Properties

Label 675.2.l.f.76.10
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.10
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.f.151.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.70314 - 1.42910i) q^{2} +(-0.320463 - 1.70215i) q^{3} +(0.511048 - 2.89830i) q^{4} +(-2.97833 - 2.44102i) q^{6} +(-0.653660 - 3.70709i) q^{7} +(-1.04829 - 1.81569i) q^{8} +(-2.79461 + 1.09095i) q^{9} +O(q^{10})\) \(q+(1.70314 - 1.42910i) q^{2} +(-0.320463 - 1.70215i) q^{3} +(0.511048 - 2.89830i) q^{4} +(-2.97833 - 2.44102i) q^{6} +(-0.653660 - 3.70709i) q^{7} +(-1.04829 - 1.81569i) q^{8} +(-2.79461 + 1.09095i) q^{9} +(5.03989 + 1.83437i) q^{11} +(-5.09710 + 0.0589180i) q^{12} +(-4.69294 - 3.93784i) q^{13} +(-6.41109 - 5.37954i) q^{14} +(1.15085 + 0.418876i) q^{16} +(-1.40339 + 2.43075i) q^{17} +(-3.20052 + 5.85182i) q^{18} +(1.71412 + 2.96894i) q^{19} +(-6.10054 + 2.30061i) q^{21} +(11.2051 - 4.07833i) q^{22} +(-0.155686 + 0.882941i) q^{23} +(-2.75464 + 2.36621i) q^{24} -13.6203 q^{26} +(2.75252 + 4.40722i) q^{27} -11.0783 q^{28} +(1.61238 - 1.35294i) q^{29} +(0.576073 - 3.26707i) q^{31} +(6.49896 - 2.36543i) q^{32} +(1.50727 - 9.16647i) q^{33} +(1.08362 + 6.14550i) q^{34} +(1.73372 + 8.65714i) q^{36} +(1.73247 - 3.00072i) q^{37} +(7.16230 + 2.60687i) q^{38} +(-5.19887 + 9.25000i) q^{39} +(-1.85735 - 1.55850i) q^{41} +(-7.10225 + 12.6366i) q^{42} +(-6.42421 - 2.33822i) q^{43} +(7.89217 - 13.6696i) q^{44} +(0.996658 + 1.72626i) q^{46} +(0.626080 + 3.55068i) q^{47} +(0.344183 - 2.09315i) q^{48} +(-6.73741 + 2.45222i) q^{49} +(4.58723 + 1.60982i) q^{51} +(-13.8114 + 11.5891i) q^{52} +7.07162 q^{53} +(10.9863 + 3.57247i) q^{54} +(-6.04572 + 5.07296i) q^{56} +(4.50426 - 3.86912i) q^{57} +(0.812603 - 4.60850i) q^{58} +(-5.74383 + 2.09058i) q^{59} +(0.0966336 + 0.548037i) q^{61} +(-3.68785 - 6.38754i) q^{62} +(5.87097 + 9.64675i) q^{63} +(6.46348 - 11.1951i) q^{64} +(-10.5327 - 17.7658i) q^{66} +(12.1326 + 10.1805i) q^{67} +(6.32784 + 5.30969i) q^{68} +(1.55279 - 0.0179489i) q^{69} +(7.71778 - 13.3676i) q^{71} +(4.91040 + 3.93052i) q^{72} +(6.47229 + 11.2103i) q^{73} +(-1.33771 - 7.58652i) q^{74} +(9.48088 - 3.45076i) q^{76} +(3.50580 - 19.8824i) q^{77} +(4.36480 + 23.1837i) q^{78} +(7.60758 - 6.38352i) q^{79} +(6.61966 - 6.09755i) q^{81} -5.39058 q^{82} +(3.66133 - 3.07222i) q^{83} +(3.55019 + 18.8569i) q^{84} +(-14.2829 + 5.19854i) q^{86} +(-2.81962 - 2.31093i) q^{87} +(-1.95262 - 11.0738i) q^{88} +(-1.45438 - 2.51905i) q^{89} +(-11.5304 + 19.9712i) q^{91} +(2.47946 + 0.902451i) q^{92} +(-5.74565 + 0.0664147i) q^{93} +(6.14058 + 5.15256i) q^{94} +(-6.10898 - 10.3042i) q^{96} +(-5.99345 - 2.18144i) q^{97} +(-7.97026 + 13.8049i) q^{98} +(-16.0857 + 0.371923i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.70314 1.42910i 1.20430 1.01053i 0.204803 0.978803i \(-0.434344\pi\)
0.999497 0.0317247i \(-0.0101000\pi\)
\(3\) −0.320463 1.70215i −0.185019 0.982735i
\(4\) 0.511048 2.89830i 0.255524 1.44915i
\(5\) 0 0
\(6\) −2.97833 2.44102i −1.21590 0.996541i
\(7\) −0.653660 3.70709i −0.247060 1.40115i −0.815659 0.578534i \(-0.803625\pi\)
0.568598 0.822615i \(-0.307486\pi\)
\(8\) −1.04829 1.81569i −0.370627 0.641945i
\(9\) −2.79461 + 1.09095i −0.931536 + 0.363650i
\(10\) 0 0
\(11\) 5.03989 + 1.83437i 1.51958 + 0.553083i 0.961044 0.276396i \(-0.0891400\pi\)
0.558539 + 0.829478i \(0.311362\pi\)
\(12\) −5.09710 + 0.0589180i −1.47141 + 0.0170082i
\(13\) −4.69294 3.93784i −1.30159 1.09216i −0.989869 0.141986i \(-0.954651\pi\)
−0.311718 0.950175i \(-0.600904\pi\)
\(14\) −6.41109 5.37954i −1.71343 1.43774i
\(15\) 0 0
\(16\) 1.15085 + 0.418876i 0.287713 + 0.104719i
\(17\) −1.40339 + 2.43075i −0.340373 + 0.589544i −0.984502 0.175373i \(-0.943887\pi\)
0.644129 + 0.764917i \(0.277220\pi\)
\(18\) −3.20052 + 5.85182i −0.754370 + 1.37929i
\(19\) 1.71412 + 2.96894i 0.393246 + 0.681122i 0.992876 0.119156i \(-0.0380187\pi\)
−0.599630 + 0.800278i \(0.704685\pi\)
\(20\) 0 0
\(21\) −6.10054 + 2.30061i −1.33125 + 0.502034i
\(22\) 11.2051 4.07833i 2.38894 0.869503i
\(23\) −0.155686 + 0.882941i −0.0324628 + 0.184106i −0.996728 0.0808349i \(-0.974241\pi\)
0.964265 + 0.264941i \(0.0853524\pi\)
\(24\) −2.75464 + 2.36621i −0.562289 + 0.483001i
\(25\) 0 0
\(26\) −13.6203 −2.67116
\(27\) 2.75252 + 4.40722i 0.529724 + 0.848170i
\(28\) −11.0783 −2.09360
\(29\) 1.61238 1.35294i 0.299411 0.251235i −0.480688 0.876892i \(-0.659613\pi\)
0.780099 + 0.625656i \(0.215169\pi\)
\(30\) 0 0
\(31\) 0.576073 3.26707i 0.103466 0.586784i −0.888356 0.459155i \(-0.848152\pi\)
0.991822 0.127629i \(-0.0407366\pi\)
\(32\) 6.49896 2.36543i 1.14887 0.418153i
\(33\) 1.50727 9.16647i 0.262382 1.59568i
\(34\) 1.08362 + 6.14550i 0.185839 + 1.05394i
\(35\) 0 0
\(36\) 1.73372 + 8.65714i 0.288953 + 1.44286i
\(37\) 1.73247 3.00072i 0.284816 0.493316i −0.687749 0.725949i \(-0.741401\pi\)
0.972565 + 0.232633i \(0.0747342\pi\)
\(38\) 7.16230 + 2.60687i 1.16188 + 0.422889i
\(39\) −5.19887 + 9.25000i −0.832486 + 1.48119i
\(40\) 0 0
\(41\) −1.85735 1.55850i −0.290069 0.243397i 0.486127 0.873888i \(-0.338409\pi\)
−0.776196 + 0.630491i \(0.782854\pi\)
\(42\) −7.10225 + 12.6366i −1.09590 + 1.94986i
\(43\) −6.42421 2.33822i −0.979683 0.356576i −0.197966 0.980209i \(-0.563434\pi\)
−0.781717 + 0.623633i \(0.785656\pi\)
\(44\) 7.89217 13.6696i 1.18979 2.06078i
\(45\) 0 0
\(46\) 0.996658 + 1.72626i 0.146949 + 0.254523i
