Properties

Label 675.2.l.f.76.2
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [675,2,Mod(76,675)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("675.76"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(675, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([14, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [66,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.2
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.f.151.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.55121 + 1.30162i) q^{2} +(-1.45868 - 0.933937i) q^{3} +(0.364742 - 2.06856i) q^{4} +(3.47836 - 0.449921i) q^{6} +(0.0652816 + 0.370230i) q^{7} +(0.101721 + 0.176186i) q^{8} +(1.25552 + 2.72464i) q^{9} +(0.272976 + 0.0993552i) q^{11} +(-2.46395 + 2.67673i) q^{12} +(-0.677752 - 0.568702i) q^{13} +(-0.583165 - 0.489333i) q^{14} +(3.56047 + 1.29590i) q^{16} +(-2.32471 + 4.02651i) q^{17} +(-5.49403 - 2.59227i) q^{18} +(-1.75100 - 3.03282i) q^{19} +(0.250547 - 0.601018i) q^{21} +(-0.552766 + 0.201190i) q^{22} +(-0.0948473 + 0.537906i) q^{23} +(0.0161677 - 0.352001i) q^{24} +1.79157 q^{26} +(0.713228 - 5.14697i) q^{27} +0.789653 q^{28} +(-4.65300 + 3.90433i) q^{29} +(0.953291 - 5.40638i) q^{31} +(-7.59216 + 2.76332i) q^{32} +(-0.305395 - 0.399870i) q^{33} +(-1.63488 - 9.27184i) q^{34} +(6.09401 - 1.60333i) q^{36} +(5.47398 - 9.48122i) q^{37} +(6.66375 + 2.42541i) q^{38} +(0.457496 + 1.46253i) q^{39} +(-7.28901 - 6.11620i) q^{41} +(0.393647 + 1.25842i) q^{42} +(9.54330 + 3.47348i) q^{43} +(0.305088 - 0.528427i) q^{44} +(-0.553021 - 0.957860i) q^{46} +(-1.09967 - 6.23654i) q^{47} +(-3.98331 - 5.21557i) q^{48} +(6.44504 - 2.34580i) q^{49} +(7.15152 - 3.70228i) q^{51} +(-1.42360 + 1.19454i) q^{52} +12.2148 q^{53} +(5.59303 + 8.91238i) q^{54} +(-0.0585889 + 0.0491619i) q^{56} +(-0.278306 + 6.05925i) q^{57} +(2.13583 - 12.1129i) q^{58} +(-1.18778 + 0.432318i) q^{59} +(0.499613 + 2.83345i) q^{61} +(5.55830 + 9.62726i) q^{62} +(-0.926782 + 0.642702i) q^{63} +(4.39127 - 7.60590i) q^{64} +(0.994211 + 0.222775i) q^{66} +(-6.78495 - 5.69325i) q^{67} +(7.48114 + 6.27742i) q^{68} +(0.640723 - 0.696054i) q^{69} +(5.36876 - 9.29896i) q^{71} +(-0.352330 + 0.498359i) q^{72} +(0.389512 + 0.674654i) q^{73} +(3.84964 + 21.8324i) q^{74} +(-6.91222 + 2.51584i) q^{76} +(-0.0189640 + 0.107550i) q^{77} +(-2.61334 - 1.67321i) q^{78} +(5.29571 - 4.44363i) q^{79} +(-5.84732 + 6.84170i) q^{81} +19.2678 q^{82} +(6.88221 - 5.77486i) q^{83} +(-1.15186 - 0.737486i) q^{84} +(-19.3248 + 7.03366i) q^{86} +(10.4337 - 1.34958i) q^{87} +(0.0102624 + 0.0582011i) q^{88} +(-3.11061 - 5.38773i) q^{89} +(0.166306 - 0.288050i) q^{91} +(1.07809 + 0.392394i) q^{92} +(-6.43977 + 6.99589i) q^{93} +(9.82342 + 8.24283i) q^{94} +(13.6553 + 3.05978i) q^{96} +(-13.1743 - 4.79504i) q^{97} +(-6.94427 + 12.0278i) q^{98} +(0.0720209 + 0.868504i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.55121 + 1.30162i −1.09687 + 0.920384i −0.997211 0.0746373i \(-0.976220\pi\)
−0.0996605 + 0.995022i \(0.531776\pi\)
\(3\) −1.45868 0.933937i −0.842172 0.539209i
\(4\) 0.364742 2.06856i 0.182371 1.03428i
\(5\) 0 0
\(6\) 3.47836 0.449921i 1.42003 0.183679i
\(7\) 0.0652816 + 0.370230i 0.0246741 + 0.139934i 0.994656 0.103242i \(-0.0329217\pi\)
−0.969982 + 0.243176i \(0.921811\pi\)
\(8\) 0.101721 + 0.176186i 0.0359638 + 0.0622912i
\(9\) 1.25552 + 2.72464i 0.418508 + 0.908213i
\(10\) 0 0
\(11\) 0.272976 + 0.0993552i 0.0823054 + 0.0299567i 0.382845 0.923813i \(-0.374944\pi\)
−0.300539 + 0.953769i \(0.597167\pi\)
\(12\) −2.46395 + 2.67673i −0.711280 + 0.772704i
\(13\) −0.677752 0.568702i −0.187975 0.157729i 0.543944 0.839122i \(-0.316930\pi\)
−0.731919 + 0.681392i \(0.761375\pi\)
\(14\) −0.583165 0.489333i −0.155857 0.130780i
\(15\) 0 0
\(16\) 3.56047 + 1.29590i 0.890117 + 0.323976i
\(17\) −2.32471 + 4.02651i −0.563824 + 0.976572i 0.433334 + 0.901233i \(0.357337\pi\)
−0.997158 + 0.0753383i \(0.975996\pi\)
\(18\) −5.49403 2.59227i −1.29495 0.611005i
\(19\) −1.75100 3.03282i −0.401707 0.695777i 0.592225 0.805772i \(-0.298250\pi\)
−0.993932 + 0.109996i \(0.964916\pi\)
\(20\) 0 0
\(21\) 0.250547 0.601018i 0.0546737 0.131153i
\(22\) −0.552766 + 0.201190i −0.117850 + 0.0428939i
\(23\) −0.0948473 + 0.537906i −0.0197770 + 0.112161i −0.993098 0.117286i \(-0.962581\pi\)
0.973321 + 0.229447i \(0.0736918\pi\)
\(24\) 0.0161677 0.352001i 0.00330021 0.0718519i
\(25\) 0 0
\(26\) 1.79157 0.351356
\(27\) 0.713228 5.14697i 0.137261 0.990535i
\(28\) 0.789653 0.149230
\(29\) −4.65300 + 3.90433i −0.864040 + 0.725016i −0.962834 0.270092i \(-0.912946\pi\)
0.0987944 + 0.995108i \(0.468501\pi\)
\(30\) 0 0
\(31\) 0.953291 5.40638i 0.171216 0.971015i −0.771205 0.636587i \(-0.780346\pi\)
0.942421 0.334428i \(-0.108543\pi\)
\(32\) −7.59216 + 2.76332i −1.34212 + 0.488490i
\(33\) −0.305395 0.399870i −0.0531624 0.0696085i
\(34\) −1.63488 9.27184i −0.280379 1.59011i
\(35\) 0 0
\(36\) 6.09401 1.60333i 1.01567 0.267222i
\(37\) 5.47398 9.48122i 0.899917 1.55870i 0.0723191 0.997382i \(-0.476960\pi\)
0.827598 0.561321i \(-0.189707\pi\)
\(38\) 6.66375 + 2.42541i 1.08100 + 0.393453i
\(39\) 0.457496 + 1.46253i 0.0732579 + 0.234193i
\(40\) 0 0
\(41\) −7.28901 6.11620i −1.13835 0.955190i −0.138968 0.990297i \(-0.544378\pi\)
−0.999384 + 0.0351066i \(0.988823\pi\)
\(42\) 0.393647 + 1.25842i 0.0607411 + 0.194179i
\(43\) 9.54330 + 3.47348i 1.45534 + 0.529701i 0.944077 0.329724i \(-0.106956\pi\)
0.511263 + 0.859424i \(0.329178\pi\)
\(44\) 0.305088 0.528427i 0.0459937 0.0796634i
\(45\) 0 0
\(46\) −0.553021 0.957860i −0.0815385 0.141229i
\(47\) −1.09967 6.23654i −0.160403 0.909693i −0.953678 0.300829i \(-0.902737\pi\)
0.793275 0.608864i \(-0.208374\pi\)
\(48\) −3.98331 5.21557i −0.574941 0.752803i
\(49\) 6.44504 2.34580i 0.920720 0.335115i
\(50\) 0 0
\(51\) 7.15152 3.70228i 1.00141 0.518423i
\(52\) −1.42360 + 1.19454i −0.197417 + 0.165653i
\(53\) 12.2148 1.67783 0.838913 0.544265i \(-0.183191\pi\)
0.838913 + 0.544265i \(0.183191\pi\)
\(54\) 5.59303 + 8.91238i 0.761115 + 1.21282i
\(55\) 0 0
\(56\) −0.0585889 + 0.0491619i −0.00782927 + 0.00656954i
\(57\) −0.278306 + 6.05925i −0.0368625 + 0.802567i
\(58\) 2.13583 12.1129i 0.280448 1.59050i
\(59\) −1.18778 + 0.432318i −0.154636 + 0.0562830i −0.418179 0.908365i \(-0.637331\pi\)
0.263542 + 0.964648i \(0.415109\pi\)
\(60\) 0 0
\(61\) 0.499613 + 2.83345i 0.0639690 + 0.362786i 0.999943 + 0.0107158i \(0.00341102\pi\)
−0.935974 + 0.352070i \(0.885478\pi\)
\(62\) 5.55830 + 9.62726i 0.705905 + 1.22266i
\(63\) −0.926782 + 0.642702i −0.116764 + 0.0809728i
\(64\) 4.39127 7.60590i 0.548909 0.950737i
\(65\) 0 0
\(66\) 0.994211 + 0.222775i 0.122379 + 0.0274217i
\(67\) −6.78495 5.69325i −0.828913 0.695541i 0.126128 0.992014i \(-0.459745\pi\)
−0.955041 + 0.296473i \(0.904189\pi\)
\(68\) 7.48114 + 6.27742i 0.907222 + 0.761249i
\(69\) 0.640723 0.696054i 0.0771339 0.0837951i
\(70\) 0 0
\(71\) 5.36876 9.29896i 0.637154 1.10358i −0.348900 0.937160i \(-0.613445\pi\)
