Properties

Label 675.2.l.f.76.1
Level $675$
Weight $2$
Character 675.76
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 76.1
Character \(\chi\) \(=\) 675.76
Dual form 675.2.l.f.151.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.84958 + 1.55198i) q^{2} +(1.53931 + 0.794060i) q^{3} +(0.665000 - 3.77140i) q^{4} +(-4.07944 + 0.920299i) q^{6} +(0.0583477 + 0.330906i) q^{7} +(2.20872 + 3.82562i) q^{8} +(1.73894 + 2.44461i) q^{9} +O(q^{10})\) \(q+(-1.84958 + 1.55198i) q^{2} +(1.53931 + 0.794060i) q^{3} +(0.665000 - 3.77140i) q^{4} +(-4.07944 + 0.920299i) q^{6} +(0.0583477 + 0.330906i) q^{7} +(2.20872 + 3.82562i) q^{8} +(1.73894 + 2.44461i) q^{9} +(-4.97408 - 1.81042i) q^{11} +(4.01836 - 5.27730i) q^{12} +(4.68414 + 3.93046i) q^{13} +(-0.621479 - 0.521483i) q^{14} +(-2.82523 - 1.02830i) q^{16} +(-1.52112 + 2.63465i) q^{17} +(-7.01028 - 1.82269i) q^{18} +(-0.260295 - 0.450843i) q^{19} +(-0.172944 + 0.555698i) q^{21} +(12.0097 - 4.37117i) q^{22} +(-0.0350517 + 0.198788i) q^{23} +(0.362131 + 7.64266i) q^{24} -14.7637 q^{26} +(0.735594 + 5.14382i) q^{27} +1.28678 q^{28} +(1.41738 - 1.18933i) q^{29} +(-1.58422 + 8.98458i) q^{31} +(-1.48070 + 0.538930i) q^{32} +(-6.21906 - 6.73651i) q^{33} +(-1.27550 - 7.23373i) q^{34} +(10.3760 - 4.93257i) q^{36} +(-3.11234 + 5.39074i) q^{37} +(1.18114 + 0.429898i) q^{38} +(4.08931 + 9.76968i) q^{39} +(6.96293 + 5.84259i) q^{41} +(-0.542558 - 1.29621i) q^{42} +(-6.38441 - 2.32373i) q^{43} +(-10.1356 + 17.5553i) q^{44} +(-0.243684 - 0.422073i) q^{46} +(2.11902 + 12.0175i) q^{47} +(-3.53236 - 3.82627i) q^{48} +(6.47175 - 2.35553i) q^{49} +(-4.43354 + 2.84768i) q^{51} +(17.9383 - 15.0520i) q^{52} +2.74867 q^{53} +(-9.34365 - 8.37227i) q^{54} +(-1.13705 + 0.954096i) q^{56} +(-0.0426766 - 0.900676i) q^{57} +(-0.775751 + 4.39950i) q^{58} +(-6.56519 + 2.38954i) q^{59} +(-2.16727 - 12.2912i) q^{61} +(-11.0137 - 19.0764i) q^{62} +(-0.707472 + 0.718062i) q^{63} +(4.90880 - 8.50230i) q^{64} +(21.9576 + 2.80784i) q^{66} +(-4.29512 - 3.60403i) q^{67} +(8.92479 + 7.48879i) q^{68} +(-0.211805 + 0.278163i) q^{69} +(1.58699 - 2.74874i) q^{71} +(-5.51130 + 12.0520i) q^{72} +(0.731226 + 1.26652i) q^{73} +(-2.60980 - 14.8009i) q^{74} +(-1.87341 + 0.681865i) q^{76} +(0.308852 - 1.75159i) q^{77} +(-22.7259 - 11.7233i) q^{78} +(-2.18198 + 1.83090i) q^{79} +(-2.95220 + 8.50203i) q^{81} -21.9461 q^{82} +(-0.578595 + 0.485499i) q^{83} +(1.98075 + 1.02178i) q^{84} +(15.4149 - 5.61055i) q^{86} +(3.12618 - 0.705250i) q^{87} +(-4.06039 - 23.0276i) q^{88} +(-3.18070 - 5.50914i) q^{89} +(-1.02731 + 1.77934i) q^{91} +(0.726400 + 0.264388i) q^{92} +(-9.57291 + 12.5721i) q^{93} +(-22.5703 - 18.9387i) q^{94} +(-2.70719 - 0.346184i) q^{96} +(-10.0155 - 3.64534i) q^{97} +(-8.31429 + 14.4008i) q^{98} +(-4.22385 - 15.3079i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{7}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.84958 + 1.55198i −1.30785 + 1.09742i −0.319118 + 0.947715i \(0.603387\pi\)
−0.988731 + 0.149701i \(0.952169\pi\)
\(3\) 1.53931 + 0.794060i 0.888720 + 0.458451i
\(4\) 0.665000 3.77140i 0.332500 1.88570i
\(5\) 0 0
\(6\) −4.07944 + 0.920299i −1.66542 + 0.375710i
\(7\) 0.0583477 + 0.330906i 0.0220534 + 0.125071i 0.993847 0.110762i \(-0.0353292\pi\)
−0.971794 + 0.235833i \(0.924218\pi\)
\(8\) 2.20872 + 3.82562i 0.780901 + 1.35256i
\(9\) 1.73894 + 2.44461i 0.579646 + 0.814869i
\(10\) 0 0
\(11\) −4.97408 1.81042i −1.49974 0.545861i −0.543748 0.839249i \(-0.682995\pi\)
−0.955994 + 0.293387i \(0.905217\pi\)
\(12\) 4.01836 5.27730i 1.16000 1.52343i
\(13\) 4.68414 + 3.93046i 1.29915 + 1.09011i 0.990292 + 0.139005i \(0.0443903\pi\)
0.308855 + 0.951109i \(0.400054\pi\)
\(14\) −0.621479 0.521483i −0.166097 0.139372i
\(15\) 0 0
\(16\) −2.82523 1.02830i −0.706307 0.257075i
\(17\) −1.52112 + 2.63465i −0.368925 + 0.638996i −0.989398 0.145231i \(-0.953607\pi\)
0.620473 + 0.784228i \(0.286941\pi\)
\(18\) −7.01028 1.82269i −1.65234 0.429613i
\(19\) −0.260295 0.450843i −0.0597157 0.103431i 0.834622 0.550823i \(-0.185686\pi\)
−0.894338 + 0.447392i \(0.852353\pi\)
\(20\) 0 0
\(21\) −0.172944 + 0.555698i −0.0377396 + 0.121263i
\(22\) 12.0097 4.37117i 2.56047 0.931936i
\(23\) −0.0350517 + 0.198788i −0.00730878 + 0.0414501i −0.988244 0.152885i \(-0.951144\pi\)
0.980935 + 0.194335i \(0.0622548\pi\)
\(24\) 0.362131 + 7.64266i 0.0739197 + 1.56005i
\(25\) 0 0
\(26\) −14.7637 −2.89540
\(27\) 0.735594 + 5.14382i 0.141565 + 0.989929i
\(28\) 1.28678 0.243179
\(29\) 1.41738 1.18933i 0.263201 0.220852i −0.501631 0.865082i \(-0.667266\pi\)
0.764832 + 0.644230i \(0.222822\pi\)
\(30\) 0 0
\(31\) −1.58422 + 8.98458i −0.284535 + 1.61368i 0.422407 + 0.906406i \(0.361185\pi\)
−0.706942 + 0.707272i \(0.749926\pi\)
\(32\) −1.48070 + 0.538930i −0.261753 + 0.0952703i
\(33\) −6.21906 6.73651i −1.08260 1.17268i
\(34\) −1.27550 7.23373i −0.218747 1.24058i
\(35\) 0 0
\(36\) 10.3760 4.93257i 1.72933 0.822095i
\(37\) −3.11234 + 5.39074i −0.511666 + 0.886232i 0.488242 + 0.872708i \(0.337638\pi\)
−0.999909 + 0.0135239i \(0.995695\pi\)
\(38\) 1.18114 + 0.429898i 0.191605 + 0.0697387i
\(39\) 4.08931 + 9.76968i 0.654814 + 1.56440i
\(40\) 0 0
\(41\) 6.96293 + 5.84259i 1.08743 + 0.912459i 0.996516 0.0833996i \(-0.0265778\pi\)
0.0909107 + 0.995859i \(0.471022\pi\)
\(42\) −0.542558 1.29621i −0.0837186 0.200010i
\(43\) −6.38441 2.32373i −0.973613 0.354366i −0.194259 0.980950i \(-0.562230\pi\)
−0.779354 + 0.626584i \(0.784452\pi\)