\(47\) 0.626080 + 3.55068i 0.0913232 + 0.517919i 0.995812 + 0.0914225i \(0.0291414\pi\)
−0.904489 + 0.426497i \(0.859748\pi\)
\(48\) 0.344183 2.09315i 0.0496785 0.302120i
\(49\) −6.73741 + 2.45222i −0.962487 + 0.350316i
\(50\) 0 0
\(51\) 4.58723 + 1.60982i 0.642341 + 0.225420i
\(52\) −13.8114 + 11.5891i −1.91529 + 1.60712i
\(53\) 7.07162 0.971362 0.485681 0.874136i \(-0.338572\pi\)
0.485681 + 0.874136i \(0.338572\pi\)
\(54\) 10.9863 + 3.57247i 1.49505 + 0.486151i
\(55\) 0 0
\(56\) −6.04572 + 5.07296i −0.807893 + 0.677903i
\(57\) 4.50426 3.86912i 0.596604 0.512477i
\(58\) 0.812603 4.60850i 0.106700 0.605126i
\(59\) −5.74383 + 2.09058i −0.747782 + 0.272171i −0.687672 0.726021i \(-0.741367\pi\)
−0.0601101 + 0.998192i \(0.519145\pi\)
\(60\) 0 0
\(61\) 0.0966336 + 0.548037i 0.0123727 + 0.0701689i 0.990369 0.138453i \(-0.0442131\pi\)
−0.977996 + 0.208622i \(0.933102\pi\)
\(62\) −3.68785 6.38754i −0.468357 0.811219i
\(63\) 5.87097 + 9.64675i 0.739673 + 1.21538i
\(64\) 6.46348 11.1951i 0.807935 1.39938i
\(65\) 0 0
\(66\) −10.5327 17.7658i −1.29649 2.18682i
\(67\) 12.1326 + 10.1805i 1.48224 + 1.24375i 0.903754 + 0.428052i \(0.140800\pi\)
0.578484 + 0.815694i \(0.303644\pi\)
\(68\) 6.32784 + 5.30969i 0.767363 + 0.643894i
\(69\) 1.55279 0.0179489i 0.186934 0.00216079i
\(70\) 0 0
\(71\) 7.71778 13.3676i 0.915933 1.58644i 0.110402 0.993887i \(-0.464786\pi\)
0.805530 0.592555i \(-0.201881\pi\)
\(72\) 4.91040 + 3.93052i 0.578696 + 0.463216i
\(73\) 6.47229 + 11.2103i 0.757524 + 1.31207i 0.944110 + 0.329632i \(0.106925\pi\)
−0.186585 + 0.982439i \(0.559742\pi\)
\(74\) −1.33771 7.58652i −0.155505 0.881915i
\(75\) 0 0
\(76\) 9.48088 3.45076i 1.08753 0.395829i
\(77\) 3.50580 19.8824i 0.399523 2.26581i
\(78\) 4.36480 + 23.1837i 0.494216 + 2.62504i
\(79\) 7.60758 6.38352i 0.855920 0.718202i −0.105165 0.994455i \(-0.533537\pi\)
0.961085 + 0.276253i \(0.0890927\pi\)
\(80\) 0 0
\(81\) 6.61966 6.09755i 0.735517 0.677506i
\(82\) −5.39058 −0.595289
\(83\) 3.66133 3.07222i 0.401884 0.337220i −0.419338 0.907830i \(-0.637738\pi\)
0.821221 + 0.570610i \(0.193293\pi\)
\(84\) 3.55019 + 18.8569i 0.387357 + 2.05746i
\(85\) 0 0
\(86\) −14.2829 + 5.19854i −1.54016 + 0.560573i
\(87\) −2.81962 2.31093i −0.302295 0.247758i
\(88\) −1.95262 11.0738i −0.208150 1.18048i
\(89\) −1.45438 2.51905i −0.154164 0.267019i 0.778591 0.627532i \(-0.215935\pi\)
−0.932754 + 0.360513i \(0.882602\pi\)
\(90\) 0 0
\(91\) −11.5304 + 19.9712i −1.20871 + 2.09355i
\(92\) 2.47946 + 0.902451i 0.258502 + 0.0940870i
\(93\) −5.74565 + 0.0664147i −0.595796 + 0.00688688i
\(94\) 6.14058 + 5.15256i 0.633353 + 0.531446i
\(95\) 0 0
\(96\) −6.10898 10.3042i −0.623496 1.05166i
\(97\) −5.99345 2.18144i −0.608543 0.221491i 0.0193229 0.999813i \(-0.493849\pi\)
−0.627865 + 0.778322i \(0.716071\pi\)
\(98\) −7.97026 + 13.8049i −0.805118 + 1.39451i
\(99\) −16.0857 + 0.371923i −1.61667 + 0.0373797i
\(100\) 0 0
\(101\) 0.799294 + 4.53302i 0.0795328 + 0.451053i 0.998403 + 0.0564928i \(0.0179918\pi\)
−0.918870 + 0.394560i \(0.870897\pi\)
\(102\) 10.1133 3.81388i 1.00136 0.377630i
\(103\) −8.40172 + 3.05797i −0.827846 + 0.301311i −0.720974 0.692962i \(-0.756305\pi\)
−0.106871 + 0.994273i \(0.534083\pi\)
\(104\) −2.23035 + 12.6490i −0.218704 + 1.24033i
\(105\) 0 0
\(106\) 12.0439 10.1061i 1.16981 0.981589i
\(107\) −16.5248 −1.59751 −0.798754 0.601657i \(-0.794507\pi\)
−0.798754 + 0.601657i \(0.794507\pi\)
\(108\) 14.1801 5.72534i 1.36448 0.550921i
\(109\) −6.79600 −0.650939 −0.325469 0.945553i \(-0.605522\pi\)
−0.325469 + 0.945553i \(0.605522\pi\)
\(110\) 0 0
\(111\) −5.66286 1.98729i −0.537495 0.188626i
\(112\) 0.800545 4.54011i 0.0756444 0.429000i
\(113\) 16.1944 5.89428i 1.52344 0.554487i 0.561436 0.827520i \(-0.310249\pi\)
0.962005 + 0.273033i \(0.0880270\pi\)
\(114\) 2.14201 13.0267i 0.200618 1.22006i
\(115\) 0 0
\(116\) −3.09723 5.36457i −0.287571 0.498088i
\(117\) 17.4109 + 5.88496i 1.60964 + 0.544065i
\(118\) −6.79487 + 11.7691i −0.625518 + 1.08343i
\(119\) 9.92836 + 3.61363i 0.910131 + 0.331261i
\(120\) 0 0
\(121\) 13.6090 + 11.4193i 1.23719 + 1.03812i
\(122\) 0.947781 + 0.795282i 0.0858080 + 0.0720015i
\(123\) −2.05758 + 3.66092i −0.185526 + 0.330094i
\(124\) −9.17456 3.33927i −0.823899 0.299875i
\(125\) 0 0
\(126\) 23.7853 + 8.03953i 2.11896 + 0.716218i
\(127\) 2.40782 + 4.17046i 0.213659 + 0.370069i 0.952857 0.303420i \(-0.0981284\pi\)
−0.739198 + 0.673489i \(0.764795\pi\)
\(128\) −2.58879 14.6818i −0.228819 1.29770i
\(129\) −1.92128 + 11.6843i −0.169159 + 1.02874i
\(130\) 0 0
\(131\) 0.969287 5.49710i 0.0846870 0.480284i −0.912737 0.408548i \(-0.866035\pi\)
0.997424 0.0717355i \(-0.0228538\pi\)
\(132\) −25.7969 9.05302i −2.24533 0.787965i
\(133\) 9.88569 8.29508i 0.857198 0.719274i
\(134\) 35.2125 3.04190
\(135\) 0 0
\(136\) 5.88467 0.504606
\(137\) −3.18283 + 2.67071i −0.271927 + 0.228174i −0.768546 0.639795i \(-0.779019\pi\)
0.496618 + 0.867969i \(0.334575\pi\)
\(138\) 2.61896 2.24966i 0.222941 0.191504i
\(139\) −1.48337 + 8.41259i −0.125817 + 0.713546i 0.855002 + 0.518625i \(0.173556\pi\)
−0.980819 + 0.194921i \(0.937555\pi\)
\(140\) 0 0
\(141\) 5.84314 2.20354i 0.492081 0.185572i
\(142\) −5.95921 33.7964i −0.500086 2.83613i
\(143\) −16.4284 28.4549i −1.37381 2.37951i
\(144\) −3.67315 + 0.0849281i −0.306096 + 0.00707734i
\(145\) 0 0
\(146\) 27.0439 + 9.84318i 2.23817 + 0.814627i
\(147\) 6.33312 + 10.6822i 0.522347 + 0.881054i