0.986054 0.166424i \(-0.0532219\pi\)
\(72\) −0.352330 + 0.498359i −0.0415225 + 0.0587322i
\(73\) 0.389512 + 0.674654i 0.0455889 + 0.0789623i 0.887919 0.459999i \(-0.152150\pi\)
−0.842331 + 0.538961i \(0.818817\pi\)
\(74\) 3.84964 + 21.8324i 0.447512 + 2.53797i
\(75\) 0 0
\(76\) −6.91222 + 2.51584i −0.792886 + 0.288587i
\(77\) −0.0189640 + 0.107550i −0.00216115 + 0.0122565i
\(78\) −2.61334 1.67321i −0.295902 0.189454i
\(79\) 5.29571 4.44363i 0.595813 0.499947i −0.294283 0.955718i \(-0.595081\pi\)
0.890097 + 0.455771i \(0.150637\pi\)
\(80\) 0 0
\(81\) −5.84732 + 6.84170i −0.649702 + 0.760189i
\(82\) 19.2678 2.12777
\(83\) 6.88221 5.77486i 0.755421 0.633874i −0.181509 0.983389i \(-0.558098\pi\)
0.936931 + 0.349516i \(0.113654\pi\)
\(84\) −1.15186 0.737486i −0.125678 0.0804664i
\(85\) 0 0
\(86\) −19.3248 + 7.03366i −2.08385 + 0.758459i
\(87\) 10.4337 1.34958i 1.11861 0.144690i
\(88\) 0.0102624 + 0.0582011i 0.00109398 + 0.00620426i
\(89\) −3.11061 5.38773i −0.329724 0.571099i 0.652733 0.757588i \(-0.273622\pi\)
−0.982457 + 0.186489i \(0.940289\pi\)
\(90\) 0 0
\(91\) 0.166306 0.288050i 0.0174336 0.0301959i
\(92\) 1.07809 + 0.392394i 0.112399 + 0.0409099i
\(93\) −6.43977 + 6.99589i −0.667773 + 0.725440i
\(94\) 9.82342 + 8.24283i 1.01321 + 0.850183i
\(95\) 0 0
\(96\) 13.6553 + 3.05978i 1.39369 + 0.312288i
\(97\) −13.1743 4.79504i −1.33765 0.486863i −0.428575 0.903506i \(-0.640984\pi\)
−0.909070 + 0.416643i \(0.863206\pi\)
\(98\) −6.94427 + 12.0278i −0.701477 + 1.21499i
\(99\) 0.0720209 + 0.868504i 0.00723838 + 0.0872880i
\(100\) 0 0
\(101\) −0.698390 3.96077i −0.0694924 0.394111i −0.999638 0.0269191i \(-0.991430\pi\)
0.930145 0.367192i \(-0.119681\pi\)
\(102\) −6.27455 + 15.0516i −0.621273 + 1.49033i
\(103\) 0.484326 0.176280i 0.0477221 0.0173694i −0.318049 0.948074i \(-0.603028\pi\)
0.365771 + 0.930705i \(0.380805\pi\)
\(104\) 0.0312556 0.177260i 0.00306487 0.0173817i
\(105\) 0 0
\(106\) −18.9477 + 15.8990i −1.84036 + 1.54425i
\(107\) 17.9687 1.73710 0.868552 0.495598i \(-0.165051\pi\)
0.868552 + 0.495598i \(0.165051\pi\)
\(108\) −10.3867 3.35267i −0.999456 0.322611i
\(109\) −1.10502 −0.105842 −0.0529209 0.998599i \(-0.516853\pi\)
−0.0529209 + 0.998599i \(0.516853\pi\)
\(110\) 0 0
\(111\) −16.8397 + 8.71775i −1.59835 + 0.827453i
\(112\) −0.247350 + 1.40279i −0.0233724 + 0.132551i
\(113\) −8.53194 + 3.10537i −0.802618 + 0.292129i −0.710571 0.703626i \(-0.751563\pi\)
−0.0920470 + 0.995755i \(0.529341\pi\)
\(114\) −7.45513 9.76142i −0.698237 0.914241i
\(115\) 0 0
\(116\) 6.37918 + 11.0491i 0.592292 + 1.02588i
\(117\) 0.698573 2.56065i 0.0645831 0.236732i
\(118\) 1.27979 2.21666i 0.117814 0.204060i
\(119\) −1.64250 0.597820i −0.150567 0.0548020i
\(120\) 0 0
\(121\) −8.36184 7.01642i −0.760168 0.637856i
\(122\) −4.46308 3.74497i −0.404068 0.339053i
\(123\) 4.92022 + 15.7291i 0.443641 + 1.41824i
\(124\) −10.8357 3.94387i −0.973074 0.354170i
\(125\) 0 0
\(126\) 0.601080 2.20328i 0.0535484 0.196284i
\(127\) −5.39923 9.35175i −0.479105 0.829833i 0.520608 0.853796i \(-0.325705\pi\)
−0.999713 + 0.0239622i \(0.992372\pi\)
\(128\) 0.282262 + 1.60079i 0.0249487 + 0.141491i
\(129\) −10.6767 13.9796i −0.940028 1.23083i
\(130\) 0 0
\(131\) 2.14908 12.1880i 0.187766 1.06487i −0.734584 0.678518i \(-0.762623\pi\)
0.922350 0.386356i \(-0.126266\pi\)
\(132\) −0.938545 + 0.485876i −0.0816898 + 0.0422901i
\(133\) 1.00853 0.846260i 0.0874510 0.0733801i
\(134\) 17.9353 1.54938
\(135\) 0 0
\(136\) −0.945886 −0.0811091
\(137\) 12.6386 10.6051i 1.07979 0.906052i 0.0838872 0.996475i \(-0.473266\pi\)
0.995903 + 0.0904234i \(0.0288220\pi\)
\(138\) −0.0878978 + 1.91370i −0.00748236 + 0.162905i
\(139\) −2.14103 + 12.1424i −0.181600 + 1.02990i 0.748647 + 0.662969i \(0.230704\pi\)
−0.930247 + 0.366935i \(0.880407\pi\)
\(140\) 0 0
\(141\) −4.22046 + 10.1242i −0.355427 + 0.852609i
\(142\) 3.77564 + 21.4127i 0.316845 + 1.79692i
\(143\) −0.128507 0.222580i −0.0107463 0.0186131i
\(144\) 0.939380 + 11.3280i 0.0782817 + 0.944003i
\(145\) 0 0
\(146\) −1.48236 0.539534i −0.122681 0.0446522i
\(147\) −11.5921 2.59747i −0.956101 0.214236i
\(148\) −17.6158 14.7814i −1.44801 1.21503i
\(149\) −7.81833 6.56036i −0.640503 0.537446i 0.263670 0.964613i \(-0.415067\pi\)
−0.904173 + 0.427167i \(0.859512\pi\)
\(150\) 0 0
\(151\) 16.7786 + 6.10690i 1.36542 + 0.496972i 0.917726 0.397214i \(-0.130023\pi\)
0.447695 + 0.894187i \(0.352245\pi\)
\(152\) 0.356227 0.617003i 0.0288938 0.0500456i
\(153\) −13.8895 1.27861i −1.12290 0.103369i
\(154\) −0.110572 0.191517i −0.00891016 0.0154329i
\(155\) 0 0
\(156\) 3.19220 0.412907i 0.255581 0.0330590i
\(157\) −10.8531 + 3.95020i −0.866170 + 0.315260i −0.736615 0.676312i \(-0.763577\pi\)
−0.129555 + 0.991572i \(0.541355\pi\)
\(158\) −2.43084 + 13.7860i −0.193387 + 1.09675i
\(159\) −17.8175 11.4078i −1.41302 0.904699i
\(160\) 0 0
\(161\) −0.205341 −0.0161831
\(162\) 0.165131 18.2239i 0.0129739 1.43180i
\(163\) −6.26212 −0.490487 −0.245244 0.969461i \(-0.578868\pi\)
−0.245244 + 0.969461i \(0.578868\pi\)
\(164\) −15.3103 + 12.8469i −1.19553 + 1.00317i
\(165\) 0 0
\(166\) −3.15908 + 17.9161i −0.245192 + 1.39056i
\(167\) −14.7179 + 5.35688i −1.13891 + 0.414528i −0.841518 0.540229i \(-0.818338\pi\)
−0.297388 + 0.954757i \(0.596116\pi\)
\(168\) 0.131377 0.0169934i 0.0101360 0.00131107i
\(169\) −2.12150 12.0316i −0.163192 0.925509i
\(170\) 0 0
\(171\) 6.06492 8.57862i 0.463796 0.656023i
\(172\) 10.6659 18.4739i 0.813270 1.40862i
\(173\) −8.57107 3.11962i −0.651647 0.237180i −0.00502090 0.999987i \(-0.501598\pi\)
−0.646626 + 0.762807i \(0.723820\pi\)
\(174\) −14.4282 + 15.6741i −1.09380 + 1.18825i
\(175\) 0 0
\(176\) 0.843168 + 0.707502i 0.0635562 + 0.0533300i
\(177\) 2.13636 + 0.478700i 0.160579 + 0.0359813i
\(178\) 11.8380 + 4.30868i 0.887295 + 0.322949i
\(179\) 1.32110 2.28821i 0.0987437 0.171029i −0.812421 0.583071i \(-0.801851\pi\)
0.911165 + 0.412042i \(0.135184\pi\)
\(180\) 0 0
\(181\) 3.54912 + 6.14725i 0.263804 + 0.456922i 0.967250 0.253827i \(-0.0816895\pi\)
−0.703446 + 0.710749i \(0.748356\pi\)
\(182\) 0.116957 + 0.663294i 0.00866940 + 0.0491666i
\(183\) 1.91748 4.59972i 0.141744 0.340021i
\(184\) −0.104420 + 0.0380056i −0.00769791 + 0.00280181i
\(185\) 0 0
\(186\) 0.883443 19.2342i 0.0647772 1.41032i
\(187\) −1.03464 + 0.868169i −0.0756606 + 0.0634868i
\(188\) −13.3017 −0.970128
\(189\) 1.95213 0.0719439i 0.141996 0.00523315i
\(190\) 0 0
\(191\) 3.97951 3.33921i 0.287948 0.241617i −0.487359 0.873202i \(-0.662040\pi\)
0.775307 + 0.631585i \(0.217595\pi\)
\(192\) −13.5089 + 6.99344i −0.974921 + 0.504708i
\(193\) 0.681015 3.86223i 0.0490205 0.278009i −0.950438 0.310914i \(-0.899365\pi\)
0.999458 + 0.0329051i \(0.0104759\pi\)
\(194\) 26.6774 9.70978i 1.91533 0.697121i
\(195\) 0 0
\(196\) −2.50165 14.1875i −0.178689 1.01340i
\(197\) 5.18583 + 8.98212i 0.369475 + 0.639950i 0.989484 0.144646i \(-0.0462042\pi\)
−0.620008 + 0.784595i \(0.712871\pi\)
\(198\) −1.24218 1.25349i −0.0882780 0.0890816i