\(44\) −10.1356 + 17.5553i −1.52800 + 2.64657i
\(45\) 0 0
\(46\) −0.243684 0.422073i −0.0359293 0.0622313i
\(47\) 2.11902 + 12.0175i 0.309090 + 1.75294i 0.603598 + 0.797288i \(0.293733\pi\)
−0.294508 + 0.955649i \(0.595156\pi\)
\(48\) −3.53236 3.82627i −0.509853 0.552275i
\(49\) 6.47175 2.35553i 0.924536 0.336504i
\(50\) 0 0
\(51\) −4.43354 + 2.84768i −0.620819 + 0.398755i
\(52\) 17.9383 15.0520i 2.48760 2.08734i
\(53\) 2.74867 0.377558 0.188779 0.982020i \(-0.439547\pi\)
0.188779 + 0.982020i \(0.439547\pi\)
\(54\) −9.34365 8.37227i −1.27151 1.13932i
\(55\) 0 0
\(56\) −1.13705 + 0.954096i −0.151944 + 0.127496i
\(57\) −0.0426766 0.900676i −0.00565265 0.119297i
\(58\) −0.775751 + 4.39950i −0.101861 + 0.577683i
\(59\) −6.56519 + 2.38954i −0.854716 + 0.311091i −0.731961 0.681346i \(-0.761395\pi\)
−0.122754 + 0.992437i \(0.539173\pi\)
\(60\) 0 0
\(61\) −2.16727 12.2912i −0.277491 1.57373i −0.730938 0.682444i \(-0.760917\pi\)
0.453447 0.891283i \(-0.350194\pi\)
\(62\) −11.0137 19.0764i −1.39875 2.42270i
\(63\) −0.707472 + 0.718062i −0.0891332 + 0.0904673i
\(64\) 4.90880 8.50230i 0.613601 1.06279i
\(65\) 0 0
\(66\) 21.9576 + 2.80784i 2.70279 + 0.345621i
\(67\) −4.29512 3.60403i −0.524732 0.440303i 0.341545 0.939865i \(-0.389050\pi\)
−0.866278 + 0.499562i \(0.833494\pi\)
\(68\) 8.92479 + 7.48879i 1.08229 + 0.908149i
\(69\) −0.211805 + 0.278163i −0.0254983 + 0.0334868i
\(70\) 0 0
\(71\) 1.58699 2.74874i 0.188341 0.326216i −0.756356 0.654160i \(-0.773022\pi\)
0.944697 + 0.327944i \(0.106356\pi\)
\(72\) −5.51130 + 12.0520i −0.649513 + 1.42034i
\(73\) 0.731226 + 1.26652i 0.0855835 + 0.148235i 0.905640 0.424048i \(-0.139391\pi\)
−0.820056 + 0.572283i \(0.806058\pi\)
\(74\) −2.60980 14.8009i −0.303383 1.72057i
\(75\) 0 0
\(76\) −1.87341 + 0.681865i −0.214895 + 0.0782153i
\(77\) 0.308852 1.75159i 0.0351970 0.199612i
\(78\) −22.7259 11.7233i −2.57320 1.32740i
\(79\) −2.18198 + 1.83090i −0.245491 + 0.205992i −0.757228 0.653151i \(-0.773447\pi\)
0.511737 + 0.859142i \(0.329002\pi\)
\(80\) 0 0
\(81\) −2.95220 + 8.50203i −0.328022 + 0.944670i
\(82\) −21.9461 −2.42354
\(83\) −0.578595 + 0.485499i −0.0635091 + 0.0532905i −0.673990 0.738741i \(-0.735421\pi\)
0.610481 + 0.792031i \(0.290976\pi\)
\(84\) 1.98075 + 1.02178i 0.216118 + 0.111486i
\(85\) 0 0
\(86\) 15.4149 5.61055i 1.66223 0.605001i
\(87\) 3.12618 0.705250i 0.335162 0.0756108i
\(88\) −4.06039 23.0276i −0.432840 2.45476i
\(89\) −3.18070 5.50914i −0.337154 0.583968i 0.646742 0.762709i \(-0.276131\pi\)
−0.983896 + 0.178741i \(0.942798\pi\)
\(90\) 0 0
\(91\) −1.02731 + 1.77934i −0.107691 + 0.186526i
\(92\) 0.726400 + 0.264388i 0.0757325 + 0.0275644i
\(93\) −9.57291 + 12.5721i −0.992664 + 1.30366i
\(94\) −22.5703 18.9387i −2.32794 1.95338i
\(95\) 0 0
\(96\) −2.70719 0.346184i −0.276302 0.0353323i
\(97\) −10.0155 3.64534i −1.01692 0.370128i −0.220832 0.975312i \(-0.570877\pi\)
−0.796086 + 0.605184i \(0.793099\pi\)
\(98\) −8.31429 + 14.4008i −0.839870 + 1.45470i
\(99\) −4.22385 15.3079i −0.424513 1.53850i
\(100\) 0 0
\(101\) −2.11146 11.9747i −0.210098 1.19152i −0.889213 0.457493i \(-0.848748\pi\)
0.679116 0.734031i \(-0.262363\pi\)
\(102\) 3.78063 12.1478i 0.374338 1.20281i
\(103\) −2.42584 + 0.882932i −0.239025 + 0.0869979i −0.458755 0.888563i \(-0.651704\pi\)
0.219730 + 0.975561i \(0.429482\pi\)
\(104\) −4.69048 + 26.6010i −0.459939 + 2.60845i
\(105\) 0 0
\(106\) −5.08387 + 4.26588i −0.493790 + 0.414339i
\(107\) 5.35813 0.517990 0.258995 0.965879i \(-0.416609\pi\)
0.258995 + 0.965879i \(0.416609\pi\)
\(108\) 19.8886 + 0.646421i 1.91378 + 0.0622019i
\(109\) 17.4957 1.67579 0.837893 0.545834i \(-0.183787\pi\)
0.837893 + 0.545834i \(0.183787\pi\)
\(110\) 0 0
\(111\) −9.07143 + 5.82662i −0.861022 + 0.553038i
\(112\) 0.175425 0.994885i 0.0165761 0.0940078i
\(113\) 15.7488 5.73211i 1.48153 0.539232i 0.530323 0.847796i \(-0.322071\pi\)
0.951204 + 0.308564i \(0.0998485\pi\)
\(114\) 1.47677 + 1.59964i 0.138312 + 0.149820i
\(115\) 0 0
\(116\) −3.54287 6.13642i −0.328947 0.569753i
\(117\) −1.46300 + 18.2857i −0.135255 + 1.69051i
\(118\) 8.43433 14.6087i 0.776443 1.34484i
\(119\) −0.960576 0.349621i −0.0880558 0.0320497i
\(120\) 0 0
\(121\) 13.0374 + 10.9397i 1.18522 + 0.994514i
\(122\) 23.0842 + 19.3700i 2.08995 + 1.75368i
\(123\) 6.07872 + 14.5225i 0.548100 + 1.30945i
\(124\) 32.8310 + 11.9495i 2.94831 + 1.07310i
\(125\) 0 0
\(126\) 0.194107 2.42610i 0.0172925 0.216134i
\(127\) −4.00306 6.93350i −0.355214 0.615249i 0.631940 0.775017i \(-0.282259\pi\)
−0.987155 + 0.159768i \(0.948925\pi\)
\(128\) 3.56894 + 20.2405i 0.315453 + 1.78902i
\(129\) −7.98238 8.64655i −0.702810 0.761286i
\(130\) 0 0
\(131\) 1.87834 10.6526i 0.164111 0.930721i −0.785865 0.618398i \(-0.787782\pi\)
0.949976 0.312323i \(-0.101107\pi\)
\(132\) −29.5418 + 18.9748i −2.57128 + 1.65154i
\(133\) 0.133999 0.112439i 0.0116192 0.00974968i
\(134\) 13.5376 1.16947
\(135\) 0 0
\(136\) −13.4389 −1.15238
\(137\) −10.0791 + 8.45733i −0.861112 + 0.722559i −0.962207 0.272318i \(-0.912210\pi\)
0.101095 + 0.994877i \(0.467765\pi\)
\(138\) −0.0399532 0.843201i −0.00340105 0.0717780i
\(139\) −1.27373 + 7.22368i −0.108036 + 0.612705i 0.881928 + 0.471385i \(0.156246\pi\)
−0.989964 + 0.141320i \(0.954865\pi\)
\(140\) 0 0
\(141\) −6.28083 + 20.1813i −0.528941 + 1.69957i
\(142\) 1.33074 + 7.54699i 0.111673 + 0.633329i
\(143\) −16.1835 28.0307i −1.35333 2.34404i
\(144\) −2.39911 8.69472i −0.199926 0.724560i
