +(-0.536470 + 3.04247i) q^{23} +(-2.70014 + 4.34880i) q^{24} -1.00630 q^{26} +(-5.17216 - 0.498713i) q^{27} -0.0717552 q^{28} +(3.79094 - 3.18098i) q^{29} +(-0.774172 + 4.39054i) q^{31} +(-1.09724 + 0.399363i) q^{32} +(-0.0989303 - 0.689586i) q^{33} +(-0.311958 - 1.76920i) q^{34} +(-0.449783 - 0.429397i) q^{36} +(1.25087 - 2.16657i) q^{37} +(4.71170 + 1.71492i) q^{38} +(0.267003 - 1.27409i) q^{39} +(1.73862 + 1.45887i) q^{41} +(-0.164663 + 0.785740i) q^{42} +(-8.03293 - 2.92375i) q^{43} +(0.0416850 - 0.0722005i) q^{44} +(2.06824 + 3.58230i) q^{46} +(-2.13658 - 12.1171i) q^{47} +(0.871334 + 6.07356i) q^{48} +(6.46524 - 2.35315i) q^{49} +(2.32278 + 0.0744513i) q^{51} +(0.119339 - 0.100137i) q^{52} +10.1571 q^{53} +(-5.73418 + 3.93988i) q^{54} +(-0.783723 + 0.657622i) q^{56} +(-3.42144 + 5.51051i) q^{57} +(1.15059 - 6.52530i) q^{58} +(12.7550 - 4.64243i) q^{59} +(2.31667 + 13.1385i) q^{61} +(2.98465 + 5.16956i) q^{62} +(-0.951143 - 0.416963i) q^{63} +(-4.32418 + 7.48970i) q^{64} +(-0.694958 - 0.622148i) q^{66} +(-9.40381 - 7.89073i) q^{67} +(0.213050 + 0.178770i) q^{68} +(-5.08436 + 1.66813i) q^{69} +(-1.14446 + 1.98226i) q^{71} +(-8.84795 - 0.567785i) q^{72} +(-6.23540 - 10.8000i) q^{73} +(-0.581658 - 3.29875i) q^{74} +(-0.729423 + 0.265488i) q^{76} +(0.0241778 - 0.137119i) q^{77} +(-0.822676 - 1.53659i) q^{78} +(9.11223 - 7.64607i) q^{79} +(-3.46686 - 8.30547i) q^{81} +3.03883 q^{82} +(3.71780 - 3.11961i) q^{83} +(-0.0586617 - 0.109568i) q^{84} +(-10.7555 + 3.91468i) q^{86} +(7.95646 + 3.18814i) q^{87} +(-0.206412 - 1.17062i) q^{88} +(-0.197409 - 0.341923i) q^{89} +(0.130088 - 0.225318i) q^{91} +(-0.601754 - 0.219021i) q^{92} +(-7.33715 + 2.40725i) q^{93} +(-12.6200 - 10.5894i) q^{94} +(-1.50684 - 1.34897i) q^{96} +(13.9340 + 5.07158i) q^{97} +(4.60601 - 7.97784i) q^{98} +(0.972102 - 0.714819i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02568 0.860644i 0.725262 0.608567i −0.203573 0.979060i \(-0.565255\pi\)
0.928836 + 0.370492i \(0.120811\pi\)
\(3\) 0.817526 + 1.52697i 0.471999 + 0.881599i
\(4\) −0.0359939 + 0.204131i −0.0179969 + 0.102066i
\(5\) 0 0
\(6\) 2.15270 + 0.862581i 0.878836 + 0.352147i
\(7\) 0.0601126 + 0.340915i 0.0227204 + 0.128854i 0.994058 0.108849i \(-0.0347166\pi\)
−0.971338 + 0.237703i \(0.923605\pi\)
\(8\) 1.47769 + 2.55944i 0.522443 + 0.904897i
\(9\) −1.66330 + 2.49668i −0.554434 + 0.832228i
\(10\) 0 0
\(11\) −0.377953 0.137564i −0.113957 0.0414770i 0.284412 0.958702i \(-0.408202\pi\)
−0.398369 + 0.917225i \(0.630424\pi\)
\(12\) −0.341129 + 0.111921i −0.0984755 + 0.0323088i
\(13\) −0.575738 0.483102i −0.159681 0.133988i 0.559446 0.828867i \(-0.311014\pi\)
−0.719127 + 0.694878i \(0.755458\pi\)
\(14\) 0.355063 + 0.297933i 0.0948945 + 0.0796260i
\(15\) 0 0
\(16\) 3.32884 + 1.21160i 0.832209 + 0.302899i
\(17\) 0.670872 1.16198i 0.162710 0.281823i −0.773129 0.634248i \(-0.781310\pi\)
0.935840 + 0.352426i \(0.114643\pi\)
\(18\) 0.442749 + 3.99230i 0.104357 + 0.940994i
\(19\) 1.87243 + 3.24314i 0.429565 + 0.744028i 0.996835 0.0795040i \(-0.0253336\pi\)
−0.567270 + 0.823532i \(0.692000\pi\)
\(20\) 0 0
\(21\) −0.471425 + 0.370498i −0.102873 + 0.0808492i
\(22\) −0.506050 + 0.184187i −0.107890 + 0.0392688i
\(23\) −0.536470 + 3.04247i −0.111862 + 0.634399i 0.876395 + 0.481594i \(0.159942\pi\)
−0.988256 + 0.152806i \(0.951169\pi\)
\(24\) −2.70014 + 4.34880i −0.551164 + 0.887696i
\(25\) 0 0
\(26\) −1.00630 −0.197352
\(27\) −5.17216 0.498713i −0.995384 0.0959773i
\(28\) −0.0717552 −0.0135605
\(29\) 3.79094 3.18098i 0.703960 0.590693i −0.218937 0.975739i \(-0.570259\pi\)
0.922897 + 0.385046i \(0.125815\pi\)
\(30\) 0 0
\(31\) −0.774172 + 4.39054i −0.139045 + 0.788565i 0.832912 + 0.553406i \(0.186672\pi\)
−0.971957 + 0.235159i \(0.924439\pi\)
\(32\) −1.09724 + 0.399363i −0.193966 + 0.0705980i
\(33\) −0.0989303 0.689586i −0.0172216 0.120041i
\(34\) −0.311958 1.76920i −0.0535003 0.303415i
\(35\) 0 0
\(36\) −0.449783 0.429397i −0.0749638 0.0715662i
\(37\) 1.25087 2.16657i 0.205641 0.356181i −0.744696 0.667404i \(-0.767405\pi\)
0.950337 + 0.311223i \(0.100739\pi\)
\(38\) 4.71170 + 1.71492i 0.764338 + 0.278196i
\(39\) 0.267003 1.27409i 0.0427546 0.204017i
\(40\) 0 0
\(41\) 1.73862 + 1.45887i 0.271526 + 0.227838i 0.768376 0.639999i \(-0.221065\pi\)
−0.496849 + 0.867837i \(0.665510\pi\)
\(42\) −0.164663 + 0.785740i −0.0254080 + 0.121242i
\(43\) −8.03293 2.92375i −1.22501 0.445867i −0.353124 0.935576i \(-0.614881\pi\)
−0.871886 + 0.489709i \(0.837103\pi\)
\(44\) 0.0416850 0.0722005i 0.00628425 0.0108846i
\(45\) 0 0
\(46\) 2.06824 + 3.58230i 0.304946 + 0.528181i
\(47\) −2.13658 12.1171i −0.311652 1.76746i −0.590411 0.807103i \(-0.701034\pi\)
0.278760 0.960361i \(-0.410077\pi\)
\(48\) 0.871334 + 6.07356i 0.125766 + 0.876643i
\(49\) 6.46524 2.35315i 0.923606 0.336165i
\(50\) 0 0
\(51\) 2.32278 + 0.0744513i 0.325254 + 0.0104253i
\(52\) 0.119339 0.100137i 0.0165494 0.0138866i
\(53\) 10.1571 1.39519 0.697593 0.716494i \(-0.254254\pi\)
0.697593 + 0.716494i \(0.254254\pi\)
\(54\) −5.73418 + 3.93988i −0.780323 + 0.536149i
\(55\) 0 0
\(56\) −0.783723 + 0.657622i −0.104729 + 0.0878784i
\(57\) −3.42144 + 5.51051i −0.453180 + 0.729884i
\(58\) 1.15059 6.52530i 0.151079 0.856814i
\(59\) 12.7550 4.64243i 1.66055 0.604392i 0.670105 0.742266i \(-0.266249\pi\)
0.990450 + 0.137874i \(0.0440269\pi\)
\(60\) 0 0