\(199\) −5.95479 + 10.3140i −0.422124 + 0.731140i −0.996147 0.0876991i \(-0.972049\pi\)
0.574023 + 0.818839i \(0.305382\pi\)
\(200\) 0 0
\(201\) 4.57997 + 14.6414i 0.323046 + 1.03272i
\(202\) 6.23876 + 5.23494i 0.438958 + 0.368329i
\(203\) −1.74926 1.46780i −0.122774 0.103019i
\(204\) −5.04991 16.1437i −0.353565 1.13028i
\(205\) 0 0
\(206\) −0.521842 + 0.903856i −0.0363584 + 0.0629747i
\(207\) −1.58468 + 0.416929i −0.110143 + 0.0289786i
\(208\) −1.67613 2.90315i −0.116219 0.201297i
\(209\) −0.176655 1.00186i −0.0122195 0.0693000i
\(210\) 0 0
\(211\) −2.30091 + 0.837462i −0.158401 + 0.0576532i −0.420004 0.907522i \(-0.637971\pi\)
0.261603 + 0.965176i \(0.415749\pi\)
\(212\) 4.45524 25.2669i 0.305987 1.73534i
\(213\) −16.5160 + 8.55017i −1.13166 + 0.585848i
\(214\) −27.8733 + 23.3885i −1.90538 + 1.59880i
\(215\) 0 0
\(216\) 0.979375 0.397895i 0.0666380 0.0270733i
\(217\) 2.06384 0.140103
\(218\) 1.71412 1.43832i 0.116095 0.0974152i
\(219\) 0.0619094 1.34789i 0.00418345 0.0910818i
\(220\) 0 0
\(221\) 3.86546 1.40691i 0.260019 0.0946391i
\(222\) 14.7747 35.4419i 0.991611 2.37871i
\(223\) −3.12885 17.7446i −0.209523 1.18826i −0.890162 0.455645i \(-0.849409\pi\)
0.680639 0.732619i \(-0.261702\pi\)
\(224\) −1.51869 2.63045i −0.101472 0.175755i
\(225\) 0 0
\(226\) 9.19282 15.9224i 0.611497 1.05914i
\(227\) 5.02409 + 1.82862i 0.333460 + 0.121370i 0.503324 0.864098i \(-0.332110\pi\)
−0.169863 + 0.985468i \(0.554333\pi\)
\(228\) 12.4324 + 2.78576i 0.823355 + 0.184491i
\(229\) 16.5031 + 13.8477i 1.09055 + 0.915083i 0.996754 0.0805082i \(-0.0256543\pi\)
0.0937994 + 0.995591i \(0.470099\pi\)
\(230\) 0 0
\(231\) 0.128107 0.139171i 0.00842885 0.00915675i
\(232\) −1.16120 0.422641i −0.0762363 0.0277477i
\(233\) −12.7820 + 22.1390i −0.837375 + 1.45038i 0.0547064 + 0.998502i \(0.482578\pi\)
−0.892082 + 0.451874i \(0.850756\pi\)
\(234\) 2.24936 + 4.88138i 0.147045 + 0.319106i
\(235\) 0 0
\(236\) 0.461039 + 2.61468i 0.0300111 + 0.170201i
\(237\) −11.8748 + 1.53599i −0.771353 + 0.0997735i
\(238\) 3.32599 1.21056i 0.215592 0.0784691i
\(239\) 1.60685 9.11290i 0.103939 0.589465i −0.887700 0.460421i \(-0.847698\pi\)
0.991639 0.129043i \(-0.0411906\pi\)
\(240\) 0 0
\(241\) −22.0268 + 18.4827i −1.41887 + 1.19058i −0.466933 + 0.884293i \(0.654641\pi\)
−0.951940 + 0.306283i \(0.900914\pi\)
\(242\) 22.1037 1.42088
\(243\) 14.9191 4.51886i 0.957062 0.289885i
\(244\) 6.04338 0.386888
\(245\) 0 0
\(246\) −28.1056 17.9949i −1.79195 1.14731i
\(247\) −0.538026 + 3.05130i −0.0342338 + 0.194149i
\(248\) 1.04950 0.381986i 0.0666432 0.0242562i
\(249\) −15.4323 + 1.99615i −0.977985 + 0.126501i
\(250\) 0 0
\(251\) 5.86206 + 10.1534i 0.370010 + 0.640876i 0.989567 0.144076i \(-0.0460210\pi\)
−0.619557 + 0.784952i \(0.712688\pi\)
\(252\) 0.991429 + 2.15152i 0.0624541 + 0.135533i
\(253\) −0.0793348 + 0.137412i −0.00498774 + 0.00863901i
\(254\) 20.5478 + 7.47878i 1.28928 + 0.469260i
\(255\) 0 0
\(256\) 10.9342 + 9.17485i 0.683385 + 0.573428i
\(257\) 2.82575 + 2.37109i 0.176265 + 0.147904i 0.726652 0.687006i \(-0.241075\pi\)
−0.550387 + 0.834910i \(0.685520\pi\)
\(258\) 34.7578 + 7.78827i 2.16393 + 0.484876i
\(259\) 3.86758 + 1.40769i 0.240320 + 0.0874693i
\(260\) 0 0
\(261\) −16.4798 7.77576i −1.02008 0.481308i
\(262\) 12.5305 + 21.7035i 0.774138 + 1.34085i
\(263\) −3.83968 21.7759i −0.236765 1.34276i −0.838864 0.544340i \(-0.816780\pi\)
0.602099 0.798421i \(-0.294331\pi\)
\(264\) 0.0393865 0.0944815i 0.00242407 0.00581494i
\(265\) 0 0
\(266\) −0.462939 + 2.62546i −0.0283846 + 0.160977i
\(267\) −0.494404 + 10.7641i −0.0302570 + 0.658754i
\(268\) −14.2516 + 11.9585i −0.870553 + 0.730480i
\(269\) 25.3331 1.54459 0.772294 0.635265i \(-0.219109\pi\)
0.772294 + 0.635265i \(0.219109\pi\)
\(270\) 0 0
\(271\) 28.7783 1.74816 0.874079 0.485783i \(-0.161466\pi\)
0.874079 + 0.485783i \(0.161466\pi\)
\(272\) −13.4950 + 11.3237i −0.818255 + 0.686598i
\(273\) −0.511609 + 0.264855i −0.0309640 + 0.0160298i
\(274\) −5.80140 + 32.9014i −0.350475 + 1.98764i
\(275\) 0 0
\(276\) −1.20613 1.57925i −0.0726004 0.0950598i
\(277\) 3.42530 + 19.4258i 0.205806 + 1.16718i 0.896166 + 0.443719i \(0.146341\pi\)
−0.690360 + 0.723466i \(0.742548\pi\)
\(278\) −12.4836 21.6222i −0.748715 1.29681i
\(279\) 15.9273 4.19047i 0.953544 0.250877i
\(280\) 0 0
\(281\) −8.19525 2.98283i −0.488887 0.177940i 0.0858017 0.996312i \(-0.472655\pi\)
−0.574689 + 0.818372i \(0.694877\pi\)
\(282\) −6.63100 21.1982i −0.394870 1.26233i
\(283\) 5.69001 + 4.77449i 0.338236 + 0.283814i 0.796046 0.605236i \(-0.206921\pi\)
−0.457810 + 0.889050i \(0.651366\pi\)
\(284\) −17.2772 14.4973i −1.02521 0.860257i
\(285\) 0 0
\(286\) 0.489056 + 0.178002i 0.0289185 + 0.0105255i
\(287\) 1.78857 3.09789i 0.105576 0.182862i
\(288\) −17.0612 17.2165i −1.00534 1.01449i
\(289\) −2.30851 3.99846i −0.135795 0.235204i
\(290\) 0 0
\(291\) 14.7389 + 19.2984i 0.864007 + 1.13129i
\(292\) 1.53763 0.559652i 0.0899831 0.0327512i
\(293\) 0.328799 1.86471i 0.0192086 0.108937i −0.973696 0.227851i \(-0.926830\pi\)
0.992905 + 0.118914i \(0.0379412\pi\)
\(294\) 21.3627 11.0593i 1.24590 0.644991i
\(295\) 0 0
\(296\) 2.22728 0.129458
\(297\) 0.706072 1.33414i 0.0409705 0.0774145i
\(298\) 20.6670 1.19721
\(299\) 0.370191 0.310627i 0.0214087 0.0179640i
\(300\) 0 0
\(301\) −0.662985 + 3.75998i −0.0382138 + 0.216721i
\(302\) −33.9759 + 12.3662i −1.95510 + 0.711597i
\(303\) −2.68037 + 6.42976i −0.153983 + 0.369380i
\(304\) −2.30413 13.0674i −0.132151 0.749466i
\(305\) 0 0
\(306\) 23.2098 16.0955i 1.32682 0.920117i
\(307\) −7.11195 + 12.3183i −0.405900 + 0.703040i −0.994426 0.105439i \(-0.966375\pi\)
0.588525 + 0.808479i \(0.299709\pi\)
\(308\) 0.215556 + 0.0784561i 0.0122825 + 0.00447045i
\(309\) −0.871114 0.195193i −0.0495559 0.0111041i
\(310\) 0 0
\(311\) 11.2222 + 9.41658i 0.636355 + 0.533965i 0.902896 0.429858i \(-0.141436\pi\)
−0.266541 + 0.963824i \(0.585881\pi\)
\(312\) −0.211141 + 0.229375i −0.0119535 + 0.0129858i
\(313\) 24.3151 + 8.84996i 1.37437 + 0.500229i 0.920466 0.390822i \(-0.127809\pi\)
0.453902 + 0.891051i \(0.350032\pi\)
\(314\) 11.6938 20.2542i 0.659917 1.14301i
\(315\) 0 0
\(316\) −7.26032 12.5752i −0.408425 0.707413i
\(317\) 3.17156 + 17.9868i 0.178133 + 1.01024i 0.934466 + 0.356053i \(0.115878\pi\)
−0.756333 + 0.654187i \(0.773011\pi\)
\(318\) 42.4873 5.49568i 2.38257 0.308182i
\(319\) −1.65807 + 0.603489i −0.0928342 + 0.0337889i
\(320\) 0 0
\(321\) −26.2107 16.7817i −1.46294 0.936661i
\(322\) 0.318527 0.267276i 0.0177508 0.0148947i
\(323\) 16.2822 0.905968
\(324\) 12.0197 + 14.5910i 0.667760 + 0.810609i
\(325\) 0 0
\(326\) 9.71387 8.15090i 0.538001 0.451437i
\(327\) 1.61188 + 1.03202i 0.0891371 + 0.0570709i
\(328\) 0.336144 1.90637i 0.0185605 0.105262i
\(329\) 2.23717 0.814263i 0.123339 0.0448918i
\(330\) 0 0
\(331\) −5.49188 31.1460i −0.301861 1.71194i −0.637923 0.770100i \(-0.720206\pi\)
0.336062 0.941840i \(-0.390905\pi\)
\(332\) −9.43539 16.3426i −0.517835 0.896916i