\(145\) 0 0
\(146\) −3.31807 1.20768i −0.274606 0.0999483i
\(147\) 11.8325 + 1.51308i 0.975924 + 0.124797i
\(148\) 18.2609 + 15.3228i 1.50104 + 1.25952i
\(149\) 10.1927 + 8.55268i 0.835017 + 0.700663i 0.956437 0.291939i \(-0.0943003\pi\)
−0.121420 + 0.992601i \(0.538745\pi\)
\(150\) 0 0
\(151\) 8.57654 + 3.12160i 0.697949 + 0.254033i 0.666535 0.745474i \(-0.267777\pi\)
0.0314139 + 0.999506i \(0.489999\pi\)
\(152\) 1.14984 1.99158i 0.0932641 0.161538i
\(153\) −9.08581 + 0.862960i −0.734544 + 0.0697662i
\(154\) 2.14718 + 3.71903i 0.173025 + 0.299688i
\(155\) 0 0
\(156\) 39.5648 8.92561i 3.16772 0.714620i
\(157\) −4.17491 + 1.51954i −0.333194 + 0.121273i −0.503199 0.864171i \(-0.667844\pi\)
0.170005 + 0.985443i \(0.445622\pi\)
\(158\) 1.19422 6.77277i 0.0950072 0.538813i
\(159\) 4.23104 + 2.18261i 0.335544 + 0.173092i
\(160\) 0 0
\(161\) −0.0678253 −0.00534539
\(162\) −7.73466 20.3069i −0.607693 1.59546i
\(163\) 16.5806 1.29869 0.649347 0.760492i \(-0.275042\pi\)
0.649347 + 0.760492i \(0.275042\pi\)
\(164\) 26.6651 22.3747i 2.08220 1.74717i
\(165\) 0 0
\(166\) 0.316672 1.79594i 0.0245785 0.139392i
\(167\) 18.8502 6.86091i 1.45867 0.530913i 0.513673 0.857986i \(-0.328284\pi\)
0.944999 + 0.327073i \(0.106062\pi\)
\(168\) −2.50788 + 0.565763i −0.193487 + 0.0436496i
\(169\) 4.23523 + 24.0192i 0.325787 + 1.84763i
\(170\) 0 0
\(171\) 0.649499 1.42031i 0.0496684 0.108613i
\(172\) −13.0094 + 22.5329i −0.991955 + 1.71812i
\(173\) −3.14658 1.14526i −0.239230 0.0870725i 0.219623 0.975585i \(-0.429517\pi\)
−0.458853 + 0.888512i \(0.651739\pi\)
\(174\) −4.68759 + 6.15619i −0.355365 + 0.466700i
\(175\) 0 0
\(176\) 12.1913 + 10.2297i 0.918951 + 0.771091i
\(177\) −12.0033 1.53493i −0.902223 0.115372i
\(178\) 14.4330 + 5.25320i 1.08180 + 0.393744i
\(179\) −6.19883 + 10.7367i −0.463323 + 0.802498i −0.999124 0.0418458i \(-0.986676\pi\)
0.535802 + 0.844344i \(0.320010\pi\)
\(180\) 0 0
\(181\) 2.32049 + 4.01921i 0.172481 + 0.298746i 0.939287 0.343134i \(-0.111488\pi\)
−0.766806 + 0.641879i \(0.778155\pi\)
\(182\) −0.861427 4.88540i −0.0638532 0.362130i
\(183\) 6.42386 20.6409i 0.474865 1.52582i
\(184\) −0.837906 + 0.304973i −0.0617713 + 0.0224829i
\(185\) 0 0
\(186\) −1.80576 38.1100i −0.132405 2.79436i
\(187\) 12.3360 10.3511i 0.902095 0.756948i
\(188\) 46.7321 3.40829
\(189\) −1.65920 + 0.543543i −0.120689 + 0.0395369i
\(190\) 0 0
\(191\) 10.8645 9.11641i 0.786129 0.659641i −0.158655 0.987334i \(-0.550716\pi\)
0.944784 + 0.327694i \(0.106271\pi\)
\(192\) 14.3075 9.18977i 1.03255 0.663214i
\(193\) 2.94460 16.6997i 0.211957 1.20207i −0.674152 0.738593i \(-0.735491\pi\)
0.886109 0.463477i \(-0.153398\pi\)
\(194\) 24.1819 8.80149i 1.73616 0.631910i
\(195\) 0 0
\(196\) −4.57992 25.9740i −0.327137 1.85529i
\(197\) −3.41348 5.91232i −0.243200 0.421236i 0.718424 0.695606i \(-0.244864\pi\)
−0.961624 + 0.274370i \(0.911531\pi\)
\(198\) 31.5699 + 21.7578i 2.24357 + 1.54626i
\(199\) −7.72021 + 13.3718i −0.547271 + 0.947901i 0.451189 + 0.892428i \(0.351000\pi\)
−0.998460 + 0.0554726i \(0.982333\pi\)
\(200\) 0 0
\(201\) −3.74969 8.95830i −0.264483 0.631870i
\(202\) 22.4898 + 18.8711i 1.58237 + 1.32777i
\(203\) 0.476256 + 0.399626i 0.0334266 + 0.0280483i
\(204\) 7.79145 + 18.6144i 0.545510 + 1.30327i
\(205\) 0 0
\(206\) 3.11648 5.39790i 0.217135 0.376090i
\(207\) −0.546911 + 0.259992i −0.0380129 + 0.0180707i
\(208\) −9.19208 15.9211i −0.637356 1.10393i
\(209\) 0.478511 + 2.71377i 0.0330993 + 0.187716i
\(210\) 0 0
\(211\) 17.3343 6.30917i 1.19334 0.434341i 0.332447 0.943122i \(-0.392126\pi\)
0.860896 + 0.508781i \(0.169904\pi\)
\(212\) 1.82786 10.3663i 0.125538 0.711963i
\(213\) 4.62553 2.97100i 0.316936 0.203569i
\(214\) −9.91028 + 8.31571i −0.677453 + 0.568450i
\(215\) 0 0
\(216\) −18.0536 + 14.1754i −1.22839 + 0.964512i
\(217\) −3.06549 −0.208099
\(218\) −32.3597 + 27.1530i −2.19168 + 1.83904i
\(219\) 0.119888 + 2.53020i 0.00810129 + 0.170975i
\(220\) 0 0
\(221\) −17.4805 + 6.36239i −1.17587 + 0.427980i
\(222\) 7.73552 24.8555i 0.519174 1.66819i
\(223\) −0.541070 3.06856i −0.0362328 0.205486i 0.961317 0.275444i \(-0.0888248\pi\)
−0.997550 + 0.0699575i \(0.977714\pi\)
\(224\) −0.264731 0.458527i −0.0176881 0.0306366i
\(225\) 0 0
\(226\) −20.2326 + 35.0439i −1.34585 + 2.33108i
\(227\) 6.55642 + 2.38634i 0.435165 + 0.158387i 0.550308 0.834962i \(-0.314510\pi\)
−0.115143 + 0.993349i \(0.536733\pi\)
\(228\) −3.42519 0.437999i −0.226839 0.0290072i
\(229\) −7.76380 6.51460i −0.513046 0.430497i 0.349153 0.937066i \(-0.386469\pi\)
−0.862200 + 0.506569i \(0.830914\pi\)
\(230\) 0 0
\(231\) 1.86628 2.45099i 0.122793 0.161263i
\(232\) 7.68051 + 2.79548i 0.504250 + 0.183532i
\(233\) −5.61343 + 9.72275i −0.367748 + 0.636959i −0.989213 0.146483i \(-0.953205\pi\)
0.621465 + 0.783442i \(0.286538\pi\)
\(234\) −25.6731 36.0914i −1.67830 2.35937i
\(235\) 0 0
\(236\) 4.64605 + 26.3490i 0.302432 + 1.71518i
\(237\) −4.81257 + 1.08569i −0.312610 + 0.0705232i
\(238\) 2.31926 0.844143i 0.150336 0.0547177i
\(239\) 2.49115 14.1280i 0.161139 0.913864i −0.791818 0.610757i \(-0.790865\pi\)
0.952957 0.303106i \(-0.0980238\pi\)
\(240\) 0 0
\(241\) −7.78696 + 6.53404i −0.501602 + 0.420894i −0.858163 0.513378i \(-0.828394\pi\)
0.356560 + 0.934272i \(0.383949\pi\)
\(242\) −41.0918 −2.64148
\(243\) −11.2955 + 10.7430i −0.724605 + 0.689165i
\(244\) −47.7963 −3.05985
\(245\) 0 0
\(246\) −33.7818 17.4265i −2.15385 1.11107i