\(61\) 2.31667 + 13.1385i 0.296619 + 1.68221i 0.660546 + 0.750785i \(0.270325\pi\)
−0.363927 + 0.931427i \(0.618564\pi\)
\(62\) 2.98465 + 5.16956i 0.379051 + 0.656535i
\(63\) −0.951143 0.416963i −0.119833 0.0525324i
\(64\) −4.32418 + 7.48970i −0.540522 + 0.936212i
\(65\) 0 0
\(66\) −0.694958 0.622148i −0.0855435 0.0765811i
\(67\) −9.40381 7.89073i −1.14886 0.964006i −0.149166 0.988812i \(-0.547659\pi\)
−0.999692 + 0.0248058i \(0.992103\pi\)
\(68\) 0.213050 + 0.178770i 0.0258361 + 0.0216791i
\(69\) −5.08436 + 1.66813i −0.612085 + 0.200819i
\(70\) 0 0
\(71\) −1.14446 + 1.98226i −0.135822 + 0.235251i −0.925911 0.377741i \(-0.876701\pi\)
0.790089 + 0.612992i \(0.210034\pi\)
\(72\) −8.84795 0.567785i −1.04274 0.0669141i
\(73\) −6.23540 10.8000i −0.729799 1.26405i −0.956968 0.290194i \(-0.906280\pi\)
0.227169 0.973855i \(-0.427053\pi\)
\(74\) −0.581658 3.29875i −0.0676164 0.383471i
\(75\) 0 0
\(76\) −0.729423 + 0.265488i −0.0836705 + 0.0304536i
\(77\) 0.0241778 0.137119i 0.00275532 0.0156262i
\(78\) −0.822676 1.53659i −0.0931498 0.173985i
\(79\) 9.11223 7.64607i 1.02521 0.860250i 0.0349328 0.999390i \(-0.488878\pi\)
0.990273 + 0.139140i \(0.0444338\pi\)
\(80\) 0 0
\(81\) −3.46686 8.30547i −0.385207 0.922830i
\(82\) 3.03883 0.335583
\(83\) 3.71780 3.11961i 0.408082 0.342421i −0.415526 0.909581i \(-0.636402\pi\)
0.823608 + 0.567160i \(0.191958\pi\)
\(84\) −0.0586617 0.109568i −0.00640052 0.0119549i
\(85\) 0 0
\(86\) −10.7555 + 3.91468i −1.15979 + 0.422130i
\(87\) 7.95646 + 3.18814i 0.853022 + 0.341804i
\(88\) −0.206412 1.17062i −0.0220036 0.124789i
\(89\) −0.197409 0.341923i −0.0209253 0.0362438i 0.855373 0.518012i \(-0.173328\pi\)
−0.876298 + 0.481769i \(0.839995\pi\)
\(90\) 0 0
\(91\) 0.130088 0.225318i 0.0136369 0.0236198i
\(92\) −0.601754 0.219021i −0.0627372 0.0228345i
\(93\) −7.33715 + 2.40725i −0.760827 + 0.249620i
\(94\) −12.6200 10.5894i −1.30165 1.09221i
\(95\) 0 0
\(96\) −1.50684 1.34897i −0.153791 0.137678i
\(97\) 13.9340 + 5.07158i 1.41479 + 0.514941i 0.932531 0.361089i \(-0.117595\pi\)
0.482257 + 0.876030i \(0.339817\pi\)
\(98\) 4.60601 7.97784i 0.465277 0.805884i
\(99\) 0.972102 0.714819i 0.0976999 0.0718420i
\(100\) 0 0
\(101\) −2.32075 13.1616i −0.230924 1.30963i −0.851031 0.525116i \(-0.824022\pi\)
0.620107 0.784517i \(-0.287089\pi\)
\(102\) 2.44649 1.92272i 0.242239 0.190378i
\(103\) −6.76551 + 2.46244i −0.666625 + 0.242632i −0.653094 0.757277i \(-0.726529\pi\)
−0.0135311 + 0.999908i \(0.504307\pi\)
\(104\) 0.385705 2.18744i 0.0378215 0.214496i
\(105\) 0 0
\(106\) 10.4179 8.74166i 1.01188 0.849065i
\(107\) 8.94985 0.865215 0.432607 0.901582i \(-0.357594\pi\)
0.432607 + 0.901582i \(0.357594\pi\)
\(108\) 0.287969 1.03785i 0.0277098 0.0998672i
\(109\) −7.74154 −0.741505 −0.370752 0.928732i \(-0.620900\pi\)
−0.370752 + 0.928732i \(0.620900\pi\)
\(110\) 0 0
\(111\) 4.33091 + 0.138817i 0.411072 + 0.0131760i
\(112\) −0.212947 + 1.20768i −0.0201216 + 0.114115i
\(113\) −3.88427 + 1.41376i −0.365401 + 0.132995i −0.518194 0.855263i \(-0.673396\pi\)
0.152793 + 0.988258i \(0.451173\pi\)
\(114\) 1.23330 + 8.59663i 0.115509 + 0.805148i
\(115\) 0 0
\(116\) 0.512886 + 0.888345i 0.0476203 + 0.0824808i
\(117\) 2.16378 0.633893i 0.200041 0.0586034i
\(118\) 9.08698 15.7391i 0.836524 1.44890i
\(119\) 0.436466 + 0.158861i 0.0400108 + 0.0145627i
\(120\) 0 0
\(121\) −8.30256 6.96668i −0.754779 0.633334i
\(122\) 13.6837 + 11.4820i 1.23887 + 1.03953i
\(123\) −0.806296 + 3.84749i −0.0727013 + 0.346917i
\(124\) −0.868382 0.316065i −0.0779830 0.0283835i
\(125\) 0 0
\(126\) −1.33442 + 0.390927i −0.118880 + 0.0348266i
\(127\) −1.13280 1.96206i −0.100519 0.174105i 0.811379 0.584520i \(-0.198717\pi\)
−0.911899 + 0.410415i \(0.865384\pi\)
\(128\) 1.60524 + 9.10374i 0.141884 + 0.804665i
\(129\) −2.10265 14.6563i −0.185128 1.29042i
\(130\) 0 0
\(131\) −0.0505139 + 0.286479i −0.00441342 + 0.0250298i −0.986935 0.161119i \(-0.948490\pi\)
0.982522 + 0.186149i \(0.0596007\pi\)
\(132\) 0.144327 + 0.00462607i 0.0125620 + 0.000402648i
\(133\) −0.993081 + 0.833294i −0.0861110 + 0.0722557i
\(134\) −16.4364 −1.41989
\(135\) 0 0
\(136\) 3.96537 0.340027
\(137\) 7.40550 6.21395i 0.632694 0.530893i −0.269071 0.963120i \(-0.586717\pi\)
0.901765 + 0.432227i \(0.142272\pi\)
\(138\) −3.77924 + 6.08678i −0.321710 + 0.518141i
\(139\) 0.516258 2.92785i 0.0437885 0.248337i −0.955054 0.296431i \(-0.904204\pi\)
0.998843 + 0.0480940i \(0.0153147\pi\)
\(140\) 0 0
\(141\) 16.7558 13.1686i 1.41109 1.10899i
\(142\) 0.532177 + 3.01813i 0.0446593 + 0.253275i
\(143\) 0.151145 + 0.261790i 0.0126393 + 0.0218920i
\(144\) −8.56183 + 6.29580i −0.713486 + 0.524650i
\(145\) 0 0
\(146\) −15.6905 5.71087i −1.29855 0.472635i
\(147\) 8.87871 + 7.94849i 0.732304 + 0.655580i
\(148\) 0.397240 + 0.333324i 0.0326530 + 0.0273991i
\(149\) 12.7219 + 10.6749i 1.04221 + 0.874522i 0.992254 0.124229i \(-0.0396457\pi\)
0.0499614 + 0.998751i \(0.484090\pi\)
\(150\) 0 0
\(151\) −8.75299 3.18583i −0.712308 0.259259i −0.0396512 0.999214i \(-0.512625\pi\)
−0.672657 + 0.739955i \(0.734847\pi\)
\(152\) −5.53375 + 9.58473i −0.448846 + 0.777424i
\(153\) 1.78525 + 3.60768i 0.144329 + 0.291664i
\(154\) −0.0932122 0.161448i −0.00751125 0.0130099i
\(155\) 0 0
\(156\) 0.250470 + 0.100363i 0.0200537 + 0.00803546i
\(157\) −14.4391 + 5.25541i −1.15237 + 0.419427i −0.846365 0.532603i \(-0.821214\pi\)
−0.306002 + 0.952031i \(0.598992\pi\)