\(333\) 32.7056 + 3.01074i 1.79226 + 0.164987i
\(334\) 15.8580 27.4668i 0.867709 1.50292i
\(335\) 0 0
\(336\) 1.67093 1.81522i 0.0911565 0.0990285i
\(337\) 5.87047 + 4.92591i 0.319785 + 0.268332i 0.788522 0.615006i \(-0.210846\pi\)
−0.468737 + 0.883338i \(0.655291\pi\)
\(338\) 18.9515 + 15.9022i 1.03083 + 0.864965i
\(339\) 15.3456 + 3.43854i 0.833461 + 0.186756i
\(340\) 0 0
\(341\) 0.797378 1.38110i 0.0431804 0.0747907i
\(342\) 1.75814 + 21.2015i 0.0950691 + 1.14644i
\(343\) 2.60503 + 4.51204i 0.140658 + 0.243627i
\(344\) 0.358777 + 2.03472i 0.0193439 + 0.109705i
\(345\) 0 0
\(346\) 17.3561 6.31710i 0.933069 0.339609i
\(347\) 0.616506 3.49638i 0.0330958 0.187695i −0.963778 0.266706i \(-0.914065\pi\)
0.996874 + 0.0790102i \(0.0251760\pi\)
\(348\) 1.01391 22.0749i 0.0543515 1.18334i
\(349\) −3.58455 + 3.00779i −0.191876 + 0.161003i −0.733665 0.679511i \(-0.762192\pi\)
0.541788 + 0.840515i \(0.317747\pi\)
\(350\) 0 0
\(351\) −3.41048 + 3.08276i −0.182038 + 0.164545i
\(352\) −2.34703 −0.125097
\(353\) 12.0080 10.0759i 0.639120 0.536286i −0.264628 0.964351i \(-0.585249\pi\)
0.903748 + 0.428065i \(0.140805\pi\)
\(354\) −3.93703 + 2.03817i −0.209251 + 0.108327i
\(355\) 0 0
\(356\) −12.2794 + 4.46934i −0.650807 + 0.236874i
\(357\) 1.83756 + 2.40602i 0.0972539 + 0.127340i
\(358\) 0.929080 + 5.26907i 0.0491034 + 0.278479i
\(359\) −1.36397 2.36247i −0.0719876 0.124686i 0.827785 0.561046i \(-0.189601\pi\)
−0.899772 + 0.436360i \(0.856268\pi\)
\(360\) 0 0
\(361\) 3.36800 5.83355i 0.177263 0.307029i
\(362\) −13.5068 4.91608i −0.709902 0.258383i
\(363\) 5.64440 + 18.0442i 0.296254 + 0.947074i
\(364\) −0.535189 0.449077i −0.0280516 0.0235380i
\(365\) 0 0
\(366\) 3.01266 + 9.63096i 0.157474 + 0.503418i
\(367\) −29.9725 10.9091i −1.56455 0.569450i −0.592778 0.805366i \(-0.701969\pi\)
−0.971773 + 0.235916i \(0.924191\pi\)
\(368\) −1.03478 + 1.79228i −0.0539414 + 0.0934293i
\(369\) 7.51293 27.5390i 0.391107 1.43362i
\(370\) 0 0
\(371\) 0.797399 + 4.52228i 0.0413989 + 0.234785i
\(372\) 12.1225 + 15.8727i 0.628525 + 0.822962i
\(373\) −5.82118 + 2.11873i −0.301409 + 0.109704i −0.488298 0.872677i \(-0.662382\pi\)
0.186888 + 0.982381i \(0.440160\pi\)
\(374\) 0.474924 2.69343i 0.0245577 0.139274i
\(375\) 0 0
\(376\) 0.986932 0.828134i 0.0508971 0.0427078i
\(377\) 5.37398 0.276774
\(378\) −2.93451 + 2.65253i −0.150935 + 0.136431i
\(379\) 24.4506 1.25595 0.627973 0.778235i \(-0.283885\pi\)
0.627973 + 0.778235i \(0.283885\pi\)
\(380\) 0 0
\(381\) −0.858161 + 18.6838i −0.0439649 + 0.957200i
\(382\) −1.82668 + 10.3596i −0.0934612 + 0.530045i
\(383\) 7.01885 2.55465i 0.358647 0.130537i −0.156411 0.987692i \(-0.549993\pi\)
0.515058 + 0.857155i \(0.327770\pi\)
\(384\) 1.08330 2.59866i 0.0552821 0.132612i
\(385\) 0 0
\(386\) 3.97075 + 6.87755i 0.202106 + 0.350058i
\(387\) 2.51787 + 30.3631i 0.127990 + 1.54344i
\(388\) −14.7240 + 25.5028i −0.747500 + 1.29471i
\(389\) −26.7061 9.72022i −1.35405 0.492835i −0.439842 0.898075i \(-0.644966\pi\)
−0.914210 + 0.405240i \(0.867188\pi\)
\(390\) 0 0
\(391\) −1.94539 1.63238i −0.0983826 0.0825528i
\(392\) 1.06889 + 0.896909i 0.0539873 + 0.0453007i
\(393\) −14.5177 + 15.7714i −0.732320 + 0.795562i
\(394\) −19.7356 7.18318i −0.994266 0.361883i
\(395\) 0 0
\(396\) 1.82282 + 0.167801i 0.0916001 + 0.00843231i
\(397\) −14.4933 25.1031i −0.727396 1.25989i −0.957980 0.286834i \(-0.907397\pi\)
0.230585 0.973052i \(-0.425936\pi\)
\(398\) −4.18777 23.7501i −0.209914 1.19048i
\(399\) −2.26149 + 0.292520i −0.113216 + 0.0146443i
\(400\) 0 0
\(401\) 5.27642 29.9241i 0.263492 1.49434i −0.509804 0.860291i \(-0.670282\pi\)
0.773296 0.634046i \(-0.218607\pi\)
\(402\) −26.1620 16.7505i −1.30484 0.835437i
\(403\) −3.72071 + 3.12205i −0.185342 + 0.155520i
\(404\) −8.44780 −0.420294
\(405\) 0 0
\(406\) 4.62398 0.229484
\(407\) 2.43627 2.04428i 0.120762 0.101331i
\(408\) 1.37975 + 0.883398i 0.0683078 + 0.0437347i
\(409\) −0.726985 + 4.12294i −0.0359471 + 0.203866i −0.997492 0.0707824i \(-0.977450\pi\)
0.961545 + 0.274649i \(0.0885615\pi\)
\(410\) 0 0
\(411\) −28.3402 + 3.66577i −1.39792 + 0.180819i
\(412\) −0.187992 1.06615i −0.00926168 0.0525256i
\(413\) −0.237598 0.411531i −0.0116914 0.0202501i
\(414\) 1.91549 2.70940i 0.0941414 0.133160i
\(415\) 0 0
\(416\) 6.71711 + 2.44483i 0.329333 + 0.119868i
\(417\) 14.4633 15.7123i 0.708271 0.769436i
\(418\) 1.57807 + 1.32416i 0.0771858 + 0.0647666i
\(419\) −17.7641 14.9058i −0.867832 0.728197i 0.0958087 0.995400i \(-0.469456\pi\)
−0.963640 + 0.267203i \(0.913901\pi\)
\(420\) 0 0
\(421\) 6.96568 + 2.53530i 0.339487 + 0.123563i 0.506137 0.862453i \(-0.331073\pi\)
−0.166651 + 0.986016i \(0.553295\pi\)
\(422\) 2.47913 4.29399i 0.120682 0.209028i
\(423\) 15.6117 10.8263i 0.759065 0.526394i
\(424\) 1.24250 + 2.15207i 0.0603411 + 0.104514i
\(425\) 0 0
\(426\) 14.4907 34.7606i 0.702075 1.68416i
\(427\) −1.01641 + 0.369944i −0.0491877 + 0.0179029i
\(428\) 6.55396 37.1694i 0.316798 1.79665i
\(429\) −0.0204250 + 0.444692i −0.000986129 + 0.0214699i
\(430\) 0 0
\(431\) 3.55875 0.171419 0.0857095 0.996320i \(-0.472684\pi\)
0.0857095 + 0.996320i \(0.472684\pi\)
\(432\) 9.20941 17.4014i 0.443088 0.837223i
\(433\) −39.5383 −1.90009 −0.950046 0.312111i \(-0.898964\pi\)
−0.950046 + 0.312111i \(0.898964\pi\)
\(434\) −3.20145 + 2.68633i −0.153674 + 0.128948i
\(435\) 0 0
\(436\) −0.403048 + 2.28580i −0.0193025 + 0.109470i
\(437\) 1.79745 0.654218i 0.0859837 0.0312955i
\(438\) 1.65840 + 2.17144i 0.0792415 + 0.103755i
\(439\) −0.368776 2.09143i −0.0176007 0.0998186i 0.974742 0.223334i \(-0.0716942\pi\)
−0.992343 + 0.123516i \(0.960583\pi\)
\(440\) 0 0
\(441\) 14.4834 + 14.6152i 0.689684 + 0.695962i
\(442\) −4.16487 + 7.21377i −0.198103 + 0.343124i
\(443\) −15.2652 5.55606i −0.725270 0.263977i −0.0471084 0.998890i \(-0.515001\pi\)
−0.678161 + 0.734913i \(0.737223\pi\)
\(444\) 11.8910 + 38.0136i 0.564323 + 1.80404i
\(445\) 0 0
\(446\) 27.9502 + 23.4530i 1.32348 + 1.11053i
\(447\) 5.27752 + 16.8713i 0.249618 + 0.797987i
\(448\) 3.10260 + 1.12926i 0.146584 + 0.0533523i
\(449\) −17.8132 + 30.8534i −0.840658 + 1.45606i 0.0486805 + 0.998814i \(0.484498\pi\)
−0.889339 + 0.457249i \(0.848835\pi\)
\(450\) 0 0
\(451\) −1.38205 2.39378i −0.0650781 0.112719i
\(452\) 3.31168 + 18.7815i 0.155768 + 0.883406i
\(453\) −18.7712 24.5782i −0.881947 1.15478i
\(454\) −10.1736 + 3.70288i −0.477470 + 0.173785i
\(455\) 0 0
\(456\) −1.09587 + 0.567320i −0.0513186 + 0.0265672i
\(457\) 19.7485 16.5710i 0.923796 0.775157i −0.0508970 0.998704i \(-0.516208\pi\)
0.974693 + 0.223547i \(0.0717636\pi\)
\(458\) −43.6242 −2.03842
\(459\) 19.0663 + 14.8370i 0.889938 + 0.692532i
\(460\) 0 0
\(461\) −26.3039 + 22.0716i −1.22509 + 1.02798i −0.226551 + 0.973999i \(0.572745\pi\)
−0.998542 + 0.0539762i \(0.982810\pi\)
\(462\) −0.0175745 + 0.382630i −0.000817639 + 0.0178016i
\(463\) −5.12509 + 29.0659i −0.238183 + 1.35080i 0.597622 + 0.801778i \(0.296112\pi\)
−0.835805 + 0.549026i \(0.814999\pi\)