\(148\) −7.81162 6.55472i −0.642111 0.538795i
\(149\) 8.62380 + 7.23622i 0.706489 + 0.592815i 0.923612 0.383330i \(-0.125223\pi\)
−0.217123 + 0.976144i \(0.569667\pi\)
\(150\) 0 0
\(151\) −15.9706 5.81283i −1.29967 0.473042i −0.402781 0.915296i \(-0.631957\pi\)
−0.896890 + 0.442255i \(0.854179\pi\)
\(152\) 3.59380 6.22464i 0.291495 0.504885i
\(153\) 1.27011 8.32403i 0.102682 0.672958i
\(154\) −22.4431 38.8726i −1.80851 3.13244i
\(155\) 0 0
\(156\) 24.1524 + 19.7951i 1.93374 + 1.58488i
\(157\) −11.7281 + 4.26867i −0.936002 + 0.340677i −0.764586 0.644522i \(-0.777056\pi\)
−0.171416 + 0.985199i \(0.554834\pi\)
\(158\) 3.83406 21.7440i 0.305021 1.72986i
\(159\) −2.26619 12.0369i −0.179721 0.954592i
\(160\) 0 0
\(161\) 3.37491 0.265980
\(162\) 2.56016 19.8451i 0.201145 1.55918i
\(163\) 7.49060 0.586709 0.293354 0.956004i \(-0.405228\pi\)
0.293354 + 0.956004i \(0.405228\pi\)
\(164\) −5.46620 + 4.58668i −0.426838 + 0.358160i
\(165\) 0 0
\(166\) 1.84523 10.4648i 0.143218 0.812229i
\(167\) −11.7621 + 4.28105i −0.910177 + 0.331277i −0.754324 0.656503i \(-0.772035\pi\)
−0.155854 + 0.987780i \(0.549813\pi\)
\(168\) 10.5724 + 8.66501i 0.815675 + 0.668520i
\(169\) 4.25964 + 24.1576i 0.327664 + 1.85828i
\(170\) 0 0
\(171\) −8.02926 6.42701i −0.614013 0.491486i
\(172\) −10.0600 + 17.4243i −0.767064 + 1.32859i
\(173\) 14.2477 + 5.18574i 1.08323 + 0.394264i 0.821110 0.570771i \(-0.193355\pi\)
0.262122 + 0.965035i \(0.415578\pi\)
\(174\) −8.10475 + 0.0936838i −0.614420 + 0.00710215i
\(175\) 0 0
\(176\) 5.03179 + 4.22217i 0.379285 + 0.318258i
\(177\) 5.39916 + 9.10688i 0.405826 + 0.684515i
\(178\) −6.07699 2.21184i −0.455490 0.165785i
\(179\) −4.06134 + 7.03445i −0.303559 + 0.525780i −0.976939 0.213517i \(-0.931508\pi\)
0.673380 + 0.739296i \(0.264842\pi\)
\(180\) 0 0
\(181\) 7.95939 + 13.7861i 0.591617 + 1.02471i 0.994015 + 0.109245i \(0.0348434\pi\)
−0.402398 + 0.915465i \(0.631823\pi\)
\(182\) 8.90305 + 50.4917i 0.659938 + 3.74269i
\(183\) 0.901871 0.340110i 0.0666682 0.0251417i
\(184\) 1.76636 0.642901i 0.130218 0.0473953i
\(185\) 0 0
\(186\) −9.69072 + 8.32423i −0.710558 + 0.610362i
\(187\) −11.5318 + 9.67636i −0.843292 + 0.707606i
\(188\) 10.6109 0.773878
\(189\) 14.5388 13.0847i 1.05754 0.951771i
\(190\) 0 0
\(191\) −13.7721 + 11.5562i −0.996516 + 0.836176i −0.986498 0.163773i \(-0.947633\pi\)
−0.0100183 + 0.999950i \(0.503189\pi\)
\(192\) −21.1270 7.41418i −1.52471 0.535073i
\(193\) −0.168689 + 0.956681i −0.0121425 + 0.0688634i −0.990277 0.139110i \(-0.955576\pi\)
0.978134 + 0.207974i \(0.0666869\pi\)
\(194\) −13.3252 + 4.84996i −0.956691 + 0.348207i
\(195\) 0 0
\(196\) 3.66411 + 20.7802i 0.261722 + 1.48430i
\(197\) −4.61678 7.99649i −0.328932 0.569727i 0.653368 0.757040i \(-0.273355\pi\)
−0.982300 + 0.187313i \(0.940022\pi\)
\(198\) −26.8646 + 23.6215i −1.90919 + 1.67871i
\(199\) 8.81540 15.2687i 0.624907 1.08237i −0.363651 0.931535i \(-0.618470\pi\)
0.988559 0.150836i \(-0.0481966\pi\)
\(200\) 0 0
\(201\) 13.4406 23.9140i 0.948029 1.68676i
\(202\) 7.83946 + 6.57809i 0.551583 + 0.462833i
\(203\) −6.06943 5.09286i −0.425991 0.357449i
\(204\) 7.01003 12.4725i 0.490800 0.873248i
\(205\) 0 0
\(206\) −9.93912 + 17.2151i −0.692491 + 1.19943i
\(207\) −0.528162 2.63732i −0.0367098 0.183306i
\(208\) −3.75141 6.49763i −0.260113 0.450530i
\(209\) 3.19283 + 18.1075i 0.220853 + 1.25252i
\(210\) 0 0
\(211\) −4.23225 + 1.54041i −0.291360 + 0.106046i −0.483565 0.875308i \(-0.660658\pi\)
0.192205 + 0.981355i \(0.438436\pi\)
\(212\) 3.61394 20.4957i 0.248207 1.40765i
\(213\) −25.2269 8.85298i −1.72852 0.606596i
\(214\) −28.1439 + 23.6156i −1.92388 + 1.61433i
\(215\) 0 0
\(216\) 5.11672 9.61780i 0.348149 0.654408i
\(217\) −12.4879 −0.847734
\(218\) −11.5745 + 9.71218i −0.783926 + 0.657792i
\(219\) 17.0075 14.6093i 1.14926 0.987204i
\(220\) 0 0
\(221\) 16.1580 5.88101i 1.08690 0.395600i
\(222\) −12.4847 + 4.70817i −0.837917 + 0.315992i
\(223\) 4.26645 + 24.1963i 0.285703 + 1.62030i 0.702764 + 0.711423i \(0.251949\pi\)
−0.417061 + 0.908878i \(0.636940\pi\)
\(224\) −13.0170 22.5461i −0.869733 1.50642i
\(225\) 0 0
\(226\) 19.1578 33.1822i 1.27435 2.20725i
\(227\) 15.9741 + 5.81410i 1.06024 + 0.385895i 0.812518 0.582936i \(-0.198096\pi\)
0.247721 + 0.968831i \(0.420318\pi\)
\(228\) −8.91197 15.0320i −0.590210 0.995519i
\(229\) −11.2404 9.43183i −0.742788 0.623273i 0.190797 0.981630i \(-0.438893\pi\)
−0.933585 + 0.358356i \(0.883337\pi\)
\(230\) 0 0
\(231\) −34.9662 + 0.404179i −2.30061 + 0.0265930i
\(232\) −4.14677 1.50930i −0.272249 0.0990905i
\(233\) −12.7753 + 22.1275i −0.836939 + 1.44962i 0.0555035 + 0.998458i \(0.482324\pi\)
−0.892442 + 0.451162i \(0.851010\pi\)
\(234\) 38.0634 14.8591i 2.48828 0.971367i
\(235\) 0 0
\(236\) 3.12376 + 17.7157i 0.203339 + 1.15319i
\(237\) −13.3036 10.9035i −0.864164 0.708261i
\(238\) 22.0736 8.03413i 1.43082 0.520776i
\(239\) −1.11927 + 6.34771i −0.0723998 + 0.410599i 0.926971 + 0.375133i \(0.122403\pi\)
−0.999371 + 0.0354667i \(0.988708\pi\)
\(240\) 0 0
\(241\) 2.05438 1.72383i 0.132334 0.111042i −0.574218 0.818702i \(-0.694694\pi\)
0.706552 + 0.707661i \(0.250249\pi\)
\(242\) 39.4975 2.53900
\(243\) −12.5003 9.31359i −0.801893 0.597467i
\(244\) 1.63776 0.104847
\(245\) 0 0
\(246\) 1.72748 + 9.17555i 0.110140 + 0.585012i
\(247\) 3.64697 20.6830i 0.232051 1.31603i
\(248\) −6.53590 + 2.37887i −0.415030 + 0.151059i