\(158\) 2.76565 15.6848i 0.220023 1.24781i
\(159\) 8.30371 + 15.5096i 0.658527 + 1.23000i
\(160\) 0 0
\(161\) −1.06947 −0.0842864
\(162\) −10.7039 5.53499i −0.840980 0.434870i
\(163\) −4.28453 −0.335590 −0.167795 0.985822i \(-0.553665\pi\)
−0.167795 + 0.985822i \(0.553665\pi\)
\(164\) −0.360381 + 0.302396i −0.0281411 + 0.0236131i
\(165\) 0 0
\(166\) 1.12839 6.39941i 0.0875799 0.496690i
\(167\) −12.2900 + 4.47320i −0.951030 + 0.346147i −0.770512 0.637425i \(-0.780000\pi\)
−0.180518 + 0.983572i \(0.557777\pi\)
\(168\) −1.64489 0.659102i −0.126906 0.0508508i
\(169\) −2.15934 12.2462i −0.166103 0.942017i
\(170\) 0 0
\(171\) −11.2115 0.719459i −0.857366 0.0550184i
\(172\) 0.885964 1.53453i 0.0675541 0.117007i
\(173\) 1.03146 + 0.375420i 0.0784202 + 0.0285426i 0.380932 0.924603i \(-0.375603\pi\)
−0.302512 + 0.953146i \(0.597825\pi\)
\(174\) 10.9046 3.57769i 0.826676 0.271224i
\(175\) 0 0
\(176\) −1.09147 0.915853i −0.0822727 0.0690350i
\(177\) 17.5164 + 15.6812i 1.31661 + 1.17867i
\(178\) −0.496752 0.180803i −0.0372331 0.0135518i
\(179\) −8.45761 + 14.6490i −0.632151 + 1.09492i 0.354960 + 0.934882i \(0.384495\pi\)
−0.987111 + 0.160037i \(0.948839\pi\)
\(180\) 0 0
\(181\) −1.06581 1.84604i −0.0792210 0.137215i 0.823693 0.567036i \(-0.191910\pi\)
−0.902914 + 0.429821i \(0.858577\pi\)
\(182\) −0.0604912 0.343063i −0.00448391 0.0254295i
\(183\) −18.1682 + 14.2786i −1.34303 + 1.05550i
\(184\) −8.57975 + 3.12277i −0.632508 + 0.230214i
\(185\) 0 0
\(186\) −5.45376 + 8.78373i −0.399889 + 0.644055i
\(187\) −0.413404 + 0.346887i −0.0302311 + 0.0253669i
\(188\) 2.55039 0.186006
\(189\) −0.140893 1.79325i −0.0102485 0.130440i
\(190\) 0 0
\(191\) 10.3330 8.67044i 0.747671 0.627371i −0.187214 0.982319i \(-0.559946\pi\)
0.934886 + 0.354948i \(0.115501\pi\)
\(192\) −14.9717 0.479884i −1.08049 0.0346326i
\(193\) −1.63254 + 9.25860i −0.117513 + 0.666448i 0.867963 + 0.496630i \(0.165429\pi\)
−0.985475 + 0.169819i \(0.945682\pi\)
\(194\) 18.6566 6.79046i 1.33947 0.487527i
\(195\) 0 0
\(196\) 0.247644 + 1.40446i 0.0176888 + 0.100318i
\(197\) 4.22400 + 7.31619i 0.300948 + 0.521257i 0.976351 0.216192i \(-0.0693637\pi\)
−0.675403 + 0.737449i \(0.736030\pi\)
\(198\) 0.381857 1.56981i 0.0271374 0.111561i
\(199\) −6.77278 + 11.7308i −0.480109 + 0.831574i −0.999740 0.0228175i \(-0.992736\pi\)
0.519630 + 0.854391i \(0.326070\pi\)
\(200\) 0 0
\(201\) 4.36108 20.8103i 0.307607 1.46784i
\(202\) −13.7078 11.5022i −0.964480 0.809295i
\(203\) 1.31233 + 1.10117i 0.0921073 + 0.0772872i
\(204\) −0.0988035 + 0.471471i −0.00691763 + 0.0330096i
\(205\) 0 0
\(206\) −4.81993 + 8.34836i −0.335820 + 0.581658i
\(207\) −6.70378 6.39994i −0.465945 0.444827i
\(208\) −1.33121 2.30573i −0.0923031 0.159874i
\(209\) −0.261552 1.48333i −0.0180919 0.102604i
\(210\) 0 0
\(211\) −10.4837 + 3.81575i −0.721726 + 0.262687i −0.676658 0.736297i \(-0.736573\pi\)
−0.0450677 + 0.998984i \(0.514350\pi\)
\(212\) −0.365594 + 2.07338i −0.0251091 + 0.142401i
\(213\) −3.96248 0.127008i −0.271505 0.00870247i
\(214\) 9.17964 7.70264i 0.627508 0.526541i
\(215\) 0 0
\(216\) −6.36644 13.9748i −0.433181 0.950863i
\(217\) −1.54334 −0.104769
\(218\) −7.94031 + 6.66271i −0.537785 + 0.451256i
\(219\) 11.3938 18.3506i 0.769920 1.24002i
\(220\) 0 0
\(221\) −0.947603 + 0.344899i −0.0637427 + 0.0232004i
\(222\) 4.56158 3.58499i 0.306153 0.240609i
\(223\) 3.33930 + 18.9381i 0.223616 + 1.26819i 0.865314 + 0.501231i \(0.167119\pi\)
−0.641698 + 0.766957i \(0.721770\pi\)
\(224\) −0.202107 0.350059i −0.0135038 0.0233893i
\(225\) 0 0
\(226\) −2.76726 + 4.79303i −0.184075 + 0.318828i
\(227\) −14.5183 5.28423i −0.963614 0.350727i −0.188165 0.982137i \(-0.560254\pi\)
−0.775449 + 0.631411i \(0.782476\pi\)
\(228\) −1.00172 0.896766i −0.0663403 0.0593898i
\(229\) −9.01052 7.56072i −0.595432 0.499627i 0.294542 0.955639i \(-0.404833\pi\)
−0.889974 + 0.456012i \(0.849277\pi\)
\(230\) 0 0
\(231\) 0.229143 0.0751796i 0.0150765 0.00494646i
\(232\) 13.7433 + 5.00217i 0.902295 + 0.328408i
\(233\) 8.08145 13.9975i 0.529434 0.917006i −0.469977 0.882679i \(-0.655738\pi\)
0.999411 0.0343274i \(-0.0109289\pi\)
\(234\) 1.67378 2.51241i 0.109418 0.164241i
\(235\) 0 0
\(236\) 0.488564 + 2.77079i 0.0318028 + 0.180363i
\(237\) 19.1248 + 7.66327i 1.24229 + 0.497783i
\(238\) 0.584395 0.212702i 0.0378807 0.0137875i
\(239\) −3.74110 + 21.2168i −0.241992 + 1.37240i 0.585386 + 0.810755i \(0.300943\pi\)
−0.827377 + 0.561647i \(0.810168\pi\)
\(240\) 0 0
\(241\) 3.36630 2.82466i 0.216842 0.181952i −0.527896 0.849309i \(-0.677019\pi\)
0.744738 + 0.667357i \(0.232574\pi\)
\(242\) −14.5116 −0.932839
\(243\) 9.84799 12.0837i 0.631749 0.775173i
\(244\) −2.76537 −0.177034
\(245\) 0 0
\(246\) 2.48432 + 4.64021i 0.158395 + 0.295849i
\(247\) 0.488739 2.77178i 0.0310977 0.176364i
\(248\) −12.3813 + 4.50643i −0.786214 + 0.286158i
\(249\) 7.80296 + 3.12663i 0.494492 + 0.198142i
\(250\) 0 0
\(251\) 2.98966 + 5.17825i 0.188706 + 0.326848i 0.944819 0.327593i \(-0.106237\pi\)
−0.756113 + 0.654441i \(0.772904\pi\)
\(252\) 0.119350 0.179150i 0.00751837 0.0112854i
\(253\) 0.621293 1.07611i 0.0390604 0.0676546i
\(254\) −2.85052 1.03750i −0.178857 0.0650988i
\(255\) 0 0
\(256\) −3.76852 3.16216i −0.235532 0.197635i
\(257\) 13.4968 + 11.3252i 0.841909 + 0.706446i 0.957992 0.286794i \(-0.0925895\pi\)
−0.116083 + 0.993239i \(0.537034\pi\)