\(464\) −21.6265 + 7.87140i −1.00398 + 0.365421i
\(465\) 0 0
\(466\) −8.98908 50.9796i −0.416411 2.36158i
\(467\) −8.31964 14.4100i −0.384987 0.666817i 0.606780 0.794869i \(-0.292461\pi\)
−0.991767 + 0.128053i \(0.959127\pi\)
\(468\) −5.04205 2.37902i −0.233069 0.109970i
\(469\) 1.66488 2.88366i 0.0768770 0.133155i
\(470\) 0 0
\(471\) 19.5205 + 4.37400i 0.899455 + 0.201543i
\(472\) −0.196991 0.165295i −0.00906725 0.00760833i
\(473\) 2.25999 + 1.89635i 0.103914 + 0.0871944i
\(474\) 16.4211 17.8392i 0.754245 0.819380i
\(475\) 0 0
\(476\) −1.83571 + 3.17955i −0.0841397 + 0.145734i
\(477\) 15.3359 + 33.2808i 0.702184 + 1.52382i
\(478\) 9.36897 + 16.2275i 0.428527 + 0.742230i
\(479\) 0.965663 + 5.47655i 0.0441223 + 0.250230i 0.998889 0.0471262i \(-0.0150063\pi\)
−0.954767 + 0.297356i \(0.903895\pi\)
\(480\) 0 0
\(481\) −9.10199 + 3.31285i −0.415015 + 0.151053i
\(482\) 10.1108 57.3411i 0.460534 2.61182i
\(483\) 0.299528 + 0.191775i 0.0136290 + 0.00872609i
\(484\) −17.5638 + 14.7378i −0.798354 + 0.669898i
\(485\) 0 0
\(486\) −17.2608 + 26.4287i −0.782968 + 1.19883i
\(487\) −17.5069 −0.793314 −0.396657 0.917967i \(-0.629830\pi\)
−0.396657 + 0.917967i \(0.629830\pi\)
\(488\) −0.448393 + 0.376246i −0.0202978 + 0.0170319i
\(489\) 9.13446 + 5.84843i 0.413075 + 0.264475i
\(490\) 0 0
\(491\) 25.2199 9.17930i 1.13816 0.414256i 0.296911 0.954905i \(-0.404044\pi\)
0.841248 + 0.540649i \(0.181821\pi\)
\(492\) 34.3311 4.44068i 1.54777 0.200201i
\(493\) −4.90396 27.8118i −0.220863 1.25258i
\(494\) −3.13704 5.43351i −0.141142 0.244465i
\(495\) 0 0
\(496\) 10.4003 18.0139i 0.466988 0.808847i
\(497\) 3.79324 + 1.38063i 0.170150 + 0.0619295i
\(498\) 21.3406 23.1835i 0.956294 1.03888i
\(499\) 4.46524 + 3.74678i 0.199892 + 0.167729i 0.737239 0.675632i \(-0.236129\pi\)
−0.537347 + 0.843361i \(0.680574\pi\)
\(500\) 0 0
\(501\) 26.4718 + 5.93160i 1.18267 + 0.265004i
\(502\) −22.3091 8.11986i −0.995705 0.362407i
\(503\) 15.2521 26.4175i 0.680059 1.17790i −0.294904 0.955527i \(-0.595288\pi\)
0.974963 0.222369i \(-0.0713790\pi\)
\(504\) −0.207508 0.0979097i −0.00924316 0.00436124i
\(505\) 0 0
\(506\) −0.0557931 0.316419i −0.00248031 0.0140665i
\(507\) −8.14218 + 19.5317i −0.361607 + 0.867433i
\(508\) −21.3139 + 7.75764i −0.945654 + 0.344190i
\(509\) −5.46355 + 30.9853i −0.242167 + 1.37340i 0.584813 + 0.811168i \(0.301168\pi\)
−0.826980 + 0.562231i \(0.809943\pi\)
\(510\) 0 0
\(511\) −0.224349 + 0.188252i −0.00992464 + 0.00832776i
\(512\) −32.1543 −1.42103
\(513\) −16.8587 + 6.84925i −0.744330 + 0.302402i
\(514\) −7.46958 −0.329469
\(515\) 0 0
\(516\) −32.8117 + 16.9863i −1.44446 + 0.747782i
\(517\) 0.319449 1.81168i 0.0140493 0.0796778i
\(518\) −7.83171 + 2.85051i −0.344106 + 0.125244i
\(519\) 9.58897 + 12.5554i 0.420909 + 0.551120i
\(520\) 0 0
\(521\) −4.14101 7.17245i −0.181421 0.314231i 0.760944 0.648818i \(-0.224736\pi\)
−0.942365 + 0.334587i \(0.891403\pi\)
\(522\) 35.6848 9.38864i 1.56188 0.410930i
\(523\) −8.91120 + 15.4347i −0.389660 + 0.674910i −0.992404 0.123024i \(-0.960741\pi\)
0.602744 + 0.797935i \(0.294074\pi\)
\(524\) −24.4278 8.89098i −1.06713 0.388404i
\(525\) 0 0
\(526\) 34.3001 + 28.7812i 1.49556 + 1.25492i
\(527\) 19.5527 + 16.4067i 0.851730 + 0.714686i
\(528\) −0.569154 1.81949i −0.0247693 0.0791831i
\(529\) 21.3326 + 7.76443i 0.927504 + 0.337584i
\(530\) 0 0
\(531\) −2.66920 2.69350i −0.115834 0.116888i
\(532\) −1.38268 2.39488i −0.0599469 0.103831i
\(533\) 1.46185 + 8.29054i 0.0633196 + 0.359103i
\(534\) −13.2439 17.3409i −0.573118 0.750416i
\(535\) 0 0
\(536\) 0.312899 1.77454i 0.0135152 0.0766483i
\(537\) −4.06412 + 2.10396i −0.175380 + 0.0907925i
\(538\) −39.2970 + 32.9741i −1.69421 + 1.42161i
\(539\) 1.99241 0.0858191
\(540\) 0 0
\(541\) −34.8916 −1.50011 −0.750054 0.661376i \(-0.769973\pi\)
−0.750054 + 0.661376i \(0.769973\pi\)
\(542\) −44.6412 + 37.4584i −1.91750 + 1.60898i
\(543\) 0.564101 12.2816i 0.0242079 0.527052i
\(544\) 6.52300 36.9938i 0.279671 1.58610i
\(545\) 0 0
\(546\) 0.448872 1.07677i 0.0192099 0.0460814i
\(547\) −4.30509 24.4154i −0.184072 1.04393i −0.927142 0.374711i \(-0.877742\pi\)
0.743069 0.669214i \(-0.233369\pi\)
\(548\) −17.3273 30.0118i −0.740187 1.28204i
\(549\) −7.09285 + 4.91873i −0.302715 + 0.209926i
\(550\) 0 0
\(551\) 19.9885 + 7.27523i 0.851540 + 0.309935i
\(552\) 0.187810 + 0.0420831i 0.00799373 + 0.00179117i
\(553\) 1.99088 + 1.67054i 0.0846607 + 0.0710388i
\(554\) −30.5984 25.6751i −1.30000 1.09083i
\(555\) 0 0
\(556\) 24.3363 + 8.85768i 1.03209 + 0.375649i
\(557\) 15.5900 27.0026i 0.660568 1.14414i −0.319898 0.947452i \(-0.603649\pi\)
0.980467 0.196686i \(-0.0630180\pi\)
\(558\) −19.2522 + 27.2316i −0.815012 + 1.15281i
\(559\) −4.49262 7.78145i −0.190018 0.329120i
\(560\) 0 0
\(561\) 2.32003 0.300093i 0.0979519 0.0126699i
\(562\) 16.5951 6.04011i 0.700020 0.254787i
\(563\) 1.99921 11.3381i 0.0842567 0.477844i −0.913258 0.407382i \(-0.866442\pi\)
0.997514 0.0704615i \(-0.0224472\pi\)
\(564\) 19.4030 + 12.4230i 0.817015 + 0.523102i
\(565\) 0 0
\(566\) −15.0410 −0.632219
\(567\) −2.91473 1.71822i −0.122407 0.0721584i
\(568\) 2.18446 0.0916580
\(569\) 0.688909 0.578063i 0.0288805 0.0242337i −0.628233 0.778025i \(-0.716222\pi\)
0.657114 + 0.753791i \(0.271777\pi\)
\(570\) 0 0
\(571\) 7.41437 42.0490i 0.310282 1.75969i −0.287256 0.957854i \(-0.592743\pi\)
0.597538 0.801841i \(-0.296146\pi\)
\(572\) −0.507292 + 0.184639i −0.0212109 + 0.00772015i
\(573\) −8.92347 + 1.15424i −0.372783 + 0.0482190i
\(574\) 1.25783 + 7.13351i 0.0525008 + 0.297747i
\(575\) 0 0
\(576\) 26.2367 + 2.41524i 1.09319 + 0.100635i
\(577\) −6.22274 + 10.7781i −0.259056 + 0.448698i −0.965989 0.258582i \(-0.916745\pi\)
0.706933 + 0.707280i \(0.250078\pi\)
\(578\) 8.78546 + 3.19765i 0.365427 + 0.133005i
\(579\) −4.60046 + 4.99775i −0.191189 + 0.207699i
\(580\) 0 0
\(581\) 2.58731 + 2.17101i 0.107340 + 0.0900688i
\(582\) −47.9822 10.7515i −1.98893 0.445664i
\(583\) 3.33434 + 1.21360i 0.138094 + 0.0502622i
\(584\) −0.0792431 + 0.137253i −0.00327910 + 0.00567957i
\(585\) 0 0
\(586\) 1.91711 + 3.32053i 0.0791950 + 0.137170i
\(587\) −1.91101 10.8379i −0.0788758 0.447327i −0.998511 0.0545530i \(-0.982627\pi\)
0.919635 0.392774i \(-0.128484\pi\)
\(588\) −9.60115 + 23.0315i −0.395945 + 0.949804i
\(589\) −18.0658 + 6.57541i −0.744388 + 0.270935i
\(590\) 0 0
\(591\) 0.824242 17.9453i 0.0339048 0.738172i
\(592\) 31.7767 26.6638i 1.30601 1.09588i
\(593\) 9.57442 0.393174 0.196587 0.980486i \(-0.437014\pi\)
0.196587 + 0.980486i \(0.437014\pi\)
\(594\) 0.641273 + 2.98856i 0.0263117 + 0.122622i
\(595\) 0 0
\(596\) −16.4222 + 13.7798i −0.672678 + 0.564444i
\(597\) 18.3188 9.48348i 0.749738 0.388133i
\(598\) −0.169926 + 0.963696i −0.00694878 + 0.0394085i
\(599\) −30.9256 + 11.2560i −1.26359 + 0.459908i −0.884971 0.465646i \(-0.845822\pi\)
−0.378616 + 0.925554i \(0.623600\pi\)
\(600\) 0 0
\(601\) −2.22127 12.5974i −0.0906074 0.513860i −0.996005 0.0892957i \(-0.971538\pi\)
