Properties

Label 675.2.l.f.151.6
Level $675$
Weight $2$
Character 675.151
Analytic conductor $5.390$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [675,2,Mod(76,675)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([14, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("675.76");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 675 = 3^{3} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 675.l (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.38990213644\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 151.6
Character \(\chi\) \(=\) 675.151
Dual form 675.2.l.f.76.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.194784 + 0.163444i) q^{2} +(-1.72511 - 0.154950i) q^{3} +(-0.336069 - 1.90594i) q^{4} +(-0.310698 - 0.312139i) q^{6} +(-0.449901 + 2.55151i) q^{7} +(0.500326 - 0.866590i) q^{8} +(2.95198 + 0.534610i) q^{9} +O(q^{10})\) \(q+(0.194784 + 0.163444i) q^{2} +(-1.72511 - 0.154950i) q^{3} +(-0.336069 - 1.90594i) q^{4} +(-0.310698 - 0.312139i) q^{6} +(-0.449901 + 2.55151i) q^{7} +(0.500326 - 0.866590i) q^{8} +(2.95198 + 0.534610i) q^{9} +(2.07133 - 0.753901i) q^{11} +(0.284429 + 3.34003i) q^{12} +(1.11074 - 0.932020i) q^{13} +(-0.504662 + 0.423462i) q^{14} +(-3.39816 + 1.23683i) q^{16} +(1.17819 + 2.04069i) q^{17} +(0.487621 + 0.586616i) q^{18} +(2.22207 - 3.84874i) q^{19} +(1.17148 - 4.33192i) q^{21} +(0.526682 + 0.191697i) q^{22} +(-1.22504 - 6.94755i) q^{23} +(-0.997394 + 1.41743i) q^{24} +0.368687 q^{26} +(-5.00964 - 1.37967i) q^{27} +5.01424 q^{28} +(-4.88786 - 4.10140i) q^{29} +(-1.13861 - 6.45736i) q^{31} +(-2.74467 - 0.998979i) q^{32} +(-3.69007 + 0.979608i) q^{33} +(-0.104044 + 0.590063i) q^{34} +(0.0268659 - 5.80597i) q^{36} +(2.27172 + 3.93474i) q^{37} +(1.06188 - 0.386492i) q^{38} +(-2.06056 + 1.43572i) q^{39} +(5.08374 - 4.26577i) q^{41} +(0.936211 - 0.652319i) q^{42} +(5.79479 - 2.10913i) q^{43} +(-2.13300 - 3.69447i) q^{44} +(0.896913 - 1.55350i) q^{46} +(1.65920 - 9.40977i) q^{47} +(6.05384 - 1.60712i) q^{48} +(0.270040 + 0.0982866i) q^{49} +(-1.71630 - 3.70297i) q^{51} +(-2.14966 - 1.80378i) q^{52} -13.3683 q^{53} +(-0.750303 - 1.08753i) q^{54} +(1.98602 + 1.66647i) q^{56} +(-4.42967 + 6.29518i) q^{57} +(-0.281731 - 1.59778i) q^{58} +(3.10061 + 1.12853i) q^{59} +(-1.57865 + 8.95295i) q^{61} +(0.833631 - 1.44389i) q^{62} +(-2.69216 + 7.29150i) q^{63} +(3.24491 + 5.62035i) q^{64} +(-0.878880 - 0.412306i) q^{66} +(4.09170 - 3.43334i) q^{67} +(3.49349 - 2.93138i) q^{68} +(1.03680 + 12.1751i) q^{69} +(-1.67410 - 2.89963i) q^{71} +(1.94024 - 2.29068i) q^{72} +(2.55076 - 4.41805i) q^{73} +(-0.200612 + 1.13773i) q^{74} +(-8.08225 - 2.94170i) q^{76} +(0.991698 + 5.62420i) q^{77} +(-0.636024 - 0.0571280i) q^{78} +(3.14132 + 2.63588i) q^{79} +(8.42838 + 3.15632i) q^{81} +1.68745 q^{82} +(-2.65602 - 2.22867i) q^{83} +(-8.65009 - 0.776955i) q^{84} +(1.47346 + 0.536295i) q^{86} +(7.79656 + 7.83272i) q^{87} +(0.383015 - 2.17219i) q^{88} +(7.60791 - 13.1773i) q^{89} +(1.87834 + 3.25338i) q^{91} +(-12.8299 + 4.66971i) q^{92} +(0.963650 + 11.3161i) q^{93} +(1.86115 - 1.56169i) q^{94} +(4.58006 + 2.14863i) q^{96} +(3.94072 - 1.43431i) q^{97} +(0.0365353 + 0.0632810i) q^{98} +(6.51756 - 1.11815i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 66 q - 6 q^{2} - 6 q^{6} - 6 q^{7} - 12 q^{8} - 6 q^{9} + 15 q^{11} - 18 q^{12} + 15 q^{14} + 18 q^{16} - 30 q^{17} + 12 q^{18} + 12 q^{19} + 12 q^{21} + 45 q^{22} - 36 q^{23} - 39 q^{24} + 6 q^{26} - 51 q^{27} + 36 q^{28} - 15 q^{29} + 3 q^{31} - 27 q^{32} + 3 q^{33} + 30 q^{36} - 6 q^{37} + 12 q^{38} - 15 q^{39} + 39 q^{41} - 48 q^{42} - 12 q^{43} + 51 q^{44} + 9 q^{46} - 30 q^{47} + 132 q^{48} - 6 q^{49} - 9 q^{52} + 24 q^{53} + 75 q^{54} + 144 q^{56} - 33 q^{57} - 27 q^{58} + 45 q^{59} - 54 q^{61} - 66 q^{62} + 120 q^{63} - 24 q^{64} + 48 q^{66} - 9 q^{67} + 69 q^{68} + 51 q^{69} - 15 q^{71} - 9 q^{72} + 15 q^{73} + 96 q^{74} - 48 q^{76} + 36 q^{77} + 18 q^{78} + 48 q^{79} - 54 q^{81} + 36 q^{82} - 30 q^{83} + 57 q^{84} - 111 q^{86} + 33 q^{87} - 36 q^{88} - 12 q^{89} + 9 q^{91} + 219 q^{92} - 63 q^{93} + 36 q^{94} - 249 q^{96} - 57 q^{97} - 75 q^{98} - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/675\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(352\)
\(\chi(n)\) \(e\left(\frac{2}{9}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.194784 + 0.163444i 0.137733 + 0.115572i 0.709052 0.705157i \(-0.249123\pi\)
−0.571318 + 0.820729i \(0.693568\pi\)
\(3\) −1.72511 0.154950i −0.995990 0.0894603i
\(4\) −0.336069 1.90594i −0.168035 0.952971i
\(5\) 0 0
\(6\) −0.310698 0.312139i −0.126842 0.127430i
\(7\) −0.449901 + 2.55151i −0.170046 + 0.964381i 0.773661 + 0.633600i \(0.218423\pi\)
−0.943707 + 0.330781i \(0.892688\pi\)
\(8\) 0.500326 0.866590i 0.176892 0.306386i
\(9\) 2.95198 + 0.534610i 0.983994 + 0.178203i
\(10\) 0 0
\(11\) 2.07133 0.753901i 0.624528 0.227310i −0.0103197 0.999947i \(-0.503285\pi\)
0.634848 + 0.772637i \(0.281063\pi\)
\(12\) 0.284429 + 3.34003i 0.0821077 + 0.964183i
\(13\) 1.11074 0.932020i 0.308063 0.258496i −0.475628 0.879647i \(-0.657779\pi\)
0.783691 + 0.621151i \(0.213335\pi\)
\(14\) −0.504662 + 0.423462i −0.134877 + 0.113175i
\(15\) 0 0
\(16\) −3.39816 + 1.23683i −0.849541 + 0.309208i
\(17\) 1.17819 + 2.04069i 0.285754 + 0.494940i 0.972792 0.231681i \(-0.0744227\pi\)
−0.687038 + 0.726622i \(0.741089\pi\)
\(18\) 0.487621 + 0.586616i 0.114933 + 0.138267i
\(19\) 2.22207 3.84874i 0.509778 0.882962i −0.490157 0.871634i \(-0.663061\pi\)
0.999936 0.0113281i \(-0.00360593\pi\)
\(20\) 0 0
\(21\) 1.17148 4.33192i 0.255638 0.945302i
\(22\) 0.526682 + 0.191697i 0.112289 + 0.0408699i