\(247\) 0.552766 3.13489i 0.0351717 0.199468i
\(248\) −37.8707 + 13.7838i −2.40479 + 0.875273i
\(249\) −1.27615 + 0.287893i −0.0808728 + 0.0182445i
\(250\) 0 0
\(251\) 0.766397 + 1.32744i 0.0483745 + 0.0837872i 0.889199 0.457521i \(-0.151263\pi\)
−0.840824 + 0.541308i \(0.817929\pi\)
\(252\) 2.23763 + 3.14568i 0.140958 + 0.198159i
\(253\) 0.534239 0.925329i 0.0335873 0.0581749i
\(254\) 18.1646 + 6.61139i 1.13975 + 0.414835i
\(255\) 0 0
\(256\) −22.9724 19.2761i −1.43577 1.20476i
\(257\) 18.3627 + 15.4081i 1.14543 + 0.961131i 0.999603 0.0281791i \(-0.00897086\pi\)
0.145828 + 0.989310i \(0.453415\pi\)
\(258\) 28.1833 + 3.60396i 1.75462 + 0.224373i
\(259\) −1.96543 0.715357i −0.122126 0.0444501i
\(260\) 0 0
\(261\) 5.37217 + 1.39678i 0.332529 + 0.0864586i
\(262\) 13.0585 + 22.6179i 0.806755 + 1.39734i
\(263\) 1.42813 + 8.09931i 0.0880621 + 0.499425i 0.996654 + 0.0817395i \(0.0260475\pi\)
−0.908592 + 0.417686i \(0.862841\pi\)
\(264\) 12.0351 38.6708i 0.740712 2.38002i
\(265\) 0 0
\(266\) −0.0733394 + 0.415929i −0.00449673 + 0.0255022i
\(267\) −0.521493 11.0059i −0.0319148 0.673552i
\(268\) −16.4485 + 13.8019i −1.00475 + 0.843088i
\(269\) 2.05741 0.125442 0.0627211 0.998031i \(-0.480022\pi\)
0.0627211 + 0.998031i \(0.480022\pi\)
\(270\) 0 0
\(271\) −15.4436 −0.938131 −0.469066 0.883163i \(-0.655409\pi\)
−0.469066 + 0.883163i \(0.655409\pi\)
\(272\) 7.00671 5.87933i 0.424844 0.356486i
\(273\) −2.99425 + 1.92322i −0.181220 + 0.116398i
\(274\) 5.51639 31.2850i 0.333257 1.89000i
\(275\) 0 0
\(276\) 0.908213 + 0.983780i 0.0546680 + 0.0592166i
\(277\) 0.209051 + 1.18559i 0.0125607 + 0.0712350i 0.990444 0.137917i \(-0.0440407\pi\)
−0.977883 + 0.209152i \(0.932930\pi\)
\(278\) −8.85515 15.3376i −0.531097 0.919887i
\(279\) −24.7186 + 11.7508i −1.47987 + 0.703503i
\(280\) 0 0
\(281\) 26.1069 + 9.50212i 1.55740 + 0.566849i 0.970140 0.242546i \(-0.0779825\pi\)
0.587265 + 0.809395i \(0.300205\pi\)
\(282\) −19.7041 47.0746i −1.17336 2.80325i
\(283\) −17.3768 14.5809i −1.03295 0.866745i −0.0417476 0.999128i \(-0.513293\pi\)
−0.991199 + 0.132383i \(0.957737\pi\)
\(284\) −9.31127 7.81309i −0.552522 0.463621i
\(285\) 0 0
\(286\) 73.4357 + 26.7284i 4.34235 + 1.58048i
\(287\) −1.52708 + 2.64498i −0.0901406 + 0.156128i
\(288\) −3.89231 2.68256i −0.229357 0.158071i
\(289\) 3.87241 + 6.70722i 0.227789 + 0.394542i
\(290\) 0 0
\(291\) −12.5223 13.5642i −0.734069 0.795147i
\(292\) 5.26282 1.91551i 0.307983 0.112097i
\(293\) 2.89878 16.4398i 0.169348 0.960422i −0.775119 0.631816i \(-0.782310\pi\)
0.944467 0.328606i \(-0.106579\pi\)
\(294\) −24.2333 + 15.5652i −1.41332 + 0.907779i
\(295\) 0 0
\(296\) −27.4972 −1.59824
\(297\) 5.65356 26.9175i 0.328053 1.56191i
\(298\) −32.1258 −1.86100
\(299\) −0.945515 + 0.793381i −0.0546806 + 0.0458824i
\(300\) 0 0
\(301\) 0.396423 2.24822i 0.0228494 0.129586i
\(302\) −20.7076 + 7.53697i −1.19159 + 0.433704i
\(303\) 6.25842 20.1093i 0.359537 1.15525i
\(304\) 0.271790 + 1.54140i 0.0155882 + 0.0884051i
\(305\) 0 0
\(306\) 15.4656 15.6971i 0.884110 0.897344i
\(307\) −3.17549 + 5.50011i −0.181235 + 0.313908i −0.942301 0.334766i \(-0.891343\pi\)
0.761066 + 0.648674i \(0.224676\pi\)
\(308\) −6.40056 2.32961i −0.364706 0.132742i
\(309\) −4.43521 0.567156i −0.252310 0.0322644i
\(310\) 0 0
\(311\) −0.398806 0.334638i −0.0226142 0.0189756i 0.631410 0.775449i \(-0.282476\pi\)
−0.654025 + 0.756473i \(0.726921\pi\)
\(312\) −28.3429 + 37.2227i −1.60460 + 2.10732i
\(313\) 15.2139 + 5.53741i 0.859942 + 0.312993i 0.734087 0.679056i \(-0.237610\pi\)
0.125855 + 0.992049i \(0.459833\pi\)
\(314\) 5.36352 9.28988i 0.302681 0.524258i
\(315\) 0 0
\(316\) 5.45403 + 9.44666i 0.306813 + 0.531416i
\(317\) −1.46495 8.30814i −0.0822797 0.466631i −0.997911 0.0646113i \(-0.979419\pi\)
0.915631 0.402020i \(-0.131692\pi\)
\(318\) −11.2130 + 2.52960i −0.628794 + 0.141853i
\(319\) −9.20335 + 3.34975i −0.515289 + 0.187550i
\(320\) 0 0
\(321\) 8.24781 + 4.25468i 0.460348 + 0.237473i
\(322\) 0.125448 0.105264i 0.00699096 0.00586611i
\(323\) 1.58375 0.0881223
\(324\) 30.1014 + 16.7878i 1.67230 + 0.932655i
\(325\) 0 0
\(326\) −30.6672 + 25.7328i −1.69850 + 1.42521i
\(327\) 26.9313 + 13.8927i 1.48930 + 0.768266i
\(328\) −6.97235 + 39.5422i −0.384984 + 2.18335i
\(329\) −3.85304 + 1.40239i −0.212425 + 0.0773163i
\(330\) 0 0
\(331\) −1.19110 6.75507i −0.0654688 0.371292i −0.999886 0.0151112i \(-0.995190\pi\)
0.934417 0.356181i \(-0.115921\pi\)
\(332\) 1.44625 + 2.50497i 0.0793731 + 0.137478i
\(333\) −18.5904 + 1.76570i −1.01875 + 0.0967596i
\(334\) −24.2169 + 41.9449i −1.32509 + 2.29513i
\(335\) 0 0
\(336\) 1.06003 1.39214i 0.0578295 0.0759472i
\(337\) −16.1166 13.5234i −0.877926 0.736667i 0.0878255 0.996136i \(-0.472008\pi\)
−0.965752 + 0.259468i \(0.916453\pi\)
\(338\) −45.1107 37.8523i −2.45370 2.05890i
\(339\) 28.7940 + 3.68205i 1.56387 + 0.199981i
\(340\) 0 0
\(341\) 24.1459 41.8219i 1.30757 2.26478i
\(342\) 1.00299 + 3.63498i 0.0542354 + 0.196557i
\(343\) 2.33311 + 4.04106i 0.125976 + 0.218197i
\(344\) −5.21166 29.5568i −0.280994 1.59360i
\(345\) 0 0
\(346\) 7.59726 2.76518i 0.408431 0.148657i
\(347\) 1.93708 10.9857i 0.103988 0.589744i −0.887632 0.460553i \(-0.847651\pi\)
0.991620 0.129190i \(-0.0412378\pi\)
\(348\) −0.580871 12.2591i −0.0311379 0.657156i
\(349\) −6.90169 + 5.79120i −0.369439 + 0.309996i −0.808540 0.588442i \(-0.799742\pi\)
0.439101 + 0.898438i \(0.355297\pi\)
\(350\) 0 0