0.905398 0.424564i \(-0.139573\pi\)
\(602\) −3.86563 6.69547i −0.157551 0.272887i
\(603\) 6.99338 25.6345i 0.284793 1.04392i
\(604\) 18.7523 32.4800i 0.763021 1.32159i
\(605\) 0 0
\(606\) −4.21128 13.4627i −0.171072 0.546886i
\(607\) 28.7032 + 24.0848i 1.16503 + 0.977573i 0.999962 0.00870958i \(-0.00277238\pi\)
0.165064 + 0.986283i \(0.447217\pi\)
\(608\) 21.6745 + 18.1871i 0.879018 + 0.737583i
\(609\) 1.18078 + 3.77475i 0.0478477 + 0.152961i
\(610\) 0 0
\(611\) −2.80143 + 4.85221i −0.113334 + 0.196300i
\(612\) −7.71096 + 28.2649i −0.311697 + 1.14254i
\(613\) 1.30760 + 2.26483i 0.0528136 + 0.0914758i 0.891224 0.453564i \(-0.149848\pi\)
−0.838410 + 0.545040i \(0.816514\pi\)
\(614\) −5.00156 28.3653i −0.201847 1.14473i
\(615\) 0 0
\(616\) −0.0208779 + 0.00759892i −0.000841193 + 0.000306169i
\(617\) 1.11998 6.35172i 0.0450887 0.255711i −0.953929 0.300034i \(-0.903002\pi\)
0.999017 + 0.0443232i \(0.0141131\pi\)
\(618\) 1.60535 0.831075i 0.0645766 0.0334307i
\(619\) −0.0522006 + 0.0438015i −0.00209812 + 0.00176053i −0.643836 0.765163i \(-0.722658\pi\)
0.641738 + 0.766924i \(0.278214\pi\)
\(620\) 0 0
\(621\) 2.70094 + 0.871826i 0.108385 + 0.0349852i
\(622\) −29.6649 −1.18945
\(623\) 1.79164 1.50336i 0.0717804 0.0602309i
\(624\) −0.266407 + 5.80018i −0.0106648 + 0.232193i
\(625\) 0 0
\(626\) −49.2370 + 17.9208i −1.96791 + 0.716260i
\(627\) −0.677989 + 1.62638i −0.0270763 + 0.0649514i
\(628\) 4.21263 + 23.8910i 0.168102 + 0.953355i
\(629\) 25.4508 + 44.0821i 1.01479 + 1.75767i
\(630\) 0 0
\(631\) −22.5451 + 39.0492i −0.897506 + 1.55453i −0.0668329 + 0.997764i \(0.521289\pi\)
−0.830673 + 0.556761i \(0.812044\pi\)
\(632\) 1.32159 + 0.481019i 0.0525700 + 0.0191339i
\(633\) 4.13843 + 0.927309i 0.164488 + 0.0368572i
\(634\) −28.3317 23.7732i −1.12520 0.944153i
\(635\) 0 0
\(636\) −30.0965 + 32.6956i −1.19340 + 1.29646i
\(637\) −5.70220 2.07543i −0.225930 0.0822316i
\(638\) 1.78651 3.09432i 0.0707284 0.122505i
\(639\) 32.0769 + 2.95286i 1.26894 + 0.116813i
\(640\) 0 0
\(641\) 6.39211 + 36.2514i 0.252473 + 1.43185i 0.802477 + 0.596683i \(0.203515\pi\)
−0.550004 + 0.835162i \(0.685374\pi\)
\(642\) 62.5017 8.08451i 2.46675 0.319070i
\(643\) −4.60918 + 1.67760i −0.181768 + 0.0661582i −0.431301 0.902208i \(-0.641945\pi\)
0.249533 + 0.968366i \(0.419723\pi\)
\(644\) −0.0748965 + 0.424759i −0.00295134 + 0.0167379i
\(645\) 0 0
\(646\) −25.2572 + 21.1933i −0.993730 + 0.833838i
\(647\) −37.6519 −1.48025 −0.740125 0.672469i \(-0.765234\pi\)
−0.740125 + 0.672469i \(0.765234\pi\)
\(648\) −1.80021 0.334271i −0.0707188 0.0131314i
\(649\) −0.367190 −0.0144135
\(650\) 0 0
\(651\) −3.01049 1.92750i −0.117990 0.0755445i
\(652\) −2.28406 + 12.9536i −0.0894507 + 0.507300i
\(653\) −21.5387 + 7.83944i −0.842874 + 0.306781i −0.727132 0.686498i \(-0.759147\pi\)
−0.115743 + 0.993279i \(0.536925\pi\)
\(654\) −3.84366 + 0.497172i −0.150299 + 0.0194410i
\(655\) 0 0
\(656\) −18.0263 31.2224i −0.703807 1.21903i
\(657\) −1.34915 + 1.90832i −0.0526353 + 0.0744508i
\(658\) −2.41046 + 4.17504i −0.0939694 + 0.162760i
\(659\) 4.41936 + 1.60852i 0.172154 + 0.0626589i 0.426659 0.904412i \(-0.359690\pi\)
−0.254505 + 0.967071i \(0.581913\pi\)
\(660\) 0 0
\(661\) −25.3416 21.2641i −0.985675 0.827079i −0.000739053 1.00000i \(-0.500235\pi\)
−0.984936 + 0.172920i \(0.944680\pi\)
\(662\) 49.0593 + 41.1657i 1.90675 + 1.59995i
\(663\) −6.95245 1.55785i −0.270011 0.0605020i
\(664\) 1.71752 + 0.625125i 0.0666526 + 0.0242596i
\(665\) 0 0
\(666\) −54.6521 + 37.9000i −2.11773 + 1.46859i
\(667\) −1.65884 2.87319i −0.0642304 0.111250i
\(668\) 5.71277 + 32.3987i 0.221034 + 1.25354i
\(669\) −12.0083 + 28.8059i −0.464268 + 1.11370i
\(670\) 0 0
\(671\) −0.145135 + 0.823103i −0.00560288 + 0.0317755i
\(672\) −0.241383 + 5.25537i −0.00931155 + 0.202730i
\(673\) 34.0702 28.5883i 1.31331 1.10200i 0.325631 0.945497i \(-0.394423\pi\)
0.987678 0.156500i \(-0.0500212\pi\)
\(674\) −15.5180 −0.597731
\(675\) 0 0
\(676\) −25.6619 −0.986996
\(677\) 6.56883 5.51191i 0.252461 0.211840i −0.507770 0.861492i \(-0.669530\pi\)
0.760231 + 0.649653i \(0.225086\pi\)
\(678\) −28.2800 + 14.6403i −1.08609 + 0.562257i
\(679\) 0.915233 5.19055i 0.0351234 0.199195i
\(680\) 0 0
\(681\) −5.62075 7.35956i −0.215388 0.282019i
\(682\) 0.560765 + 3.18026i 0.0214728 + 0.121778i
\(683\) 21.9820 + 38.0739i 0.841117 + 1.45686i 0.888951 + 0.458002i \(0.151435\pi\)
−0.0478347 + 0.998855i \(0.515232\pi\)
\(684\) −15.5332 15.6746i −0.593928 0.599334i
\(685\) 0 0
\(686\) −9.91390 3.60836i −0.378514 0.137768i
\(687\) −11.1399 35.6123i −0.425013 1.35869i
\(688\) 29.4773 + 24.7344i 1.12381 + 0.942991i
\(689\) −8.27859 6.94656i −0.315389 0.264643i
\(690\) 0 0
\(691\) 20.7711 + 7.56005i 0.790169 + 0.287598i 0.705406 0.708803i \(-0.250765\pi\)
0.0847628 + 0.996401i \(0.472987\pi\)
\(692\) −9.57933 + 16.5919i −0.364152 + 0.630729i
\(693\) −0.316845 + 0.0833617i −0.0120359 + 0.00316665i
\(694\) 3.59462 + 6.22607i 0.136450 + 0.236338i
\(695\) 0 0
\(696\) 1.29910 + 1.70098i 0.0492423 + 0.0644756i
\(697\) 41.5717 15.1309i 1.57464 0.573123i
\(698\) 1.64538 9.33144i 0.0622787 0.353200i
\(699\) 39.3213 20.3563i 1.48727 0.769947i
\(700\) 0 0
\(701\) −0.728282 −0.0275068 −0.0137534 0.999905i \(-0.504378\pi\)
−0.0137534 + 0.999905i \(0.504378\pi\)
\(702\) 1.27780 9.22116i 0.0482274 0.348030i
\(703\) −38.3398 −1.44601
\(704\) 1.95440 1.63993i 0.0736591 0.0618073i
\(705\) 0 0
\(706\) −5.51192 + 31.2596i −0.207444 + 1.17647i
\(707\) 1.42080 0.517130i 0.0534348 0.0194487i
\(708\) 1.76944 4.24458i 0.0664996 0.159521i
\(709\) 2.85514 + 16.1923i 0.107227 + 0.608115i 0.990307 + 0.138893i \(0.0443544\pi\)
−0.883080 + 0.469222i \(0.844535\pi\)
\(710\) 0 0
\(711\) 18.7562 + 8.84981i 0.703411 + 0.331894i
\(712\) 0.632829 1.09609i 0.0237163 0.0410778i
\(713\) 2.81771 + 1.02556i 0.105524 + 0.0384076i
\(714\) −5.98216 1.34044i −0.223877 0.0501646i
\(715\) 0 0
\(716\) −4.25144 3.56738i −0.158884 0.133319i
\(717\) −10.8548 + 11.7922i −0.405379 + 0.440386i
\(718\) 5.19084 + 1.88931i 0.193720 + 0.0705085i
\(719\) 18.6844 32.3624i 0.696811 1.20691i −0.272755 0.962083i \(-0.587935\pi\)
0.969566 0.244829i \(-0.0787318\pi\)
\(720\) 0 0
\(721\) 0.0968819 + 0.167804i 0.00360807 + 0.00624936i
\(722\) 2.36859 + 13.4329i 0.0881497 + 0.499922i
\(723\) 49.3919 6.38878i 1.83690 0.237601i
\(724\) 14.0105 5.09939i 0.520694 0.189517i
\(725\) 0 0
\(726\) −32.2423 20.6435i −1.19662 0.766150i
\(727\) 3.88514 3.26002i 0.144092 0.120907i −0.567893 0.823103i \(-0.692241\pi\)
0.711984 + 0.702195i \(0.247797\pi\)
\(728\) 0.0676673 0.00250792
\(729\) −25.9826 7.34192i −0.962319 0.271923i
\(730\) 0 0
\(731\) −36.1714 + 30.3514i −1.33785 + 1.12259i
\(732\) −8.81539 5.64413i −0.325826 0.208613i
\(733\) 4.35439 24.6950i 0.160833 0.912129i −0.792424 0.609970i \(-0.791181\pi\)
0.953257 0.302159i \(-0.0977075\pi\)
\(734\) 60.6931 22.0905i 2.24022 0.815375i
\(735\) 0 0
\(736\) −0.766310 4.34596i −0.0282466 0.160194i