\(249\) −6.40270 5.24759i −0.405754 0.332553i
\(250\) 0 0
\(251\) 9.83460 + 17.0340i 0.620755 + 1.07518i 0.989345 + 0.145587i \(0.0465070\pi\)
−0.368591 + 0.929592i \(0.620160\pi\)
\(252\) 30.9595 12.0859i 1.95027 0.761339i
\(253\) −2.40428 + 4.16434i −0.151156 + 0.261810i
\(254\) 10.0609 + 3.66186i 0.631275 + 0.229765i
\(255\) 0 0
\(256\) −5.58555 4.68683i −0.349097 0.292927i
\(257\) 4.25190 + 3.56777i 0.265226 + 0.222551i 0.765696 0.643203i \(-0.222395\pi\)
−0.500469 + 0.865754i \(0.666839\pi\)
\(258\) 13.4258 + 22.6456i 0.835855 + 1.40985i
\(259\) −12.2564 4.46096i −0.761575 0.277191i
\(260\) 0 0
\(261\) −3.02996 + 5.53997i −0.187550 + 0.342915i
\(262\) −6.20509 10.7475i −0.383352 0.663985i
\(263\) 2.44722 + 13.8789i 0.150902 + 0.855808i 0.962437 + 0.271504i \(0.0875211\pi\)
−0.811535 + 0.584303i \(0.801368\pi\)
\(264\) −18.2236 + 6.87240i −1.12158 + 0.422967i
\(265\) 0 0
\(266\) 4.98217 28.2553i 0.305477 1.73244i
\(267\) −3.82173 + 3.28283i −0.233886 + 0.200906i
\(268\) 35.7065 29.9613i 2.18112 1.83018i
\(269\) 10.6489 0.649278 0.324639 0.945838i \(-0.394757\pi\)
0.324639 + 0.945838i \(0.394757\pi\)
\(270\) 0 0
\(271\) −18.7000 −1.13595 −0.567973 0.823047i \(-0.692272\pi\)
−0.567973 + 0.823047i \(0.692272\pi\)
\(272\) −2.63328 + 2.20958i −0.159666 + 0.133976i
\(273\) 37.6889 + 13.2263i 2.28104 + 0.800495i
\(274\) −1.60408 + 9.09717i −0.0969058 + 0.549580i
\(275\) 0 0
\(276\) 0.741528 4.50961i 0.0446347 0.271447i
\(277\) 1.27693 + 7.24183i 0.0767233 + 0.435119i 0.998838 + 0.0482019i \(0.0153491\pi\)
−0.922114 + 0.386918i \(0.873540\pi\)
\(278\) 9.49607 + 16.4477i 0.569536 + 0.986466i
\(279\) 1.95431 + 9.75865i 0.117002 + 0.584235i
\(280\) 0 0
\(281\) −15.3253 5.57797i −0.914233 0.332754i −0.158291 0.987392i \(-0.550599\pi\)
−0.755942 + 0.654639i \(0.772821\pi\)
\(282\) 6.80258 12.1034i 0.405088 0.720745i
\(283\) 0.413729 + 0.347160i 0.0245936 + 0.0206365i 0.655002 0.755627i \(-0.272668\pi\)
−0.630408 + 0.776264i \(0.717112\pi\)
\(284\) −34.7991 29.1999i −2.06495 1.73270i
\(285\) 0 0
\(286\) −68.6447 24.9846i −4.05905 1.47737i
\(287\) −4.56343 + 7.90409i −0.269371 + 0.466564i
\(288\) −15.5815 + 13.7005i −0.918148 + 0.807309i
\(289\) 4.56097 + 7.89983i 0.268292 + 0.464696i
\(290\) 0 0
\(291\) −1.79245 + 10.9008i −0.105075 + 0.639016i
\(292\) 35.7986 13.0296i 2.09495 0.762500i
\(293\) 3.01350 17.0904i 0.176051 0.998432i −0.760874 0.648900i \(-0.775229\pi\)
0.936924 0.349532i \(-0.113660\pi\)
\(294\) 26.0521 + 9.14260i 1.51939 + 0.533207i
\(295\) 0 0
\(296\) −7.26453 −0.422242
\(297\) 5.78794 + 27.2610i 0.335850 + 1.58185i
\(298\) 25.0288 1.44988
\(299\) 4.20751 3.53052i 0.243327 0.204175i
\(300\) 0 0
\(301\) −4.46875 + 25.3435i −0.257575 + 1.46078i
\(302\) −35.5073 + 12.9236i −2.04322 + 0.743670i
\(303\) 7.45973 2.81318i 0.428550 0.161613i
\(304\) 0.729079 + 4.13481i 0.0418156 + 0.237148i
\(305\) 0 0
\(306\) −9.73271 15.9921i −0.556382 0.914206i
\(307\) −2.22842 + 3.85973i −0.127182 + 0.220287i −0.922584 0.385796i \(-0.873927\pi\)
0.795401 + 0.606083i \(0.207260\pi\)
\(308\) −55.8334 20.3217i −3.18140 1.15794i
\(309\) 7.89756 + 13.3210i 0.449276 + 0.757804i
\(310\) 0 0
\(311\) −9.04919 7.59317i −0.513133 0.430569i 0.349097 0.937086i \(-0.386488\pi\)
−0.862230 + 0.506517i \(0.830933\pi\)
\(312\) 22.2451 0.257134i 1.25938 0.0145574i
\(313\) −3.33057 1.21223i −0.188255 0.0685191i 0.246173 0.969226i \(-0.420827\pi\)
−0.434427 + 0.900707i \(0.643049\pi\)
\(314\) −13.8741 + 24.0307i −0.782964 + 1.35613i
\(315\) 0 0
\(316\) −14.6135 25.3113i −0.822074 1.42387i
\(317\) −0.675236 3.82945i −0.0379250 0.215084i 0.959956 0.280151i \(-0.0903847\pi\)
−0.997881 + 0.0650679i \(0.979274\pi\)
\(318\) −21.0617 17.2619i −1.18108 0.968002i
\(319\) 10.6080 3.86099i 0.593933 0.216174i
\(320\) 0 0
\(321\) 5.29557 + 28.1276i 0.295570 + 1.56993i
\(322\) 5.74793 4.82309i 0.320320 0.268780i
\(323\) −9.62234 −0.535402
\(324\) −14.2896 22.3019i −0.793865 1.23899i
\(325\) 0 0
\(326\) 12.7575 10.7048i 0.706573 0.592886i
\(327\) 2.17787 + 11.5678i 0.120436 + 0.639700i
\(328\) −0.882718 + 5.00614i −0.0487399 + 0.276418i
\(329\) 12.7534 4.64187i 0.703120 0.255915i
\(330\) 0 0
\(331\) 3.47191 + 19.6902i 0.190833 + 1.08227i 0.918228 + 0.396051i \(0.129620\pi\)
−0.727395 + 0.686219i \(0.759269\pi\)
\(332\) −7.03311 12.1817i −0.385992 0.668557i
\(333\) −1.56793 + 10.2759i −0.0859220 + 0.563114i
\(334\) −13.9144 + 24.1004i −0.761362 + 1.31872i
\(335\) 0 0
\(336\) −7.98448 + 0.0922937i −0.435589 + 0.00503503i
\(337\) −19.9104 16.7068i −1.08459 0.910078i −0.0882954 0.996094i \(-0.528142\pi\)
−0.996294 + 0.0860160i \(0.972586\pi\)
\(338\) 41.7784 + 35.0563i 2.27245 + 1.90681i
\(339\) −15.2226 25.6763i −0.826779 1.39455i
\(340\) 0 0
\(341\) 8.89636 15.4089i 0.481765 0.834441i
\(342\) −22.8598 + 0.528549i −1.23612 + 0.0285806i
\(343\) 0.319584 + 0.553536i 0.0172559 + 0.0298881i
\(344\) 2.48895 + 14.1155i 0.134195 + 0.761059i
\(345\) 0 0
\(346\) 31.6767 11.5294i 1.70295 0.619824i
\(347\) −3.62567 + 20.5622i −0.194636 + 1.10384i 0.718300 + 0.695733i \(0.244920\pi\)
−0.912936 + 0.408102i \(0.866191\pi\)
\(348\) −8.13873 + 6.99109i −0.436282 + 0.374762i
\(349\) −8.83183 + 7.41078i −0.472757 + 0.396690i −0.847799 0.530318i \(-0.822073\pi\)
0.375042 + 0.927008i \(0.377628\pi\)
\(350\) 0 0
\(351\) 4.43752 31.5218i 0.236857 1.68251i
\(352\) 37.0931 1.97707