\(23\) −1.22504 6.94755i −0.255439 1.44866i −0.794944 0.606682i \(-0.792500\pi\)
0.539506 0.841982i \(-0.318611\pi\)
\(24\) −0.997394 + 1.41743i −0.203592 + 0.289333i
\(25\) 0 0
\(26\) 0.368687 0.0723055
\(27\) −5.00964 1.37967i −0.964106 0.265517i
\(28\) 5.01424 0.947602
\(29\) −4.88786 4.10140i −0.907652 0.761611i 0.0640188 0.997949i \(-0.479608\pi\)
−0.971671 + 0.236338i \(0.924053\pi\)
\(30\) 0 0
\(31\) −1.13861 6.45736i −0.204500 1.15978i −0.898225 0.439536i \(-0.855143\pi\)
0.693725 0.720240i \(-0.255968\pi\)
\(32\) −2.74467 0.998979i −0.485194 0.176596i
\(33\) −3.69007 + 0.979608i −0.642359 + 0.170528i
\(34\) −0.104044 + 0.590063i −0.0178434 + 0.101195i
\(35\) 0 0
\(36\) 0.0268659 5.80597i 0.00447766 0.967662i
\(37\) 2.27172 + 3.93474i 0.373469 + 0.646868i 0.990097 0.140387i \(-0.0448348\pi\)
−0.616627 + 0.787255i \(0.711501\pi\)
\(38\) 1.06188 0.386492i 0.172259 0.0626972i
\(39\) −2.06056 + 1.43572i −0.329953 + 0.229900i
\(40\) 0 0
\(41\) 5.08374 4.26577i 0.793947 0.666201i −0.152772 0.988262i \(-0.548820\pi\)
0.946719 + 0.322061i \(0.104375\pi\)
\(42\) 0.936211 0.652319i 0.144460 0.100655i
\(43\) 5.79479 2.10913i 0.883697 0.321640i 0.139996 0.990152i \(-0.455291\pi\)
0.743701 + 0.668512i \(0.233069\pi\)
\(44\) −2.13300 3.69447i −0.321562 0.556962i
\(45\) 0 0
\(46\) 0.896913 1.55350i 0.132243 0.229051i
\(47\) 1.65920 9.40977i 0.242019 1.37256i −0.585297 0.810819i \(-0.699022\pi\)
0.827316 0.561737i \(-0.189867\pi\)
\(48\) 6.05384 1.60712i 0.873797 0.231968i
\(49\) 0.270040 + 0.0982866i 0.0385772 + 0.0140409i
\(50\) 0 0
\(51\) −1.71630 3.70297i −0.240331 0.518519i
\(52\) −2.14966 1.80378i −0.298104 0.250139i
\(53\) −13.3683 −1.83627 −0.918137 0.396263i \(-0.870307\pi\)
−0.918137 + 0.396263i \(0.870307\pi\)
\(54\) −0.750303 1.08753i −0.102103 0.147994i
\(55\) 0 0
\(56\) 1.98602 + 1.66647i 0.265393 + 0.222691i
\(57\) −4.42967 + 6.29518i −0.586724 + 0.833817i
\(58\) −0.281731 1.59778i −0.0369931 0.209798i
\(59\) 3.10061 + 1.12853i 0.403665 + 0.146922i 0.535870 0.844300i \(-0.319984\pi\)
−0.132205 + 0.991222i \(0.542206\pi\)
\(60\) 0 0
\(61\) −1.57865 + 8.95295i −0.202125 + 1.14631i 0.699775 + 0.714363i \(0.253284\pi\)
−0.901900 + 0.431945i \(0.857828\pi\)
\(62\) 0.833631 1.44389i 0.105871 0.183374i
\(63\) −2.69216 + 7.29150i −0.339181 + 0.918642i
\(64\) 3.24491 + 5.62035i 0.405614 + 0.702543i
\(65\) 0 0
\(66\) −0.878880 0.412306i −0.108183 0.0507514i
\(67\) 4.09170 3.43334i 0.499881 0.419450i −0.357671 0.933848i \(-0.616429\pi\)
0.857552 + 0.514398i \(0.171985\pi\)
\(68\) 3.49349 2.93138i 0.423647 0.355482i
\(69\) 1.03680 + 12.1751i 0.124816 + 1.46571i
\(70\) 0 0
\(71\) −1.67410 2.89963i −0.198680 0.344123i 0.749421 0.662094i \(-0.230332\pi\)
−0.948101 + 0.317971i \(0.896999\pi\)
\(72\) 1.94024 2.29068i 0.228660 0.269959i
\(73\) 2.55076 4.41805i 0.298544 0.517094i −0.677259 0.735745i \(-0.736832\pi\)
0.975803 + 0.218651i \(0.0701656\pi\)
\(74\) −0.200612 + 1.13773i −0.0233206 + 0.132258i
\(75\) 0 0
\(76\) −8.08225 2.94170i −0.927098 0.337436i
\(77\) 0.991698 + 5.62420i 0.113014 + 0.640937i
\(78\) −0.636024 0.0571280i −0.0720156 0.00646847i
\(79\) 3.14132 + 2.63588i 0.353426 + 0.296560i 0.802164 0.597104i \(-0.203682\pi\)
−0.448738 + 0.893663i \(0.648126\pi\)
\(80\) 0 0
\(81\) 8.42838 + 3.15632i 0.936487 + 0.350702i
\(82\) 1.68745 0.186347
\(83\) −2.65602 2.22867i −0.291536 0.244628i 0.485275 0.874362i \(-0.338720\pi\)
−0.776811 + 0.629734i \(0.783164\pi\)
\(84\) −8.65009 0.776955i −0.943802 0.0847727i
\(85\) 0 0
\(86\) 1.47346 + 0.536295i 0.158887 + 0.0578302i
\(87\) 7.79656 + 7.83272i 0.835879 + 0.839756i
\(88\) 0.383015 2.17219i 0.0408296 0.231556i
\(89\) 7.60791 13.1773i 0.806437 1.39679i −0.108880 0.994055i \(-0.534726\pi\)
0.915317 0.402734i \(-0.131940\pi\)
\(90\) 0 0
\(91\) 1.87834 + 3.25338i 0.196903 + 0.341047i
\(92\) −12.8299 + 4.66971i −1.33761 + 0.486851i
\(93\) 0.963650 + 11.3161i 0.0999259 + 1.17342i
\(94\) 1.86115 1.56169i 0.191963 0.161076i
\(95\) 0 0
\(96\) 4.58006 + 2.14863i 0.467450 + 0.219294i
\(97\) 3.94072 1.43431i 0.400120 0.145632i −0.134119 0.990965i \(-0.542821\pi\)
0.534239 + 0.845334i \(0.320598\pi\)
\(98\) 0.0365353 + 0.0632810i 0.00369063 + 0.00639235i
\(99\) 6.51756 1.11815i 0.655039 0.112378i
\(100\) 0 0
\(101\) −2.48305 + 14.0821i −0.247073 + 1.40122i 0.568557 + 0.822644i \(0.307502\pi\)
−0.815629 + 0.578575i \(0.803609\pi\)
\(102\) 0.270917 1.00180i 0.0268248 0.0991929i
\(103\) 8.11392 + 2.95323i 0.799489 + 0.290990i 0.709275 0.704932i \(-0.249023\pi\)
0.0902141 + 0.995922i \(0.471245\pi\)
\(104\) −0.251948 1.42887i −0.0247055 0.140112i
\(105\) 0 0
\(106\) −2.60393 2.18496i −0.252916 0.212222i
\(107\) 5.67259 0.548390 0.274195 0.961674i \(-0.411589\pi\)
0.274195 + 0.961674i \(0.411589\pi\)
\(108\) −0.945981 + 10.0118i −0.0910271 + 0.963382i
\(109\) 18.9591 1.81595 0.907975 0.419025i \(-0.137628\pi\)
0.907975 + 0.419025i \(0.137628\pi\)
\(110\) 0 0
\(111\) −3.30928 7.13985i −0.314103 0.677685i
\(112\) −1.62695 9.22691i −0.153733 0.871861i
\(113\) −10.7438 3.91044i −1.01070 0.367863i −0.216996 0.976172i \(-0.569626\pi\)
−0.793700 + 0.608309i \(0.791848\pi\)
\(114\) −1.89174 + 0.502201i −0.177177 + 0.0470355i
\(115\) 0 0
\(116\) −6.17437 + 10.6943i −0.573276 + 0.992943i
\(117\) 3.77714 2.15749i 0.349197 0.199460i
\(118\) 0.419500 + 0.726595i 0.0386181 + 0.0668884i
\(119\) −5.73692 + 2.08807i −0.525903 + 0.191413i
\(120\) 0 0
\(121\) −4.70446 + 3.94751i −0.427679 + 0.358865i
\(122\) −1.77080 + 1.48588i −0.160321 + 0.134525i
\(123\) −9.43098 + 6.57118i −0.850362 + 0.592503i
\(124\) −11.9247 + 4.34024i −1.07087 + 0.389765i