\(737\) −1.28647 2.22824i −0.0473879 0.0820783i
\(738\) 24.1911 + 52.4977i 0.890487 + 1.93247i
\(739\) −23.1354 + 40.0717i −0.851050 + 1.47406i 0.0292117 + 0.999573i \(0.490700\pi\)
−0.880262 + 0.474489i \(0.842633\pi\)
\(740\) 0 0
\(741\) 3.63453 3.94840i 0.133518 0.145048i
\(742\) −7.12322 5.97709i −0.261502 0.219426i
\(743\) −25.1018 21.0629i −0.920896 0.772723i 0.0532649 0.998580i \(-0.483037\pi\)
−0.974160 + 0.225857i \(0.927482\pi\)
\(744\) −1.88764 0.422968i −0.0692042 0.0155068i
\(745\) 0 0
\(746\) 6.27208 10.8636i 0.229637 0.397743i
\(747\) 24.3752 + 11.5011i 0.891842 + 0.420802i
\(748\) 1.41848 + 2.45688i 0.0518647 + 0.0898323i
\(749\) 1.17303 + 6.65257i 0.0428615 + 0.243080i
\(750\) 0 0
\(751\) 11.8075 4.29756i 0.430860 0.156820i −0.117481 0.993075i \(-0.537482\pi\)
0.548341 + 0.836255i \(0.315260\pi\)
\(752\) 4.16662 23.6301i 0.151941 0.861700i
\(753\) 0.931722 20.2854i 0.0339538 0.739240i
\(754\) −8.33617 + 6.99488i −0.303585 + 0.254738i
\(755\) 0 0
\(756\) 0.563203 4.06432i 0.0204835 0.147818i
\(757\) 35.3551 1.28500 0.642501 0.766285i \(-0.277897\pi\)
0.642501 + 0.766285i \(0.277897\pi\)
\(758\) −37.9281 + 31.8254i −1.37761 + 1.15595i
\(759\) 0.244059 0.126347i 0.00885876 0.00458611i
\(760\) 0 0
\(761\) 4.34791 1.58251i 0.157612 0.0573660i −0.262009 0.965065i \(-0.584385\pi\)
0.419621 + 0.907699i \(0.362163\pi\)
\(762\) −22.9880 30.0995i −0.832768 1.09039i
\(763\) −0.0721376 0.409113i −0.00261156 0.0148109i
\(764\) −5.45584 9.44980i −0.197386 0.341882i
\(765\) 0 0
\(766\) −7.56253 + 13.0987i −0.273245 + 0.473275i
\(767\) 1.05088 + 0.382490i 0.0379452 + 0.0138109i
\(768\) −7.38076 23.5950i −0.266330 0.851412i
\(769\) −10.2592 8.60849i −0.369956 0.310430i 0.438788 0.898591i \(-0.355408\pi\)
−0.808744 + 0.588161i \(0.799852\pi\)
\(770\) 0 0
\(771\) −1.90743 6.09774i −0.0686946 0.219605i
\(772\) −7.74084 2.81744i −0.278599 0.101402i
\(773\) 11.6796 20.2297i 0.420087 0.727612i −0.575861 0.817548i \(-0.695333\pi\)
0.995948 + 0.0899361i \(0.0286663\pi\)
\(774\) −43.4270 43.8222i −1.56095 1.57516i
\(775\) 0 0
\(776\) −0.495282 2.80888i −0.0177796 0.100833i
\(777\) −4.32690 5.66545i −0.155227 0.203247i
\(778\) 54.0788 19.6831i 1.93882 0.705672i
\(779\) −5.78629 + 32.8157i −0.207316 + 1.17574i
\(780\) 0 0
\(781\) 2.38944 2.00498i 0.0855010 0.0717438i
\(782\) 5.14244 0.183893
\(783\) 16.7768 + 26.7335i 0.599555 + 0.955378i
\(784\) 25.9873 0.928118
\(785\) 0 0
\(786\) 1.99161 43.3613i 0.0710385 1.54664i
\(787\) −7.91498 + 44.8881i −0.282139 + 1.60009i 0.433193 + 0.901301i \(0.357387\pi\)
−0.715331 + 0.698786i \(0.753724\pi\)
\(788\) 20.4715 7.45102i 0.729267 0.265432i
\(789\) −14.7365 + 35.3503i −0.524632 + 1.25850i
\(790\) 0 0
\(791\) −1.70668 2.95606i −0.0606827 0.105105i
\(792\) −0.145692 + 0.101034i −0.00517695 + 0.00359010i
\(793\) 1.27277 2.20451i 0.0451975 0.0782844i
\(794\) 55.1567 + 20.0754i 1.95744 + 0.712449i
\(795\) 0 0
\(796\) 19.1631 + 16.0798i 0.679219 + 0.569932i
\(797\) 22.7960 + 19.1281i 0.807477 + 0.677553i 0.950004 0.312238i \(-0.101078\pi\)
−0.142528 + 0.989791i \(0.545523\pi\)
\(798\) 3.12729 3.39736i 0.110705 0.120265i
\(799\) 27.6679 + 10.0703i 0.978820 + 0.356261i
\(800\) 0 0
\(801\) 10.7742 15.2397i 0.380687 0.538469i
\(802\) 30.7649 + 53.2864i 1.08635 + 1.88161i
\(803\) 0.0392970 + 0.222864i 0.00138676 + 0.00786472i
\(804\) 31.9570 4.13360i 1.12704 0.145781i
\(805\) 0 0
\(806\) 1.70789 9.68591i 0.0601578 0.341172i
\(807\) −36.9531 23.6595i −1.30081 0.832855i
\(808\) 0.626791 0.525940i 0.0220504 0.0185025i
\(809\) 6.39776 0.224933 0.112467 0.993656i \(-0.464125\pi\)
0.112467 + 0.993656i \(0.464125\pi\)
\(810\) 0 0
\(811\) 6.93453 0.243504 0.121752 0.992561i \(-0.461149\pi\)
0.121752 + 0.992561i \(0.461149\pi\)
\(812\) −3.67426 + 3.08307i −0.128941 + 0.108194i
\(813\) −41.9785 26.8771i −1.47225 0.942622i
\(814\) −1.11830 + 6.34221i −0.0391965 + 0.222294i
\(815\) 0 0
\(816\) 30.2606 3.91416i 1.05933 0.137023i
\(817\) −6.17588 35.0252i −0.216067 1.22538i
\(818\) −4.23879 7.34180i −0.148206 0.256700i
\(819\) 0.993634 + 0.0914697i 0.0347204 + 0.00319621i
\(820\) 0 0
\(821\) 5.29886 + 1.92863i 0.184932 + 0.0673096i 0.432826 0.901477i \(-0.357516\pi\)
−0.247895 + 0.968787i \(0.579739\pi\)
\(822\) 39.1902 42.5746i 1.36692 1.48496i
\(823\) −19.1739 16.0888i −0.668360 0.560821i 0.244219 0.969720i \(-0.421468\pi\)
−0.912580 + 0.408899i \(0.865913\pi\)
\(824\) 0.0803243 + 0.0674001i 0.00279823 + 0.00234799i
\(825\) 0 0
\(826\) 0.904222 + 0.329110i 0.0314619 + 0.0114512i
\(827\) −5.72413 + 9.91448i −0.199048 + 0.344760i −0.948220 0.317615i \(-0.897118\pi\)
0.749172 + 0.662375i \(0.230451\pi\)
\(828\) 0.284440 + 3.43008i 0.00988498 + 0.119203i
\(829\) −11.2450 19.4769i −0.390555 0.676461i 0.601968 0.798520i \(-0.294383\pi\)
−0.992523 + 0.122059i \(0.961050\pi\)
\(830\) 0 0
\(831\) 13.1461 31.5352i 0.456032 1.09394i
\(832\) −7.30168 + 2.65759i −0.253140 + 0.0921355i
\(833\) −5.53743 + 31.4043i −0.191860 + 1.08809i
\(834\) −1.98415 + 43.1988i −0.0687057 + 1.49585i
\(835\) 0 0
\(836\) −2.13683 −0.0739039
\(837\) −27.1466 8.76254i −0.938323 0.302878i
\(838\) 46.9575 1.62212
\(839\) 37.2179 31.2296i 1.28491 1.07816i 0.292358 0.956309i \(-0.405560\pi\)
0.992548 0.121855i \(-0.0388844\pi\)
\(840\) 0 0
\(841\) 1.37081 7.77424i 0.0472693 0.268077i
\(842\) −14.1052 + 5.13389i −0.486099 + 0.176925i
\(843\) 9.16851 + 12.0048i 0.315780 + 0.413469i
\(844\) 0.893098 + 5.06501i 0.0307417 + 0.174345i
\(845\) 0 0
\(846\) −10.1252 + 37.1144i −0.348112 + 1.27602i
\(847\) 2.05182 3.55385i 0.0705013 0.122112i
\(848\) 43.4903 + 15.8292i 1.49346 + 0.543576i
\(849\) −3.84087 12.2786i −0.131818 0.421400i
\(850\) 0 0
\(851\) 4.58081 + 3.84376i 0.157028 + 0.131762i
\(852\) 11.6624 + 37.2828i 0.399549 + 1.27729i
\(853\) −0.911444 0.331738i −0.0312072 0.0113585i 0.326369 0.945242i \(-0.394175\pi\)
−0.357577 + 0.933884i \(0.616397\pi\)
\(854\) 1.09514 1.89684i 0.0374751 0.0649087i
\(855\) 0 0
\(856\) 1.82780 + 3.16584i 0.0624729 + 0.108206i
\(857\) −4.44534 25.2108i −0.151850 0.861184i −0.961609 0.274422i \(-0.911514\pi\)
0.809759 0.586762i \(-0.199598\pi\)
\(858\) −0.547136 0.716396i −0.0186789 0.0244573i
\(859\) −11.4897 + 4.18192i −0.392025 + 0.142685i −0.530509 0.847679i \(-0.677999\pi\)
0.138484 + 0.990365i \(0.455777\pi\)
\(860\) 0 0
\(861\) −5.50219 + 2.84843i −0.187514 + 0.0970744i
\(862\) −5.52037 + 4.63214i −0.188025 + 0.157771i
\(863\) −8.39103 −0.285634 −0.142817 0.989749i \(-0.545616\pi\)
−0.142817 + 0.989749i \(0.545616\pi\)
\(864\) 8.80779 + 41.0475i 0.299647 + 1.39646i
\(865\) 0 0
\(866\) 61.3323 51.4639i 2.08416 1.74881i
\(867\) −0.366918 + 7.98850i −0.0124612 + 0.271304i
\(868\) 0.752769 4.26917i 0.0255507 0.144905i
\(869\) 1.88710 0.686848i 0.0640154 0.0232997i
\(870\) 0 0
\(871\) 1.36075 + 7.71722i 0.0461074 + 0.261488i
\(872\) −0.112404 0.194689i −0.00380648 0.00659302i
\(873\) −3.47585 41.9154i −0.117640 1.41862i
\(874\) −1.93668 + 3.35443i −0.0655091 + 0.113465i