\(353\) 8.10550 6.80132i 0.431412 0.361998i −0.401072 0.916047i \(-0.631362\pi\)
0.832484 + 0.554049i \(0.186918\pi\)
\(354\) 22.2102 + 7.79432i 1.18046 + 0.414263i
\(355\) 0 0
\(356\) −8.04423 + 2.92786i −0.426343 + 0.155176i
\(357\) 2.96925 18.0576i 0.157150 0.955707i
\(358\) 3.13592 + 17.7847i 0.165739 + 0.939951i
\(359\) 9.71352 + 16.8243i 0.512660 + 0.887953i 0.999892 + 0.0146804i \(0.00467310\pi\)
−0.487232 + 0.873272i \(0.661994\pi\)
\(360\) 0 0
\(361\) 3.62359 6.27624i 0.190715 0.330328i
\(362\) 33.2576 + 12.1048i 1.74798 + 0.636213i
\(363\) 15.0762 26.8241i 0.791296 1.40790i
\(364\) 51.9898 + 43.6247i 2.72501 + 2.28655i
\(365\) 0 0
\(366\) 1.04996 1.86812i 0.0548822 0.0976482i
\(367\) 11.2289 + 4.08698i 0.586143 + 0.213339i 0.618032 0.786153i \(-0.287930\pi\)
−0.0318889 + 0.999491i \(0.510152\pi\)
\(368\) −0.549014 + 0.950921i −0.0286194 + 0.0495702i
\(369\) 6.89080 + 2.32912i 0.358721 + 0.121249i
\(370\) 0 0
\(371\) −4.62244 26.2152i −0.239985 1.36102i
\(372\) −2.74381 + 16.6865i −0.142260 + 0.865157i
\(373\) −26.1774 + 9.52781i −1.35542 + 0.493331i −0.914634 0.404283i \(-0.867521\pi\)
−0.440782 + 0.897614i \(0.645299\pi\)
\(374\) −5.81180 + 32.9603i −0.300521 + 1.70434i
\(375\) 0 0
\(376\) 5.79063 4.85892i 0.298629 0.250579i
\(377\) −12.8945 −0.664098
\(378\) 6.06216 43.0624i 0.311804 2.21489i
\(379\) 19.6724 1.01050 0.505251 0.862973i \(-0.331400\pi\)
0.505251 + 0.862973i \(0.331400\pi\)
\(380\) 0 0
\(381\) 6.32713 5.43494i 0.324148 0.278440i
\(382\) −6.94086 + 39.3636i −0.355125 + 2.01401i
\(383\) −4.85629 + 1.76754i −0.248145 + 0.0903173i −0.463098 0.886307i \(-0.653262\pi\)
0.214953 + 0.976624i \(0.431040\pi\)
\(384\) −24.1609 + 9.11146i −1.23296 + 0.464967i
\(385\) 0 0
\(386\) 1.07989 + 1.87043i 0.0549652 + 0.0952025i
\(387\) 20.5040 0.474081i 1.04228 0.0240989i
\(388\) −9.38540 + 16.2560i −0.476472 + 0.825273i
\(389\) −8.84157 3.21807i −0.448285 0.163162i 0.108005 0.994150i \(-0.465554\pi\)
−0.556291 + 0.830988i \(0.687776\pi\)
\(390\) 0 0
\(391\) −1.92772 1.61755i −0.0974890 0.0818030i
\(392\) 11.5152 + 9.66244i 0.581608 + 0.488027i
\(393\) −9.66749 + 0.111748i −0.487660 + 0.00563693i
\(394\) −19.2908 7.02128i −0.971857 0.353727i
\(395\) 0 0
\(396\) −7.14263 + 46.8113i −0.358931 + 2.35235i
\(397\) 4.01712 + 6.95786i 0.201614 + 0.349205i 0.949048 0.315130i \(-0.102048\pi\)
−0.747435 + 0.664335i \(0.768715\pi\)
\(398\) −6.80673 38.6029i −0.341190 1.93499i
\(399\) −17.2874 14.1686i −0.865454 0.709319i
\(400\) 0 0
\(401\) −1.68169 + 9.53732i −0.0839794 + 0.476271i 0.913593 + 0.406630i \(0.133296\pi\)
−0.997572 + 0.0696405i \(0.977815\pi\)
\(402\) −11.2843 59.9369i −0.562810 2.98938i
\(403\) −15.5687 + 13.0637i −0.775532 + 0.650749i
\(404\) 13.5465 0.673965
\(405\) 0 0
\(406\) −17.6153 −0.874232
\(407\) 14.2359 11.9453i 0.705646 0.592107i
\(408\) −1.88582 10.0166i −0.0933619 0.495894i
\(409\) 2.41577 13.7005i 0.119452 0.677446i −0.864997 0.501776i \(-0.832680\pi\)
0.984449 0.175669i \(-0.0562089\pi\)
\(410\) 0 0
\(411\) 5.56592 + 4.56178i 0.274546 + 0.225016i
\(412\) 4.56924 + 25.9135i 0.225110 + 1.27666i
\(413\) 11.5045 + 19.9264i 0.566099 + 0.980512i
\(414\) −4.66853 3.73692i −0.229446 0.183660i
\(415\) 0 0
\(416\) −39.8139 14.4911i −1.95204 0.710484i
\(417\) 14.7948 0.171015i 0.724505 0.00837465i
\(418\) 31.3152 + 26.2766i 1.53168 + 1.28523i
\(419\) −23.8549 20.0166i −1.16539 0.977876i −0.165422 0.986223i \(-0.552899\pi\)
−0.999965 + 0.00834704i \(0.997343\pi\)
\(420\) 0 0
\(421\) −14.6085 5.31705i −0.711974 0.259137i −0.0394593 0.999221i \(-0.512564\pi\)
−0.672515 + 0.740084i \(0.734786\pi\)
\(422\) −5.00670 + 8.67186i −0.243722 + 0.422139i
\(423\) −5.62326 9.23972i −0.273412 0.449251i
\(424\) −7.41313 12.8399i −0.360013 0.623561i
\(425\) 0 0
\(426\) −55.6167 + 20.9739i −2.69464 + 1.01619i
\(427\) 1.96846 0.716460i 0.0952603 0.0346719i
\(428\) −8.44495 + 47.8937i −0.408202 + 2.31503i
\(429\) −43.1696 + 37.0823i −2.08425 + 1.79035i
\(430\) 0 0
\(431\) 5.10872 0.246078 0.123039 0.992402i \(-0.460736\pi\)
0.123039 + 0.992402i \(0.460736\pi\)
\(432\) 1.32167 + 6.22502i 0.0635888 + 0.299502i
\(433\) 9.22565 0.443356 0.221678 0.975120i \(-0.428847\pi\)
0.221678 + 0.975120i \(0.428847\pi\)
\(434\) −21.2686 + 17.8465i −1.02093 + 0.856658i
\(435\) 0 0
\(436\) −3.47308 + 19.6968i −0.166331 + 0.943308i
\(437\) −2.88827 + 1.05124i −0.138165 + 0.0502878i
\(438\) 8.08797 49.1871i 0.386458 2.35025i
\(439\) −2.32033 13.1592i −0.110743 0.628057i −0.988770 0.149445i \(-0.952251\pi\)
0.878027 0.478612i \(-0.158860\pi\)
\(440\) 0 0
\(441\) 16.1532 14.2032i 0.769198 0.676340i
\(442\) 19.1147 33.1075i 0.909191 1.57477i
\(443\) −7.23777 2.63433i −0.343877 0.125161i 0.164308 0.986409i \(-0.447461\pi\)
−0.508184 + 0.861248i \(0.669683\pi\)
\(444\) −8.65377 + 15.3971i −0.410690 + 0.730712i
\(445\) 0 0
\(446\) 41.8453 + 35.1124i 1.98143 + 1.66262i
\(447\) 9.55351 16.9979i 0.451865 0.803973i
\(448\) −45.7261 16.6429i −2.16035 0.786305i
\(449\) 16.9493 29.3570i 0.799886 1.38544i −0.119805 0.992797i \(-0.538227\pi\)
0.919690 0.392645i \(-0.128440\pi\)
\(450\) 0 0
\(451\) −6.50196 11.2617i −0.306165 0.530294i
\(452\) −8.80726 49.9485i −0.414259 2.34938i
\(453\) −4.77630 + 29.0471i −0.224410 + 1.36475i
\(454\) 35.5151 12.9264i 1.66680 0.606667i
\(455\) 0 0
\(456\) −11.7469 4.12240i −0.550100 0.193049i
\(457\) −19.6509 + 16.4891i −0.919230 + 0.771325i −0.973852 0.227182i \(-0.927049\pi\)