\(125\) 0 0
\(126\) −1.71614 + 0.980254i −0.152886 + 0.0873279i
\(127\) 1.65219 2.86168i 0.146608 0.253933i −0.783363 0.621564i \(-0.786498\pi\)
0.929972 + 0.367631i \(0.119831\pi\)
\(128\) −1.30094 + 7.37801i −0.114988 + 0.652130i
\(129\) −10.3234 + 2.74057i −0.908928 + 0.241294i
\(130\) 0 0
\(131\) 2.70616 + 15.3474i 0.236439 + 1.34091i 0.839563 + 0.543263i \(0.182811\pi\)
−0.603124 + 0.797647i \(0.706078\pi\)
\(132\) 3.10720 + 6.70385i 0.270447 + 0.583496i
\(133\) 8.82040 + 7.40120i 0.764826 + 0.641765i
\(134\) 1.35816 0.117327
\(135\) 0 0
\(136\) 2.35792 0.202190
\(137\) −9.21811 7.73491i −0.787556 0.660838i 0.157583 0.987506i \(-0.449630\pi\)
−0.945139 + 0.326668i \(0.894074\pi\)
\(138\) −1.78799 + 2.54098i −0.152203 + 0.216302i
\(139\) −3.09573 17.5568i −0.262577 1.48915i −0.775848 0.630920i \(-0.782677\pi\)
0.513271 0.858227i \(-0.328434\pi\)
\(140\) 0 0
\(141\) −4.32033 + 15.9758i −0.363838 + 1.34540i
\(142\) 0.147837 0.838425i 0.0124062 0.0703591i
\(143\) 1.59805 2.76790i 0.133636 0.231464i
\(144\) −10.6925 + 1.83441i −0.891045 + 0.152867i
\(145\) 0 0
\(146\) 1.21895 0.443662i 0.100881 0.0367177i
\(147\) −0.450619 0.211398i −0.0371664 0.0174358i
\(148\) 6.73594 5.65212i 0.553691 0.464602i
\(149\) −16.4176 + 13.7760i −1.34498 + 1.12857i −0.364664 + 0.931139i \(0.618816\pi\)
−0.980316 + 0.197433i \(0.936739\pi\)
\(150\) 0 0
\(151\) −7.24523 + 2.63705i −0.589608 + 0.214600i −0.619557 0.784952i \(-0.712688\pi\)
0.0299488 + 0.999551i \(0.490466\pi\)
\(152\) −2.22352 3.85125i −0.180351 0.312378i
\(153\) 2.38703 + 6.65396i 0.192980 + 0.537940i
\(154\) −0.726071 + 1.25759i −0.0585085 + 0.101340i
\(155\) 0 0
\(156\) 3.42890 + 3.44480i 0.274532 + 0.275805i
\(157\) 0.728013 + 0.264975i 0.0581018 + 0.0211473i 0.370908 0.928670i \(-0.379047\pi\)
−0.312806 + 0.949817i \(0.601269\pi\)
\(158\) 0.181063 + 1.02686i 0.0144046 + 0.0816924i
\(159\) 23.0617 + 2.07141i 1.82891 + 0.164274i
\(160\) 0 0
\(161\) 18.2779 1.44050
\(162\) 1.12584 + 1.99237i 0.0884542 + 0.156535i
\(163\) −16.3075 −1.27731 −0.638653 0.769495i \(-0.720508\pi\)
−0.638653 + 0.769495i \(0.720508\pi\)
\(164\) −9.83880 8.25573i −0.768281 0.644664i
\(165\) 0 0
\(166\) −0.153090 0.868219i −0.0118821 0.0673869i
\(167\) −6.51098 2.36980i −0.503835 0.183381i 0.0775833 0.996986i \(-0.475280\pi\)
−0.581418 + 0.813605i \(0.697502\pi\)
\(168\) −3.16787 3.18257i −0.244407 0.245540i
\(169\) −1.89235 + 10.7320i −0.145565 + 0.825542i
\(170\) 0 0
\(171\) 8.61709 10.1735i 0.658965 0.777985i
\(172\) −5.96733 10.3357i −0.455005 0.788092i
\(173\) 7.00660 2.55019i 0.532702 0.193888i −0.0616426 0.998098i \(-0.519634\pi\)
0.594344 + 0.804211i \(0.297412\pi\)
\(174\) 0.238441 + 2.79999i 0.0180762 + 0.212267i
\(175\) 0 0
\(176\) −6.10626 + 5.12376i −0.460277 + 0.386218i
\(177\) −5.17401 2.42727i −0.388903 0.182445i
\(178\) 3.63564 1.32327i 0.272503 0.0991830i
\(179\) 7.25608 + 12.5679i 0.542345 + 0.939369i 0.998769 + 0.0496065i \(0.0157967\pi\)
−0.456424 + 0.889762i \(0.650870\pi\)
\(180\) 0 0
\(181\) −4.13864 + 7.16833i −0.307622 + 0.532818i −0.977842 0.209345i \(-0.932867\pi\)
0.670219 + 0.742163i \(0.266200\pi\)
\(182\) −0.165873 + 0.940710i −0.0122953 + 0.0697301i
\(183\) 4.11059 15.2002i 0.303864 1.12363i
\(184\) −6.63360 2.41443i −0.489035 0.177994i
\(185\) 0 0
\(186\) −1.66183 + 2.36169i −0.121851 + 0.173168i
\(187\) 3.97890 + 3.33870i 0.290966 + 0.244150i
\(188\) −18.4921 −1.34867
\(189\) 5.77408 12.1615i 0.420003 0.884616i
\(190\) 0 0
\(191\) −18.3309 15.3815i −1.32638 1.11297i −0.984909 0.173074i \(-0.944630\pi\)
−0.341472 0.939892i \(-0.610925\pi\)
\(192\) −4.72694 10.1985i −0.341137 0.736013i
\(193\) 4.17280 + 23.6651i 0.300364 + 1.70345i 0.644560 + 0.764553i \(0.277040\pi\)
−0.344196 + 0.938898i \(0.611848\pi\)
\(194\) 1.00202 + 0.364705i 0.0719408 + 0.0261843i
\(195\) 0 0
\(196\) 0.0965765 0.547712i 0.00689832 0.0391223i
\(197\) 11.7231 20.3050i 0.835235 1.44667i −0.0586045 0.998281i \(-0.518665\pi\)
0.893839 0.448388i \(-0.148002\pi\)
\(198\) 1.45227 + 0.847455i 0.103209 + 0.0602260i
\(199\) 3.92254 + 6.79404i 0.278061 + 0.481617i 0.970903 0.239473i \(-0.0769748\pi\)
−0.692841 + 0.721090i \(0.743641\pi\)
\(200\) 0 0
\(201\) −7.59061 + 5.28887i −0.535401 + 0.373048i
\(202\) −2.78528 + 2.33713i −0.195972 + 0.164440i
\(203\) 12.6638 10.6262i 0.888826 0.745814i
\(204\) −6.48085 + 4.51563i −0.453750 + 0.316157i
\(205\) 0 0
\(206\) 1.09778 + 1.90141i 0.0764860 + 0.132478i
\(207\) 0.0979318 21.1640i 0.00680673 1.47100i
\(208\) −2.62172 + 4.54095i −0.181784 + 0.314858i
\(209\) 1.70107 9.64722i 0.117665 0.667312i
\(210\) 0 0
\(211\) 4.73989 + 1.72518i 0.326307 + 0.118766i 0.499979 0.866037i \(-0.333341\pi\)
−0.173672 + 0.984804i \(0.555563\pi\)
\(212\) 4.49267 + 25.4792i 0.308558 + 1.74992i
\(213\) 2.43871 + 5.26158i 0.167098 + 0.360517i
\(214\) 1.10493 + 0.927148i 0.0755316 + 0.0633785i
\(215\) 0 0
\(216\) −3.70206 + 3.65102i −0.251893 + 0.248421i
\(217\) 16.9883 1.15324
\(218\) 3.69293 + 3.09874i 0.250117 + 0.209873i
\(219\) −5.08492 + 7.22637i −0.343607 + 0.488313i
\(220\) 0 0
\(221\) 3.21063 + 1.16857i 0.215970 + 0.0786067i
\(222\) 0.522367 1.93161i 0.0350590 0.129641i
\(223\) 3.27908 18.5966i 0.219583 1.24532i −0.653191 0.757193i \(-0.726570\pi\)
0.872774 0.488125i \(-0.162319\pi\)
\(224\) 3.78374 6.55363i 0.252812 0.437883i
\(225\) 0 0
\(226\) −1.45360 2.51771i −0.0966919 0.167475i
\(227\) 3.51591 1.27969i 0.233359 0.0849358i −0.222694 0.974888i \(-0.571485\pi\)
0.456053 + 0.889953i \(0.349263\pi\)
\(228\) 13.4869 + 6.32709i 0.893194 + 0.419022i
\(229\) 6.44759 5.41017i 0.426069 0.357514i −0.404397 0.914583i \(-0.632519\pi\)