\(351\) −16.7720 + 26.9856i −0.895221 + 1.44039i
\(352\) 8.34080 0.444566
\(353\) 7.32667 6.14780i 0.389959 0.327214i −0.426638 0.904422i \(-0.640302\pi\)
0.816597 + 0.577208i \(0.195858\pi\)
\(354\) 24.5832 15.7899i 1.30658 0.839224i
\(355\) 0 0
\(356\) −22.8924 + 8.33214i −1.21329 + 0.441603i
\(357\) −1.20100 1.30093i −0.0635637 0.0688525i
\(358\) −5.19791 29.4788i −0.274718 1.55800i
\(359\) −12.6845 21.9702i −0.669463 1.15954i −0.978054 0.208350i \(-0.933191\pi\)
0.308591 0.951195i \(-0.400143\pi\)
\(360\) 0 0
\(361\) 9.36449 16.2198i 0.492868 0.853673i
\(362\) −10.5297 3.83249i −0.553427 0.201431i
\(363\) 11.3818 + 27.1919i 0.597389 + 1.42721i
\(364\) 6.02747 + 5.05765i 0.315925 + 0.265093i
\(365\) 0 0
\(366\) 20.1528 + 48.1466i 1.05341 + 2.51667i
\(367\) −25.2446 9.18829i −1.31776 0.479625i −0.415019 0.909813i \(-0.636225\pi\)
−0.902740 + 0.430188i \(0.858447\pi\)
\(368\) 0.303442 0.525578i 0.0158180 0.0273976i
\(369\) −2.17474 + 27.1815i −0.113213 + 1.41501i
\(370\) 0 0
\(371\) 0.160378 + 0.909551i 0.00832643 + 0.0472215i
\(372\) 41.0484 + 44.4637i 2.12826 + 2.30534i
\(373\) 23.6679 8.61440i 1.22548 0.446037i 0.353430 0.935461i \(-0.385015\pi\)
0.872046 + 0.489424i \(0.162793\pi\)
\(374\) −6.75162 + 38.2904i −0.349118 + 1.97995i
\(375\) 0 0
\(376\) −41.2942 + 34.6499i −2.12959 + 1.78693i
\(377\) 11.3138 0.582691
\(378\) 2.22526 3.58037i 0.114455 0.184155i
\(379\) 25.4242 1.30595 0.652976 0.757379i \(-0.273520\pi\)
0.652976 + 0.757379i \(0.273520\pi\)
\(380\) 0 0
\(381\) −0.656322 13.8515i −0.0336244 0.709632i
\(382\) −5.94628 + 33.7230i −0.304238 + 1.72542i
\(383\) −9.29719 + 3.38390i −0.475064 + 0.172909i −0.568445 0.822721i \(-0.692455\pi\)
0.0933808 + 0.995630i \(0.470233\pi\)
\(384\) −10.5784 + 33.9903i −0.539829 + 1.73456i
\(385\) 0 0
\(386\) 20.4713 + 35.4573i 1.04196 + 1.80473i
\(387\) −5.42146 19.6482i −0.275589 0.998773i
\(388\) −20.4083 + 35.3483i −1.03608 + 1.79454i
\(389\) −4.09700 1.49119i −0.207726 0.0756061i 0.236061 0.971738i \(-0.424143\pi\)
−0.443788 + 0.896132i \(0.646366\pi\)
\(390\) 0 0
\(391\) −0.470419 0.394728i −0.0237901 0.0199623i
\(392\) 23.3057 + 19.5558i 1.17711 + 0.987715i
\(393\) 11.3501 14.9061i 0.572539 0.751913i
\(394\) 15.4893 + 5.63765i 0.780340 + 0.284021i
\(395\) 0 0
\(396\) −60.5410 + 5.75012i −3.04230 + 0.288954i
\(397\) −8.10396 14.0365i −0.406726 0.704470i 0.587795 0.809010i \(-0.299996\pi\)
−0.994521 + 0.104540i \(0.966663\pi\)
\(398\) −6.47363 36.7138i −0.324494 1.84030i
\(399\) 0.295549 0.0666743i 0.0147960 0.00333789i
\(400\) 0 0
\(401\) −0.111264 + 0.631007i −0.00555624 + 0.0315110i −0.987460 0.157870i \(-0.949537\pi\)
0.981904 + 0.189381i \(0.0606483\pi\)
\(402\) 20.8385 + 10.7496i 1.03933 + 0.536143i
\(403\) −42.7343 + 35.8583i −2.12875 + 1.78623i
\(404\) −46.5654 −2.31672
\(405\) 0 0
\(406\) −1.50109 −0.0744976
\(407\) 25.2405 21.1793i 1.25113 1.04982i
\(408\) −20.6866 10.6713i −1.02414 0.528308i
\(409\) 4.23533 24.0197i 0.209423 1.18770i −0.680902 0.732374i \(-0.738412\pi\)
0.890326 0.455325i \(-0.150477\pi\)
\(410\) 0 0
\(411\) −22.2304 + 5.01506i −1.09654 + 0.247375i
\(412\) 1.71671 + 9.73596i 0.0845763 + 0.479656i
\(413\) −1.17378 2.03304i −0.0577577 0.100039i
\(414\) 0.608052 1.32967i 0.0298841 0.0653497i
\(415\) 0 0
\(416\) −9.05405 3.29540i −0.443911 0.161570i
\(417\) −7.69670 + 10.1081i −0.376909 + 0.494994i
\(418\) −5.09677 4.27669i −0.249291 0.209180i
\(419\) −13.1999 11.0760i −0.644855 0.541098i 0.260650 0.965433i \(-0.416063\pi\)
−0.905505 + 0.424336i \(0.860508\pi\)
\(420\) 0 0
\(421\) 21.2230 + 7.72454i 1.03435 + 0.376471i 0.802734 0.596337i \(-0.203378\pi\)
0.231612 + 0.972808i \(0.425600\pi\)
\(422\) −22.2694 + 38.5718i −1.08406 + 1.87765i
\(423\) −25.6933 + 26.0779i −1.24925 + 1.26795i
\(424\) 6.07104 + 10.5154i 0.294836 + 0.510671i
\(425\) 0 0
\(426\) −3.94435 + 12.6738i −0.191104 + 0.614049i
\(427\) 3.94078 1.43433i 0.190708 0.0694119i
\(428\) 3.56316 20.2077i 0.172232 0.976775i
\(429\) −2.65337 55.9985i −0.128106 2.70363i
\(430\) 0 0
\(431\) −10.3129 −0.496754 −0.248377 0.968663i \(-0.579897\pi\)
−0.248377 + 0.968663i \(0.579897\pi\)
\(432\) 3.21117 15.2889i 0.154497 0.735587i
\(433\) 11.0194 0.529557 0.264778 0.964309i \(-0.414701\pi\)
0.264778 + 0.964309i \(0.414701\pi\)
\(434\) 5.66986 4.75758i 0.272162 0.228371i
\(435\) 0 0
\(436\) 11.6347 65.9835i 0.557199 3.16003i
\(437\) 0.0987460 0.0359406i 0.00472366 0.00171927i
\(438\) −4.14856 4.49374i −0.198226 0.214719i
\(439\) −4.27981 24.2720i −0.204264 1.15844i −0.898593 0.438783i \(-0.855410\pi\)
0.694329 0.719658i \(-0.255701\pi\)
\(440\) 0 0
\(441\) 17.0123 + 11.7248i 0.810110 + 0.558323i
\(442\) 22.4573 38.8971i 1.06818 1.85015i
\(443\) 20.5698 + 7.48678i 0.977299 + 0.355708i 0.780789 0.624794i \(-0.214817\pi\)
0.196509 + 0.980502i \(0.437039\pi\)
\(444\) 15.9420 + 38.0867i 0.756575 + 1.80752i
\(445\) 0 0
\(446\) 5.76310 + 4.83582i 0.272891 + 0.228983i
\(447\) 8.89834 + 21.2588i 0.420877 + 1.00551i
\(448\) 3.09988 + 1.12826i 0.146456 + 0.0533055i
\(449\) −0.0863524 + 0.149567i −0.00407522 + 0.00705849i −0.868056 0.496467i \(-0.834631\pi\)
0.863981 + 0.503525i \(0.167964\pi\)
\(450\) 0 0
\(451\) −24.0566 41.6673i −1.13278 1.96204i
\(452\) −11.1451 63.2071i −0.524222 2.97301i
\(453\) 10.7232 + 11.6154i 0.503819 + 0.545739i
\(454\) −15.8302 + 5.76171i −0.742947 + 0.270411i
\(455\) 0 0
\(456\) 3.35138 2.15261i 0.156943 0.100805i