0.0546225 + 0.998507i \(0.482604\pi\)
\(458\) −32.6230 −1.52437
\(459\) −14.5757 + 0.505628i −0.680337 + 0.0236007i
\(460\) 0 0
\(461\) 11.2323 9.42502i 0.523140 0.438967i −0.342585 0.939487i \(-0.611302\pi\)
0.865725 + 0.500520i \(0.166858\pi\)
\(462\) −58.9746 + 50.6586i −2.74375 + 2.35685i
\(463\) −0.0945229 + 0.536066i −0.00439285 + 0.0249131i −0.986925 0.161178i \(-0.948471\pi\)
0.982533 + 0.186091i \(0.0595819\pi\)
\(464\) 2.42232 0.881652i 0.112453 0.0409297i
\(465\) 0 0
\(466\) 9.86433 + 55.9434i 0.456956 + 2.59153i
\(467\) −20.5859 35.6559i −0.952604 1.64996i −0.739759 0.672872i \(-0.765060\pi\)
−0.212845 0.977086i \(-0.568273\pi\)
\(468\) 25.9542 47.4545i 1.19973 2.19359i
\(469\) 29.8094 51.6314i 1.37647 2.38412i
\(470\) 0 0
\(471\) 11.0243 + 18.5949i 0.507973 + 0.856810i
\(472\) 9.81706 + 8.23749i 0.451867 + 0.379161i
\(473\) −28.0881 23.5687i −1.29149 1.08369i
\(474\) −38.2402 + 0.442023i −1.75643 + 0.0203028i
\(475\) 0 0
\(476\) 15.5472 26.9286i 0.712607 1.23427i
\(477\) −19.7624 + 7.71479i −0.904859 + 0.353236i
\(478\) 7.16525 + 12.4106i 0.327731 + 0.567647i
\(479\) 1.02370 + 5.80571i 0.0467742 + 0.265270i 0.999222 0.0394312i \(-0.0125546\pi\)
−0.952448 + 0.304701i \(0.901443\pi\)
\(480\) 0 0
\(481\) −19.9467 + 7.26002i −0.909493 + 0.331028i
\(482\) 1.03536 5.87183i 0.0471595 0.267455i
\(483\) −1.08153 5.74459i −0.0492115 0.261388i
\(484\) 40.0516 33.6073i 1.82053 1.52760i
\(485\) 0 0
\(486\) −34.5998 + 2.00186i −1.56948 + 0.0908060i
\(487\) −11.9102 −0.539704 −0.269852 0.962902i \(-0.586975\pi\)
−0.269852 + 0.962902i \(0.586975\pi\)
\(488\) 0.893767 0.749960i 0.0404589 0.0339491i
\(489\) −2.40046 12.7501i −0.108552 0.576579i
\(490\) 0 0
\(491\) −35.0462 + 12.7558i −1.58161 + 0.575661i −0.975554 0.219758i \(-0.929473\pi\)
−0.606060 + 0.795419i \(0.707251\pi\)
\(492\) 9.55892 + 7.83440i 0.430949 + 0.353202i
\(493\) 1.02587 + 5.81800i 0.0462029 + 0.262029i
\(494\) −23.3468 40.4379i −1.05042 1.81939i
\(495\) 0 0
\(496\) 2.03147 3.51861i 0.0912158 0.157990i
\(497\) −54.5997 19.8727i −2.44913 0.891411i
\(498\) −18.4040 + 0.212734i −0.824704 + 0.00953286i
\(499\) −14.2032 11.9179i −0.635821 0.533517i 0.266911 0.963721i \(-0.413997\pi\)
−0.902732 + 0.430204i \(0.858442\pi\)
\(500\) 0 0
\(501\) 11.0563 + 18.6489i 0.493958 + 0.833170i
\(502\) 41.0930 + 14.9566i 1.83407 + 0.667548i
\(503\) −17.2340 + 29.8502i −0.768428 + 1.33096i 0.169987 + 0.985446i \(0.445627\pi\)
−0.938415 + 0.345510i \(0.887706\pi\)
\(504\) 11.3611 20.7725i 0.506062 0.925281i
\(505\) 0 0
\(506\) 1.85644 + 10.5284i 0.0825289 + 0.468044i
\(507\) 39.7547 14.9921i 1.76557 0.665824i
\(508\) 13.3178 4.84727i 0.590880 0.215063i
\(509\) 4.38600 24.8743i 0.194406 1.10253i −0.718856 0.695159i \(-0.755334\pi\)
0.913262 0.407373i \(-0.133555\pi\)
\(510\) 0 0
\(511\) 37.3271 31.3211i 1.65125 1.38556i
\(512\) 13.6056 0.601287
\(513\) −8.36663 + 15.7266i −0.369396 + 0.694346i
\(514\) 12.3403 0.544307
\(515\) 0 0
\(516\) 32.8826 + 11.5397i 1.44758 + 0.508005i
\(517\) −3.35788 + 19.0435i −0.147679 + 0.837531i
\(518\) −27.2495 + 9.91801i −1.19727 + 0.435772i
\(519\) 4.26103 25.9135i 0.187038 1.13748i
\(520\) 0 0
\(521\) 5.72752 + 9.92036i 0.250927 + 0.434619i 0.963781 0.266693i \(-0.0859311\pi\)
−0.712854 + 0.701312i \(0.752598\pi\)
\(522\) 2.75674 + 13.7655i 0.120659 + 0.602497i
\(523\) 14.4630 25.0507i 0.632424 1.09539i −0.354631 0.935006i \(-0.615393\pi\)
0.987055 0.160384i \(-0.0512732\pi\)
\(524\) −15.4369 5.61857i −0.674364 0.245448i
\(525\) 0 0
\(526\) 24.0023 + 20.1403i 1.04655 + 0.878158i
\(527\) 7.13298 + 5.98528i 0.310718 + 0.260723i
\(528\) 5.57425 9.91789i 0.242588 0.431621i
\(529\) 20.8576 + 7.59154i 0.906851 + 0.330067i
\(530\) 0 0
\(531\) 13.7710 12.1086i 0.597611 0.525468i
\(532\) −18.9896 32.8909i −0.823302 1.42600i
\(533\) 2.57929 + 14.6279i 0.111722 + 0.633604i
\(534\) −1.81743 + 11.0527i −0.0786480 + 0.478299i
\(535\) 0 0
\(536\) 5.76612 32.7013i 0.249059 1.41248i
\(537\) 13.2752 + 4.65872i 0.572866 + 0.201039i
\(538\) 18.1366 15.2184i 0.781925 0.656113i
\(539\) −38.4540 −1.65633
\(540\) 0 0
\(541\) 13.9635 0.600338 0.300169 0.953886i \(-0.402957\pi\)
0.300169 + 0.953886i \(0.402957\pi\)
\(542\) −31.8487 + 26.7242i −1.36802 + 1.14790i
\(543\) 20.9152 17.9660i 0.897558 0.770994i
\(544\) −3.37084 + 19.1170i −0.144524 + 0.819634i
\(545\) 0 0
\(546\) 83.0912 31.3350i 3.55597 1.34101i
\(547\) 3.30929 + 18.7679i 0.141495 + 0.802457i 0.970115 + 0.242646i \(0.0780153\pi\)
−0.828620 + 0.559811i \(0.810874\pi\)
\(548\) 6.11394 + 10.5897i 0.261174 + 0.452367i
\(549\) −0.867933 1.42612i −0.0370425 0.0608655i
\(550\) 0 0
\(551\) 6.78062 + 2.46794i 0.288864 + 0.105138i
\(552\) −1.66036 2.80057i −0.0706698 0.119200i
\(553\) −28.6371 24.0294i −1.21777 1.02183i
\(554\) 12.5241 + 10.5090i 0.532098 + 0.446483i
\(555\) 0 0
\(556\) 23.6241 + 8.59848i 1.00189 + 0.364657i
\(557\) 14.6962 25.4546i 0.622700 1.07855i −0.366281 0.930504i \(-0.619369\pi\)
0.988981 0.148044i \(-0.0472976\pi\)
\(558\) 17.2746 + 13.8274i 0.731291 + 0.585361i
\(559\) 20.9409 + 36.2707i 0.885705 + 1.53409i
\(560\) 0 0
\(561\) 20.1661 + 16.5280i 0.851414 + 0.697811i
\(562\) −34.0727 + 12.4014i −1.43727 + 0.523123i
\(563\) 4.42830 25.1141i 0.186631 1.05844i −0.737212 0.675662i \(-0.763858\pi\)
0.923842 0.382773i \(-0.125031\pi\)
\(564\) −3.40039 18.0613i −0.143182 0.760517i
\(565\) 0 0