\(258\) −14.7705 13.2230i −0.919571 0.823228i
\(259\) 0.813808 + 0.296202i 0.0505676 + 0.0184051i
\(260\) 0 0
\(261\) 1.63642 + 14.7557i 0.101292 + 0.913355i
\(262\) 0.194745 + 0.337309i 0.0120314 + 0.0208390i
\(263\) −0.703963 3.99237i −0.0434082 0.246180i 0.955381 0.295377i \(-0.0954451\pi\)
−0.998789 + 0.0491964i \(0.984334\pi\)
\(264\) 1.61876 1.27220i 0.0996279 0.0782985i
\(265\) 0 0
\(266\) −0.301409 + 1.70938i −0.0184806 + 0.104809i
\(267\) 0.360720 0.580970i 0.0220757 0.0355548i
\(268\) 1.94922 1.63559i 0.119068 0.0999098i
\(269\) −13.0325 −0.794604 −0.397302 0.917688i \(-0.630054\pi\)
−0.397302 + 0.917688i \(0.630054\pi\)
\(270\) 0 0
\(271\) −5.58778 −0.339434 −0.169717 0.985493i \(-0.554285\pi\)
−0.169717 + 0.985493i \(0.554285\pi\)
\(272\) 3.64108 3.05523i 0.220773 0.185250i
\(273\) 0.450406 + 0.0144367i 0.0272598 + 0.000873751i
\(274\) 2.24764 12.7470i 0.135785 0.770074i
\(275\) 0 0
\(276\) −0.157511 1.09792i −0.00948106 0.0660869i
\(277\) −3.33752 18.9280i −0.200532 1.13728i −0.904317 0.426862i \(-0.859619\pi\)
0.703785 0.710413i \(-0.251492\pi\)
\(278\) −1.99032 3.44734i −0.119372 0.206758i
\(279\) −9.67412 9.23566i −0.579175 0.552924i
\(280\) 0 0
\(281\) 10.9339 + 3.97961i 0.652261 + 0.237404i 0.646892 0.762582i \(-0.276069\pi\)
0.00536937 + 0.999986i \(0.498291\pi\)
\(282\) 5.85260 27.9275i 0.348517 1.66306i
\(283\) 21.5765 + 18.1048i 1.28259 + 1.07622i 0.992882 + 0.119105i \(0.0380025\pi\)
0.289707 + 0.957115i \(0.406442\pi\)
\(284\) −0.363447 0.304969i −0.0215666 0.0180966i
\(285\) 0 0
\(286\) 0.380334 + 0.138430i 0.0224896 + 0.00818554i
\(287\) −0.392840 + 0.680418i −0.0231886 + 0.0401638i
\(288\) 0.827958 3.40372i 0.0487879 0.200566i
\(289\) 7.59986 + 13.1633i 0.447051 + 0.774315i
\(290\) 0 0
\(291\) 3.64728 + 25.4231i 0.213807 + 1.49033i
\(292\) 2.42906 0.884106i 0.142150 0.0517384i
\(293\) 0.0144323 0.0818497i 0.000843144 0.00478171i −0.984383 0.176039i \(-0.943672\pi\)
0.985226 + 0.171257i \(0.0547828\pi\)
\(294\) 15.9475 + 0.511161i 0.930077 + 0.0298115i
\(295\) 0 0
\(296\) 7.39358 0.429743
\(297\) 1.88623 + 0.899991i 0.109450 + 0.0522228i
\(298\) 22.2358 1.28809
\(299\) 1.77869 1.49250i 0.102864 0.0863134i
\(300\) 0 0
\(301\) 0.513870 2.91430i 0.0296190 0.167978i
\(302\) −11.7196 + 4.26558i −0.674387 + 0.245457i
\(303\) 18.2002 14.3037i 1.04558 0.821728i
\(304\) 2.30363 + 13.0645i 0.132122 + 0.749302i
\(305\) 0 0
\(306\) 4.93602 + 2.16385i 0.282173 + 0.123699i
\(307\) −8.06146 + 13.9629i −0.460092 + 0.796902i −0.998965 0.0454847i \(-0.985517\pi\)
0.538873 + 0.842387i \(0.318850\pi\)
\(308\) 0.0271201 + 0.00987089i 0.00154531 + 0.000562446i
\(309\) −9.29107 8.31764i −0.528550 0.473174i
\(310\) 0 0
\(311\) 25.8269 + 21.6714i 1.46451 + 1.22887i 0.921056 + 0.389431i \(0.127328\pi\)
0.543454 + 0.839439i \(0.317116\pi\)
\(312\) 3.65549 1.19933i 0.206951 0.0678986i
\(313\) −23.4509 8.53543i −1.32552 0.482451i −0.420299 0.907386i \(-0.638075\pi\)
−0.905224 + 0.424935i \(0.860297\pi\)
\(314\) −10.2868 + 17.8173i −0.580519 + 1.00549i
\(315\) 0 0
\(316\) 1.23282 + 2.13530i 0.0693514 + 0.120120i
\(317\) −2.72538 15.4564i −0.153073 0.868119i −0.960527 0.278188i \(-0.910266\pi\)
0.807454 0.589931i \(-0.200845\pi\)
\(318\) 21.8652 + 8.76134i 1.22614 + 0.491311i
\(319\) −1.87038 + 0.680763i −0.104721 + 0.0381154i
\(320\) 0 0
\(321\) 7.31674 + 13.6662i 0.408381 + 0.762772i
\(322\) −1.09693 + 0.920437i −0.0611297 + 0.0512939i
\(323\) 5.02464 0.279578
\(324\) 1.82019 0.408749i 0.101122 0.0227083i
\(325\) 0 0
\(326\) −4.39454 + 3.68746i −0.243391 + 0.204229i
\(327\) −6.32891 11.8211i −0.349990 0.653710i
\(328\) −1.16475 + 6.60565i −0.0643128 + 0.364736i
\(329\) 4.00248 1.45678i 0.220664 0.0803150i
\(330\) 0 0
\(331\) 5.25148 + 29.7826i 0.288647 + 1.63700i 0.691959 + 0.721937i \(0.256748\pi\)
−0.403312 + 0.915063i \(0.632141\pi\)
\(332\) 0.502991 + 0.871206i 0.0276052 + 0.0478136i
\(333\) 3.32866 + 6.72667i 0.182410 + 0.368619i
\(334\) −8.75574 + 15.1654i −0.479093 + 0.829813i
\(335\) 0 0
\(336\) −2.01819 + 0.662148i −0.110101 + 0.0361232i
\(337\) −5.28309 4.43304i −0.287788 0.241483i 0.487452 0.873150i \(-0.337927\pi\)
−0.775240 + 0.631667i \(0.782371\pi\)
\(338\) −12.7544 10.7022i −0.693749 0.582125i
\(339\) −5.33427 4.77540i −0.289718 0.259364i
\(340\) 0 0
\(341\) 0.896579 1.55292i 0.0485525 0.0840953i
\(342\) −12.1186 + 8.91120i −0.655298 + 0.481862i
\(343\) 2.40248 + 4.16122i 0.129722 + 0.224685i
\(344\) −4.38704 24.8802i −0.236534 1.34145i
\(345\) 0 0
\(346\) 1.38104 0.502659i 0.0742453 0.0270231i
\(347\) 6.15856 34.9269i 0.330609 1.87497i −0.136298 0.990668i \(-0.543520\pi\)
0.466906 0.884307i \(-0.345369\pi\)
\(348\) −0.937182 + 1.50941i −0.0502382 + 0.0809129i
\(349\) 18.7347 15.7203i 1.00285 0.841488i 0.0154704 0.999880i \(-0.495075\pi\)
0.987376 + 0.158392i \(0.0506310\pi\)
\(350\) 0 0
\(351\) 2.73688 + 2.78581i 0.146084 + 0.148696i
\(352\) 0.469642 0.0250320
\(353\) 7.10672 5.96325i 0.378253 0.317392i −0.433763 0.901027i \(-0.642815\pi\)
0.812016 + 0.583635i \(0.198370\pi\)
\(354\) 31.4621 + 1.00845i 1.67219 + 0.0535983i
\(355\) 0 0
\(356\) 0.0769027 0.0279903i 0.00407584 0.00148348i
\(357\) 0.114246 + 0.796345i 0.00604656 + 0.0421471i
\(358\) 3.93282 + 22.3041i 0.207856 + 1.17881i
\(359\) 3.57306 + 6.18872i 0.188579 + 0.326628i 0.944777 0.327715i \(-0.106279\pi\)
−0.756198 + 0.654343i \(0.772945\pi\)