\(457\) −6.86690 + 5.76201i −0.321220 + 0.269536i −0.789111 0.614251i \(-0.789458\pi\)
0.467891 + 0.883786i \(0.345014\pi\)
\(458\) 24.4703 1.14342
\(459\) −14.6711 5.88632i −0.684788 0.274750i
\(460\) 0 0
\(461\) 12.4655 10.4598i 0.580576 0.487161i −0.304560 0.952493i \(-0.598510\pi\)
0.885136 + 0.465332i \(0.154065\pi\)
\(462\) 0.352042 + 7.42973i 0.0163785 + 0.345662i
\(463\) −2.38861 + 13.5465i −0.111008 + 0.629558i 0.877642 + 0.479318i \(0.159116\pi\)
−0.988650 + 0.150240i \(0.951995\pi\)
\(464\) −5.22741 + 1.90262i −0.242677 + 0.0883270i
\(465\) 0 0
\(466\) −4.70704 26.6949i −0.218049 1.23662i
\(467\) 2.09492 + 3.62851i 0.0969414 + 0.167907i 0.910417 0.413691i \(-0.135761\pi\)
−0.813476 + 0.581599i \(0.802427\pi\)
\(468\) 67.9899 + 17.6776i 3.14283 + 0.817146i
\(469\) 0.941987 1.63157i 0.0434969 0.0753389i
\(470\) 0 0
\(471\) −7.63307 0.976085i −0.351713 0.0449756i
\(472\) −23.6421 19.8381i −1.08822 0.913123i
\(473\) 27.5496 + 23.1169i 1.26673 + 1.06292i
\(474\) 7.21626 9.47709i 0.331454 0.435297i
\(475\) 0 0
\(476\) −1.95734 + 3.39022i −0.0897148 + 0.155391i
\(477\) 4.77976 + 6.71941i 0.218850 + 0.307661i
\(478\) 17.3188 + 29.9970i 0.792143 + 1.37203i
\(479\) 4.29952 + 24.3838i 0.196450 + 1.11412i 0.910339 + 0.413864i \(0.135821\pi\)
−0.713888 + 0.700259i \(0.753068\pi\)
\(480\) 0 0
\(481\) −35.7668 + 13.0180i −1.63082 + 0.593571i
\(482\) 4.26190 24.1704i 0.194124 1.10093i
\(483\) −0.104404 0.0538574i −0.00475055 0.00245060i
\(484\) 49.9277 41.8943i 2.26944 1.90429i
\(485\) 0 0
\(486\) 4.21890 37.4004i 0.191373 1.69652i
\(487\) 14.2164 0.644205 0.322102 0.946705i \(-0.395610\pi\)
0.322102 + 0.946705i \(0.395610\pi\)
\(488\) 42.2346 35.4390i 1.91187 1.60425i
\(489\) 25.5227 + 13.1660i 1.15418 + 0.595388i
\(490\) 0 0
\(491\) −10.7333 + 3.90659i −0.484385 + 0.176302i −0.572658 0.819795i \(-0.694088\pi\)
0.0882726 + 0.996096i \(0.471865\pi\)
\(492\) 58.8127 13.2678i 2.65148 0.598160i
\(493\) 0.977453 + 5.54341i 0.0440222 + 0.249663i
\(494\) 3.84291 + 6.65611i 0.172901 + 0.299473i
\(495\) 0 0
\(496\) 13.7146 23.7544i 0.615805 1.06661i
\(497\) 1.00217 + 0.364761i 0.0449536 + 0.0163618i
\(498\) 1.91354 2.51304i 0.0857477 0.112612i
\(499\) 29.0144 + 24.3459i 1.29886 + 1.08987i 0.990341 + 0.138656i \(0.0442781\pi\)
0.308520 + 0.951218i \(0.400166\pi\)
\(500\) 0 0
\(501\) 34.4642 + 4.40714i 1.53975 + 0.196897i
\(502\) −3.47767 1.26577i −0.155216 0.0564940i
\(503\) 18.1596 31.4533i 0.809694 1.40243i −0.103381 0.994642i \(-0.532966\pi\)
0.913076 0.407790i \(-0.133700\pi\)
\(504\) −4.30964 1.12052i −0.191967 0.0499120i
\(505\) 0 0
\(506\) 0.447976 + 2.54060i 0.0199149 + 0.112943i
\(507\) −12.5533 + 40.3359i −0.557514 + 1.79138i
\(508\) −28.8111 + 10.4864i −1.27828 + 0.465258i
\(509\) −1.95163 + 11.0682i −0.0865043 + 0.490590i 0.910518 + 0.413470i \(0.135683\pi\)
−0.997022 + 0.0771197i \(0.975428\pi\)
\(510\) 0 0
\(511\) −0.376434 + 0.315866i −0.0166525 + 0.0139731i
\(512\) 31.3000 1.38328
\(513\) 2.12759 1.67055i 0.0939352 0.0737564i
\(514\) −57.8762 −2.55281
\(515\) 0 0
\(516\) −37.9179 + 24.3548i −1.66924 + 1.07216i
\(517\) 11.2166 63.6125i 0.493305 2.79767i
\(518\) 4.74543 1.72720i 0.208502 0.0758886i
\(519\) −3.93414 4.26148i −0.172690 0.187058i
\(520\) 0 0
\(521\) 2.20153 + 3.81316i 0.0964507 + 0.167057i 0.910213 0.414140i \(-0.135918\pi\)
−0.813762 + 0.581198i \(0.802584\pi\)
\(522\) −12.1040 + 5.75405i −0.529779 + 0.251848i
\(523\) 7.79908 13.5084i 0.341030 0.590681i −0.643594 0.765367i \(-0.722558\pi\)
0.984624 + 0.174686i \(0.0558910\pi\)
\(524\) −38.9261 14.1679i −1.70050 0.618930i
\(525\) 0 0
\(526\) −15.2114 12.7639i −0.663249 0.556532i
\(527\) −21.2614 17.8405i −0.926163 0.777143i
\(528\) 10.6431 + 25.4272i 0.463182 + 1.10658i
\(529\) 21.5746 + 7.85253i 0.938028 + 0.341414i
\(530\) 0 0
\(531\) −17.2579 11.8941i −0.748930 0.516158i
\(532\) −0.334942 0.580137i −0.0145216 0.0251521i
\(533\) 9.65127 + 54.7350i 0.418043 + 2.37084i
\(534\) 18.0455 + 19.5470i 0.780907 + 0.845881i
\(535\) 0 0
\(536\) 4.30093 24.3918i 0.185772 1.05357i
\(537\) −18.0675 + 11.6048i −0.779670 + 0.500785i
\(538\) −3.80533 + 3.19305i −0.164060 + 0.137662i
\(539\) −36.4555 −1.57025
\(540\) 0 0
\(541\) −1.52861 −0.0657202 −0.0328601 0.999460i \(-0.510462\pi\)
−0.0328601 + 0.999460i \(0.510462\pi\)
\(542\) 28.5641 23.9681i 1.22693 1.02952i
\(543\) 0.380456 + 8.02941i 0.0163269 + 0.344575i
\(544\) 0.832422 4.72090i 0.0356898 0.202407i
\(545\) 0 0
\(546\) 2.55330 8.20415i 0.109271 0.351105i
\(547\) 2.13129 + 12.0871i 0.0911273 + 0.516808i 0.995865 + 0.0908404i \(0.0289553\pi\)
−0.904738 + 0.425968i \(0.859934\pi\)
\(548\) 25.1934 + 43.6363i 1.07621 + 1.86405i
\(549\) 26.2784 26.6717i 1.12154 1.13832i
\(550\) 0 0
\(551\) −0.905136 0.329443i −0.0385601 0.0140347i
\(552\) −1.53196 0.195901i −0.0652047 0.00833809i
\(553\) −0.733168 0.615201i −0.0311775 0.0261610i
\(554\) −2.22666 1.86839i −0.0946019 0.0793804i
\(555\) 0 0
\(556\) 26.3964 + 9.60751i 1.11946 + 0.407449i
\(557\) 8.99212 15.5748i 0.381008 0.659926i −0.610198 0.792249i \(-0.708910\pi\)
0.991207 + 0.132323i \(0.0422436\pi\)
\(558\) 27.4820 60.0969i 1.16341 2.54410i
\(559\) −20.7721 35.9784i −0.878567 1.52172i
\(560\) 0 0
\(561\) 27.2082 6.13804i 1.14873 0.259148i
\(562\) −63.0338 + 22.9424i −2.65892 + 0.967768i
\(563\) 1.63413 9.26763i 0.0688705 0.390584i −0.930815 0.365492i \(-0.880901\pi\)
0.999685 0.0250923i \(-0.00798797\pi\)
\(564\) 71.9351 + 37.1081i 3.02901 + 1.56253i