0.830466 + 0.557069i \(0.188074\pi\)
\(230\) 0 0
\(231\) −0.839315 9.85600i −0.0552229 0.648477i
\(232\) −5.99975 + 2.18373i −0.393903 + 0.143369i
\(233\) 5.62166 + 9.73700i 0.368287 + 0.637892i 0.989298 0.145910i \(-0.0466110\pi\)
−0.621011 + 0.783802i \(0.713278\pi\)
\(234\) 1.08836 + 0.197104i 0.0711481 + 0.0128851i
\(235\) 0 0
\(236\) 1.10889 6.28885i 0.0721828 0.409369i
\(237\) −5.01068 5.03392i −0.325479 0.326988i
\(238\) −1.45874 0.530939i −0.0945563 0.0344157i
\(239\) 3.13312 + 17.7688i 0.202665 + 1.14937i 0.901073 + 0.433668i \(0.142781\pi\)
−0.698408 + 0.715700i \(0.746108\pi\)
\(240\) 0 0
\(241\) 11.6762 + 9.79751i 0.752131 + 0.631113i 0.936066 0.351826i \(-0.114439\pi\)
−0.183934 + 0.982939i \(0.558883\pi\)
\(242\) −1.56155 −0.100380
\(243\) −14.0508 6.75096i −0.901358 0.433074i
\(244\) 17.5943 1.12636
\(245\) 0 0
\(246\) −2.91102 0.261470i −0.185600 0.0166707i
\(247\) −1.11896 6.34596i −0.0711980 0.403784i
\(248\) −6.16556 2.24408i −0.391513 0.142499i
\(249\) 4.23659 + 4.25624i 0.268483 + 0.269728i
\(250\) 0 0
\(251\) 10.1160 17.5214i 0.638515 1.10594i −0.347244 0.937775i \(-0.612882\pi\)
0.985759 0.168165i \(-0.0537843\pi\)
\(252\) 14.8019 + 2.68066i 0.932434 + 0.168866i
\(253\) −7.77522 13.4671i −0.488824 0.846668i
\(254\) 0.789545 0.287371i 0.0495405 0.0180312i
\(255\) 0 0
\(256\) 8.48369 7.11866i 0.530230 0.444916i
\(257\) 22.3026 18.7141i 1.39120 1.16735i 0.426347 0.904560i \(-0.359800\pi\)
0.964852 0.262795i \(-0.0846442\pi\)
\(258\) −2.45877 1.15348i −0.153077 0.0718124i
\(259\) −11.0616 + 4.02609i −0.687334 + 0.250169i
\(260\) 0 0
\(261\) −12.2362 14.7203i −0.757402 0.911167i
\(262\) −1.98132 + 3.43174i −0.122406 + 0.212014i
\(263\) 0.202359 1.14764i 0.0124780 0.0707663i −0.977933 0.208919i \(-0.933005\pi\)
0.990411 + 0.138153i \(0.0441165\pi\)
\(264\) −0.997322 + 3.68791i −0.0613809 + 0.226975i
\(265\) 0 0
\(266\) 0.508399 + 2.88328i 0.0311720 + 0.176785i
\(267\) −15.1663 + 21.5534i −0.928160 + 1.31904i
\(268\) −7.91885 6.64471i −0.483721 0.405890i
\(269\) 3.89377 0.237407 0.118704 0.992930i \(-0.462126\pi\)
0.118704 + 0.992930i \(0.462126\pi\)
\(270\) 0 0
\(271\) −1.01175 −0.0614596 −0.0307298 0.999528i \(-0.509783\pi\)
−0.0307298 + 0.999528i \(0.509783\pi\)
\(272\) −6.52769 5.47738i −0.395799 0.332115i
\(273\) −2.73622 5.90347i −0.165604 0.357294i
\(274\) −0.531323 3.01328i −0.0320984 0.182039i
\(275\) 0 0
\(276\) 22.8566 6.06776i 1.37580 0.365236i
\(277\) −5.38133 + 30.5191i −0.323333 + 1.83371i 0.197807 + 0.980241i \(0.436618\pi\)
−0.521140 + 0.853471i \(0.674493\pi\)
\(278\) 2.26654 3.92577i 0.135938 0.235452i
\(279\) 0.0910221 19.6707i 0.00544935 1.17765i
\(280\) 0 0
\(281\) −2.69096 + 0.979428i −0.160529 + 0.0584278i −0.421035 0.907045i \(-0.638333\pi\)
0.260506 + 0.965472i \(0.416111\pi\)
\(282\) −3.45267 + 2.40570i −0.205603 + 0.143257i
\(283\) −18.8737 + 15.8369i −1.12192 + 0.941405i −0.998700 0.0509739i \(-0.983767\pi\)
−0.123223 + 0.992379i \(0.539323\pi\)
\(284\) −4.96392 + 4.16523i −0.294555 + 0.247161i
\(285\) 0 0
\(286\) 0.763671 0.277954i 0.0451568 0.0164357i
\(287\) 8.59698 + 14.8904i 0.507464 + 0.878953i
\(288\) −7.56816 4.41630i −0.445958 0.260233i
\(289\) 5.72372 9.91377i 0.336689 0.583163i
\(290\) 0 0
\(291\) −7.02041 + 1.86371i −0.411544 + 0.109253i
\(292\) −9.27779 3.37684i −0.542942 0.197615i
\(293\) 1.00740 + 5.71323i 0.0588527 + 0.333771i 0.999991 0.00425146i \(-0.00135329\pi\)
−0.941138 + 0.338022i \(0.890242\pi\)
\(294\) −0.0532219 0.114828i −0.00310397 0.00669688i
\(295\) 0 0
\(296\) 4.54641 0.264255
\(297\) −11.4167 + 0.919033i −0.662466 + 0.0533277i
\(298\) −5.44948 −0.315680
\(299\) −7.83595 6.57515i −0.453165 0.380250i
\(300\) 0 0
\(301\) 2.77440 + 15.7344i 0.159914 + 0.906915i
\(302\) −1.84227 0.670530i −0.106011 0.0385847i
\(303\) 6.46554 23.9083i 0.371435 1.37350i
\(304\) −2.79073 + 15.8270i −0.160059 + 0.907740i
\(305\) 0 0
\(306\) −0.622589 + 1.68623i −0.0355911 + 0.0963955i
\(307\) 15.4802 + 26.8124i 0.883500 + 1.53027i 0.847424 + 0.530917i \(0.178152\pi\)
0.0360759 + 0.999349i \(0.488514\pi\)
\(308\) 10.3861 3.78024i 0.591804 0.215399i
\(309\) −13.5398 6.35188i −0.770251 0.361346i
\(310\) 0 0
\(311\) 7.44776 6.24942i 0.422324 0.354372i −0.406722 0.913552i \(-0.633328\pi\)
0.829046 + 0.559180i \(0.188884\pi\)
\(312\) 0.213234 + 2.50399i 0.0120720 + 0.141760i
\(313\) 11.4133 4.15409i 0.645116 0.234803i 0.00131881 0.999999i \(-0.499580\pi\)
0.643797 + 0.765196i \(0.277358\pi\)
\(314\) 0.0984972 + 0.170602i 0.00555852 + 0.00962763i
\(315\) 0 0
\(316\) 3.96814 6.87301i 0.223225 0.386637i
\(317\) −0.918600 + 5.20964i −0.0515937 + 0.292603i −0.999677 0.0254200i \(-0.991908\pi\)
0.948083 + 0.318023i \(0.103019\pi\)
\(318\) 4.15350 + 4.17276i 0.232917 + 0.233997i
\(319\) −13.2164 4.81037i −0.739976 0.269329i
\(320\) 0 0
\(321\) −9.78581 0.878966i −0.546191 0.0490591i
\(322\) 3.56025 + 2.98741i 0.198405 + 0.166482i
\(323\) 10.4721 0.582685
\(324\) 3.18324 17.1248i 0.176847 0.951376i
\(325\) 0 0
\(326\) −3.17646 2.66536i −0.175928 0.147621i
\(327\) −32.7064 2.93770i −1.80867 0.162455i
\(328\) −1.15314 6.53980i −0.0636717 0.361100i
\(329\) 23.2627 + 8.46692i 1.28251 + 0.466797i
\(330\) 0 0
\(331\) 4.36397 24.7493i 0.239866 1.36035i −0.592255 0.805750i \(-0.701762\pi\)
0.832121 0.554595i \(-0.187127\pi\)
\(332\) −3.35510 + 5.81121i −0.184135 + 0.318932i
\(333\) 4.60254 + 12.8298i 0.252217 + 0.703067i
\(334\) −0.880908 1.52578i −0.0482012 0.0834868i
\(335\) 0 0
\(336\) 1.37696 + 16.1695i 0.0751193 + 0.882118i
\(337\) 3.87282 3.24968i 0.210966 0.177021i −0.531182 0.847258i \(-0.678252\pi\)
0.742147 + 0.670237i \(0.233807\pi\)