\(360\) 0 0
\(361\) 2.48802 4.30937i 0.130948 0.226809i
\(362\) −2.68196 0.976152i −0.140961 0.0513054i
\(363\) 3.85037 18.3732i 0.202092 0.964345i
\(364\) 0.0413122 + 0.0346650i 0.00216535 + 0.00181694i
\(365\) 0 0
\(366\) −6.34593 + 30.2816i −0.331707 + 1.58284i
\(367\) 10.8281 + 3.94110i 0.565222 + 0.205724i 0.608797 0.793326i \(-0.291652\pi\)
−0.0435748 + 0.999050i \(0.513875\pi\)
\(368\) −5.47207 + 9.47791i −0.285252 + 0.494070i
\(369\) −6.53419 + 1.91423i −0.340156 + 0.0996510i
\(370\) 0 0
\(371\) 0.610570 + 3.46272i 0.0316992 + 0.179775i
\(372\) −0.227302 1.58439i −0.0117851 0.0821467i
\(373\) 29.0373 10.5687i 1.50349 0.547227i 0.546531 0.837439i \(-0.315948\pi\)
0.956962 + 0.290213i \(0.0937260\pi\)
\(374\) −0.125472 + 0.711588i −0.00648801 + 0.0367954i
\(375\) 0 0
\(376\) 27.8558 23.3738i 1.43655 1.20541i
\(377\) −3.71932 −0.191555
\(378\) −1.68786 1.71803i −0.0868142 0.0883661i
\(379\) −2.84713 −0.146247 −0.0731236 0.997323i \(-0.523297\pi\)
−0.0731236 + 0.997323i \(0.523297\pi\)
\(380\) 0 0
\(381\) 2.06992 3.33379i 0.106045 0.170795i
\(382\) 3.13617 17.7861i 0.160461 0.910017i
\(383\) −32.9304 + 11.9857i −1.68266 + 0.612439i −0.993671 0.112329i \(-0.964169\pi\)
−0.688992 + 0.724769i \(0.741947\pi\)
\(384\) −12.5889 + 9.89370i −0.642422 + 0.504886i
\(385\) 0 0
\(386\) 6.29390 + 10.9014i 0.320351 + 0.554864i
\(387\) 20.6608 15.1926i 1.05025 0.772284i
\(388\) −1.53681 + 2.66183i −0.0780196 + 0.135134i
\(389\) −17.3917 6.33006i −0.881795 0.320947i −0.138861 0.990312i \(-0.544344\pi\)
−0.742934 + 0.669365i \(0.766566\pi\)
\(390\) 0 0
\(391\) 3.17540 + 2.66448i 0.160587 + 0.134748i
\(392\) 15.5764 + 13.0701i 0.786726 + 0.660141i
\(393\) −0.478742 + 0.157071i −0.0241494 + 0.00792316i
\(394\) 10.6291 + 3.86867i 0.535486 + 0.194901i
\(395\) 0 0
\(396\) 0.110927 + 0.224165i 0.00557430 + 0.0112647i
\(397\) 14.7500 + 25.5478i 0.740284 + 1.28221i 0.952366 + 0.304957i \(0.0986421\pi\)
−0.212083 + 0.977252i \(0.568025\pi\)
\(398\) 3.14937 + 17.8609i 0.157863 + 0.895288i
\(399\) −2.08429 0.835169i −0.104345 0.0418107i
\(400\) 0 0
\(401\) 4.06740 23.0673i 0.203116 1.15193i −0.697261 0.716817i \(-0.745598\pi\)
0.900377 0.435111i \(-0.143291\pi\)
\(402\) −13.4372 25.0979i −0.670185 1.25177i
\(403\) 2.56680 2.15380i 0.127861 0.107288i
\(404\) 2.77024 0.137824
\(405\) 0 0
\(406\) 2.29374 0.113836
\(407\) −0.770809 + 0.646786i −0.0382076 + 0.0320600i
\(408\) 3.24179 + 6.05501i 0.160493 + 0.299768i
\(409\) 1.34566 7.63161i 0.0665386 0.377359i −0.933295 0.359111i \(-0.883080\pi\)
0.999833 0.0182481i \(-0.00580888\pi\)
\(410\) 0 0
\(411\) 15.5427 + 6.22793i 0.766666 + 0.307201i
\(412\) −0.259145 1.46968i −0.0127672 0.0724062i
\(413\) 2.34941 + 4.06929i 0.115607 + 0.200237i
\(414\) −12.3840 0.794697i −0.608639 0.0390572i
\(415\) 0 0
\(416\) 0.824656 + 0.300150i 0.0404321 + 0.0147161i
\(417\) 4.89280 1.60528i 0.239602 0.0786109i
\(418\) −1.54489 1.29632i −0.0755630 0.0634049i
\(419\) −13.6412 11.4463i −0.666415 0.559189i 0.245587 0.969375i \(-0.421019\pi\)
−0.912002 + 0.410186i \(0.865464\pi\)
\(420\) 0 0
\(421\) −28.5312 10.3845i −1.39053 0.506110i −0.465175 0.885219i \(-0.654009\pi\)
−0.925352 + 0.379108i \(0.876231\pi\)
\(422\) −7.46885 + 12.9364i −0.363578 + 0.629736i
\(423\) 33.8064 + 14.8201i 1.64372 + 0.720576i
\(424\) 15.0091 + 25.9965i 0.728905 + 1.26250i
\(425\) 0 0
\(426\) −4.17353 + 3.28002i −0.202208 + 0.158917i
\(427\) −4.33985 + 1.57958i −0.210020 + 0.0764411i
\(428\) −0.322140 + 1.82694i −0.0155712 + 0.0883087i
\(429\) −0.276182 + 0.444814i −0.0133342 + 0.0214758i
\(430\) 0 0
\(431\) −22.4604 −1.08188 −0.540939 0.841062i \(-0.681931\pi\)
−0.540939 + 0.841062i \(0.681931\pi\)
\(432\) −16.6131 7.92672i −0.799296 0.381374i
\(433\) −9.65028 −0.463763 −0.231882 0.972744i \(-0.574488\pi\)
−0.231882 + 0.972744i \(0.574488\pi\)
\(434\) −1.58297 + 1.32827i −0.0759849 + 0.0637589i
\(435\) 0 0
\(436\) 0.278648 1.58029i 0.0133448 0.0756821i
\(437\) −10.8717 + 3.95697i −0.520063 + 0.189287i
\(438\) −4.10704 28.6278i −0.196242 1.36789i
\(439\) 5.34208 + 30.2964i 0.254963 + 1.44597i 0.796167 + 0.605077i \(0.206858\pi\)
−0.541203 + 0.840892i \(0.682031\pi\)
\(440\) 0 0
\(441\) −4.87856 + 20.0557i −0.232312 + 0.955031i
\(442\) −0.675098 + 1.16930i −0.0321111 + 0.0556181i
\(443\) −16.0557 5.84380i −0.762830 0.277647i −0.0688358 0.997628i \(-0.521928\pi\)
−0.693994 + 0.719981i \(0.744151\pi\)
\(444\) −0.184223 + 0.879077i −0.00874284 + 0.0417192i
\(445\) 0 0
\(446\) 19.7240 + 16.5504i 0.933958 + 0.783684i
\(447\) −5.89985 + 28.1530i −0.279053 + 1.33159i
\(448\) −2.81329 1.02395i −0.132915 0.0483773i
\(449\) −3.63246 + 6.29160i −0.171426 + 0.296919i −0.938919 0.344139i \(-0.888171\pi\)
0.767492 + 0.641058i \(0.221504\pi\)
\(450\) 0 0
\(451\) −0.456427 0.790555i −0.0214923 0.0372258i
\(452\) −0.148783 0.843788i −0.00699814 0.0396884i
\(453\) −2.29112 15.9701i −0.107646 0.750340i
\(454\) −19.4389 + 7.07519i −0.912314 + 0.332055i
\(455\) 0 0
\(456\) −19.1596 0.614118i −0.897231 0.0287587i
\(457\) −7.64333 + 6.41352i −0.357540 + 0.300012i −0.803809 0.594887i \(-0.797197\pi\)
0.446269 + 0.894899i \(0.352752\pi\)
\(458\) −15.7490 −0.735901
\(459\) −4.04936 + 5.67540i −0.189008 + 0.264905i
\(460\) 0 0
\(461\) 4.66867 3.91748i 0.217441 0.182455i −0.527560 0.849518i \(-0.676893\pi\)
0.745002 + 0.667063i \(0.232449\pi\)