\(565\) 0 0
\(566\) 54.7691 2.30212
\(567\) −2.98563 0.480827i −0.125385 0.0201928i
\(568\) 14.0209 0.588302
\(569\) −25.8778 + 21.7141i −1.08485 + 0.910301i −0.996315 0.0857719i \(-0.972664\pi\)
−0.0885394 + 0.996073i \(0.528220\pi\)
\(570\) 0 0
\(571\) −0.978955 + 5.55193i −0.0409680 + 0.232341i −0.998416 0.0562653i \(-0.982081\pi\)
0.957448 + 0.288606i \(0.0931919\pi\)
\(572\) −116.477 + 42.3942i −4.87015 + 1.77259i
\(573\) 23.9628 5.40588i 1.00106 0.225834i
\(574\) −1.28050 7.26209i −0.0534472 0.303114i
\(575\) 0 0
\(576\) 29.3209 2.78486i 1.22170 0.116036i
\(577\) −7.94027 + 13.7529i −0.330558 + 0.572543i −0.982621 0.185622i \(-0.940570\pi\)
0.652064 + 0.758164i \(0.273904\pi\)
\(578\) −17.5718 6.39561i −0.730891 0.266022i
\(579\) 17.7932 23.3678i 0.739460 0.971131i
\(580\) 0 0
\(581\) −0.194414 0.163133i −0.00806567 0.00676790i
\(582\) 44.2123 + 5.65368i 1.83266 + 0.234353i
\(583\) −13.6721 4.97623i −0.566240 0.206094i
\(584\) −3.23015 + 5.59478i −0.133664 + 0.231514i
\(585\) 0 0
\(586\) 20.1527 + 34.9055i 0.832500 + 1.44193i
\(587\) 3.45096 + 19.5714i 0.142436 + 0.807797i 0.969390 + 0.245527i \(0.0789609\pi\)
−0.826953 + 0.562270i \(0.809928\pi\)
\(588\) 13.5750 43.6187i 0.559825 1.79881i
\(589\) 4.46300 1.62440i 0.183895 0.0669323i
\(590\) 0 0
\(591\) −0.559657 11.8114i −0.0230212 0.485856i
\(592\) 14.3364 12.0296i 0.589221 0.494416i
\(593\) −43.0280 −1.76695 −0.883474 0.468480i \(-0.844802\pi\)
−0.883474 + 0.468480i \(0.844802\pi\)
\(594\) 31.3188 + 58.5603i 1.28502 + 2.40276i
\(595\) 0 0
\(596\) 39.0337 32.7532i 1.59888 1.34162i
\(597\) −22.5018 + 14.4530i −0.920936 + 0.591521i
\(598\) 0.517492 2.93484i 0.0211618 0.120015i
\(599\) 36.3045 13.2138i 1.48336 0.539900i 0.531671 0.846951i \(-0.321564\pi\)
0.951693 + 0.307051i \(0.0993422\pi\)
\(600\) 0 0
\(601\) −1.31942 7.48281i −0.0538203 0.305230i 0.946000 0.324166i \(-0.105083\pi\)
−0.999821 + 0.0189352i \(0.993972\pi\)
\(602\) 2.75599 + 4.77351i 0.112326 + 0.194554i
\(603\) 1.34150 16.7671i 0.0546302 0.682808i
\(604\) 17.4762 30.2697i 0.711098 1.23166i
\(605\) 0 0
\(606\) 19.6338 + 46.9067i 0.797570 + 1.90546i
\(607\) 0.651945 + 0.547047i 0.0264616 + 0.0222040i 0.655923 0.754828i \(-0.272280\pi\)
−0.629461 + 0.777032i \(0.716724\pi\)
\(608\) 0.628391 + 0.527283i 0.0254846 + 0.0213841i
\(609\) 0.415777 + 0.993324i 0.0168482 + 0.0402515i
\(610\) 0 0
\(611\) −37.3087 + 64.6205i −1.50935 + 2.61427i
\(612\) −2.78749 + 34.8401i −0.112678 + 1.40833i
\(613\) 0.0839581 + 0.145420i 0.00339104 + 0.00587345i 0.867716 0.497060i \(-0.165587\pi\)
−0.864325 + 0.502934i \(0.832254\pi\)
\(614\) −2.66275 15.1012i −0.107460 0.609434i
\(615\) 0 0
\(616\) 7.38308 2.68722i 0.297473 0.108271i
\(617\) −2.89015 + 16.3908i −0.116353 + 0.659871i 0.869718 + 0.493548i \(0.164300\pi\)
−0.986071 + 0.166322i \(0.946811\pi\)
\(618\) 9.08348 5.83436i 0.365391 0.234692i
\(619\) −33.6283 + 28.2175i −1.35163 + 1.13416i −0.373165 + 0.927765i \(0.621728\pi\)
−0.978470 + 0.206391i \(0.933828\pi\)
\(620\) 0 0
\(621\) −1.04831 0.0340724i −0.0420674 0.00136728i
\(622\) 1.25698 0.0504001
\(623\) 1.63742 1.37396i 0.0656020 0.0550466i
\(624\) −1.50709 31.8066i −0.0603318 1.27328i
\(625\) 0 0
\(626\) −36.7333 + 13.3698i −1.46816 + 0.534366i
\(627\) −1.41832 + 4.55730i −0.0566423 + 0.182001i
\(628\) 2.95449 + 16.7558i 0.117897 + 0.668627i
\(629\) −9.46847 16.3999i −0.377533 0.653906i
\(630\) 0 0
\(631\) 6.62243 11.4704i 0.263635 0.456629i −0.703570 0.710626i \(-0.748412\pi\)
0.967205 + 0.253997i \(0.0817453\pi\)
\(632\) −11.8237 4.30347i −0.470321 0.171183i
\(633\) 31.6927 + 4.05273i 1.25967 + 0.161081i
\(634\) 15.6036 + 13.0930i 0.619698 + 0.519989i
\(635\) 0 0
\(636\) 11.0451 14.5055i 0.437968 0.575182i
\(637\) 39.5729 + 14.4034i 1.56794 + 0.570682i
\(638\) 11.8236 20.4790i 0.468100 0.810773i
\(639\) 9.47927 0.900331i 0.374994 0.0356165i
\(640\) 0 0
\(641\) −7.29257 41.3582i −0.288039 1.63355i −0.694223 0.719760i \(-0.744252\pi\)
0.406183 0.913792i \(-0.366859\pi\)
\(642\) −21.8581 + 4.93108i −0.862672 + 0.194614i
\(643\) −26.4485 + 9.62646i −1.04303 + 0.379631i −0.806027 0.591879i \(-0.798386\pi\)
−0.237000 + 0.971510i \(0.576164\pi\)
\(644\) −0.0451039 + 0.255797i −0.00177734 + 0.0100798i
\(645\) 0 0
\(646\) −2.92927 + 2.45795i −0.115251 + 0.0967069i
\(647\) −4.87520 −0.191664 −0.0958319 0.995398i \(-0.530551\pi\)
−0.0958319 + 0.995398i \(0.530551\pi\)
\(648\) −39.0461 + 7.48464i −1.53388 + 0.294024i
\(649\) 36.9819 1.45166
\(650\) 0 0
\(651\) −4.71873 2.43418i −0.184942 0.0954032i
\(652\) 11.0261 62.5322i 0.431816 2.44895i
\(653\) 3.30599 1.20328i 0.129373 0.0470880i −0.276522 0.961008i \(-0.589182\pi\)
0.405895 + 0.913920i \(0.366960\pi\)
\(654\) −71.3727 + 16.1013i −2.79089 + 0.629611i
\(655\) 0 0
\(656\) −13.6639 23.6666i −0.533487 0.924027i
\(657\) −1.82459 + 3.98996i −0.0711839 + 0.155663i
\(658\) 4.95001 8.57367i 0.192972 0.334236i
\(659\) −3.85106 1.40167i −0.150016 0.0546013i 0.265921 0.963995i \(-0.414324\pi\)
−0.415937 + 0.909394i \(0.636546\pi\)
\(660\) 0 0
\(661\) 10.8180 + 9.07740i 0.420773 + 0.353070i 0.828457 0.560053i \(-0.189219\pi\)
−0.407684 + 0.913123i \(0.633664\pi\)
\(662\) 12.6868 + 10.6455i 0.493085 + 0.413748i
\(663\) −31.9600 4.08691i −1.24122 0.158722i
\(664\) −3.13529 1.14115i −0.121673 0.0442853i
\(665\) 0 0
\(666\) 31.6441 32.1177i 1.22618 1.24454i
\(667\) 0.186742 + 0.323446i 0.00723067 + 0.0125239i
\(668\) −13.3399 75.6542i −0.516136 2.92715i