\(566\) 1.20076 0.0504719
\(567\) −26.9312 20.5539i −1.13100 0.863185i
\(568\) −32.3620 −1.35788
\(569\) −7.32350 + 6.14515i −0.307017 + 0.257618i −0.783258 0.621697i \(-0.786444\pi\)
0.476241 + 0.879315i \(0.341999\pi\)
\(570\) 0 0
\(571\) 5.37062 30.4583i 0.224754 1.27464i −0.638402 0.769703i \(-0.720404\pi\)
0.863156 0.504938i \(-0.168485\pi\)
\(572\) −90.8664 + 33.0727i −3.79931 + 1.38284i
\(573\) 24.0838 + 19.7389i 1.00611 + 0.824603i
\(574\) 3.52360 + 19.9834i 0.147072 + 0.834089i
\(575\) 0 0
\(576\) −5.84962 + 38.3372i −0.243734 + 1.59738i
\(577\) 18.1993 31.5221i 0.757647 1.31228i −0.186400 0.982474i \(-0.559682\pi\)
0.944047 0.329810i \(-0.106985\pi\)
\(578\) 19.0576 + 6.93641i 0.792692 + 0.288516i
\(579\) 1.68247 0.0194479i 0.0699211 0.000808226i
\(580\) 0 0
\(581\) −13.7823 11.5647i −0.571785 0.479785i
\(582\) 12.5256 + 21.1272i 0.519202 + 0.875749i
\(583\) 35.6402 + 12.9720i 1.47607 + 0.537244i
\(584\) 13.5697 23.5034i 0.561518 0.972578i
\(585\) 0 0
\(586\) −19.2915 33.4139i −0.796926 1.38032i
\(587\) −7.01686 39.7946i −0.289617 1.64250i −0.688312 0.725415i \(-0.741648\pi\)
0.398696 0.917083i \(-0.369463\pi\)
\(588\) 34.1968 12.8961i 1.41025 0.531828i
\(589\) 10.6872 3.88983i 0.440359 0.160278i
\(590\) 0 0
\(591\) −12.1317 + 10.4210i −0.499032 + 0.428663i
\(592\) 3.25074 2.72770i 0.133605 0.112108i
\(593\) 11.8336 0.485946 0.242973 0.970033i \(-0.421877\pi\)
0.242973 + 0.970033i \(0.421877\pi\)
\(594\) 48.8165 + 38.1577i 2.00296 + 1.56563i
\(595\) 0 0
\(596\) 25.3799 21.2963i 1.03960 0.872330i
\(597\) −28.8146 10.1121i −1.17930 0.413859i
\(598\) 2.12049 12.0259i 0.0867135 0.491776i
\(599\) 8.76898 3.19165i 0.358291 0.130407i −0.156602 0.987662i \(-0.550054\pi\)
0.514893 + 0.857255i \(0.327832\pi\)
\(600\) 0 0
\(601\) 3.42397 + 19.4183i 0.139667 + 0.792088i 0.971496 + 0.237057i \(0.0761827\pi\)
−0.831829 + 0.555032i \(0.812706\pi\)
\(602\) 28.6076 + 49.5498i 1.16596 + 2.01950i
\(603\) −45.0124 15.2144i −1.83305 0.619578i
\(604\) −25.0091 + 43.3170i −1.01761 + 1.76254i
\(605\) 0 0
\(606\) 8.68462 15.4519i 0.352788 0.627692i
\(607\) 27.6671 + 23.2154i 1.12297 + 0.942285i 0.998751 0.0499698i \(-0.0159125\pi\)
0.124221 + 0.992255i \(0.460357\pi\)
\(608\) 18.1628 + 15.2404i 0.736600 + 0.618081i
\(609\) −6.72376 + 11.9631i −0.272461 + 0.484771i
\(610\) 0 0
\(611\) 11.0439 19.1285i 0.446786 0.773857i
\(612\) −23.4764 7.93514i −0.948978 0.320759i
\(613\) −1.95873 3.39263i −0.0791125 0.137027i 0.823755 0.566946i \(-0.191875\pi\)
−0.902867 + 0.429919i \(0.858542\pi\)
\(614\) 1.72065 + 9.75829i 0.0694398 + 0.393813i
\(615\) 0 0
\(616\) −39.7754 + 14.4771i −1.60260 + 0.583298i
\(617\) 6.36880 36.1192i 0.256398 1.45411i −0.536060 0.844180i \(-0.680088\pi\)
0.792458 0.609926i \(-0.208801\pi\)
\(618\) 32.4877 + 11.4011i 1.30685 + 0.458618i
\(619\) 8.22380 6.90059i 0.330543 0.277358i −0.462378 0.886683i \(-0.653004\pi\)
0.792921 + 0.609325i \(0.208559\pi\)
\(620\) 0 0
\(621\) −4.31985 + 1.74417i −0.173350 + 0.0699912i
\(622\) −26.2634 −1.05307
\(623\) −8.38770 + 7.03811i −0.336046 + 0.281976i
\(624\) −9.85773 + 8.46770i −0.394625 + 0.338979i
\(625\) 0 0
\(626\) −7.40481 + 2.69513i −0.295956 + 0.107719i
\(627\) 29.7984 11.2374i 1.19003 0.448780i
\(628\) 6.37827 + 36.1729i 0.254521 + 1.44346i
\(629\) 4.86267 + 8.42239i 0.193887 + 0.335823i
\(630\) 0 0
\(631\) −1.62045 + 2.80670i −0.0645090 + 0.111733i −0.896476 0.443092i \(-0.853881\pi\)
0.831967 + 0.554825i \(0.187215\pi\)
\(632\) −19.5655 7.12126i −0.778273 0.283268i
\(633\) 3.97829 + 6.71027i 0.158123 + 0.266709i
\(634\) −6.62270 5.55711i −0.263021 0.220701i
\(635\) 0 0
\(636\) −36.0448 + 0.416646i −1.42927 + 0.0165211i
\(637\) 41.2747 + 15.0228i 1.63536 + 0.595223i
\(638\) 12.5491 21.7357i 0.496824 0.860524i
\(639\) −6.98480 + 45.7769i −0.276314 + 1.81091i
\(640\) 0 0
\(641\) 0.522380 + 2.96256i 0.0206328 + 0.117014i 0.993385 0.114834i \(-0.0366337\pi\)
−0.972752 + 0.231849i \(0.925523\pi\)
\(642\) 49.2162 + 40.3372i 1.94241 + 1.59198i
\(643\) −35.5666 + 12.9452i −1.40261 + 0.510509i −0.928952 0.370200i \(-0.879289\pi\)
−0.473659 + 0.880708i \(0.657067\pi\)
\(644\) 1.72474 9.78150i 0.0679644 0.385445i
\(645\) 0 0
\(646\) −16.3882 + 13.7513i −0.644784 + 0.541038i
\(647\) 13.1670 0.517650 0.258825 0.965924i \(-0.416665\pi\)
0.258825 + 0.965924i \(0.416665\pi\)
\(648\) −18.0106 5.62726i −0.707524 0.221060i
\(649\) −32.7831 −1.28685
\(650\) 0 0
\(651\) 4.00191 + 21.2562i 0.156847 + 0.833097i
\(652\) 3.82806 21.7100i 0.149918 0.850229i
\(653\) 18.4773 6.72520i 0.723074 0.263177i 0.0458437 0.998949i \(-0.485402\pi\)
0.677230 + 0.735771i \(0.263180\pi\)
\(654\) 20.2408 + 16.5891i 0.791476 + 0.648687i
\(655\) 0 0
\(656\) −1.48471 2.57160i −0.0579683 0.100404i
\(657\) −30.3174 24.2675i −1.18280 0.946767i
\(658\) 15.0872 26.1317i 0.588158 1.01872i
\(659\) 17.4856 + 6.36425i 0.681143 + 0.247916i 0.659338 0.751846i \(-0.270836\pi\)
0.0218050 + 0.999762i \(0.493059\pi\)
\(660\) 0 0
\(661\) −26.9451 22.6096i −1.04804 0.879412i −0.0551562 0.998478i \(-0.517566\pi\)
−0.992886 + 0.119066i \(0.962010\pi\)
\(662\) 34.0524 + 28.5734i 1.32348 + 1.11054i
\(663\) −15.1884 25.6186i −0.589868 0.994943i
\(664\) −9.41637 3.42728i −0.365426 0.133004i
\(665\) 0 0
\(666\) 12.0149 + 19.7420i 0.465567 + 0.764985i
\(667\) 0.943545 + 1.63427i 0.0365342 + 0.0632791i
\(668\) 6.39677 + 36.2779i 0.247498 + 1.40363i