\(462\) 0.170324 0.274321i 0.00792419 0.0127626i
\(463\) −4.40269 + 24.9689i −0.204611 + 1.16040i 0.693441 + 0.720514i \(0.256094\pi\)
−0.898051 + 0.439891i \(0.855017\pi\)
\(464\) 16.4735 5.99586i 0.764762 0.278351i
\(465\) 0 0
\(466\) −3.75791 21.3121i −0.174082 0.987266i
\(467\) −13.8113 23.9220i −0.639113 1.10698i −0.985628 0.168932i \(-0.945968\pi\)
0.346515 0.938044i \(-0.387365\pi\)
\(468\) 0.0515146 + 0.464511i 0.00238126 + 0.0214720i
\(469\) 2.12478 3.68023i 0.0981134 0.169937i
\(470\) 0 0
\(471\) −19.8292 17.7517i −0.913683 0.817957i
\(472\) 30.7299 + 25.7854i 1.41446 + 1.18687i
\(473\) 2.63387 + 2.21008i 0.121105 + 0.101619i
\(474\) 26.2112 8.59964i 1.20392 0.394995i
\(475\) 0 0
\(476\) −0.0481385 + 0.0833784i −0.00220643 + 0.00382164i
\(477\) −16.8943 + 25.3591i −0.773538 + 1.16111i
\(478\) 14.4230 + 24.9813i 0.659692 + 1.14262i
\(479\) −4.94905 28.0675i −0.226128 1.28244i −0.860517 0.509422i \(-0.829859\pi\)
0.634389 0.773014i \(-0.281252\pi\)
\(480\) 0 0
\(481\) −1.76684 + 0.643079i −0.0805611 + 0.0293219i
\(482\) 1.02170 5.79437i 0.0465374 0.263926i
\(483\) −0.874323 1.63306i −0.0397831 0.0743068i
\(484\) 1.72096 1.44406i 0.0782254 0.0656389i
\(485\) 0 0
\(486\) −0.298959 20.8696i −0.0135611 0.946666i
\(487\) −24.3015 −1.10121 −0.550603 0.834767i \(-0.685602\pi\)
−0.550603 + 0.834767i \(0.685602\pi\)
\(488\) −30.2038 + 25.3440i −1.36726 + 1.14727i
\(489\) −3.50272 6.54237i −0.158398 0.295856i
\(490\) 0 0
\(491\) 14.9080 5.42607i 0.672789 0.244875i 0.0170405 0.999855i \(-0.494576\pi\)
0.655748 + 0.754980i \(0.272353\pi\)
\(492\) −0.756372 0.303076i −0.0340999 0.0136637i
\(493\) −1.15301 6.53904i −0.0519289 0.294504i
\(494\) −1.88422 3.26357i −0.0847753 0.146835i
\(495\) 0 0
\(496\) −7.89666 + 13.6774i −0.354571 + 0.614134i
\(497\) −0.744578 0.271004i −0.0333989 0.0121562i
\(498\) 10.6942 3.50867i 0.479219 0.157227i
\(499\) 26.8594 + 22.5377i 1.20239 + 1.00893i 0.999558 + 0.0297149i \(0.00945993\pi\)
0.202835 + 0.979213i \(0.434985\pi\)
\(500\) 0 0
\(501\) −16.8779 15.1096i −0.754048 0.675046i
\(502\) 7.52305 + 2.73817i 0.335770 + 0.122210i
\(503\) −3.62507 + 6.27881i −0.161634 + 0.279958i −0.935455 0.353446i \(-0.885010\pi\)
0.773821 + 0.633405i \(0.218343\pi\)
\(504\) −0.338306 3.05053i −0.0150694 0.135881i
\(505\) 0 0
\(506\) −0.288904 1.63845i −0.0128433 0.0728382i
\(507\) 16.9343 13.3089i 0.752081 0.591067i
\(508\) 0.441292 0.160617i 0.0195791 0.00712623i
\(509\) −6.17449 + 35.0173i −0.273679 + 1.55211i 0.469446 + 0.882961i \(0.344454\pi\)
−0.743126 + 0.669152i \(0.766657\pi\)
\(510\) 0 0
\(511\) 3.30707 2.77496i 0.146296 0.122757i
\(512\) −25.0751 −1.10817
\(513\) −8.06712 17.7079i −0.356172 0.781822i
\(514\) 23.5903 1.04052
\(515\) 0 0
\(516\) 3.06749 + 0.0983216i 0.135039 + 0.00432837i
\(517\) −0.859349 + 4.87361i −0.0377941 + 0.214341i
\(518\) 1.08963 0.396592i 0.0478755 0.0174253i
\(519\) 0.269987 + 1.88192i 0.0118511 + 0.0826073i
\(520\) 0 0
\(521\) −19.0101 32.9265i −0.832849 1.44254i −0.895770 0.444519i \(-0.853375\pi\)
0.0629204 0.998019i \(-0.479959\pi\)
\(522\) 14.3778 + 13.7262i 0.629301 + 0.600779i
\(523\) −8.03916 + 13.9242i −0.351528 + 0.608864i −0.986517 0.163657i \(-0.947671\pi\)
0.634990 + 0.772521i \(0.281004\pi\)
\(524\) −0.0566611 0.0206230i −0.00247525 0.000900918i
\(525\) 0 0
\(526\) −4.15805 3.48902i −0.181300 0.152128i
\(527\) 4.58237 + 3.84507i 0.199611 + 0.167494i
\(528\) 0.506177 2.41538i 0.0220285 0.105116i
\(529\) 12.6441 + 4.60207i 0.549743 + 0.200090i
\(530\) 0 0
\(531\) −9.62467 + 39.5669i −0.417675 + 1.71706i
\(532\) −0.134356 0.232712i −0.00582509 0.0100894i
\(533\) −0.296204 1.67986i −0.0128300 0.0727627i
\(534\) −0.130026 0.906339i −0.00562680 0.0392211i
\(535\) 0 0
\(536\) 6.29990 35.7285i 0.272114 1.54324i
\(537\) −29.2830 0.938599i −1.26365 0.0405036i
\(538\) −13.3671 + 11.2163i −0.576297 + 0.483570i
\(539\) −2.76726 −0.119194
\(540\) 0 0
\(541\) −17.0592 −0.733433 −0.366717 0.930333i \(-0.619518\pi\)
−0.366717 + 0.930333i \(0.619518\pi\)
\(542\) −5.73125 + 4.80909i −0.246178 + 0.206568i
\(543\) 1.94752 3.13665i 0.0835762 0.134606i
\(544\) −0.272054 + 1.54290i −0.0116642 + 0.0661511i
\(545\) 0 0
\(546\) 0.474395 0.372832i 0.0203022 0.0159557i
\(547\) −3.24265 18.3900i −0.138646 0.786298i −0.972251 0.233938i \(-0.924839\pi\)
0.833606 0.552360i \(-0.186273\pi\)
\(548\) 1.00191 + 1.73536i 0.0427994 + 0.0741308i
\(549\) −36.6560 16.0693i −1.56444 0.685820i
\(550\) 0 0
\(551\) 17.4146 + 6.33841i 0.741888 + 0.270025i
\(552\) −11.7826 10.5481i −0.501499 0.448957i
\(553\) 3.15442 + 2.64687i 0.134140 + 0.112556i
\(554\) −19.7135 16.5416i −0.837547 0.702786i
\(555\) 0 0
\(556\) 0.579083 + 0.210769i 0.0245586 + 0.00893860i
\(557\) 2.69508 4.66802i 0.114194 0.197790i −0.803263 0.595624i \(-0.796905\pi\)
0.917457 + 0.397834i \(0.130238\pi\)
\(558\) −17.8711 1.14682i −0.756545 0.0485486i
\(559\) 3.21240 + 5.56403i 0.135870 + 0.235334i
\(560\) 0 0
\(561\) −0.867657 0.347668i −0.0366325 0.0146786i
\(562\) 14.6396 5.32840i 0.617536 0.224765i
\(563\) 0.149078 0.845464i 0.00628289 0.0356321i −0.981505 0.191436i \(-0.938686\pi\)
0.987788 + 0.155804i \(0.0497967\pi\)
\(564\) 2.08501 + 3.89438i 0.0877947 + 0.163983i
\(565\) 0 0
\(566\) 37.7123 1.58517
\(567\) 2.62306 1.68117i 0.110158 0.0706025i
\(568\) −6.76462 −0.283837
\(569\) 22.5944 18.9589i 0.947206 0.794800i −0.0316187 0.999500i \(-0.510066\pi\)