\(338\) −2.12268 + 1.78114i −0.115459 + 0.0968814i
\(339\) 17.9284 + 8.41068i 0.973734 + 0.456806i
\(340\) 0 0
\(341\) −7.22663 12.5169i −0.391344 0.677828i
\(342\) 3.34126 0.573226i 0.180675 0.0309965i
\(343\) −9.44033 + 16.3511i −0.509730 + 0.882878i
\(344\) 1.07153 6.07696i 0.0577732 0.327648i
\(345\) 0 0
\(346\) 1.78159 + 0.648445i 0.0957788 + 0.0348606i
\(347\) 4.69131 + 26.6058i 0.251843 + 1.42827i 0.804048 + 0.594564i \(0.202675\pi\)
−0.552206 + 0.833708i \(0.686214\pi\)
\(348\) 12.3085 17.4921i 0.659807 0.937677i
\(349\) −17.9519 15.0634i −0.960941 0.806326i 0.0201645 0.999797i \(-0.493581\pi\)
−0.981106 + 0.193471i \(0.938025\pi\)
\(350\) 0 0
\(351\) −6.85028 + 3.13664i −0.365641 + 0.167421i
\(352\) −6.43824 −0.343160
\(353\) 13.6706 + 11.4710i 0.727611 + 0.610538i 0.929479 0.368875i \(-0.120257\pi\)
−0.201868 + 0.979413i \(0.564701\pi\)
\(354\) −0.611095 1.31845i −0.0324794 0.0700750i
\(355\) 0 0
\(356\) −27.6719 10.0718i −1.46661 0.533802i
\(357\) 10.2203 2.71320i 0.540918 0.143598i
\(358\) −0.640771 + 3.63399i −0.0338658 + 0.192062i
\(359\) 12.7067 22.0086i 0.670633 1.16157i −0.307092 0.951680i \(-0.599356\pi\)
0.977725 0.209891i \(-0.0673108\pi\)
\(360\) 0 0
\(361\) −0.375211 0.649885i −0.0197480 0.0342045i
\(362\) −1.97776 + 0.719845i −0.103949 + 0.0378342i
\(363\) 8.72737 6.08092i 0.458068 0.319166i
\(364\) 5.56950 4.67337i 0.291921 0.244951i
\(365\) 0 0
\(366\) 3.28505 2.28891i 0.171712 0.119643i
\(367\) −33.4606 + 12.1787i −1.74663 + 0.635721i −0.999578 0.0290451i \(-0.990753\pi\)
−0.747051 + 0.664766i \(0.768531\pi\)
\(368\) 12.7558 + 22.0938i 0.664944 + 1.15172i
\(369\) 17.2876 9.87465i 0.899958 0.514054i
\(370\) 0 0
\(371\) 6.01439 34.1093i 0.312252 1.77087i
\(372\) 21.2439 5.63964i 1.10144 0.292402i
\(373\) 5.43137 + 1.97686i 0.281226 + 0.102358i 0.478782 0.877934i \(-0.341078\pi\)
−0.197557 + 0.980291i \(0.563301\pi\)
\(374\) 0.229340 + 1.30065i 0.0118589 + 0.0672551i
\(375\) 0 0
\(376\) −7.32428 6.14580i −0.377721 0.316945i
\(377\) −9.25171 −0.476487
\(378\) 3.11241 1.42513i 0.160085 0.0733006i
\(379\) −27.7158 −1.42366 −0.711832 0.702350i \(-0.752134\pi\)
−0.711832 + 0.702350i \(0.752134\pi\)
\(380\) 0 0
\(381\) −3.29362 + 4.68070i −0.168737 + 0.239799i
\(382\) −1.05658 5.99215i −0.0540592 0.306585i
\(383\) 5.17297 + 1.88281i 0.264326 + 0.0962069i 0.470784 0.882249i \(-0.343971\pi\)
−0.206457 + 0.978456i \(0.566193\pi\)
\(384\) 3.38748 12.5263i 0.172867 0.639228i
\(385\) 0 0
\(386\) −3.05511 + 5.29161i −0.155501 + 0.269336i
\(387\) 18.2337 3.12816i 0.926870 0.159014i
\(388\) −4.05806 7.02876i −0.206017 0.356831i
\(389\) −33.7465 + 12.2827i −1.71101 + 0.622758i −0.997002 0.0773745i \(-0.975346\pi\)
−0.714013 + 0.700133i \(0.753124\pi\)
\(390\) 0 0
\(391\) 12.7345 10.6855i 0.644010 0.540388i
\(392\) 0.220282 0.184839i 0.0111259 0.00933577i
\(393\) −2.29034 26.8952i −0.115532 1.35669i
\(394\) 5.60219 2.03903i 0.282234 0.102725i
\(395\) 0 0
\(396\) −4.32148 12.0463i −0.217163 0.605350i
\(397\) 4.23035 7.32719i 0.212315 0.367741i −0.740123 0.672471i \(-0.765233\pi\)
0.952439 + 0.304730i \(0.0985663\pi\)
\(398\) −0.346392 + 1.96449i −0.0173631 + 0.0984708i
\(399\) −14.0693 14.1346i −0.704347 0.707614i
\(400\) 0 0
\(401\) 4.71483 + 26.7391i 0.235447 + 1.33529i 0.841669 + 0.539993i \(0.181573\pi\)
−0.606222 + 0.795296i \(0.707316\pi\)
\(402\) −2.34297 0.210446i −0.116857 0.0104961i
\(403\) −7.28308 6.11123i −0.362796 0.304422i
\(404\) 27.6741 1.37684
\(405\) 0 0
\(406\) 4.20350 0.208616
\(407\) 7.67189 + 6.43748i 0.380281 + 0.319094i
\(408\) −4.06767 0.365360i −0.201380 0.0180880i
\(409\) −0.359891 2.04104i −0.0177954 0.100923i 0.974616 0.223882i \(-0.0718729\pi\)
−0.992412 + 0.122959i \(0.960762\pi\)
\(410\) 0 0
\(411\) 14.7037 + 14.7719i 0.725280 + 0.728643i
\(412\) 2.90184 16.4572i 0.142964 0.810786i
\(413\) −4.27442 + 7.40352i −0.210331 + 0.364303i
\(414\) 3.47819 4.10640i 0.170944 0.201819i
\(415\) 0 0
\(416\) −3.97968 + 1.44849i −0.195120 + 0.0710178i
\(417\) 2.62005 + 30.7670i 0.128304 + 1.50667i
\(418\) 1.90812 1.60110i 0.0933291 0.0783124i
\(419\) −19.8184 + 16.6296i −0.968190 + 0.812408i −0.982266 0.187493i \(-0.939964\pi\)
0.0140758 + 0.999901i \(0.495519\pi\)
\(420\) 0 0
\(421\) 9.37834 3.41344i 0.457073 0.166361i −0.103215 0.994659i \(-0.532913\pi\)
0.560287 + 0.828298i \(0.310691\pi\)
\(422\) 0.641287 + 1.11074i 0.0312174 + 0.0540700i
\(423\) 9.92847 26.8904i 0.482739 1.30746i
\(424\) −6.68850 + 11.5848i −0.324822 + 0.562608i
\(425\) 0 0
\(426\) −0.384948 + 1.42347i −0.0186508 + 0.0689671i
\(427\) −22.1333 8.05588i −1.07111 0.389851i
\(428\) −1.90638 10.8116i −0.0921484 0.522600i
\(429\) −3.18569 + 4.52731i −0.153807 + 0.218581i
\(430\) 0 0
\(431\) 2.41940 0.116538 0.0582692 0.998301i \(-0.481442\pi\)
0.0582692 + 0.998301i \(0.481442\pi\)
\(432\) 18.7300 1.50774i 0.901148 0.0725413i
\(433\) −19.8081 −0.951915 −0.475957 0.879468i \(-0.657898\pi\)
−0.475957 + 0.879468i \(0.657898\pi\)
\(434\) 3.30906 + 2.77663i 0.158840 + 0.133282i
\(435\) 0 0
\(436\) −6.37156 36.1349i −0.305142 1.73055i
\(437\) −29.4615 10.7231i −1.40933 0.512955i
\(438\) −2.17157 + 0.576488i −0.103761 + 0.0275457i
\(439\) 0.697642 3.95652i 0.0332966 0.188835i −0.963623 0.267266i \(-0.913880\pi\)
0.996920 + 0.0784310i \(0.0249910\pi\)
\(440\) 0 0
\(441\) 0.744609 + 0.434506i 0.0354576 + 0.0206908i
\(442\) 0.434385 + 0.752376i 0.0206616 + 0.0357869i
\(443\) −4.71098 + 1.71466i −0.223826 + 0.0814658i −0.451499 0.892272i \(-0.649110\pi\)
0.227673 + 0.973738i \(0.426888\pi\)
\(444\) −12.4960 + 8.70678i −0.593034 + 0.413205i
\(445\) 0 0
\(446\) 3.67820 3.08638i 0.174168 0.146144i