\(669\) 1.60375 5.15311i 0.0620046 0.199231i
\(670\) 0 0
\(671\) −11.4720 + 65.0611i −0.442873 + 2.51166i
\(672\) −0.0434039 0.916026i −0.00167434 0.0353365i
\(673\) −31.7224 + 26.6182i −1.22281 + 1.02606i −0.224134 + 0.974558i \(0.571955\pi\)
−0.998673 + 0.0514985i \(0.983600\pi\)
\(674\) 50.7970 1.95663
\(675\) 0 0
\(676\) 93.4024 3.59240
\(677\) −23.8227 + 19.9896i −0.915581 + 0.768264i −0.973173 0.230077i \(-0.926102\pi\)
0.0575915 + 0.998340i \(0.481658\pi\)
\(678\) −58.9711 + 37.8774i −2.26477 + 1.45467i
\(679\) 0.621884 3.52688i 0.0238657 0.135349i
\(680\) 0 0
\(681\) 8.19745 + 8.87951i 0.314127 + 0.340264i
\(682\) 20.2471 + 114.827i 0.775301 + 4.39695i
\(683\) −6.49887 11.2564i −0.248673 0.430713i 0.714485 0.699651i \(-0.246661\pi\)
−0.963158 + 0.268937i \(0.913328\pi\)
\(684\) −4.92463 3.39403i −0.188298 0.129774i
\(685\) 0 0
\(686\) −10.5869 3.85332i −0.404210 0.147121i
\(687\) −6.77789 16.1929i −0.258593 0.617798i
\(688\) 15.6479 + 13.1302i 0.596571 + 0.500583i
\(689\) 12.8751 + 10.8035i 0.490504 + 0.411582i
\(690\) 0 0
\(691\) −44.3322 16.1356i −1.68648 0.613827i −0.692301 0.721609i \(-0.743403\pi\)
−0.994175 + 0.107782i \(0.965625\pi\)
\(692\) −6.41171 + 11.1054i −0.243737 + 0.422164i
\(693\) 4.81902 2.29088i 0.183059 0.0870233i
\(694\) 13.4668 + 23.3252i 0.511194 + 0.885413i
\(695\) 0 0
\(696\) 9.60289 + 10.4019i 0.363997 + 0.394283i
\(697\) −25.9846 + 9.45762i −0.984237 + 0.358233i
\(698\) 3.77738 21.4226i 0.142976 0.810856i
\(699\) −16.3613 + 10.5089i −0.618839 + 0.397483i
\(700\) 0 0
\(701\) 8.98862 0.339496 0.169748 0.985488i \(-0.445705\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(702\) −10.8601 75.9418i −0.409887 2.86624i
\(703\) 3.24051 0.122218
\(704\) −39.8095 + 33.4041i −1.50038 + 1.25897i
\(705\) 0 0
\(706\) −4.00997 + 22.7417i −0.150917 + 0.855895i
\(707\) 3.83929 1.39739i 0.144391 0.0525542i
\(708\) −13.7710 + 44.2485i −0.517547 + 1.66296i
\(709\) −6.01200 34.0958i −0.225785 1.28049i −0.861178 0.508304i \(-0.830273\pi\)
0.635392 0.772189i \(-0.280838\pi\)
\(710\) 0 0
\(711\) −8.27014 2.15026i −0.310154 0.0806411i
\(712\) 14.0506 24.3363i 0.526568 0.912043i
\(713\) −1.73050 0.629849i −0.0648076 0.0235880i
\(714\) 4.24036 + 0.542240i 0.158692 + 0.0202928i
\(715\) 0 0
\(716\) 36.3702 + 30.5182i 1.35922 + 1.14052i
\(717\) 15.0531 19.7692i 0.562169 0.738294i
\(718\) 57.5584 + 20.9495i 2.14806 + 0.781830i
\(719\) 11.7846 20.4116i 0.439493 0.761224i −0.558157 0.829735i \(-0.688491\pi\)
0.997650 + 0.0685110i \(0.0218248\pi\)
\(720\) 0 0
\(721\) −0.433710 0.751207i −0.0161522 0.0279764i
\(722\) 7.85242 + 44.5333i 0.292237 + 1.65736i
\(723\) −17.1750 + 3.87458i −0.638743 + 0.144097i
\(724\) 16.7012 6.07874i 0.620695 0.225915i
\(725\) 0 0
\(726\) −63.2529 32.6293i −2.34753 1.21099i
\(727\) −20.7902 + 17.4450i −0.771064 + 0.647000i −0.940981 0.338459i \(-0.890094\pi\)
0.169917 + 0.985458i \(0.445650\pi\)
\(728\) −9.07613 −0.336384
\(729\) −25.9178 + 7.56753i −0.959919 + 0.280279i
\(730\) 0 0
\(731\) 15.8336 13.2860i 0.585629 0.491401i
\(732\) −73.5733 37.9532i −2.71935 1.40279i
\(733\) 2.58612 14.6666i 0.0955205 0.541724i −0.899066 0.437813i \(-0.855753\pi\)
0.994587 0.103911i \(-0.0331356\pi\)
\(734\) 60.9520 22.1847i 2.24978 0.818852i
\(735\) 0 0
\(736\) −0.0552319 0.313235i −0.00203587 0.0115460i
\(737\) 14.8395 + 25.7027i 0.546619 + 0.946771i
\(738\) −38.1628 53.6495i −1.40479 1.97487i
\(739\) −5.36887 + 9.29916i −0.197497 + 0.342075i −0.947716 0.319114i \(-0.896615\pi\)
0.750219 + 0.661189i \(0.229948\pi\)
\(740\) 0 0
\(741\) 3.34017 4.38663i 0.122704 0.161147i
\(742\) −1.70824 1.43338i −0.0627114 0.0526211i
\(743\) 12.7210 + 10.6742i 0.466687 + 0.391597i 0.845584 0.533842i \(-0.179252\pi\)
−0.378897 + 0.925439i \(0.623697\pi\)
\(744\) −69.2398 8.85410i −2.53846 0.324607i
\(745\) 0 0
\(746\) −30.4062 + 52.6651i −1.11325 + 1.92821i
\(747\) −2.19300 0.570186i −0.0802375 0.0208620i
\(748\) −30.8348 53.4074i −1.12743 1.95277i
\(749\) 0.312635 + 1.77304i 0.0114234 + 0.0647854i
\(750\) 0 0
\(751\) −4.89963 + 1.78332i −0.178790 + 0.0650743i −0.429864 0.902894i \(-0.641439\pi\)
0.251074 + 0.967968i \(0.419216\pi\)
\(752\) 6.37092 36.1313i 0.232323 1.31757i
\(753\) 0.125655 + 2.65190i 0.00457911 + 0.0966407i
\(754\) −20.9258 + 17.5588i −0.762072 + 0.639455i
\(755\) 0 0
\(756\) 0.946549 + 6.61898i 0.0344257 + 0.240730i
\(757\) 43.6180 1.58532 0.792662 0.609661i \(-0.208694\pi\)
0.792662 + 0.609661i \(0.208694\pi\)
\(758\) −47.0240 + 39.4578i −1.70799 + 1.43317i
\(759\) 1.55712 1.00015i 0.0565200 0.0363031i
\(760\) 0 0
\(761\) 11.6568 4.24273i 0.422559 0.153799i −0.121984 0.992532i \(-0.538926\pi\)
0.544542 + 0.838733i \(0.316703\pi\)
\(762\) 22.7111 + 24.6008i 0.822737 + 0.891192i
\(763\) 1.02084 + 5.78945i 0.0369567 + 0.209592i
\(764\) −27.1568 47.0369i −0.982497 1.70174i
\(765\) 0 0
\(766\) 11.9441 20.6878i 0.431559 0.747482i
\(767\) −40.1443 14.6113i −1.44953 0.527584i
\(768\) −20.0552 47.9133i −0.723679 1.72892i
\(769\) −30.8699 25.9030i −1.11320 0.934085i −0.114958 0.993370i \(-0.536673\pi\)
−0.998241 + 0.0592857i \(0.981118\pi\)
\(770\) 0 0
\(771\) 16.0308 + 38.2989i 0.577336 + 1.37930i
\(772\) −61.0231 22.2106i −2.19627 0.799376i
\(773\) −17.2390 + 29.8587i −0.620042 + 1.07394i 0.369435 + 0.929257i \(0.379551\pi\)
−0.989477 + 0.144688i \(0.953782\pi\)
\(774\) 40.5210 + 27.9269i 1.45650 + 1.00381i
\(775\) 0 0
\(776\) −8.17574