0.978825 + 0.204700i \(0.0656218\pi\)
\(570\) 0 0
\(571\) 2.15888 12.2436i 0.0903464 0.512380i −0.905728 0.423860i \(-0.860675\pi\)
0.996074 0.0885205i \(-0.0282139\pi\)
\(572\) −0.0588798 + 0.0214305i −0.00246189 + 0.000896054i
\(573\) 21.6871 + 8.68995i 0.905990 + 0.363028i
\(574\) 0.182672 + 1.03598i 0.00762458 + 0.0432411i
\(575\) 0 0
\(576\) −11.5070 23.2537i −0.479458 0.968905i
\(577\) −16.7199 + 28.9597i −0.696057 + 1.20561i 0.273766 + 0.961796i \(0.411731\pi\)
−0.969823 + 0.243810i \(0.921603\pi\)
\(578\) 19.1240 + 6.96055i 0.795452 + 0.289521i
\(579\) −15.4723 + 5.07630i −0.643006 + 0.210964i
\(580\) 0 0
\(581\) 1.28701 + 1.07993i 0.0533941 + 0.0448030i
\(582\) 25.6212 + 22.9368i 1.06203 + 0.950762i
\(583\) −3.83891 1.39725i −0.158991 0.0578681i
\(584\) 18.4280 31.9182i 0.762556 1.32079i
\(585\) 0 0
\(586\) −0.0556406 0.0963723i −0.00229849 0.00398110i
\(587\) 3.81058 + 21.6109i 0.157280 + 0.891977i 0.956672 + 0.291168i \(0.0940437\pi\)
−0.799392 + 0.600809i \(0.794845\pi\)
\(588\) −1.94211 + 1.52633i −0.0800914 + 0.0629446i
\(589\) −15.6887 + 5.71024i −0.646444 + 0.235286i
\(590\) 0 0
\(591\) −7.71840 + 12.4311i −0.317493 + 0.511348i
\(592\) 6.78894 5.69660i 0.279024 0.234129i
\(593\) −11.2798 −0.463205 −0.231602 0.972811i \(-0.574397\pi\)
−0.231602 + 0.972811i \(0.574397\pi\)
\(594\) 2.70923 0.700273i 0.111161 0.0287325i
\(595\) 0 0
\(596\) −2.63699 + 2.21270i −0.108015 + 0.0906356i
\(597\) −23.4495 0.751622i −0.959726 0.0307618i
\(598\) 0.539850 3.06164i 0.0220761 0.125200i
\(599\) −5.06912 + 1.84501i −0.207119 + 0.0753850i −0.443496 0.896276i \(-0.646262\pi\)
0.236378 + 0.971661i \(0.424040\pi\)
\(600\) 0 0
\(601\) 1.30738 + 7.41452i 0.0533291 + 0.302445i 0.999793 0.0203664i \(-0.00648328\pi\)
−0.946463 + 0.322811i \(0.895372\pi\)
\(602\) −1.98111 3.43139i −0.0807441 0.139853i
\(603\) 35.3420 10.3537i 1.43924 0.421634i
\(604\) 0.965381 1.67209i 0.0392808 0.0680363i
\(605\) 0 0
\(606\) 6.35711 30.3349i 0.258240 1.23227i
\(607\) 16.5993 + 13.9285i 0.673745 + 0.565339i 0.914171 0.405329i \(-0.132843\pi\)
−0.240427 + 0.970667i \(0.577287\pi\)
\(608\) −3.34969 2.81073i −0.135848 0.113990i
\(609\) −0.608601 + 2.90413i −0.0246618 + 0.117681i
\(610\) 0 0
\(611\) −4.62369 + 8.00847i −0.187055 + 0.323988i
\(612\) −0.800699 + 0.234570i −0.0323663 + 0.00948193i
\(613\) −18.7168 32.4185i −0.755965 1.30937i −0.944893 0.327379i \(-0.893835\pi\)
0.188928 0.981991i \(-0.439499\pi\)
\(614\) 3.74861 + 21.2594i 0.151281 + 0.857960i
\(615\) 0 0
\(616\) 0.386675 0.140738i 0.0155796 0.00567050i
\(617\) 6.46292 36.6531i 0.260187 1.47560i −0.522210 0.852817i \(-0.674892\pi\)
0.782397 0.622780i \(-0.213997\pi\)
\(618\) −16.6882 0.534901i −0.671296 0.0215169i
\(619\) −7.26024 + 6.09206i −0.291814 + 0.244861i −0.776927 0.629591i \(-0.783223\pi\)
0.485114 + 0.874451i \(0.338778\pi\)
\(620\) 0 0
\(621\) 4.29203 15.4686i 0.172233 0.620735i
\(622\) 45.1414 1.81000
\(623\) 0.104700 0.0878537i 0.00419472 0.00351979i
\(624\) 2.43249 3.91772i 0.0973774 0.156834i
\(625\) 0 0
\(626\) −31.3990 + 11.4283i −1.25496 + 0.456766i
\(627\) 2.05119 1.61205i 0.0819164 0.0643789i
\(628\) −0.553074 3.13664i −0.0220701 0.125166i
\(629\) −1.67834 2.90698i −0.0669199 0.115909i
\(630\) 0 0
\(631\) 9.32426 16.1501i 0.371193 0.642925i −0.618556 0.785740i \(-0.712282\pi\)
0.989749 + 0.142815i \(0.0456155\pi\)
\(632\) 33.0347 + 12.0236i 1.31405 + 0.478275i
\(633\) −14.3972 12.8888i −0.572238 0.512285i
\(634\) −16.0978 13.5077i −0.639327 0.536459i
\(635\) 0 0
\(636\) −3.46489 + 1.13679i −0.137392 + 0.0450768i
\(637\) −4.85910 1.76857i −0.192524 0.0700732i
\(638\) −1.33251 + 2.30798i −0.0527546 + 0.0913737i
\(639\) −3.04549 6.15444i −0.120478 0.243466i
\(640\) 0 0
\(641\) −4.29405 24.3528i −0.169605 0.961876i −0.944189 0.329405i \(-0.893152\pi\)
0.774584 0.632471i \(-0.217959\pi\)
\(642\) 19.2663 + 7.71997i 0.760381 + 0.304683i
\(643\) 7.44549 2.70994i 0.293622 0.106870i −0.191009 0.981588i \(-0.561176\pi\)
0.484631 + 0.874719i \(0.338954\pi\)
\(644\) 0.0384945 0.218313i 0.00151690 0.00860274i
\(645\) 0 0
\(646\) 5.15365 4.32443i 0.202768 0.170142i
\(647\) −3.79376 −0.149148 −0.0745741 0.997215i \(-0.523760\pi\)
−0.0745741 + 0.997215i \(0.523760\pi\)
\(648\) 16.1344 21.1461i 0.633818 0.830698i
\(649\) −5.45940 −0.214300
\(650\) 0 0
\(651\) −1.26172 2.35664i −0.0494508 0.0923641i
\(652\) 0.154217 0.874607i 0.00603959 0.0342522i
\(653\) 13.8907 5.05580i 0.543585 0.197849i −0.0556090 0.998453i \(-0.517710\pi\)
0.599194 + 0.800604i \(0.295488\pi\)
\(654\) −16.6652 6.67770i −0.651661 0.261119i
\(655\) 0 0
\(656\) 4.02001 + 6.96286i 0.156955 + 0.271854i
\(657\) 37.3356 + 2.39588i 1.45660 + 0.0934722i
\(658\) 2.85147 4.93889i 0.111162 0.192538i
\(659\) −38.5064 14.0152i −1.49999 0.545953i −0.543935 0.839127i \(-0.683066\pi\)
−0.956059 + 0.293174i \(0.905289\pi\)
\(660\) 0 0
\(661\) 12.0162 + 10.0828i 0.467375 + 0.392174i 0.845836 0.533443i \(-0.179102\pi\)
−0.378461 + 0.925617i \(0.623547\pi\)
\(662\) 31.0185 + 26.0276i 1.20557 + 1.01159i
\(663\) −1.30134 1.16500i −0.0505400 0.0452449i
\(664\) 13.4782 + 4.90566i 0.523055 + 0.190377i
\(665\) 0 0
\(666\) 9.20340 + 4.03459i 0.356624 + 0.156337i
\(667\) 7.64431 + 13.2403i 0.295989 + 0.512668i
\(668\) −0.470755 2.66978i −0.0182141 0.103297i
\(669\) −26.1880 + 20.5814i −1.01249 + 0.795723i
\(670\) 0 0