\(447\) 30.4566 21.2211i 1.44055 1.00373i
\(448\) −15.8003 + 5.75083i −0.746493 + 0.271701i
\(449\) 9.48026 + 16.4203i 0.447401 + 0.774922i 0.998216 0.0597059i \(-0.0190163\pi\)
−0.550815 + 0.834627i \(0.685683\pi\)
\(450\) 0 0
\(451\) 7.31412 12.6684i 0.344409 0.596533i
\(452\) −3.84240 + 21.7913i −0.180731 + 1.02498i
\(453\) 12.9074 3.42654i 0.606442 0.160993i
\(454\) 0.894001 + 0.325390i 0.0419575 + 0.0152713i
\(455\) 0 0
\(456\) 3.23906 + 6.98835i 0.151683 + 0.327260i
\(457\) −8.71986 7.31683i −0.407898 0.342267i 0.415639 0.909530i \(-0.363558\pi\)
−0.823537 + 0.567263i \(0.808002\pi\)
\(458\) 2.14015 0.100002
\(459\) −3.08685 11.8486i −0.144082 0.553048i
\(460\) 0 0
\(461\) −3.34271 2.80487i −0.155686 0.130636i 0.561617 0.827397i \(-0.310179\pi\)
−0.717303 + 0.696761i \(0.754624\pi\)
\(462\) 1.44741 2.05698i 0.0673398 0.0956992i
\(463\) 1.25780 + 7.13335i 0.0584550 + 0.331515i 0.999985 0.00541334i \(-0.00172313\pi\)
−0.941530 + 0.336928i \(0.890612\pi\)
\(464\) 21.6825 + 7.89178i 1.00658 + 0.366367i
\(465\) 0 0
\(466\) −0.496438 + 2.81544i −0.0229970 + 0.130423i
\(467\) −1.79131 + 3.10264i −0.0828919 + 0.143573i −0.904491 0.426493i \(-0.859749\pi\)
0.821599 + 0.570066i \(0.193082\pi\)
\(468\) −5.38144 6.47395i −0.248757 0.299259i
\(469\) 6.91936 + 11.9847i 0.319507 + 0.553402i
\(470\) 0 0
\(471\) −1.21484 0.569916i −0.0559770 0.0262603i
\(472\) 2.52929 2.12232i 0.116420 0.0976879i
\(473\) 10.4128 8.73740i 0.478782 0.401746i
\(474\) −0.153241 1.79949i −0.00703858 0.0826534i
\(475\) 0 0
\(476\) 5.90774 + 10.2325i 0.270781 + 0.469006i
\(477\) −39.4629 7.14681i −1.80688 0.327230i
\(478\) −2.29391 + 3.97317i −0.104921 + 0.181729i
\(479\) 0.329444 1.86837i 0.0150527 0.0853680i −0.976356 0.216169i \(-0.930644\pi\)
0.991409 + 0.130801i \(0.0417549\pi\)
\(480\) 0 0
\(481\) 6.19055 + 2.25318i 0.282265 + 0.102736i
\(482\) 0.673006 + 3.81680i 0.0306546 + 0.173851i
\(483\) −31.5313 2.83216i −1.43473 0.128868i
\(484\) 9.10476 + 7.63980i 0.413853 + 0.347264i
\(485\) 0 0
\(486\) −1.63347 3.61149i −0.0740959 0.163821i
\(487\) 13.6444 0.618286 0.309143 0.951016i \(-0.399958\pi\)
0.309143 + 0.951016i \(0.399958\pi\)
\(488\) 6.96870 + 5.84743i 0.315458 + 0.264701i
\(489\) 28.1322 + 2.52685i 1.27218 + 0.114268i
\(490\) 0 0
\(491\) −37.0378 13.4806i −1.67149 0.608373i −0.679386 0.733781i \(-0.737754\pi\)
−0.992105 + 0.125408i \(0.959976\pi\)
\(492\) 15.6937 + 15.7665i 0.707529 + 0.710810i
\(493\) 2.61085 14.8068i 0.117587 0.666867i
\(494\) 0.819249 1.41898i 0.0368598 0.0638430i
\(495\) 0 0
\(496\) 11.8558 + 20.5349i 0.532343 + 0.922044i
\(497\) 8.15164 2.96695i 0.365651 0.133086i
\(498\) 0.129567 + 1.52149i 0.00580603 + 0.0681797i
\(499\) −20.0062 + 16.7872i −0.895599 + 0.751497i −0.969325 0.245781i \(-0.920955\pi\)
0.0737260 + 0.997279i \(0.476511\pi\)
\(500\) 0 0
\(501\) 10.8649 + 5.09703i 0.485409 + 0.227719i
\(502\) 4.83419 1.75950i 0.215761 0.0785304i
\(503\) −3.26454 5.65434i −0.145558 0.252115i 0.784023 0.620732i \(-0.213165\pi\)
−0.929581 + 0.368618i \(0.879831\pi\)
\(504\) 4.97178 + 5.98113i 0.221461 + 0.266421i
\(505\) 0 0
\(506\) 0.686615 3.89399i 0.0305238 0.173109i
\(507\) 4.92743 18.2207i 0.218835 0.809209i
\(508\) −6.00945 2.18726i −0.266626 0.0970441i
\(509\) −0.633039 3.59014i −0.0280590 0.159130i 0.967559 0.252646i \(-0.0813007\pi\)
−0.995618 + 0.0935154i \(0.970190\pi\)
\(510\) 0 0
\(511\) 10.1251 + 8.49600i 0.447910 + 0.375841i
\(512\) 17.7996 0.786640
\(513\) −16.4418 + 16.2151i −0.725922 + 0.715914i
\(514\) 7.40290 0.326528
\(515\) 0 0
\(516\) 8.69277 + 18.7549i 0.382678 + 0.825637i
\(517\) −3.65730 20.7416i −0.160848 0.912214i
\(518\) −2.81267 1.02373i −0.123581 0.0449800i
\(519\) −12.4823 + 3.31368i −0.547911 + 0.145454i
\(520\) 0 0
\(521\) 5.35490 9.27496i 0.234603 0.406344i −0.724555 0.689217i \(-0.757954\pi\)
0.959157 + 0.282874i \(0.0912878\pi\)
\(522\) 0.0225221 4.86722i 0.000985764 0.213033i
\(523\) 1.48990 + 2.58057i 0.0651486 + 0.112841i 0.896760 0.442517i \(-0.145915\pi\)
−0.831611 + 0.555358i \(0.812581\pi\)
\(524\) 28.3418 10.3156i 1.23812 0.450639i
\(525\) 0 0
\(526\) 0.226990 0.190467i 0.00989724 0.00830477i
\(527\) 11.8360 9.93156i 0.515583 0.432626i
\(528\) 11.3279 7.89287i 0.492982 0.343493i
\(529\) −25.1548 + 9.15560i −1.09369 + 0.398069i
\(530\) 0 0
\(531\) 8.54962 + 4.98901i 0.371022 + 0.216505i
\(532\) 11.1420 19.2985i 0.483067 0.836696i
\(533\) 1.67093 9.47630i 0.0723759 0.410464i
\(534\) −6.47691 + 1.71943i −0.280283 + 0.0744071i
\(535\) 0 0
\(536\) −0.928118 5.26362i −0.0400886 0.227354i
\(537\) −10.5701 22.8053i −0.456134 0.984121i
\(538\) 0.758445 + 0.636411i 0.0326989 + 0.0274376i
\(539\) 0.633440 0.0272842
\(540\) 0 0
\(541\) 9.02469 0.388002 0.194001 0.981001i \(-0.437854\pi\)
0.194001 + 0.981001i \(0.437854\pi\)
\(542\) −0.197074 0.165364i −0.00846504 0.00710301i
\(543\) 8.25032 11.7248i 0.354055 0.503161i
\(544\) −1.19515 6.77802i −0.0512415 0.290605i
\(545\) 0 0
\(546\) 0.431911 1.59712i 0.0184841 0.0683505i
\(547\) −1.85977 + 10.5473i −0.0795180 + 0.450969i 0.918887 + 0.394520i \(0.129089\pi\)
−0.998405 + 0.0564494i \(0.982022\pi\)
\(548\) −11.6444 + 20.1687i −0.497423 + 0.861562i
\(549\) −9.44647 + 25.5850i −0.403166 + 1.09194i
\(550\) 0 0
\(551\) −26.6464 + 9.69849i −1.13517 + 0.413170i
\(552\) 11.0695 + 5.19303i 0.471151 + 0.221030i
\(553\) −8.13876 + 6.82923i −0.346095 + 0.290409i
\(554\) −6.03634 + 5.06509i −0.256460 + 0.215195i
\(555\) 0 0
\(556\) −32.4218 + 11.8006i −1.37499 + 0.500456i
\(557\) −5.12647 8.87931i −0.217216 0.376228i 0.736740 0.676176i \(-0.236364\pi\)
−0.953956 + 0.299948i \(0.903031\pi\)