\(875\) 0 0
\(876\) −2.76560 0.619695i −0.0934409 0.0209375i
\(877\) 31.9858 + 26.8393i 1.08008 + 0.906298i 0.995928 0.0901543i \(-0.0287360\pi\)
0.0841564 + 0.996453i \(0.473180\pi\)
\(878\) 3.29430 + 2.76425i 0.111177 + 0.0932888i
\(879\) −2.22113 + 2.41295i −0.0749170 + 0.0813867i
\(880\) 0 0
\(881\) 5.65176 9.78914i 0.190413 0.329805i −0.754974 0.655754i \(-0.772351\pi\)
0.945387 + 0.325950i \(0.105684\pi\)
\(882\) −41.4902 3.81941i −1.39705 0.128606i
\(883\) −12.2986 21.3019i −0.413882 0.716865i 0.581428 0.813598i \(-0.302494\pi\)
−0.995310 + 0.0967330i \(0.969161\pi\)
\(884\) −1.50038 8.50908i −0.0504632 0.286191i
\(885\) 0 0
\(886\) 30.9113 11.2508i 1.03849 0.377978i
\(887\) 1.61687 9.16975i 0.0542893 0.307890i −0.945556 0.325458i \(-0.894481\pi\)
0.999846 + 0.0175685i \(0.00559251\pi\)
\(888\) −3.24890 2.08014i −0.109026 0.0698048i
\(889\) 3.10983 2.60946i 0.104300 0.0875184i
\(890\) 0 0
\(891\) −2.27594 + 1.28666i −0.0762468 + 0.0431047i
\(892\) −37.8468 −1.26721
\(893\) −16.9888 + 14.2553i −0.568508 + 0.477035i
\(894\) −30.1466 19.3017i −1.00825 0.645544i
\(895\) 0 0
\(896\) −0.574234 + 0.209004i −0.0191838 + 0.00698234i
\(897\) −0.830099 + 0.107372i −0.0277162 + 0.00358505i
\(898\) −12.5274 71.0462i −0.418043 2.37084i
\(899\) 16.6726 + 28.8778i 0.556063 + 0.963130i
\(900\) 0 0
\(901\) −28.3957 + 49.1828i −0.945999 + 1.63852i
\(902\) 5.25964 + 1.91435i 0.175127 + 0.0637409i
\(903\) 4.47867 4.86543i 0.149041 0.161911i
\(904\) −1.41500 1.18733i −0.0470623 0.0394899i
\(905\) 0 0
\(906\) 61.1095 + 13.6930i 2.03023 + 0.454918i
\(907\) 13.6050 + 4.95182i 0.451747 + 0.164423i 0.557866 0.829931i \(-0.311620\pi\)
−0.106119 + 0.994353i \(0.533842\pi\)
\(908\) 5.61510 9.72563i 0.186344 0.322757i
\(909\) 9.91481 6.87570i 0.328854 0.228052i
\(910\) 0 0
\(911\) 3.83154 + 21.7298i 0.126945 + 0.719939i 0.980134 + 0.198337i \(0.0635541\pi\)
−0.853189 + 0.521602i \(0.825335\pi\)
\(912\) −8.84311 + 21.2131i −0.292825 + 0.702437i
\(913\) 2.45244 0.892616i 0.0811640 0.0295413i
\(914\) −9.06499 + 51.4101i −0.299843 + 1.70049i
\(915\) 0 0
\(916\) 34.6642 29.0867i 1.14534 0.961051i
\(917\) 4.65267 0.153645
\(918\) −48.8879 + 1.80172i −1.61354 + 0.0594657i
\(919\) −23.3762 −0.771109 −0.385554 0.922685i \(-0.625990\pi\)
−0.385554 + 0.922685i \(0.625990\pi\)
\(920\) 0 0
\(921\) 21.8786 11.3263i 0.720923 0.373216i
\(922\) 12.0740 68.4753i 0.397637 2.25511i
\(923\) −8.92702 + 3.24917i −0.293837 + 0.106948i
\(924\) −0.241156 0.315759i −0.00793345 0.0103877i
\(925\) 0 0
\(926\) −29.8826 51.7582i −0.982003 1.70088i
\(927\) 1.08838 + 1.09829i 0.0357472 + 0.0360726i
\(928\) 24.5374 42.5000i 0.805479 1.39513i
\(929\) −8.18841 2.98034i −0.268653 0.0977817i 0.204181 0.978933i \(-0.434547\pi\)
−0.472834 + 0.881151i \(0.656769\pi\)
\(930\) 0 0
\(931\) −18.3997 15.4391i −0.603024 0.505998i
\(932\) 41.1337 + 34.5153i 1.34738 + 1.13059i
\(933\) −7.57523 24.2167i −0.248002 0.792819i
\(934\) 31.6619 + 11.5240i 1.03601 + 0.377076i
\(935\) 0 0
\(936\) 0.522210 0.137393i 0.0170690 0.00449084i
\(937\) −20.3500 35.2473i −0.664806 1.15148i −0.979338 0.202231i \(-0.935181\pi\)
0.314532 0.949247i \(-0.398153\pi\)
\(938\) 1.17085 + 6.64020i 0.0382295 + 0.216810i
\(939\) −27.2027 35.6180i −0.887727 1.16235i
\(940\) 0 0
\(941\) 7.07254 40.1103i 0.230558 1.30756i −0.621211 0.783643i \(-0.713359\pi\)
0.851769 0.523917i \(-0.175530\pi\)
\(942\) −35.9736 + 18.6232i −1.17208 + 0.606778i
\(943\) 3.98129 3.34069i 0.129648 0.108788i
\(944\) −4.78931 −0.155879
\(945\) 0 0
\(946\) −5.97404 −0.194233
\(947\) 14.4108 12.0921i 0.468288 0.392940i −0.377882 0.925854i \(-0.623347\pi\)
0.846170 + 0.532914i \(0.178903\pi\)
\(948\) −1.15396 + 25.1240i −0.0374790 + 0.815990i
\(949\) 0.119684 0.678764i 0.00388512 0.0220336i
\(950\) 0 0
\(951\) 12.1722 29.1991i 0.394712 0.946847i
\(952\) −0.0617490 0.350196i −0.00200130 0.0113499i
\(953\) 20.4628 + 35.4426i 0.662855 + 1.14810i 0.979862 + 0.199675i \(0.0639887\pi\)
−0.317007 + 0.948423i \(0.602678\pi\)
\(954\) −67.1082 31.6640i −2.17271 1.02516i
\(955\) 0 0
\(956\) −18.2645 6.64772i −0.590715 0.215003i
\(957\) 2.98223 + 0.668235i 0.0964017 + 0.0216010i
\(958\) −8.62633 7.23835i −0.278704 0.233860i
\(959\) 4.75139 + 3.98689i 0.153430 + 0.128743i
\(960\) 0 0
\(961\) 0.810279 + 0.294918i 0.0261380 + 0.00951347i
\(962\) 9.80702 16.9863i 0.316191 0.547659i
\(963\) 22.5602 + 48.9583i 0.726992 + 1.57766i
\(964\) 30.1984 + 52.3052i 0.972625 + 1.68464i
\(965\) 0 0
\(966\) −0.714249 + 0.0923872i −0.0229806 + 0.00297251i
\(967\) −36.0183 + 13.1096i −1.15827 + 0.421576i −0.848479 0.529229i \(-0.822481\pi\)
−0.309791 + 0.950805i \(0.600259\pi\)
\(968\) 0.385620 2.18696i 0.0123943 0.0702915i
\(969\) −23.7506 15.2066i −0.762981 0.488506i
\(970\) 0 0
\(971\) 50.2132 1.61142 0.805709 0.592312i \(-0.201785\pi\)
0.805709 + 0.592312i \(0.201785\pi\)
\(972\) −3.90588 32.5092i −0.125281 1.04273i
\(973\) −4.63525 −0.148599
\(974\) 27.1569 22.7874i 0.870164 0.730154i
\(975\) 0 0
\(976\) −1.89302 + 10.7359i −0.0605941 + 0.343646i
\(977\) 18.8800 6.87174i 0.604023 0.219847i −0.0218628 0.999761i \(-0.506960\pi\)
0.625886 + 0.779914i \(0.284737\pi\)
\(978\) −21.7819 + 2.81746i −0.696508 + 0.0900924i
\(979\) −0.313823 1.77978i −0.0100298 0.0568820i
\(980\) 0 0
\(981\) −1.38738 3.01079i −0.0442957 0.0961270i
\(982\) −27.1734 + 47.0658i −0.867139 + 1.50193i
\(983\) −44.0962 16.0497i −1.40645 0.511906i −0.476364 0.879248i \(-0.658046\pi\)
−0.930086 + 0.367342i \(0.880268\pi\)
\(984\) −2.27076 + 2.46685i −0.0723891 + 0.0786404i
\(985\) 0 0
\(986\) 43.8074 + 36.7588i 1.39511 + 1.17064i
\(987\) −4.02379 0.901621i −0.128079 0.0286989i
\(988\) 6.11554 + 2.22587i 0.194561 + 0.0708145i
\(989\) −2.77356 + 4.80395i −0.0881941 + 0.152757i
\(990\) 0 0
\(991\) −2.41568 4.18408i −0.0767367 0.132912i 0.825103 0.564982i \(-0.191117\pi\)
−0.901840 + 0.432070i \(0.857783\pi\)
\(992\) 7.70202 + 43.6803i 0.244539 + 1.38685i
\(993\) −21.0775 + 50.5613i −0.668874 + 1.60451i
\(994\) −7.68116 + 2.79571i −0.243632 + 0.0886747i
\(995\) 0 0
\(996\) −1.49967 + 32.6507i −0.0475190 + 1.03458i
\(997\) −12.2229 + 10.2563i −0.387104 + 0.324819i −0.815484 0.578780i \(-0.803529\pi\)
0.428380 + 0.903599i \(0.359085\pi\)
\(998\) −11.8034 −0.373630
\(999\) −44.8953 34.9367i −1.42043 1.10535i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 675.2.l.f.76.2 66
5.2 odd 4 675.2.u.e.49.4 132
5.3 odd 4 675.2.u.e.49.19 132
5.4 even 2 675.2.l.g.76.10 yes 66
27.16 even 9 inner 675.2.l.f.151.2 yes 66
135.43 odd 36 675.2.u.e.124.4 132
135.97 odd 36 675.2.u.e.124.19 132
135.124 even 18 675.2.l.g.151.10 yes 66
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
675.2.l.f.76.2 66 1.1 even 1 trivial
675.2.l.f.151.2 yes 66 27.16 even 9 inner
675.2.l.g.76.10 yes 66 5.4 even 2
675.2.l.g.151.10 yes 66 135.124 even 18
675.2.u.e.49.4 132 5.2 odd 4
675.2.u.e.49.19 132 5.3 odd 4
675.2.u.e.124.4 132 135.43 odd 36
675.2.u.e.124.19 132 135.97 odd 36