\(669\) 39.8183 15.0161i 1.53947 0.580557i
\(670\) 0 0
\(671\) −0.518279 + 2.93930i −0.0200079 + 0.113471i
\(672\) −34.2053 + 29.3820i −1.31950 + 1.13343i
\(673\) 17.6455 14.8063i 0.680183 0.570741i −0.235877 0.971783i \(-0.575796\pi\)
0.916060 + 0.401042i \(0.131352\pi\)
\(674\) −57.7859 −2.22583
\(675\) 0 0
\(676\) 72.1928 2.77665
\(677\) 9.49900 7.97061i 0.365076 0.306335i −0.441734 0.897146i \(-0.645636\pi\)
0.806810 + 0.590811i \(0.201192\pi\)
\(678\) −62.6203 21.9756i −2.40492 0.843970i
\(679\) −4.16911 + 23.6442i −0.159996 + 0.907380i
\(680\) 0 0
\(681\) 4.77734 29.0535i 0.183068 1.11333i
\(682\) −6.86923 38.9574i −0.263037 1.49175i
\(683\) −2.90926 5.03898i −0.111320 0.192811i 0.804983 0.593298i \(-0.202174\pi\)
−0.916303 + 0.400487i \(0.868841\pi\)
\(684\) −22.7307 + 19.9867i −0.869131 + 0.764210i
\(685\) 0 0
\(686\) 1.33535 + 0.486029i 0.0509841 + 0.0185567i
\(687\) −12.4522 + 22.1554i −0.475082 + 0.845281i
\(688\) −6.41389 5.38189i −0.244527 0.205183i
\(689\) −33.1867 27.8469i −1.26431 1.06088i
\(690\) 0 0
\(691\) −4.15074 1.51075i −0.157902 0.0574715i 0.261860 0.965106i \(-0.415664\pi\)
−0.419762 + 0.907634i \(0.637886\pi\)
\(692\) 22.3111 38.6439i 0.848140 1.46902i
\(693\) 11.8933 + 59.3881i 0.451790 + 2.25597i
\(694\) 23.2104 + 40.2017i 0.881057 + 1.52603i
\(695\) 0 0
\(696\) −1.24017 + 7.54209i −0.0470084 + 0.285882i
\(697\) 6.39492 2.32756i 0.242225 0.0881626i
\(698\) −4.45105 + 25.2432i −0.168475 + 0.955468i
\(699\) 41.7583 + 14.6544i 1.57944 + 0.554281i
\(700\) 0 0
\(701\) 45.9990 1.73736 0.868678 0.495376i \(-0.164970\pi\)
0.868678 + 0.495376i \(0.164970\pi\)
\(702\) −37.4902 60.0277i −1.41498 2.26560i
\(703\) 11.8786 0.448011
\(704\) 53.1111 44.5655i 2.00170 1.67962i
\(705\) 0 0
\(706\) 4.08500 23.1672i 0.153741 0.871908i
\(707\) 16.2819 5.92611i 0.612343 0.222874i
\(708\) 29.1537 10.9943i 1.09566 0.413192i
\(709\) −1.65171 9.36728i −0.0620311 0.351796i −0.999987 0.00504202i \(-0.998395\pi\)
0.937956 0.346754i \(-0.112716\pi\)
\(710\) 0 0
\(711\) −14.2961 + 26.1389i −0.536146 + 0.980286i
\(712\) −3.04922 + 5.28141i −0.114274 + 0.197929i
\(713\) 2.79495 + 1.01728i 0.104672 + 0.0380973i
\(714\) −20.7490 34.9979i −0.776513 1.30976i
\(715\) 0 0
\(716\) 18.3124 + 15.3659i 0.684367 + 0.574252i
\(717\) 11.1634 0.129039i 0.416906 0.00481907i
\(718\) 40.5871 + 14.7725i 1.51470 + 0.551305i
\(719\) −9.60533 + 16.6369i −0.358218 + 0.620452i −0.987663 0.156593i \(-0.949949\pi\)
0.629445 + 0.777045i \(0.283282\pi\)
\(720\) 0 0
\(721\) 16.8281 + 29.1471i 0.626710 + 1.08549i
\(722\) −2.79792 15.8678i −0.104128 0.590537i
\(723\) −3.59256 2.94443i −0.133609 0.109505i
\(724\) 44.0238 16.0233i 1.63613 0.595503i
\(725\) 0 0
\(726\) −12.6575 67.2305i −0.469763 2.49516i
\(727\) −26.9901 + 22.6474i −1.00101 + 0.839944i −0.987124 0.159960i \(-0.948864\pi\)
−0.0138826 + 0.999904i \(0.504419\pi\)
\(728\) 48.3487 1.79192
\(729\) −11.8472 + 24.2620i −0.438786 + 0.898592i
\(730\) 0 0
\(731\) 14.6993 12.3342i 0.543675 0.456197i
\(732\) −0.524841 2.78771i −0.0193987 0.103037i
\(733\) 2.68164 15.2083i 0.0990485 0.561732i −0.894383 0.447302i \(-0.852385\pi\)
0.993431 0.114430i \(-0.0365040\pi\)
\(734\) 24.9651 9.08654i 0.921477 0.335390i
\(735\) 0 0
\(736\) 1.07673 + 6.10647i 0.0396890 + 0.225087i
\(737\) 42.4724 + 73.5643i 1.56449 + 2.70977i
\(738\) 15.0645 5.88085i 0.554533 0.216477i
\(739\) −6.55875 + 11.3601i −0.241268 + 0.417888i −0.961076 0.276285i \(-0.910896\pi\)
0.719808 + 0.694173i \(0.244230\pi\)
\(740\) 0 0
\(741\) −36.3742 + 0.420454i −1.33624 + 0.0154458i
\(742\) −45.3368 38.0421i −1.66437 1.39657i
\(743\) 11.2392 + 9.43078i 0.412325 + 0.345982i 0.825234 0.564790i \(-0.191043\pi\)
−0.412909 + 0.910772i \(0.635487\pi\)
\(744\) 6.14371 + 10.3627i 0.225239 + 0.379916i
\(745\) 0 0
\(746\) −30.9676 + 53.6374i −1.13380 + 1.96380i
\(747\) −6.88035 + 12.5800i −0.251739 + 0.460278i
\(748\) 22.1517 + 38.3678i 0.809945 + 1.40287i
\(749\) 10.8016 + 61.2588i 0.394681 + 2.23835i
\(750\) 0 0
\(751\) −13.7050 + 4.98820i −0.500101 + 0.182022i −0.579739 0.814802i \(-0.696846\pi\)
0.0796384 + 0.996824i \(0.474623\pi\)
\(752\) −0.766767 + 4.34855i −0.0279611 + 0.158575i
\(753\) 25.8428 22.1987i 0.941764 0.808966i
\(754\) −21.9610 + 18.4275i −0.799774 + 0.671090i
\(755\) 0 0
\(756\) −30.4933 48.8246i −1.10903 1.77573i
\(757\) 13.5259 0.491607 0.245803 0.969320i \(-0.420948\pi\)
0.245803 + 0.969320i \(0.420948\pi\)
\(758\) 33.5047 28.1138i 1.21695 1.02114i
\(759\) 7.85879 + 2.75792i 0.285256 + 0.100106i
\(760\) 0 0
\(761\) −31.9148 + 11.6160i −1.15691 + 0.421081i −0.847993 0.530008i \(-0.822189\pi\)
−0.308918 + 0.951089i \(0.599967\pi\)
\(762\) 3.00888 18.2986i 0.109000 0.662887i
\(763\) 4.44227 + 25.1934i 0.160821 + 0.912062i
\(764\) 26.4551 + 45.8215i 0.957111 + 1.65776i
\(765\) 0 0
\(766\) −5.74493 + 9.95050i −0.207573 + 0.359526i
\(767\) 35.1878 + 12.8073i 1.27056 + 0.462445i
\(768\) −6.18771 + 11.0094i −0.223280 + 0.397267i
\(769\) −1.51739 1.27324i −0.0547184 0.0459142i 0.615018 0.788513i \(-0.289149\pi\)
−0.669737 + 0.742599i \(0.733593\pi\)
\(770\) 0 0
\(771\) 4.71029 8.38070i 0.169637 0.301824i
\(772\) 2.68654 + 0.977821i 0.0966907 + 0.0351925i
\(773\) 26.8597 46.5224i 0.966077 1.67329i 0.259382 0.965775i \(-0.416481\pi\)
0.706694 0.707519i \(-0.250186\pi\)
\(774\) 34.2437 30.1098i 1.23086 1.08227i
\(775\) 0 0
\(776\) 2.32206 + 13.1691i 0.0833571 + 0.472742i