\(558\) 3.23278 3.81667i 0.136855 0.161573i
\(559\) 4.47074 7.74355i 0.189092 0.327517i
\(560\) 0 0
\(561\) −6.34670 6.37613i −0.267958 0.269201i
\(562\) −0.684238 0.249042i −0.0288628 0.0105052i
\(563\) 7.26542 + 41.2043i 0.306201 + 1.73655i 0.617797 + 0.786338i \(0.288025\pi\)
−0.311596 + 0.950215i \(0.600864\pi\)
\(564\) 31.9008 + 2.86535i 1.34327 + 0.120653i
\(565\) 0 0
\(566\) −6.26473 −0.263326
\(567\) −11.8453 + 20.0851i −0.497457 + 0.843495i
\(568\) −3.35039 −0.140579
\(569\) −6.82704 5.72857i −0.286205 0.240154i 0.488370 0.872637i \(-0.337592\pi\)
−0.774575 + 0.632482i \(0.782036\pi\)
\(570\) 0 0
\(571\) 3.12283 + 17.7104i 0.130686 + 0.741159i 0.977767 + 0.209695i \(0.0672470\pi\)
−0.847081 + 0.531464i \(0.821642\pi\)
\(572\) −5.81252 2.11558i −0.243034 0.0884570i
\(573\) 29.2395 + 29.3751i 1.22150 + 1.22716i
\(574\) −0.759183 + 4.30554i −0.0316877 + 0.179710i
\(575\) 0 0
\(576\) 6.57422 + 18.3259i 0.273926 + 0.763580i
\(577\) −3.64403 6.31165i −0.151703 0.262757i 0.780151 0.625592i \(-0.215142\pi\)
−0.931854 + 0.362834i \(0.881809\pi\)
\(578\) 2.73523 0.995544i 0.113771 0.0414092i
\(579\) −3.53161 41.4714i −0.146769 1.72349i
\(580\) 0 0
\(581\) 6.88142 5.77419i 0.285489 0.239554i
\(582\) −1.67208 0.784418i −0.0693099 0.0325152i
\(583\) −27.6901 + 10.0784i −1.14680 + 0.417403i
\(584\) −2.55243 4.42094i −0.105620 0.182940i
\(585\) 0 0
\(586\) −0.737566 + 1.27750i −0.0304686 + 0.0527731i
\(587\) 5.23392 29.6830i 0.216027 1.22515i −0.663089 0.748541i \(-0.730755\pi\)
0.879116 0.476608i \(-0.158134\pi\)
\(588\) −0.251473 + 0.929897i −0.0103706 + 0.0383483i
\(589\) −27.3828 9.96652i −1.12829 0.410663i
\(590\) 0 0
\(591\) −23.3698 + 33.2117i −0.961305 + 1.36615i
\(592\) −12.5863 10.5612i −0.517294 0.434061i
\(593\) −3.49473 −0.143511 −0.0717557 0.997422i \(-0.522860\pi\)
−0.0717557 + 0.997422i \(0.522860\pi\)
\(594\) −2.37401 1.68698i −0.0974069 0.0692176i
\(595\) 0 0
\(596\) 31.7737 + 26.6613i 1.30150 + 1.09209i
\(597\) −5.71406 12.3282i −0.233861 0.504561i
\(598\) −0.451657 2.56147i −0.0184696 0.104746i
\(599\) 24.8902 + 9.05928i 1.01698 + 0.370152i 0.796111 0.605150i \(-0.206887\pi\)
0.220873 + 0.975302i \(0.429109\pi\)
\(600\) 0 0
\(601\) −2.02684 + 11.4948i −0.0826764 + 0.468881i 0.915157 + 0.403096i \(0.132066\pi\)
−0.997834 + 0.0657845i \(0.979045\pi\)
\(602\) −2.03127 + 3.51827i −0.0827886 + 0.143394i
\(603\) 13.9141 7.94770i 0.566627 0.323656i
\(604\) 7.46096 + 12.9228i 0.303582 + 0.525820i
\(605\) 0 0
\(606\) 5.16705 3.60022i 0.209897 0.146249i
\(607\) −4.18061 + 3.50795i −0.169686 + 0.142383i −0.723676 0.690140i \(-0.757549\pi\)
0.553990 + 0.832523i \(0.313105\pi\)
\(608\) −9.94367 + 8.34373i −0.403269 + 0.338383i
\(609\) −23.4930 + 16.3691i −0.951983 + 0.663308i
\(610\) 0 0
\(611\) −6.92716 11.9982i −0.280243 0.485395i
\(612\) 11.8799 6.78574i 0.480215 0.274297i
\(613\) 3.48113 6.02950i 0.140602 0.243529i −0.787122 0.616798i \(-0.788430\pi\)
0.927723 + 0.373269i \(0.121763\pi\)
\(614\) −1.36702 + 7.75278i −0.0551686 + 0.312877i
\(615\) 0 0
\(616\) 5.37005 + 1.95454i 0.216365 + 0.0787505i
\(617\) 3.30719 + 18.7560i 0.133143 + 0.755089i 0.976135 + 0.217164i \(0.0696806\pi\)
−0.842993 + 0.537925i \(0.819208\pi\)
\(618\) −1.59916 3.45024i −0.0643278 0.138789i
\(619\) 10.9809 + 9.21409i 0.441360 + 0.370345i 0.836218 0.548397i \(-0.184762\pi\)
−0.394858 + 0.918742i \(0.629206\pi\)
\(620\) 0 0
\(621\) −3.44829 + 36.4949i −0.138375 + 1.46449i
\(622\) 2.47214 0.0991236
\(623\) 30.1992 + 25.3401i 1.20991 + 1.01523i
\(624\) 5.22636 7.42739i 0.209222 0.297333i
\(625\) 0 0
\(626\) 2.90209 + 1.05627i 0.115991 + 0.0422172i
\(627\) −4.42935 + 16.3789i −0.176891 + 0.654110i
\(628\) 0.260365 1.47660i 0.0103897 0.0589228i
\(629\) −5.35306 + 9.27178i −0.213441 + 0.369690i
\(630\) 0 0
\(631\) −5.23437 9.06620i −0.208377 0.360920i 0.742826 0.669484i \(-0.233485\pi\)
−0.951203 + 0.308564i \(0.900151\pi\)
\(632\) 3.85591 1.40344i 0.153380 0.0558257i
\(633\) −7.90949 3.71056i −0.314374 0.147481i
\(634\) −1.03041 + 0.864618i −0.0409229 + 0.0343384i
\(635\) 0 0
\(636\) −3.80233 44.6504i −0.150772 1.77050i
\(637\) 0.391549 0.142512i 0.0155137 0.00564654i
\(638\) −1.78812 3.09712i −0.0707925 0.122616i
\(639\) −3.39175 9.45466i −0.134176 0.374021i
\(640\) 0 0
\(641\) −1.94620 + 11.0374i −0.0768701 + 0.435952i 0.921947 + 0.387317i \(0.126598\pi\)
−0.998817 + 0.0486349i \(0.984513\pi\)
\(642\) −1.76246 1.77064i −0.0695588 0.0698815i
\(643\) 3.76197 + 1.36924i 0.148357 + 0.0539977i 0.415132 0.909761i \(-0.363736\pi\)
−0.266774 + 0.963759i \(0.585958\pi\)
\(644\) −6.14264 34.8367i −0.242054 1.37276i
\(645\) 0 0
\(646\) 2.03981 + 1.71160i 0.0802551 + 0.0673421i
\(647\) 23.5060 0.924118 0.462059 0.886849i \(-0.347111\pi\)
0.462059 + 0.886849i \(0.347111\pi\)
\(648\) 6.95217 5.72477i 0.273107 0.224890i
\(649\) 7.27317 0.285497
\(650\) 0 0
\(651\) −29.3066 2.63233i −1.14862 0.103169i
\(652\) 5.48046 + 31.0812i 0.214631 + 1.21724i
\(653\) 10.0562 + 3.66017i 0.393531 + 0.143233i 0.531203 0.847244i \(-0.321740\pi\)
−0.137673 + 0.990478i \(0.543962\pi\)
\(654\) −5.89055 5.91787i −0.230339 0.231407i
\(655\) 0 0
\(656\) −11.9994 + 20.7835i −0.468497 + 0.811460i
\(657\) 9.89175 11.6783i 0.385914 0.455616i
\(658\) 3.14734 + 5.45136i 0.122696 + 0.212516i
\(659\) −5.16703 + 1.88064i −0.201279 + 0.0732595i −0.440692 0.897658i \(-0.645267\pi\)
0.239414 + 0.970918i \(0.423045\pi\)
\(660\) 0 0
\(661\) −29.3397 + 24.6189i −1.14118 + 0.957565i −0.999477 0.0323440i \(-0.989703\pi\)
−0.141705 + 0.989909i \(0.545258\pi\)
\(662\) 4.89515 4.10752i 0.190255 0.159643i
\(663\) −5.35760 2.51340i −0.208072 0.0976123i