\(671\) 0.931786 5.28442i 0.0359712 0.204003i
\(672\) 0.369304 0.594794i 0.0142462 0.0229447i
\(673\) 18.3294 15.3802i 0.706545 0.592861i −0.217083 0.976153i \(-0.569654\pi\)
0.923627 + 0.383292i \(0.125210\pi\)
\(674\) −9.23400 −0.355681
\(675\) 0 0
\(676\) 2.57756 0.0991369
\(677\) −19.5799 + 16.4295i −0.752518 + 0.631437i −0.936167 0.351554i \(-0.885653\pi\)
0.183650 + 0.982992i \(0.441209\pi\)
\(678\) −9.58115 0.307102i −0.367962 0.0117942i
\(679\) −0.891367 + 5.05520i −0.0342075 + 0.194001i
\(680\) 0 0
\(681\) −3.80021 26.4891i −0.145625 1.01506i
\(682\) −0.416913 2.36443i −0.0159644 0.0905386i
\(683\) −21.6297 37.4638i −0.827639 1.43351i −0.899886 0.436126i \(-0.856350\pi\)
0.0722470 0.997387i \(-0.476983\pi\)
\(684\) 0.550410 2.26273i 0.0210454 0.0865175i
\(685\) 0 0
\(686\) 6.04549 + 2.20038i 0.230818 + 0.0840109i
\(687\) 4.17869 19.9399i 0.159427 0.760756i
\(688\) −23.1979 19.4654i −0.884412 0.742110i
\(689\) −5.84784 4.90692i −0.222785 0.186939i
\(690\) 0 0
\(691\) −42.4251 15.4415i −1.61393 0.587422i −0.631716 0.775200i \(-0.717649\pi\)
−0.982211 + 0.187778i \(0.939871\pi\)
\(692\) −0.113761 + 0.197040i −0.00432454 + 0.00749033i
\(693\) 0.302128 + 0.288435i 0.0114769 + 0.0109567i
\(694\) −23.7430 41.1240i −0.901270 1.56105i
\(695\) 0 0
\(696\) 3.59737 + 25.0751i 0.136358 + 0.950471i
\(697\) 2.86158 1.04153i 0.108390 0.0394507i
\(698\) 5.68617 32.2479i 0.215225 1.22060i
\(699\) 27.9806 + 0.896855i 1.05832 + 0.0339222i
\(700\) 0 0
\(701\) −52.1690 −1.97039 −0.985197 0.171425i \(-0.945163\pi\)
−0.985197 + 0.171425i \(0.945163\pi\)
\(702\) 5.20475 + 0.501854i 0.196441 + 0.0189413i
\(703\) 9.36864 0.353345
\(704\) 2.66464 2.23590i 0.100428 0.0842687i
\(705\) 0 0
\(706\) 2.15696 12.2327i 0.0811782 0.460384i
\(707\) 4.34750 1.58236i 0.163505 0.0595108i
\(708\) −3.83150 + 3.01122i −0.143997 + 0.113168i
\(709\) 0.837721 + 4.75095i 0.0314613 + 0.178426i 0.996489 0.0837213i \(-0.0266805\pi\)
−0.965028 + 0.262147i \(0.915569\pi\)
\(710\) 0 0
\(711\) 3.93343 + 35.4681i 0.147515 + 1.33016i
\(712\) 0.583420 1.01051i 0.0218646 0.0378706i
\(713\) −12.9428 4.71079i −0.484711 0.176421i
\(714\) 0.802550 + 0.718467i 0.0300347 + 0.0268879i
\(715\) 0 0
\(716\) −2.68590 2.25374i −0.100377 0.0842261i
\(717\) −35.4560 + 11.6328i −1.32413 + 0.434433i
\(718\) 8.99108 + 3.27249i 0.335544 + 0.122128i
\(719\) −4.65459 + 8.06199i −0.173587 + 0.300662i −0.939671 0.342078i \(-0.888869\pi\)
0.766084 + 0.642740i \(0.222202\pi\)
\(720\) 0 0
\(721\) −1.24618 2.15844i −0.0464100 0.0803846i
\(722\) −1.15694 6.56131i −0.0430567 0.244187i
\(723\) 7.06522 + 2.83102i 0.262758 + 0.105287i
\(724\) 0.415197 0.151119i 0.0154307 0.00561630i
\(725\) 0 0
\(726\) −11.8636 22.1588i −0.440299 0.822390i
\(727\) −5.03265 + 4.22289i −0.186651 + 0.156618i −0.731325 0.682029i \(-0.761098\pi\)
0.544674 + 0.838648i \(0.316653\pi\)
\(728\) 0.768918 0.0284980
\(729\) 26.5026 + 5.15885i 0.981577 + 0.191068i
\(730\) 0 0
\(731\) −8.78641 + 7.37268i −0.324977 + 0.272688i
\(732\) −2.26076 4.22264i −0.0835601 0.156073i
\(733\) 2.62552 14.8900i 0.0969756 0.549976i −0.897148 0.441729i \(-0.854365\pi\)
0.994124 0.108247i \(-0.0345237\pi\)
\(734\) 14.4980 5.27684i 0.535131 0.194772i
\(735\) 0 0
\(736\) −0.626414 3.55257i −0.0230899 0.130949i
\(737\) 2.46872 + 4.27594i 0.0909364 + 0.157506i
\(738\) −5.05449 + 7.58700i −0.186058 + 0.279281i
\(739\) 19.1802 33.2210i 0.705554 1.22206i −0.260937 0.965356i \(-0.584032\pi\)
0.966491 0.256700i \(-0.0826351\pi\)
\(740\) 0 0
\(741\) 4.63199 1.51971i 0.170160 0.0558279i
\(742\) 3.60641 + 3.02614i 0.132396 + 0.111093i
\(743\) 19.6038 + 16.4495i 0.719192 + 0.603474i 0.927162 0.374661i \(-0.122241\pi\)
−0.207970 + 0.978135i \(0.566686\pi\)
\(744\) −17.0032 15.2218i −0.623369 0.558059i
\(745\) 0 0
\(746\) 20.6869 35.8308i 0.757403 1.31186i
\(747\) 1.60485 + 14.4710i 0.0587183 + 0.529467i
\(748\) −0.0559306 0.0968746i −0.00204502 0.00354209i
\(749\) 0.537998 + 3.05114i 0.0196580 + 0.111486i
\(750\) 0 0
\(751\) 40.5586 14.7621i 1.48000 0.538677i 0.529207 0.848493i \(-0.322490\pi\)
0.950797 + 0.309816i \(0.100267\pi\)
\(752\) 7.56876 42.9246i 0.276004 1.56530i
\(753\) −5.46292 + 8.79849i −0.199080 + 0.320635i
\(754\) −3.81482 + 3.20102i −0.138928 + 0.116574i
\(755\) 0 0
\(756\) 0.371130 + 0.0357852i 0.0134978 + 0.00130150i
\(757\) −40.4910 −1.47167 −0.735835 0.677161i \(-0.763210\pi\)
−0.735835 + 0.677161i \(0.763210\pi\)
\(758\) −2.92023 + 2.45037i −0.106068 + 0.0890013i
\(759\) 2.15112 + 0.0689492i 0.0780807 + 0.00250270i
\(760\) 0 0
\(761\) −10.7121 + 3.89889i −0.388314 + 0.141335i −0.528797 0.848748i \(-0.677357\pi\)
0.140483 + 0.990083i \(0.455134\pi\)
\(762\) −0.746132 5.20085i −0.0270295 0.188407i
\(763\) −0.465364 2.63921i −0.0168473 0.0955457i
\(764\) 1.39798 + 2.42138i 0.0505772 + 0.0876023i
\(765\) 0 0
\(766\) −23.4605 + 40.6348i −0.847662 + 1.46819i
\(767\) −9.58628 3.48912i −0.346141 0.125985i
\(768\) 1.74768 8.33958i 0.0630638 0.300929i
\(769\) −5.73459 4.81189i −0.206795 0.173521i 0.533508 0.845795i \(-0.320873\pi\)
−0.740303 + 0.672274i \(0.765318\pi\)
\(770\) 0 0
\(771\) −6.25925 + 29.8680i −0.225421 + 1.07567i
\(772\) −1.83121 0.666505i −0.0659066 0.0239880i
\(773\) 2.29721 3.97889i 0.0826250 0.143111i −0.821752 0.569846i \(-0.807003\pi\)
0.904377 + 0.426735i \(0.140336\pi\)
\(774\) 8.11590 33.3643i 0.291720 1.19926i
\(775\) 0