\(664\) −3.26022 + 1.18662i −0.126521 + 0.0460499i
\(665\) 0 0
\(666\) −1.20044 + 3.25130i −0.0465161 + 0.125985i
\(667\) −22.5068 + 38.9830i −0.871469 + 1.50943i
\(668\) −2.32857 + 13.2060i −0.0900950 + 0.510954i
\(669\) −8.53829 + 31.5730i −0.330109 + 1.22068i
\(670\) 0 0
\(671\) 3.47975 + 19.7346i 0.134334 + 0.761847i
\(672\) −7.54283 + 10.7194i −0.290971 + 0.413510i
\(673\) 16.1006 + 13.5100i 0.620631 + 0.520771i 0.898002 0.439992i \(-0.145019\pi\)
−0.277371 + 0.960763i \(0.589463\pi\)
\(674\) 1.28550 0.0495158
\(675\) 0 0
\(676\) 21.0906 0.811178
\(677\) 2.14171 + 1.79711i 0.0823126 + 0.0690685i 0.683016 0.730404i \(-0.260668\pi\)
−0.600703 + 0.799472i \(0.705113\pi\)
\(678\) 2.11749 + 4.56854i 0.0813218 + 0.175454i
\(679\) 1.88672 + 10.7001i 0.0724055 + 0.410632i
\(680\) 0 0
\(681\) −6.26360 + 1.66280i −0.240022 + 0.0637188i
\(682\) 0.638170 3.61924i 0.0244368 0.138588i
\(683\) 1.12135 1.94224i 0.0429073 0.0743176i −0.843774 0.536698i \(-0.819671\pi\)
0.886681 + 0.462381i \(0.153005\pi\)
\(684\) −22.2860 13.0047i −0.852126 0.497247i
\(685\) 0 0
\(686\) −4.51132 + 1.64199i −0.172243 + 0.0626913i
\(687\) −11.9611 + 8.33406i −0.456343 + 0.317964i
\(688\) −17.0830 + 14.3344i −0.651284 + 0.546492i
\(689\) −14.8487 + 12.4595i −0.565689 + 0.474669i
\(690\) 0 0
\(691\) 27.0475 9.84448i 1.02893 0.374502i 0.228260 0.973600i \(-0.426697\pi\)
0.800675 + 0.599099i \(0.204474\pi\)
\(692\) −7.21522 12.4971i −0.274282 0.475070i
\(693\) −0.0792780 + 17.1327i −0.00301152 + 0.650817i
\(694\) −3.43474 + 5.94915i −0.130381 + 0.225827i
\(695\) 0 0
\(696\) 10.6886 2.83751i 0.405150 0.107555i
\(697\) 14.6947 + 5.34845i 0.556603 + 0.202587i
\(698\) −1.03473 5.86823i −0.0391650 0.222116i
\(699\) −8.18921 17.6684i −0.309744 0.668281i
\(700\) 0 0
\(701\) −19.7581 −0.746255 −0.373127 0.927780i \(-0.621715\pi\)
−0.373127 + 0.927780i \(0.621715\pi\)
\(702\) −1.84699 0.508666i −0.0697102 0.0191983i
\(703\) 20.1917 0.761546
\(704\) 10.9584 + 9.19523i 0.413012 + 0.346558i
\(705\) 0 0
\(706\) 0.787958 + 4.46873i 0.0296552 + 0.168183i
\(707\) −34.8135 12.6711i −1.30930 0.476544i
\(708\) −2.88741 + 10.6771i −0.108516 + 0.401270i
\(709\) −0.688034 + 3.90203i −0.0258397 + 0.146544i −0.994998 0.0998949i \(-0.968149\pi\)
0.969158 + 0.246439i \(0.0792605\pi\)
\(710\) 0 0
\(711\) 7.86395 + 9.46045i 0.294921 + 0.354795i
\(712\) −7.61287 13.1859i −0.285304 0.494162i
\(713\) −43.4680 + 15.8211i −1.62789 + 0.592503i
\(714\) 2.43422 + 1.14196i 0.0910984 + 0.0427367i
\(715\) 0 0
\(716\) 21.5152 18.0534i 0.804059 0.674686i
\(717\) −2.65169 31.1385i −0.0990291 1.16289i
\(718\) 6.07223 2.21011i 0.226614 0.0824806i
\(719\) −13.6807 23.6957i −0.510204 0.883699i −0.999930 0.0118228i \(-0.996237\pi\)
0.489726 0.871876i \(-0.337097\pi\)
\(720\) 0 0
\(721\) −11.1857 + 19.3741i −0.416576 + 0.721530i
\(722\) 0.0331342 0.187913i 0.00123313 0.00699341i
\(723\) −18.6246 18.7110i −0.692656 0.695868i
\(724\) 15.0533 + 5.47895i 0.559451 + 0.203624i
\(725\) 0 0
\(726\) 2.69384 + 0.241962i 0.0999779 + 0.00898006i
\(727\) 9.42789 + 7.91094i 0.349661 + 0.293401i 0.800654 0.599127i \(-0.204486\pi\)
−0.450993 + 0.892528i \(0.648930\pi\)
\(728\) 3.75913 0.139323
\(729\) 23.1930 + 13.8233i 0.859001 + 0.511973i
\(730\) 0 0
\(731\) 11.1315 + 9.34041i 0.411712 + 0.345468i
\(732\) −30.3521 2.72624i −1.12185 0.100765i
\(733\) −0.405710 2.30089i −0.0149852 0.0849854i 0.976398 0.215979i \(-0.0692943\pi\)
−0.991383 + 0.130994i \(0.958183\pi\)
\(734\) −8.50813 3.09671i −0.314041 0.114302i
\(735\) 0 0
\(736\) −3.57812 + 20.2925i −0.131891 + 0.747993i
\(737\) 5.88684 10.1963i 0.216845 0.375586i
\(738\) 4.98131 + 0.902125i 0.183365 + 0.0332077i
\(739\) −26.0513 45.1221i −0.958311 1.65984i −0.726602 0.687059i \(-0.758901\pi\)
−0.231710 0.972785i \(-0.574432\pi\)
\(740\) 0 0
\(741\) 0.947026 + 11.1208i 0.0347899 + 0.408534i
\(742\) 6.74646 5.66095i 0.247670 0.207820i
\(743\) 30.9313 25.9544i 1.13476 0.952175i 0.135504 0.990777i \(-0.456735\pi\)
0.999255 + 0.0386016i \(0.0122903\pi\)
\(744\) 10.2885 + 4.82663i 0.377195 + 0.176953i
\(745\) 0 0
\(746\) 0.734841 + 1.27278i 0.0269045 + 0.0465999i
\(747\) −6.64906 7.99892i −0.243276 0.292665i
\(748\) 5.02618 8.70559i 0.183775 0.318308i
\(749\) −2.55210 + 14.4737i −0.0932517 + 0.528857i
\(750\) 0 0
\(751\) −25.8917 9.42382i −0.944803 0.343880i −0.176742 0.984257i \(-0.556556\pi\)
−0.768061 + 0.640377i \(0.778778\pi\)
\(752\) 6.00007 + 34.0281i 0.218800 + 1.24088i
\(753\) −20.1661 + 28.6588i −0.734892 + 1.04438i
\(754\) −1.80209 1.51213i −0.0656282 0.0550686i
\(755\) 0 0
\(756\) −25.1195 6.91798i −0.913588 0.251604i
\(757\) −13.2447 −0.481386 −0.240693 0.970601i \(-0.577375\pi\)
−0.240693 + 0.970601i \(0.577375\pi\)
\(758\) −5.39860 4.52996i −0.196086 0.164536i
\(759\) 11.3264 + 24.4369i 0.411121 + 0.887004i
\(760\) 0 0
\(761\) 35.4594 + 12.9062i 1.28540 + 0.467848i 0.892215 0.451611i \(-0.149150\pi\)
0.393187 + 0.919459i \(0.371373\pi\)
\(762\) −1.40658 + 0.373405i −0.0509549 + 0.0135270i
\(763\) −8.52970 + 48.3743i −0.308796 + 1.75127i
\(764\) −23.1558 + 40.1070i −0.837747 + 1.45102i
\(765\) 0 0
\(766\) 0.699881 + 1.21223i 0.0252877 + 0.0437997i
\(767\) 4.49578 1.63633i 0.162333 0.0590844i
\(768\) −15.7383 + 10.9659i −0.567907 + 0.395698i
\(769\) 39.2960 32.9733i 1.41705 1.18905i 0.464153 0.885755i \(-0.346359\pi\)
0.952898 0.303292i \(-0.0980856\pi\)
\(770\) 0 0
\(771\) −41.3741 + 28.8280i −1.49005 + 1.03822i
\(772\) 43.7020 15.9062i 1.57287 0.572477i
\(773\) −21.4439 37.1420i −0.771285 1.33590i −0.936859 0.349707i \(-0.886281\pi\)
0.165574 0.986197i \(-0.447052\pi\)
\(774\) 4.06291 + 2.37086i 0.146038 + 0.0852188i
\(775\) 0 0